
Mechanically Induced Homochirality in

Nucleated Enantioselective Polymerization

Celia Blanco,† Michael Stich,‡ and David Hochberg∗,¶

†Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA

93106-9510, USA

‡Non-linearity and Complexity Research Group, System Analytics Research Institute,

School of Engineering and Applied Science, Aston University, B4 7ET Birmingham, UK

¶Department of Molecular Evolution, Centro de Astrobioloǵıa (CSIC-INTA), Carretera
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Abstract

Understanding how biological homochirality may have emerged during chemical

evolution remains a challenge for origin of life research. In keeping with this goal, we

introduce and solve numerically a kinetic rate equation model of nucleated cooperative

enantioselective polymerization in closed systems. The microreversible scheme includes

(i) solution phase racemization of the monomers, (ii) linear chain growth by stepwise

monomer attachment, in both the nucleation and elongation phases, and (iii) annealing

or fusion of homochiral chains. Mechanically induced breakage of the longest chains

maintains the system out of equilibrium and drives a breakage-fusion recycling mecha-

nism. Spontaneous mirror symmetry breaking (SMSB) can be achieved starting from

small initial enantiomeric excesses due to the intrinsic statistical fluctuations about

the idealized racemic composition. The subsequent chiral amplification confirms the
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model’s capacity for absolute asymmetric synthesis, and without chiral cross-inhibition

and without explicit autocatalysis.

Introduction

Biological homochirality of living systems involves large macromolecules, often biopolymers.

The origin of homochirality has been much debated, and includes the possibility that the ori-

gin of elementary chiral molecules may well be astrophysical.1 A key question in this context

is the relationship of the polymerization process with the emergence of chirality. This ques-

tion has spurred recent activity devoted to modeling efforts aimed at understanding mirror

symmetry breaking and chiral amplification in chiral polymerization of potential relevance to

the origin of life. The majority of the kinetic models thus far studied2–7 are extensions and

generalizations of Frank’s original paradigmatic scheme8 which is based on mutual, or chi-

ral inhibition. An early pioneering conceptual model2 introduced a detailed polymerization

process plus the basic elements of enantiomeric cross inhibition as well as a chiral feedback

mechanism in which only the largest polymers formed can enhance the production of the

chiral monomers from an achiral substrate. Spatial extent and diffusion can be included in

such schemes3 to study the spread and propagation of chiral domains as well as the influence

of backround turbulent advection velocity fields. In related models, the polymers may grow

to arbitrary lengths and the chiral polymers of all lengths, from the dimer on upwards, can

act catalytically in the breakdown of the achiral source into chiral monomers.5 The role

of external white noise on such polymerization networks including spatial extent has also

been explored6,7 to model random environmental disturbances. Another variation on this

theme9 gives rise to homochiral states in dimerization, but without invoking the enantiomeric

cross inhibition, allowing instead for reversibility in all the reaction steps. This requires an

open flow, which is the needed element of irreversibility for achieving non-equilibrium steady

states. The important role of microscopic reversibility in chiral asymmetry has also been
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investigated in detail for some basic non-polymerization models.10,11

These polymerization models are defined for open flow systems which exchange matter

and energy with the environment. A constant (unlimited) source of achiral precursor is

typically assumed. As a consequence, the homochiral chains can grow to infinite length and

unbounded mass. By contrast, typical laboratory experimental procedures are carried out

in closed and spatially bounded reaction domains and are initiated in far-from equilibrium

states.12–19 Moreover, unbounded polymerization is prevented by entropic effects which imply

a finite maximum chain length that depends on temperature. It is important to have models

compatible with such experimentally realistic boundary and initial conditions20–23 and in

conformance with thermodynamic constraints. The most immediate consequences are that

polymer chains can grow to a finite maximum length, and that the total system mass is

constant.

Reaction networks and system architectures, are important elements to have in mind

in the design of experiments that might lead to absolute asymmetric synthesis or even to

temporary mirror symmetry breaking (kinetically controlled chiral excursions24). In this

paper, we introduce and analyze a kinetic scheme involving (i) a racemizing pair of enan-

tiomeric monomers, (ii) the assembly of these monomers into supramolecular fibers or linear

architectures, (iii) binary fiber annealing and fragmentation, and (iv) mechanically induced

breakage of the longer fibers into smaller ones. This modeling is useful in order to acquire

deeper chemical/physical insights into the basic processes involved and could aid in the ex-

perimental design and control of the underlying mechanisms involved. As a case in point,

a recent experimental report incorporating polymer breakage puts forward the intriguing

hypothesis that mechanical forces can act as a selection pressure in the competition between

replicators.25 In an even earlier key experiment, hydrodynamic vortex motion was demon-

strated to act as an environmental pressure to select one or the other handedness between

two otherwise degenerate mirror symmetric supramolecular populations.26 One of our main

aims here is to explore the impact that both mechanically induced breakage in concert with
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fiber fusion have on the mirror symmetry breaking and subsequent chiral amplification. An

important aspect of this work is that we consider the polymerization process in a closed

system and include reversible reaction steps.20,21 This enables us to explore the possibility

of absolute asymmetric synthesis in thermodynamically closed systems (closed to matter

flow) taking into account the necessary thermodynamic constraints.27,28 Absolute asymmet-

ric synthesis is the ability of a system to amplify the tiny statistical chiral fluctuations up to

observably large enantiomeric excesses.29 The simulations underscore the special role of bi-

nary fusion as a nonlinear mechanism, dynamically akin to autocatalysis, for amplifying the

initially tiny chiral perturbations up to final large enantiomeric excesses, and in the absence

of chiral or mutual inhibition.

Model

The nucleated polymerization network is that of a racemizing monomer pair (L1, R1) yielding

homochiral chains of a maximum length LN , RN , where N is the number of monomer units.

Monomers attach reversibly to all size chains of the same chirality. Small length post-critical

chains up to a certain maximum length can be incorporated via end-to-end fusion into larger

chains of the same chirality. The inverse process, fragmentation of large chains into two

smaller chains, is also allowed (see Fig. 1). The rates (see Table 1) of these chain-fusions and

fragmentations obey the constraints of chemical thermodynamics. The longest chains, from

the maximum length on down to a lower length limit, are subjected to mechanical breakage,

which is the only irreversible process in the scheme. This breakage represents an external

energy input to the system. The microscopic transformations defining our scheme are given
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as follows:

L1 ⇀↽ R1 (1)

L1 + Lj ⇀↽ Lj+1, R1 +Rj ,⇀↽ Rj+1 (nc ≤ j ≤ N − 1), (2)

Li + Lj ⇀↽ Ln, Ri +Rj ⇀↽ Rn, (i ≤ j, iminf ≤ i ≤ N − jminf , jminf ≤ j ≤ N − iminf ),(3)

Ln → Li + Lj , Rn → Ri +Rj , (nmin ≤ n ≤ N, imin ≤ i, i ≤ j). (4)

The racemization, Eq. (1), proceeds with rate kr, and the stepwise monomer attachment,

Eq. (2), with forward/reverse rates k1, k−1 and k2, k−2, in the nucleation and elongation

phases, respectively. The fusion of chains of lengths i and j to a polymer of length n = i+ j,

Eq. (3), occurs with forward/reverse rates ka, k−a and the irreversible breakage of polymers

of length n into polymers of lengths i and j, Eq. (4), with rate γ. The processes are defined to

occur over various regions or chain length intervals, as indicated. We consider both the crit-

ical nucleus size nc and maximum chain length N to be fixed, then we need only specify four

independent size limits: nmin, imin, iminf and jminf ; see Table 1 for a summary of their defi-

nitions and Fig. 1 for a schematic diagram of the mechanical breakage and fusion processes.

The transcription of the scheme’s processes Eq. (1-4) into the corresponding differential rate

equations leads to generalized Smoluchowski equations. Such equations play an important

role in reversible polymerization processes and in related aggregation and fragmentation

processes.30–35 In our model, the variable window sizes for the chain fusion/fragmentation

processes and for the irreversible mechanical breakage of chains imposes somewhat intricate

constraints on the corresponding fusion/fragmentation and breakage kernels which must be

accounted for correctly as many detailed features, revealed by the subsequent numerical sim-

ulations, depend non-linearly on these window sizes themselves. The details of how these

window size constraints are handled are explained in the Appendix.

The model in Eqs. (1-4) is left-right symmetric, that is, possesses a discrete Z2 sym-

metry, all species are interchanged with their mirror image counterpart, which is manifest
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Figure 1: Schematic of the oligomer length ranges involved in the mechanically induced irre-
versible breakage (upper diagram) and reversible binary end-to-end fusion (lower diagram).
N and nc denote the maximum length polymer and the size of the critical nucleus, respec-
tively, both taken as fixed. Then the breakage pattern is fully determined by nmin ≤ N :
the minimum length polymer subject to mechanical breakage and imin ≥ nc: the smallest
length polymer fragment resulting from this breakage and such that [nmin

2
] > (imin−1). The

binary fusion pattern is fully determined by iminf ≥ nc: the minimum length of the shorter
polymers that can fuse with the longer ones, and jminf ≥ iminf : the minimum length of the
longer polymers that can fuse with the shorter ones. Depending on the values for imin, nmin
and iminf , jminf , the breakage source and breakage product size intervals can overlap; and
the fusion source and fusion product size intervals can overlap. There can also be overlap
between the various breakage and fusion size ranges. See also Table 1.

in the elementary reaction steps, in the rate constants (Table 1), and in the corresponding

differential rate equations [Eq. (36) in the Appendix]. This exact symmetry can be broken

spontaneously by the dynamical solutions of the differential rate equations. The model is

thus apt for investigating spontaneous mirror symmetry breaking. Rate-equation theory as

employed in chemical kinetics is used to describe the differential rate equations of the re-

action network. Due to the variable size ranges involved, it is convenient to consider the

specific processes (nucleation + racemization + linear chain growth, mechanical breakage,

6



Table 1: Definition of the model parameters. Above the solid line: the independent param-
eters. Below the line: the dependent parameters. Length refers to the number of monomer
units in the oligomer. Compare with Fig. 1 indicating the various size ranges implied by the
different processes. For the overall free energy profile for cooperative nucleated supramolec-
ular polymerization, see, e.g., the schematic diagram Fig. 24 of Ref.36 The rate constants
k2, k−2 and ka, k−a obey a thermodynamic constraint, see the Appendix. We treat coop-
erative nucleated polymerization as k1 < k−1, k2 > k−2. Parameters and variables are in
standard SI units.

nc critical nucleus (nc ≥ 2) for cooperative nucleated polymerization
N maximum length polymer
nmin minimum length polymer subject to mechanical breakage
imin smallest length polymer fragment resulting from mechanical breakage
iminf minimum length of the shorter polymers that can fuse with the long polymers
jminf minimum length of the longer polymers that can fuse with the short polymers
γ rate of irreversible mechanical breakage of the polymers
k1, k−1 forward, reverse rates of monomer addition (isodesmic nucleation regime)
k2, k−2 forward, reverse rates of monomer addition (isodesmic elongation regime)
ka, k−a rate of chain-chain fusion, rate of binary fragmentation
kr racemization rate of the monomers

cL,Rk (t) time dependent concentration of the k-mer, for chirality L,R
N − imin maximum length breakage fragment
N − jminf maximum length of the shorter polymers that can fuse with the long polymers
N − iminf maximum length of the longer polymers that can fuse with the short polymers
iminf + jminf minimum length of polymers formed by binary fusion

fusion/fragmentation) individually and how they lead to generalized Smoluchowski equations

in the Appendix. The isodesmic approximation36 for the elongation phase of the polymer-

ization leads to an important thermodynamic constraint relating stepwise growth and chain

fusion which we derive in the Appendix.

Numerical Methods

As mentioned earlier, we are interested in testing the model’s ability to amplify the initial

small statistical deviations about the idealized racemic composition,37,38 in systems closed

to matter flow, and taking microscopic reversibility and the thermodynamic constraints into

account. The differential rate equations, Eq. (36) from the Appendix, were numerically

integrated with the version 10 Mathematica environment39 and using a high level of nu-
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merical precision, typically thirty significant digits, to ensure the numerical significance of

the initial concentrations and enantiomeric excesses employed. The results were monitored

and verified to assure that total system mass remained constant in time. See40 for further

remarks concerning the numerical integration method options and the numerical precisions

used for suppressing the computational noise below the level of the initial chiral fluctua-

tions. The concentration units are molL−1, and the different reaction rate constants have

the appropriate units to yield rate values in units of mol s−1.

The initial percent enantiomeric excess ee0(%) for the system is defined as

ee0(%) =

∑N

n=1([Ln]0 − [Rn]0)
∑N

n=1([Ln]0 + [Rn]0)
× 100. (5)

In order to study the sensitivity of the reaction scheme, Eqs. (1-4), to tiny initial enantiomeric

excesses, an initial concentration of a scalemic (non racemic) monomer composition was

employed in the calculations: these initial monomeric concentrations are [L1]0 = (0.1 + 1 ×

10−11)M and [R1]0 = 0.1M . The maximum polymer length was fixed to N = 100, and the

critical nucleus size to nc = 5. The full set of the remaining initial concentrations are as

follows: [Ln]0 = [Rn]0 = 0.1M , 2 ≤ n ≤ N , i.e., the racemic composition for the remainder

of the oligomers (and at a level of numerical working precision that ensures the significance

of the initial enantiomeric excess). Inserting these initial concentration values into Eq.(5)

yields an initial percent chiral excess of ee0 = 5×10−11%. While this may seem rather small,

it is two orders of magnitude greater than the expected enantiomeric excess due to purely

statistical fluctuations in a racemic sample:37

eestat =
0.68(%)√

M
= 2.0× 10−13%, (6)

where M = 12 × 1024 is the total number of oligomers in the system (Avogadro’s number

multiplied by the total initial concentration of the system).

Values of the reaction rate constants used in all the simulations are: k1 = 104, k−1 = 4×
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104, k2 = 1000, k−2 = 900, ka = 10, k−a = 9, kR = 102, γ = 50. Note the forward and reverse

rates of monomer attachment (k2, k−2) and those of binary fusion (ka, k−a) are constrained by

chemical thermodynamics, see the Appendix for the derivation of this important constraint.

The upper and lower limits for the breakage and fusion source and product size windows are

specified in the corresponding simulation figure captions. In all the numerical simulations,

the character of the final stationary state was inferred from the constant final concentration

values for all species maintained during long time intervals (≈ 1015s).

Results and Discussion

Results are quantified in terms of standard chiral measures. The percent enantiomeric excess

values of the homochiral oligomers are calculated according to (1 ≤ n ≤ N):

een(%) =
[Ln]− [Rn]

[Ln] + [Rn]
× 100. (7)

The importance of the enantiomeric excess is that it is an order parameter for the symmetry

breaking transition: |een(%)| ≥ 0 is strictly zero for mirror symmetric states and nonzero

otherwise. In the latter case, the Z2 symmetry is broken. A distinct global measure of the

degree of symmetry breaking is provided by the total mass within each chiral population

ηL, ηR:

ηL =
N
∑

n=1

n[Ln], ηR =
N
∑

n=1

n[Rn], (8)

as well as the total chiral mass: ηTotal = ηL + ηR. It is important to keep in mind that

een(t), ηL(t), ηR(t) are all time-dependent quantities.

The outcomes of the numerical calculations are presented in various figures for a selection

of breakage and fusion window sizes and are also summarized by phase diagrams indicating

the parameter ranges where mirror symmetry is broken in relation to the various size intervals

over which the processes of mechanical breakage and fusion/fragmentation are acting. There,
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nmin represents the lower bound for the longest polymers susceptible to breakage into two

fragments whereas imin is the minimum length fragment (see Table 1). Then, N − imin is the

upper bound on the fragment size thus generated. The positivity condition on the breakage

rate, [nmin
2

] > (imin − 1), implies a lower limit on nmin for a given imin, as indicated in the

phase diagrams ([..] indicates the Floor function). On the other hand, binary fusion is a

quadratic process, hence the size intervals of the two polymers that fuse together must be

specified: these are uniquely determined by iminf , the lower bound on the smaller polymers

that can fuse with the typically larger polymers of minimum length jminf ≥ iminf . Then

N − jminf and N − iminf are the upper bounds on the lengths of the smaller, larger polymers

that participate in the fusion, respectively. Finally, the size range of the product polymers

obtained by this fusion is given by the interval [jminf + iminf , N ]. Note that all three size

intervals have identical width: ∆ = N − (jminf + iminf ). We consider breakage and fusion

to act over the elongation regime of nucleated polymerization, so that the critical nucleus

nc ≤ imin ≤ iminf ≤ jminf sets the strict lower size limit for all these processes. It is clear

we must choose nmin ≤ N and iminf + jminf ≤ N . There remains substantial freedom in

choosing the lower limits of the various size intervals, giving rise to various partial or total

process overlap patterns, some of which are indicated below. For instance, we can consider

(partial or total) size interval overlap within a given process, say, fusion reactants with fusion

products, as well as size range overlap between fusion and breakage size intervals.

A characteristic illustrative example of initial racemic (subject to a tiny chiral pertur-

bation) to the chiral final state transition is shown in Fig. 2 for the ranges of fusion and

breakage size limits iminf = 20, jminf = 30, nmin = 85 and imin = 25. Panel (a) shows the

time-dependent oligomer enantiomeric excesses, Eq. (7), for all the species collectively. The

dependence on the size n of the n-mer: where 1 ≤ n ≤ N indicates that the een depends

strongly on the size of the oligomer. The important aspect to be appreciated from panel(a)

is the gradient in een versus oligomer size n after mirror symmetry is broken and that all

the een > 0 are positive. Since a total of 100 individual curves are plotted together, there
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Figure 2: Simulation for iminf = 20, jminf = 30, nmin = 85 and imin = 25. (a) Time-
dependent oligomer enantiomeric excess Eq. (7) showing the gradient dependence of een
on the size n of the oligomer: the curves correspond to n = 1 (bottommost) to n = 100
(topmost) and in increasing sequential order. (b) This gradient in n is resolved showing
individual oligomer enantiomeric excesses as a function of chain size n and evaluated at
t ∼ 1015s. (c) Total mass in each chiral population Eq. (8) as a function of time. (d) Total
chiral mass ηTotal as a function of chain length n evaluated at t ∼ 1015s. Time is measured
in seconds, concentrations and masses are in standard SI units, as for the remainder of this
article.

is a “pile-up” of curves for chain sizes with n > 6. This explicit size dependence in een is

resolved in the top right hand graph, panel(b), indicating the each oligomer enantiomeric

excess as a function of chain size n, evaluated at asymptotic times t ∼ 1015s. That is, panel

(b) results from taking a temporal “slice” of panel (a) after the symmetry breaking event.

We see that the gradient in oligomer size is nonlinear. The mirror symmetry breaking is

also manifested in the dynamics of the net mass contained within each chiral population

(ηL, ηR), Eq. (8), (panel (c)). The way the total chiral mass ηTotal, summed over both chiral

populations is distributed as a function of chain length n, in the complex nonlinear manner,

11



is shown in panel (d) and evaluated at t ∼ 1015s. Note that the individual oligomer enan-

tiomeric excesses, panel(a), all exhibit a sigmoidal time dependence. Since this is plotted in

a logarithmic scale, the symmetry breaking transition appears abruptly. We can resolve this

transition making the sigmoidal character manifest using a linear time scale (see Figures 5,6

). The characteristic time scale in which the rapid acceleration phase begins depends on the

rate of racemization kr. Increasing (decreasing) kr decreases (increases) this time scale. The

time dependence of the mass in each chiral species also display sigmoidal behavior (panel (c)),

as does the net mass contained within each chiral population for the majority chirality (in

this case, for L). The minority enantiomers have their masses correspondingly diminished,

in an “anti-sigmoidal” fashion: there is a rapid deceleration phase which exactly mirrors

the acceleration phase of the majority enantiomers, followed by a rapid slowdown (panel

(c)). This chiral “mass splitting” feature, whereby the initial mass degeneracy [Ln]0 = [Rn]0

(which implies ηL(0) = ηR(0)) is lifted for all the species, and on the same time scale, is

a hallmark feature of spontaneous mirror symmetry breaking (SMSB) in chiral polymeriza-

tion schemes. Varying the upper and lower size limits of the fusion and breakage windows

can lead to similar results as far as the overall qualitative collective symmetry breaking

features are concerned. Thus for example in Fig. 3: iminf = 6, jminf = 80, nmin = 95 and

imin = 20, (a) exhibits the set of time-dependent oligomer enantiomeric excesses which is

similar (but not identical) to the corresponding graph in Fig. 2. As before, the important

aspect to be appreciated from panel(a) is the gradient in een versus oligomer size n after

mirror symmetry is broken and that all the een > 0 are positive. In contrast to Figure 2

the “clustering” of the curves is pronounced for the mid-range of the larger sized oligomers.

The detailed resolution of the way these ee’s are distributed according to chain length (b)

reveals a markedly different pattern as compared to the corresponding panel (b) in Fig. 2.

This also shows that the mid-range clustering of curves is taking place for oligomers in the

size range from approximately n = 20 to n = 80. This shows that the distribution depends

sensitively on the fusion and breakage window size boundaries. Likewise, while the overall
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Figure 3: Simulation for iminf = 6, jminf = 80, nmin = 95 and imin = 20. (a) Time-dependent
oligomer enantiomeric excess Eq. (7) showing the gradient dependence of een on the size n
of the oligomer: the curves correspond to n = 1 (bottommost) to n = 100 (topmost) and
in increasing sequential order. (b) This gradient is resolved showing individual oligomer
enantiomeric excesses as a function of chain size n and evaluated at t ∼ 1015s. (c) Total
mass in each chiral population Eq. (8) as a function of time (in seconds). (d) Total chiral
mass ηTotal as a function of chain length n evaluated at t ∼ 1015s.

sigmoidal time dependence of the total mass in each chiral population is similar for both

panels (c) in Figs. 3 and 2, the way in which the total chiral mass is distributed over the

chains is radically distinct, see panel (d), again pointing to a clear dependence on the size

range over which fusion and breakage are operative.

A further example illustrating the the non-linear dependence on the window sizes is pro-

vided in Fig. 4: iminf = 6, jminf = 6, nmin = 100 and imin = 50. In contrast to the previous

Figures 2,3 the tight “clustering” of the individual oligomer enantiomeric excess curves is here

pronounced for the entire range of the oligomers sizes greater than the critical nucleus. The

detailed resolution of the way these ee’s are distributed according to chain length (b) con-
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firms this aspect unambiguously. Again the overall qualitative aspects of both the collective

set of time-dependent oligomer enantiomeric excesses een and the asymptotic chiral masses

[Fig. 4(a,c)] are similar to those corresponding to the previous examples. The salient differ-

ences are made clear by examining the details of the precise manner in which the oligomer

een’s and chiral masses are distributed over the individual chain lengths [Fig. 4(b,d)].
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Figure 4: Simulation for iminf = 6, jminf = 6, nmin = 100 and imin = 50. (a) Time-dependent
oligomer enantiomeric excess Eq. (7) showing the gradient dependence of een on the size n
of the oligomer: the curves correspond to n = 1 (bottommost) to n = 100 (topmost) and
in increasing sequential order. (b) This gradient is resolved showing individual oligomer
enantiomeric excesses as a function of chain size n and evaluated at t ∼ 1015s. (c) Total
mass in each chiral population Eq. (8) as a function of time (in seconds). (d) Total chiral
mass ηTotal as a function of chain length n evaluated at t ∼ 1015s.

The results shown in Figs. 2-4 lead to an important observation. Namely, when SMSB

and chiral amplification occur, they are a collective and coherent phenomena, affecting all of

the species and on the same time scale, and such that the symmetry breaking experienced

in each individual chiral species (oligomer) is produced with the same sign (n ∈ [1, N ]): that
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is, the SMSB is homochiral. Employing a logarithmic time scale to display the results in

the panels (a),(c) of the above figures affords a compact and concise way to appreciate the

collective behavior of all the oligomer enantiomeric excesses in a glance, as well as the total

chiral masses, over the entire time range of the simulations. The familiar sigmoidal response

of the oligomer enantiomeric excesses can be brought out easily by “zooming” in on the

transition time scale using a linear time scale. Thus, for the same simulation parameters

leading to Fig. 2, we expose this sigmoidal behavior for the individual oligomer concentrations

as well as for the oligomer masses: see panels (a) of Fig. 5 and Fig. 6, respectively. Since we

have to deal with 100 species, for clarity we plot a selection of oligomer sizes as shown. It is

clear from these curves that the een of the majority enantiomers follow a sigmoid, whereas

the minority enantiomers follow an anti-sigmoid (i.e., having a rapid deceleration phase). We

note moreover the chiral splittings all take place on a similar time scale for all the oligomers,

also the saturation phase (leveling off of curves) occurring on a similar time scale for all the

oligomers. In panel (b) of Fig. 5 we expose the sigmoidal behavior in terms of the chiral

concentrations and also in terms of the total chiral masses in panel (b) of Fig. 6. The latter

should be compared to panel (c) of Fig. 2. An indication of the polymeric relaxation processes

taking place before and after the symmetry breaking event is provided by the panels (c),(d)

of Fig. 5 and in terms of the oligomer concentrations. The panel (c) shows the individual

oligomer concentrations over the full size range in n. The distribution at t = 104s, is racemic,

at t = 106s, the distributions of all the L and R oligomers have separated as shown (and

maintain these profiles for the remainder of the simulation). Panel (d) shows the total chiral

distribution in terms of the concentrations ([Ln] + [Rn]) as a function of oligomer sizes,

and for the same two time scales. The sigmoidal response and relaxation processes are also

monitored in terms of the chiral masses of the oligomers in Fig. 6.

SMSB results qualitatively similar to those in Figs. 2-4 have been obtained and verified in

case-by-case simulations for many other choices of the breakage and fusion window bounds.

Among all possible allowed choices of iminf , jminf , nmin and imin, a small but illustrative set
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Figure 5: Details of the behavior of the oligomer concentrations: same parameters as for
simulation of Fig. 2. (a) Time-dependent oligomer concentrations [Ln] (monotonic increase)
and [Rn] (monotonic decrease) for the oligomers with length n = 1, 21, 41, 61, 81 showing a
close-up of the sigmoidal behavior on a linear time scale (in seconds). (b) Sigmoidal behavior
of the total chiral concentrations L =

∑100
n=1[Ln] (monotonic increase) and R =

∑100
n=1[Rn]

(monotonic decrease) as functions of time in seconds (linear scale). (c) Individual oligomer
concentrations 1 ≤ i ≤ 100, before (t = 104s) and after (t = 106s) the symmetry breaking.
(d) Sum of the chiral concentrations [Ln] + [Rn], as a function of chain length n evaluated
before (t = 104s) and after (t = 106s) the symmetry breaking.

of so-called “extreme” cases is worth mentioning first. The choice (i) iminf = 6, jminf =

6, nmin = 12 and imin = 6 corresponds to the maximal overlap between the range of the large

polymers subject to breakage and the “fallout” range populated by the breakage products.

At the same time, this implies a maximal overlap between the ranges of the small and

large polymers that can fuse with the range of the fusion products. In addition, both the

breakage and fusion windows overlap identically. This is because imin = iminf = jminf = 6,

nmin = (iminf + jminf ) = 12 and (N − imin) = (N − iminf ) = (N − jminf ) = 94 (to see

that the corresponding range overlaps, substitute these window bounds into Fig. 1). In this
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Figure 6: Details of the behavior of the oligomer masses: same parameters as for simula-
tion of Fig. 2. (a) Time-dependent oligomer masses n[Ln] (monotonic increase) and n[Rn]
(monotonic decrease) for the oligomers with length n = 1, 21, 41, 61, 81 showing a close-up
of the sigmoidal behavior on a linear time scale (in seconds). (b) Sigmoidal behavior of
the total chiral masses ηL (monotonic increase) and ηR (monotonic decrease) as functions of
time in seconds (linear scale). (c) Individual oligomer masses n[Ln], n[Rn] for 1 ≤ i ≤ 100,
before (t = 104s) and after (t = 106s) the symmetry breaking. (d) Sum of the chiral masses
ηL + ηR, as a function of chain length n evaluated before (t = 104s) and after (t = 106s) the
symmetry breaking.

maximal situation, SMSB occurs. Next, keep the fusion windows bounds maximal as in (i),

but now shrink the breakage windows to points according to (ii) imin = 50 and nmin = 100.

Then the only polymers that can break are the maximal ones (N = 100) and the only

fragments produced are each of length 50. The breakage intervals become points, and the

overlap between breakage and fusion windows is minimized. In this case, SMSB also results.

Next, if we keep the breakage parameters as in the previous case and now shrink the fusion

windows according to the choice (iii) iminf = jminf = 50, then the racemic outcome is the

final stable solution. Lastly, maintaining these same fusion parameters as in (iii), now set
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(iv) nmin = 12, imin = 6 to open the breakage source and product windows maximally.

Again, the racemic outcome is the final stable solution. The outcomes of these four extreme

cases suggest that the chain fusion mechanism plays a crucial role in SMSB. Indeed, SMSB

pertains for both cases (i) and (ii) in which the fusion windows are at their maximum widths;

whereas Cases (iii) and (iv) lead to the racemic, for which the fusion windows are at their

minimum widths. The widths of the breakage windows, whether maximal or minimal, play

no decisive role in any of these extreme examples.

A more detailed investigation of the regions in parameter space where spontaneous mirror

symmetry breaking takes place can be mapped out using the common lower limit iminf =

jminf of the fusion windows as a dependent variable. An example of this mapping is provided

by the graph in Fig. 7. The regions where SMSB occurs are “islands” which shrink in size

as iminf = jminf increases. Recall that as iminf = jminf increases, the area for which fusion

processes are allowed decreases. In particular, as iminf = jminf > 30, no SMSB is observed

for any combination of nmin, imin (for the extreme case iminf = jminf = 50 we already noted

this above). This confirms that the fusion mechanism must be operative over a sufficiently

wide range of chain length sizes in order for SMSB to result. In fact, simulations (not

displayed here) show that if we eliminate fusion from the overall scheme (ka = k−a = 0), the

asymptotic state is racemic, demonstrating that fusion is a crucial process in spontaneous

mirror symmetry breaking.

Additional maps showing the regions where SMSB occurs when the two size range inter-

vals of the smaller and larger fusion sources are widely separated, iminf < jminf , are displayed

in Fig. 8.

Conclusions

We have elaborated a kinetic reaction scheme demonstrating how spontaneous mirror symme-

try breaking (SMSB) can be achieved in enantioselective polymerization without invoking
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Figure 7: Regions where SMSB is found (within the colored curves) as the common lower
bound iminf = jminf of the fusion source size intervals is varied versus nmin and imin. This
area of the mirror symmetry breaking phase shrinks upon increasing this common lower
bound. See also Fig. 1 and Table 1.

the Frank paradigm of mutual or chiral inhibition, in marked contrast to previous chiral

polymerization models.2–7 The model contains the key steps in nucleated cooperative poly-

merization, i.e., nucleation, elongation, dissociation, fusion and fragmentation. The only way

the reaction schemes of the two enantiomers are coupled is through monomer racemization.

All these processes are reversible. Fundamental thermodynamics requires that in an isolated

system, the asymptotic state is the racemic one. In order to allow a closed system to undergo

permanent symmetry breaking, we need an external energy source that here is provided by

the irreversible breakage of the longest polymers. Through extensive simulations we show

that the fusion process is necessary to induce spontaneous mirror symmetry breaking. The

fixing of an upper bound of our polymer length, here N = 100, may seem a limitation on
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Figure 8: Regions of SMSB (within the area closed by the thick solid curve) as the mini-
mum polymer size nmin that can break, and the minimum size fragment imin so generated.
Gray shaded bands represent the size interval pattern for the polymers involved in the fu-
sion/fragmentation process. (a) iminf = 15 and jminf = 75. Thus, since N = 100, the length
range of the shorter polymers that fuse is [15, 25] (vertical band) with the larger ones [75, 85]
(lower horizontal band) whereas the range of the longest product polymers is [90, 100] (upper
horizontal band). The width of all three size intervals is ∆ = 10. The vertical line at nc = 5
marks the critical nucleus; the diagonal line marks the lower boundary of the (nmin, imin)
region in which the breakage rate is positive (see text for explanation). See text for initial
conditions and rate constants. (b) Same as (a), but for iminf = 5 and jminf = 85. Thus, since
N = 100, the length range of the shorter polymers that fuse is [5, 15] (vertical band) with
the larger ones [85, 95] whereas the range of the longest product polymers is [90, 100]. These
two size bands overlap (horizontal band). The width of all three size intervals is ∆ = 10.

our model. Nevertheless, this can be justified since polymers cannot grow indefinitely in any

case because of mass limitation (finite mass system) and also also due to entropic effects.

In many cases, such as exemplified in Figs. 2 and 3, long chains are not generated. So we

believe that the system studied here captures the correct qualitative behavior of a putative

system where no maximum size N is imposed.

The interest in systems dispensing with mutual inhibition is as follows. In biopolymers,

the diastereoselective selection towards homochirality has been confirmed by experimen-

tal reports on the polymerization of amino acids and nucleotides from racemic mixtures

where, after a certain chain length, the diastereoselective formation of homochiral chains

occur preferentially.13,17,41,42 In light of these results, it is difficult to conceive how such sys-

tems, where homochiral interactions dominate, can simultaneously accommodate heterochiral
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cross inhibition reactions. In this respect, the SMSB mechanism operating in the Viedma

deracemization experiment43 (the grinding of conglomerate racemic mixtures of crystals of

achiral or racemizing compounds, in saturated solutions) is radically distinct to both Frank-

like and limited enantioselective (LES) reaction schemes exhibiting SMSB. The importance

of mechanical grinding for inducing chiral symmetry breaking (and in the context of the

Viedma experiment) has inspired subsequent experimental, theoretical and numerical mod-

els aimed at achieving a better understanding of attrition-enhanced deracemization.44–51 A

recent kinetic study of the Viedma deracemization phenomenon postulated that the basic

transformations responsible for the deracemization of racemic enantiopure crystals could be

appropriately extended and applied to model SMSB in enantioselective polymerizations.29,40

The mechanical breakage (which is an external energy input to the system) of the longer

chains is a recycling of lower to higher energy compounds. SMSB occurs due to the competi-

tion, established via solution phase racemization of the monomeric units, between these two

chiral recyclings. Thus, in the absence of mutual inhibition and other processes, (reversible)

binary fusion is a necessary nonlinear process for amplifying the tiny inherent statistical

chiral fluctuations, in an otherwise racemic composition of homochiral chains. This being

the case, the inclusion of cross-inhibition in our model, would lead to a decrease in the

racemic composition of the system and to an increase in the enantiomeric excess value. In

other words, a cross-inhibition mechanism has, by itself, a strict deracemizing tendency.2–7,29

The absence of cross-inhibition in our model thus implies that SMSB and the subsequent

amplification to large values of ee must rely solely on the purely homochiral processes alone:

stepwise growth, fusion/fragmentation and mechanical breakage where each homochiral pop-

ulation is coupled to the population of the opposite chirality via solution phase racemization

of the monomers.

As conjectured in,29,40 the fundamental SMSB mechanism underlying Viedma deracem-

ization, i.e., the breakage-fusion recycling, is a process that, when applied to homochiral

enantioselective polymerizations, also ought to lead to SMSB. The significance of this with
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respect to biological homochirality is that, assuming that the emergence of catalytic func-

tionalities52 is necessary to convert biopolymer replicators into the hypercyclic replicators,

then such an event has a reasonable probability to occur when a large number of different

homochiral polymers (composed by different residues) are formed and that very probably

homochiral purity is an advantage for the selection. A recent report on chiral hypercycle

replicators formed from achiral or racemizing resources shows how they can lead to spon-

taneous mirror symmetry breaking, without any heterochiral inhibition reactions, such as

those of the Frank-like models.53 Those results indicate that the chemical models for the

emergence of primordial autocatalytic self-reproducing systems, of and by themselves, can

also explain naturally the emergence of biological homochirality. That work was not con-

cerned with how the homochiral replicators may actually be obtained from either achiral or

racemizing resources. This prior SMSB in enantioselective polymerization is then a necessary

step for the emergence of chiral hypercyclic replicators. One of the major aims of the present

work was to address this issue (the formation of the homochiral polymers themselves), and

especially in light of experimental techniques using hydrodynamic shear stresses for breaking

up supramolecular structures.25,26

The simulations suggest that the key necessary condition for achieving SMSB is the binary

chain-fusion mechanism. Indeed, if we delete fusion from the overall scheme (ka = k−a = 0),

racemic initial conditions lead to strictly racemic configuration for all time scales, including

asymptotic times. It has been argued that autocatalytic processes are at the core of mech-

anisms that destabilize the racemic state and stabilize the chiral ones.54 The question then

arises if such an autocatalytic mechanism is operative in our specific reaction scheme? On

the one hand, inspection of the underlying microscopic reaction scheme, Eqs. (1,2,3,4), re-

veals no elementary process that can be defined as autocatalytic per se, that is, a mechanistic

transformation of the type nX → mX for m > n, for which a population of a species X is

augmented. Furthermore, the differential rate equations that correspond to the binary fusion

process, Eq. (22) in the Appendix, which is the only nonlinear transformation in our scheme
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involving chains, cannot be cast into the general form dxi/dt = k(X)xpi + f(X) where xi is

the concentration of the ith-species and the exponent p > 1
2
, and according to the classifica-

tion of the concepts of autocatalysis,55 would be the kinetic signature of autocatalysis. And

this is for the simple reason that a chain of length n can only be the fusion-product of two

smaller chains of lengths i, j, respectively, and such that i+ j = n. On the other hand, it is

evidently the dynamic, time-dependent aspect of SMSB where the signature of autocatalysis

is to be found.55 This dynamic signature is observed in the time-dependent curves showing

SMSB, such as in Figs. 2-4(a,c). There we find sigmoidal curves for the enantiomeric ex-

cesses for all k-mer species, as well as for the total mass in each chiral population: a dynamic

signature characterized by a slow initiation phase, then a distinct rapid phase of convex rate

acceleration followed by a final rapid slowdown. The dynamic curves for the concentrations

of all the individual species [Ln] and [Rn], are also sigmoidal when the mirror symmetry is

broken, see Fig. 5, as is the response of the individual oligomer masses n[Ln] and n[Rn], see

Fig. 6.

Finally we comment that template-directed ligation of oligomers, such as proposed re-

cently in the RNAworld,56 is a plausible prebiotic mechanism that joins two shorter oligomeric

strands into a longer one, and so bears a mechanistic and kinetic resemblance to the chain-

fusion process discussed in this work. Hence, we speculate that template directed ligation

might act as an effective catalytic step to amplify small initial enantiomeric excesses up to

large significant levels. We therefore conjecture that homochirality can be achieved already

during the very early stages of prebiotic evolution even from racemic mixtures of nucleotide

monomers. While we do not discuss the chemical stability of nucleotides in realistic prebiotic

environments, it seems plausible that the system may be maintained out of equilibrium. The

mechanical breakage via hydrodynamical shear stresses is only one of many experimentally

feasible possibilities for achieving this. This external physical force can be substituted by

RNA hydrolysis, or by driving a subset of the reactions by external chemical reagents, by

means of an open flow, or else in closed systems with inhomogeneous temperature distribu-
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tions, and/or with compartmentalized (spatially segregated) reactions. The mirror symmetry

breaking in RNA could occur before the longer compositionally diverse sequences fold into

the stable structures, some of which may exhibit catalytic activities. Hence SMSB could

occur before the beginning of the RNA world as such, in parallel to other processes in the

pre-RNA world such as the formation of modular functional RNA sequences.57

Acknowledgement

The authors thank Sijbren Otto and Piotr Nowak for correspondence and discussions of

experiments on chiral symmetry breaking with synthetic replicators, and Josep M. Ribó for
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Appendix

Monomer attachment/detachment plus racemization

Here we consider the transformations implied by Eq. (1) and Eq. (2). Stepwise monomer

attachment takes place over the entire size range from the dimer to the maximum length

polymer minus one (N − 1); and so covers both the nucleation and elongation phases. The

two distinct isodesmic ranges of the free energy profile (see e.g., Fig. 24 of Ref.36) suggest

dividing the associated rate equations into the four size range groups expressed below, where

α = L or R.
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ċαk (t) = k1c
α
1 (c

α
k−1 − cαk ) + k−1(c

α
k+1 − cαk ), 2 ≤ k ≤ nc − 1, (9)

ċαnc(t) = k1c
α
1 c
α
nc−1 − k−1c

α
nc

− k2c
α
1 c
α
nc

+ k−2c
α
nc+1, k = nc, (10)

ċαk (t) = k2c
α
1 (c

α
k−1 − cαk ) + k−2(c

α
k+1 − cαk ), nc + 1 ≤ k ≤ N − 1, (11)

ċαN(t) = k2c
α
1 c
α
N−1 − k−2c

α
N , (k = N). (12)

The monomer dynamics follows rigorously from the conservation of total system mass and

solution-phase racemization, and holds independently of the other processes (fusion, frag-

mentation, mechanical breakage) present in the overall scheme:

ċL,R1 (t) = − d

dt

(

N
∑

k=2

k cL,Rk (t)
)

+ kr
(

cR,L1 − cL,R1

)

(13)

= −2k1(c
L,R
1 )2 + 2k−1c

L,R
2 − k1

nc−1
∑

k=2

cL,R1 cL,Rk + k−1

nc
∑

k=3

cL,Rk − k2

N−1
∑

k=nc

cL,R1 cL,Rk

+ k−2

N
∑

k=nc+1

cL,Rk + kr
(

cR,L1 − cL,R1

)

. (14)

Irreversible breakage of the longest polymers

We next turn to the process in Eq. (4). The reason for introducing specific length scales

over which mechanically induced breakage operates is essentially physical. Thus for example,

forces originating by shaking the reaction domain or by the action of stirring rods will be

transmitted via hydrodynamic shear stresses and these forces ought to act preferentially on

the longest chains present. Thus we introduce a minimum chain length nmin ≤ N below

which the physical forces no longer have any appreciable effect. On the other hand, the chain

fragments so produced should also be larger than a certain minimum size imin ≥ nc. The

general scenario is depicted in the upper diagram in Fig. 1. As remarked earlier, we consider

both nc and N to be fixed, so these two size intervals: the range of larger “source” polymers
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subject to breakage and the “fallout range” populated by the smaller breakage products, are

completely specified once nmin and imin are chosen. Note that partial overlaps of the source

and fallout zones are also possible, depending on the choices of imin, nmin. A maximal zone

overlap pertains for imin = nc and nmin = 2(imin − 1), allowing for breakage to act over the

maximum range of polymer sizes, while the smallest possible breakage fragment corresponds

to the critical nucleus.

The general expression for the loss rate of the longest polymers lying within a certain

size range due to the mechanical breakage into two smaller chains is (see Fig. 1):

ċαn(t) = −1

2

∑

i+j=n; i,j≥imin

γi,jc
α
n, nmin ≤ n ≤ N, (15)

= −γ
(

[
n

2
]− (imin − 1)

)

cαn, (16)

where [..] denotes the Floor function. We assume a constant breakage rate γi,j = γ over

the indicated range of polymer lengths. The sum (if we omit the factor of one-half) is then

carried out over all distinct integer partitions of n such that the minimum fragment length

is imin; see Table 1. Note furthermore that the condition [n
2
] − (imin − 1) > 0 will hold for

all n provided [nmin
2

] > (imin − 1). This latter inequality establishes a weak bound relating

the lower limit nmin for the range of large polymers susceptible to breakage and the lower

limit imin of the size range of the smaller polymers populated by the breakage fragments

thus generated (see Fig. 1). It is needed simply to ensure that the overall breakage rate is

negative: the rate of change of the concentration in Eq. (16) must be negative: ċαn(t) < 0,

whereas γ > 0, cαn ≥ 0.

The general expression for the rate of gain of the shorter polymers due to the incoming
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fragments produced by the breakage of the longer polymers is (see Fig. 1)

ċαn(t) = +

N−n
∑

j≥imin

γn,jc
α
n+j , imin ≤ n ≤ N − imin, (17)

= γ
N
∑

k≥imin+n

q(k) cαk q(k) = IF[k ≥ nmin, 1, 0], (18)

= γ
N
∑

k=max{nmin,n+imin}

(

1 + δk,2n
)

cαk . (19)

We implement the indicated IF function via the lower limits in the final summation. Finally,

we must account for the breakage of those long polymers k = 2n that have exactly twice the

length of the shorter polymers (stoichiometry).

Fusion of short with long polymers and fragmentation

We next discuss fusion and fragmentation of the chains, as in Eq. (3). Consider first the

contributions to the overall set of rate equations due to binary annealing or fusion of short

with long polymers. Then, we compute the contributions due to binary fragmentation of

the chains, treating fragmentation as the inverse process to fusion. Note: we herein employ

the term breakage to refer to the irreversible breakage (e.g., mechanically induced breakage),

and fragmentation to refer to the inverse process of fusion.

The general fusion/fragmentation scenario is depicted graphically in the lower diagram in

Fig. 1. As before, we consider both nc and N to be fixed, so the three size intervals implied by

binary fusion are: (i) the range of the smaller and (ii) the larger polymers subject to fusion as

well as (iii) the range of the resultant largest chains are completely specified once the lower

limits iminf and jminf are chosen. We remark that a few qualitatively distinct zone overlap

patterns are possible within this scheme. For example, we can have a partial overlap of the

zone of the large polymers that fuse, with the zone of the largest fusion-product polymers

by lowering iminf and increasing jminf . Then the zone of the smallest polymers that can fuse
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is well separated from the latter two. In the other extreme, we can have a maximal overlap

of all three zones by simply letting iminf = jminf = nc. This latter situation corresponds

to fusion and fragmentation acting over the widest size ranges possible. We note that in all

cases all three size intervals have the same width ∆ = N − (iminf + jminf ).

Binary fusion of chains

We divide the polymer sizes n into a “small” n ∈ (iminf , N − jminf ) and “large” n ∈

(jminf , N − iminf ) groups. Then, the rate of loss to the small polymers is given by

ċαn(t) = −kac
α
n(t)

N−n
∑

i=jminf

cαi (t), iminf ≤ n ≤ N − jminf . (20)

Next, the rate of loss to the large polymers is

ċαn(t) = −kac
α
n

N−n
∑

i=iminf

cαi (t), jminf ≤ n ≤ N − iminf . (21)

These two expressions are related by the the interchange iminf ↔ jminf in the corresponding

limits and size ranges, and is a symmetry of this model. Lastly, the rate of gain to the largest

polymers is

ċαn(t) = +ka

n−jminf
∑

i=iminf

cαi (t)c
α
n−i(t), jminf + iminf ≤ n ≤ N. (22)

Binary fragmentation

The rate of gain to the small polymers due to fragmentation of the largest ones is

ċαn(t) = k−a

N
∑

i=jminf+n

cαi (t), iminf ≤ n ≤ N − jminf . (23)
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The rate of gain to the large polymers due to fragmentation of the largest ones is

ċαn(t) = k−a

N
∑

i=iminf+n

cαi (t), jminf ≤ n ≤ N − iminf . (24)

Note that these two expressions are related by the interchange symmetry iminf ↔ jminf in

the summation limits and size ranges.

The rate of loss to the largest polymers due to their very own fragmentation is given by:

ċαn(t) = −k−ac
α
n(t)

n−jminf
∑

i=iminf

1, jminf + iminf ≤ n ≤ N, (25)

= −k−ac
α
n(t)[n− (jminf + iminf ) + 1]. (26)

Lastly, introducing fusion fluxes Ψ (see also (33) below) allows us to write the fusion and

fragmentation processes together in a more compact form:

ċαn(t) = −
N−n
∑

i=jminf

Ψα
n,i(t), iminf ≤ n ≤ N − jminf , (27)

ċαn(t) = −
N−n
∑

i=iminf

Ψα
n,i(t), jminf ≤ n ≤ N − iminf , (28)

ċαn(t) = +

n−jminf
∑

i=iminf

Ψα
i,n−i(t), jminf + iminf ≤ n ≤ N. (29)

Assembly of final equations

The complete set of rate equations taking into account all the above processes can be ex-

pressed in terms of reaction rate fluxes and stoichiometric matrices. Introduce the reaction
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rate fluxes:

φαj =











k1c
α
1 c
α
j − k−1c

α
j+1, 1 ≤ j ≤ nc − 1,

k2c
α
1 c
α
j − k−2c

α
j+1, nc ≤ j ≤ N − 1

(30)

φL,Rr = kr(c
R
1 − cL1 ), (31)

Φαk = γcαk , (32)

Ψα
m,n = kac

α
mc

α
n − k−ac

α
m+n, (33)

for linear chain growth (φ), racemization (φr), mechanical breakage (Φ) and fusion (Ψ),

respectively. Although the individual fusion fluxes, Eq. (33), depend on two indices m,n,

for purposes of counting they can be enumerated in a sequential fashion by imposing, and

without loss of generality, that m ≤ n. The number of independent fusion fluxes is calculated

to be

Nψ =

N−jminf
∑

k=iminf

N−k
∑

l=max(k,jminf )

1, (34)

the lower limit of the second summand ensures that the flux Ψm,n = Ψn,m is counted just

once.

We can group all these fluxes together into a single flux vector:

fα =
(

{φαj }N−1
j=1 , φ

α
r , {Φαk}N−nmin+1

k=1 , {Ψα
m}

Nψ
m=1

)

. (35)

Then the differential rate equations for the i-th species can be written as follows:

dcαi (t)

dt
=

nr
∑

j=1

Si,jf
α
j , 1 ≤ i ≤ N, 1 ≤ j ≤ nr (36)

and S is the stoichiometric matrix with elements Si,j. The sum is over the number nr of

reactions:

nr = 2N − nmin +Nψ + 1. (37)
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Equations (36) represent the model to be solved numerically.

Thermodynamic constraint for fusion and fragmentation

We establish the thermodynamic constraint relating the kinetic rate constants of polymer

growth by (i) stepwise monomer addition and (ii) by chain fusion in the isodesmic approxi-

mation for the elongation phase.

The rate constants of forward monomer addition to a chain of length n and reverse

detachment (from a chain of length n+ 1) satisfy

kn
k−(n+1)

= exp
(

[∆G0
n+1 −∆G0

n]/kT
)

= exp
(

αn/kT
)

, (38)

where αn is the free energy difference between two chains that differ by a single monomer

unit. In the isodesmic approximation, this energy difference is independent of the chain

length: thus αn = α = const (see, e.g., Fig. 24 in36).

The rate constants for (forward) annealing/fusion of two chains of lengths p and s, re-

spectively, and (the reverse) rate of fragmentation of a chain of length p + s into these two

smaller fragments satisfy

kp,s
k−(p+s)

= exp
(

[∆G0
p+s −∆G0

p −∆G0
s]/kT

)

= exp
(

βp,s/kT
)

, (39)

where βp,s is the free energy difference between the large chain and these two smaller frag-

ments. In the isodesmic approximation this difference is independent of the chain sizes:

βp,s = β = const.

Now identify n + 1 = p + s, that is, we can obtain a given length polymer via two

distinct pathways, either by (i) adding one more monomer to a polymer of length n or (ii)

by annealing two smaller polymers of lengths p, s, respectively. Then the difference in free
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energies between these two distinct pathways is

α− β = −∆G0
p+s−1 +∆G0

p +∆G0
s. (40)

We can calculate the free energy difference for any size polymer from Eq. (38) which implies

the recurrence relation

∆G0
n+1 −∆G0

n = α, (41)

⇒ ∆G0
n = (n− 1)α, (42)

and substituting this into Eq. (40) implies α = β, and so from Eqs. (38,39) we find

kn
k−(n+1)

=
kp,s

k−(p+s)
. (43)

Since fusion takes place within the isodesmic elongation phase of polymerization, this

implies the following constraint on the rate constants (see Table 1):

k2
k−2

=
ka
k−a

. (44)
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