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Summary 

 

The past decade has seen an influx of speciality plant seed oils arriving into the market 

place. The need to characterise these oils has become an important aspect of the oil 

industry. The characterisation of the oils allows for the physical and chemical properties 

of the oil to be determined. Speciality oils were characterised based on their lipid and 

fatty acid profiles and categorised as monounsaturated rich (oleic acid as the major acyl 

components e.g. Moringa and Marula oil), linoleic acid rich (Grape seed and Evening 

Primrose oil) or linolenic acid rich (Flaxseed and Kiwi oil). The quality of the oils was 

evaluated by determining the free fatty acid content, the peroxide value (that measures 

initial oxidation) and p-anisidine values (that determines secondary oxidation products 

containing the carbonyl function). A reference database was constructed for the oils in 

order to compare batches of oils for their overall quality including oxidative stability.   

For some of the speciality oils, the stereochemistry of the triacylglycerols was 

determined. Calophyllum, Coffee, Poppy and Sea Buckthorn oils stereochemistry was 

determined. The oils were enriched with saturated and/or a monounsaturated fatty acids 

at position sn-1 and sn-3. The sn-2 position of the four oils was esterified with a 

polyunsaturated and/or a monounsaturated fatty acid indicating that they follow a typical 

acylation pathway and no novel acylation activity was evident from these studies (e.g 

enrichment of saturates at the sn-2 position).  

The oxidative stability of the oils was evaluated at 18
o
C and 60

o
C and the effect of 

adding α-tocopherol at commercially used level i.e 750ppm was assessed. The addition of 

750ppm of α-tocopherol at 18
o
C increased the oxidative stability of Brown flax, Moringa, 
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Wheat germ and Yangu oils. At 60
o
C Brown Flax, Manketti and Pomegranate oil 

polymerised after 48 hours. The addition of 750ppm α-tocopherol delayed the onset of 

polymerisation by up to 48 hours in Brown Flax seed oil. 

Pomegranate oil showed a high resistance to oxidation, and was blended into other 

speciality oils at 1%. Pomegranate oil increased the oxidative stability of Yangu oil at 

18
o
C. The addition of Pomegranate oil to Wheat germ oil at 60

o
C, decreased the peroxide 

content by 10%. In Manketti and Brown Flaxseed oil at elevated temperatures, 

Pomegranate oil delayed the onset of polymerisation. Preliminary studies of Pomegranate 

oil blending to Moringa and Borage oil showed it to be more effective than α-tocopherol 

for certain oils. The antioxidant effects observed following the addition of Pomegranate 

oil may be due to its conjugated linolenic acid fatty acid, punicic acid.  
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Chapter 1 

Introduction 

 

1.1 The Chemistry of Fats and Oils 

 

1.1.1 Lipids, fatty acids and triacylglycerols 

Fats and oils are energy rich molecules and in plants are stored in seeds as 

triacylglycerols (TAGs). Triacylglycerols are the main constituent of seed oils, and are 

composed of three fatty acids esterified to a glycerol molecule. Fats and oils are 

categorised as lipids, which underpins their solubility properties [1]. Lipids often 

encompass a wide range of non polar organic molecular species extracted in chloroform 

or hexane. 

Fatty acids contain a mono-carboxylic group at the end of an acyl chain which can vary 

in chain length from 4 to 36 carbons, Table 1. Although in plants  16 to 18 carbons are by 

far the most common fatty acids [2]. Fatty acids can be saturated with a straight chain or 

unsaturated which have a slight kink, due to the double bond(s), Figure 1.  

Fatty acids can be categorised chemically through two different nomenclature systems, 

the delta (Δ) and omega (ω) system. The delta (Δ) nomenclature shows the position of the 

double bond from the carboxylic end. For example oleic acid contains 18 carbons with 

one double bond in the C9 position; this would be given as 18:1(Δ
9
). The omega (ω) 

nomenclature counts from the methyl end, and numbers the double bond positions 

accordingly. For example α-linolenic acid which contains 18 carbons and three double 

bonds, at 3, 6 and 9 would be shown as 18:3 (ω
3,6,9

).  
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The carboxylic end of the fatty acid is polar, whilst the non polar hydrocarbon chain 

gives the fatty acid poor solubility in water. The solubility decreases with increasing 

chain length and degree of saturation. Double bonds in the majority of plants are of cis 

configuration, although trans fatty acids have been reported in a number of species for 

example Butyrospermum parkii and Dolichos lablab [3]. Non conjugated fatty acids are 

by far the most common fatty acids found in plant seed oils, although conjugated 

polyunsaturated fatty acids exist in a small proportion of plants. Punicic acid and α-

eleostearic acid are conjugated fatty acids found in Pomegranate and Manketti 

respectively [2].  

Triacylglycerols (TAGs) are composed of three fatty acids that are ester linked to a 

glycerol; the majority of plant TAGs contain a variety of fatty acids at each position of 

the glycerol backbone Figure 2. A specific labelling system indicating the attachment of 

the fatty acids to the glycerol backbone has been employed. Each carbon atom of the 

glycerol backbone is given a stereospecific number,  indicated as sn-1, sn-2 and sn-3 

respectively [4].  
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Figure 1. Saturated and unsaturated fatty acids 

 

 

A straight chain saturated fatty acid, a) palmitic acid, and a mono unsaturated fatty acid b) oleic acid, which 

has a slight kink, due to the double bond [2]. 

 

 

Figure 2. Triacylglycerol 

  

The structure of triacylglycerol triolein, with the stereospecific labelling system. [4]. 
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Table 1. Fatty acids found in plant seed oils 

 

Systematic Name Common Name Structure 

Dodecanoic acid Lauric acid 12:0 

Tetradecanoic acid Myristic acid 14:0 

Hexadecanoic acid Palmitic acid 16:0 

Hexadec-cis-9-monoenoic acid Palmitoleic acid 16:1 
Δ9

 

Octadecanoic acid Stearic acid 18:0 

Octadeca-9-cis-monoenoic acid Oleic acid C18:1 
Δ9

 

Octadeca-cis-9,12-dienoic acid Linoleic acid 18:1 
Δ9,12

 

Octadeca-cis-9,12,15-trienoic acid α-Linolenic acid 18:3 
Δ9,12,15

 

Octadeca-cis-6,9,12-trienoic acid γ-Linolenic acid 18:3 
Δ6,9,12

 

Octadeca-cis-6,9,12,15-tetraenoic acid Stearidonic acid 18:4 
Δ6,9,12,15

 

Eicosanoic acid Arachidic acid 20:0 

Eicosa-cis-9-monoenoic acid Gadoleic acid 20:1 
Δ9

 

Docosanoic acid Behnic acid 22:0 

Docsa-cis-9-monoenoic acid Erucic acid 22:1 
Δ9

 

Common saturated and unsaturated fatty acid found in plant seed oils [4]. 
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1.1.2 Fatty acid biosynthesis 

The first step for the biosynthesis of fatty acids is the formation of malonyl-CoA from 

acetyl-CoA [5]. Acetyl-CoA is formed in the plastid of plants through two different 

pathways. Firstly acetyl-CoA can be formed from the oxidation of pyruvate, which is 

catalysed by pyruvate dehydrogenase [6]. Secondly acetyl-CoA can be formed from the 

reaction of acetate with acetyl-CoA synthase, with the consumption ATP, Figure 3 [6]. 

The formation of malonyl-CoA is an irreversible process, formed from acetyl-CoA and 

catalysed by acetyl-CoA carboxylase [7]. All three sub units of the enzyme acetyl-CoA 

carboxylase are employed in the formation of malonyl-CoA, Figure 4 [2]. 

The four step sequence of fatty acid biosynthesis requires the coordination of separate 

enzymes collectively termed as fatty acid synthase (FAS). The newly formed malonyl-

CoA and acetyl-CoA must first be bound to the two thiols of the FAS. The acetyl of 

acetyl-CoA is transferred to the Cys sulphydryl (-SH) residue of the β-ketoacyl-ACP 

synthase, catalysed by acetyl-CoA-ACP transacetylase. The malonyl group from 

malonyl-CoA to the –SH of ACP, the reaction is catalyzed by malonyl-CoA-ACP 

transferase [2, 8]. 
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Figure 3. Formation of acetyl-CoA.  

 

 

 

Formation of Acetyl-CoA, through the oxidation of pyruvate catalysed by pyruvate dehydrogenase, or the 

reaction of acetate with acetyl-CoA synthase, with the consumption ATP [6]. 
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Figure 4. Formation of malonyl-CoA 

 

 

The formation of malonyl-CoA, an irreversible process, formed from acetyl-CoA and catalysed by acetyl-CoA carboxylase [2].
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The four step sequence begins with sequential steps of condensation, reduction of 

carbonyl group, dehydration and reduction of the double bond, Figure 5 and Table 2 [2, 8, 

9]. 

Condensation of the activated acetyl and malonyl groups forms acetoacetyl-ACP, with 

the loss of CO2, the reaction is catalyzed by β-ketoacyl-ACP synthase III [2, 10, 11]. The 

reduction of the carbonyl group of acetoacetyl-ACP, yields D-β-hydoxybutyryl-ACP. β-

ketoacyl-ACP reductase catalyses the reaction, with the electron donated from NADPH. 

Dehydration of D-β-hydoxybutyryl-ACP leads to the loss of water and the formation of a 

double bond. The corresponding trans-Δ
2
-butenoyl-ACP, is catalysed by β-hydroxyacyl-

ACP dehydratase [2]. Reduction of the double bond of trans-Δ
2
-butenoyl-ACP is the 

final step in the four step sequence. The reaction is catalysed by enoyl-ACP reductase, 

and the electron is donated by NADPH [2]. The resulting butyryl-ACP is again catalysed 

by the β-ketoacyl-ACP Synthase I. The four step sequence continues, until the 16 carbon 

acyl chain has been created. The 16 carbon acyl chain can be further extended by two 

carbons with β-ketoacyl-ACP Synthase II to yield 18:0-ACP [8, 9]. The 18:0-ACP can be 

reduced to 18:1-ACP with  stearoyl-ACP reductase [8, 9]. The 16 carbon acyl chain can 

be desaturated by palmitoyl-ACP Δ
4
 desaturase, yielding 16:1-ACP, which has been 

observed in coriander [9].  

The fatty acids can be hydrolysed from the ACP with specific thioesterases. In plants 

thioesterases have been observed to release fatty acids from ACP at chain lengths 8 

carbons and greater [9]. Plant acyl-ACP thioesterases fall into to two distinct categories, 

FatA and FatB [4]. FatA has shows selectivity towards palmitoyl-, stearoyl-, and oleoyl-

ACP [12]. FatB is involved in specialised roles, with a strong selectivity towards 
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palmitoyl-ACP, specific saturated fatty acids, and a broader specificity for long chain 

saturated and unsaturated fatty acids [13].  

The carnitine shuttle mechanism is responsible for transporting the free fatty acids from 

the plastid envelope into the eukaryotic lipid pathway. The carnitine shuttle mechanism 

involves carnitine acyltransferase which allows the reversible exchange of CoA and 

carnitine onto the fatty acids [14, 15]. The fatty acids enter the endoplasmic reticulum 

where they are esterified to glycerolipids and further modified by membrane bound 

enzymes of the endoplasmic reticulum [8, 9].   

 

Desaturation and Elongation 

The plastid is the site for fatty acid biosynthesis, such as  palmitic (C16:0), stearic (18:0), 

and oleic (18:1). These fatty acids are transferred to the endoplasmic reticulum for 

triacylglycerol assembly and formation of modified fatty acids. Unsaturated fatty acids 

are synthesised by the insertion of double bonds into a saturated precursor [4]. 

The first double bond introduced to C18 stearic acid is at the Δ
9
 position, yielding oleic 

acid (C18:1Δ
9
). The reaction is catalysed by Δ

9
 desaturase, a soluble plastidic protein, 

utilizing 18:0-ACP as its substrate [4]. Studies carried out on the Δ
9
 desaturase of castor 

bean, showed the desaturase to contain a di-iron cluster at the active site [16]. The 

proposed mechanism of action of the desaturase indicates the removal of two hydrogen 

atoms, forming a transient di-radical that spontaneously recombines to yield Δ
9
 double 

bond [16, 17]. The desaturase enzyme of the plastid requires reduced ferredoxin as an 

electron donor and a soluble enzyme which acts on the saturated 18:0-ACP, Figure 6 [6, 

18]. 
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Figure 5. Biosynthesis of fatty acids 

 

The four step sequence of fatty acid biosynthesis, increasing the carbon by two carbons through each pass 

[2, 10, 11]. 
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Table 2. Enzymes of fatty acid biosynthesis 

 

Number Enzyme 

1 Acyl-CoA Carboxylase 

2 Acetyl-CoA-ACP transacetylase  

3 Malonyl-CoA-ACP transferase 

4 β-Ketoacyl-ACP Synthase III 

5 β-Ketoacyl-ACP reductase 

6 β-Hydroxyacyl-ACP dehydratase 

7 Enoyl-reductase 

8 β-Ketoacyl-ACP Synthase I 

9 Palmitoyl-ACP Δ4 Desaturase 

10 β-Ketoacyl-ACP Synthase II 

11 Stearoyl-ACP Reductase 

12 Acyl-ACP Thioesterase 

 

Table 2. Enzymes required for fatty acid biosynthesis [2, 10, 11]. 
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The oleate formed in the plastid is incorporated into a phospholipid, mainly 

phosphatidylcholine of the ER. In the ER it can be further desaturated, sequentially by 

Δ
12

 and Δ
15

 desaturases [19]. The reactions of desaturation are also involved in the 

synthesis of less common polyunsaturated fatty acids. The synthesis of γ-linolenic acid at 

position sn-2,  found in Evening Primrose oil and Borage oil, is attributed to the activity 

of the Δ
6
 desaturase [20]. The Δ

6
 desaturase also forms stearidonic acid (C18:4 

Δ6, 9, 12, 15
) 

[21].  

The elongation of long chain fatty acids to yield very long chain fatty acids (VLCFAs), 

requires the use of a sequential four step reaction, which adds two carbons to the chain 

length. The reactions are similar to the sequential biosynthesis of fatty acids, although 

there are several differences. A notable difference is that the elongase enzymes, which are 

membrane bound, and use acyl-CoA and malonyl-CoA substrates directly as the source 

for the two carbon elongation [22]. 

The elongases and desaturases from marine algae are involved in the biosynthesis of 

VLCFAs such as EPA and DHA. The elongases and desaturases have been isolated [23-

25]. Algal PUFA elongases have been recently characterised from the marine microalgae 

Isochrysis galbana, Pavlova lutheri and Thalassiosira pseudonana [26].  The pathway to 

metabolically engineer plants to biosynthesise VLCFAs is complexed. A recent artificial 

metabolic pathway has lead to the production of 26% EPA in leaf triacylglycerols [27]. 

The pathway used the newly identified Δ
6
 desaturase from the marine microalgae 

Micromonas pusilla [27].  It was demonstrated that the enzyme appeared to function as 

an acyl-CoA desaturase, with a preference for ω3 substrates in both planta and yeast [27]. 
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Figure 6. Desaturation of C18:0-ACP 

 

C18:0ACP desaturase catalyses the desaturation of C18:0-ACP to C18:1-ACP, with reduced ferredoxin donating the electron [6]. 
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1.1.3 Fatty acid derivatives 

Saturated and polyunsaturated fatty acids are the most common and abundant fatty acids 

in plant seed oils, typically 16:0, 18:0, 18:1, 18:2 and α-18:3. However in nature over 

1000 fatty acids have bee identified, some of them are described below, Table 3 [3]. 

 

Cyclic fatty acids 

Cyclic fatty acids exist in bacteria and plants. The alkyl chain contains a carbon ring 

either along the chain or at the end of the chain [1, 3]. Cyclopropane and  cyclopropene 

are cyclic fatty acid derivates which are in low abundance in plants and bacteria.[3]. A 

common cyclopropane fatty acid is lactobacilic acid, found in bacteria. A common 

cyclopropene is sterculic acid found in plants of the Malvales family, Figure 7 [1, 3] 

The biosynthesis of cyclopropane fatty acids has been reported to involve the addition of 

a methylene group, derived from S-adenosylmethione to an existing double bond [28]. 

The proposed pathway involves the formation of dihydrosterculic acid from oleic acid, 

followed by the desaturation of the subsequent sterculic acid, Figure 8 [3, 29, 30]. 

Fatty acids which contain a terminal ring at the end of the alkyl chain are thought to be 

produced by incorporation of the cyclic acid, rather than acetate at the start of the chain, 

although the biosynthesis has not been clearly established [3]. Cyclic fatty acids with the 

terminal group at the end of the alkyl chain are present it the seed oil of Hydnocarpus 

species. Plants of the Flacourtiaceae family contain terminal cyclopentenyl acids of 

various chain lengths [3].  
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Table 3. Fatty acid derivatives 

 

 Fatty acid derivatives present in plants, bacteria, fungi and mammalian species [1, 3]. 
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Figure 7. Cyclic fatty acids cylcopropane and cyclopropene 

 

 

 

 

Proposed pathway for the biosynthesis of cylcopropene fatty acid Sterculic acid from oleic acid [3].  
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Oxy fatty acids 

The occurrence of oxygenated fatty acids in plants is not uncommon. Many fatty acids 

and their metabolites have oxygen containing functional groups, including hydroxyl and 

epoxides, Table 4 [1]. The oxygen can be introduced through an enzyme mediated 

oxidation, with the use of lipoxygenases. The absence of enzymes autoxidation can yield 

oxygenated fatty acids, of the hydroxyl, keto, and epoxy variety [3]. 

The introduction of a hydroxy group to the mid chain of fatty acids is through the activity 

of enzymes. Castor oil, which is rich in ricinoleic acid (12-OH 18:1 Δ
9
), contains a 

hydroxyl rather than a second double bond [31]. The formation of ricinoleic acid occurs 

in the developing endosperm of castor bean. The direct hydroxylation of oleic acid, 

which is esterified to the sn-2 position of the membrane lipid phosphatidylcholine [31]. 

The Δ
12

 hydroxylase is a defective desaturase, and does not allow for the insertion of a 

double bond, leaving a hydroxy group on the corresponding carbon [32, 33]. The hydroxy 

is a transient intermediate normally formed during double bond formation. Lesquerella 

fendleri seed oil contains almost 60% hydroxy fatty acids, the majority being 20 carbon 

hydroxy fatty acid lequerolic acid (14-OH 20:1 Δ
11

) [34].  The developing embryos of 

Lesquerella species have shown that they hydroxylate oleic acid at C12 to form ricinoleic 

acid. The corresponding ricinoleic acid can be desaturated and elongated to form 

densipolic (12-OH 18:2 Δ
9, 15

), lesquerolic and auricolic acid (14-OH 20:2 Δ
11, 17

) [35, 

36]. 

Epoxy fatty acids can also be found in plant oils. Vernolic acid (12-Epoxy 18:1 Δ
9
) being 

the most common. Vernolic acid can be found in members of the Compositae, Malvaceae 

and Euphorbiaceae species [3]. 
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Table 4. Oxy fatty acids 

 

Name Structure 

Vernolic acid 
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α-hydroxy palmitate 
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ω-hydroxy palmitate HOCH
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COOH
 

Ricinoleic acid 
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)
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CHCH

2
CH=CH(CH
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)
7
COOH
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Oxy fatty acids structure and name [1]. 
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Vernolic acid biosynthesis has been investigated in Crepis palaestina and Vernonia 

gaamensis. The introduction of the epoxide group is through the activity of a Δ
12

 oleic 

desaturase like enzyme [37, 38]. The cytochrome P450 enzyme is involved in the 

biosynthesis of vernolic acid in the seeds of Euphorbia lagascae [38]. 

Methylene interrupted fatty acids can form a variety of oxygen containing fatty acid 

derivatives. The formation of hydroperoxides or endoperoxides catalysed by 

lipoxygenase enzymes can lead to the formation of, jasmonates, divinyl ether fatty acids 

and furanoid fatty acids Figure 9 [3]. 

Jasmonates are formed from the lipoxygenase activity yielding (9S)-hydroperoxy and 

(13S)-hydroperoxy derivates of PUFAs [39]. The corresponding hydroperoxides follow 

the AOS (allene oxide synthase) pathway and forms unstable allene oxides. The allene 

oxides are metabolized to (9S, 13S)-12-oxophytodienoic acid (OPDA) by an allene oxide 

cyclase [39, 40]. The hormonal properties of jasmonates help regulate plant growth and 

development, and are involved in the defence of pathogens and in wound signalling [41]. 

Jasmonic acid is the product of β-oxidation of 12-oxophytodienoic acid (12-oxo-PDA), 

and is a known plant oxylipin, Figure 10 [1, 42]. 

Divnyl ethers are derived from the conversion of hydroperoxides generated from 

lipoxygenase activity. Divinyl ether synthase is present in leaves and roots, and converts 

hydroperoxides to divinyl ethers [3]. The 9-hydroperoxides of linoleic and linolenic acid 

of potatoes leads to the formation of colneleic and colnelenic acids. The presence of these 

fatty acids has not been detected in other higher plants, Figure 11 [3, 43]. 
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Figure 9. Cyclic endoperoxides 

 

Formation of hydroperoxides catalysed by lipoxygenase enzymes [44]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

Figure 10. The biosynthesis of Jasmonic acid 

 

The biosynthesis of Jasmonic acid, through lipase activity and β-oxidation [39, 40]. 
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Hydroperoxides which are derived from the activity of lipoxygenase on linoleic and 

linolenic acid can also lead to the formation of furanoid fatty acids. The presence of 

furanoid fatty acids in plants is of low abundance. Furanoid fatty acids were initially 

isolated from fish and fish oils, although it is now believed that they originate from 

photosynthetic organisms eaten by fish [45]. Furan fatty acids, contain a furan ring 

attached to the acyl chain. The most abundant furan fatty acid being F6, which is a 

furanoid acid with two methyl groups on the furan ring, Figure 12 [3].  

 

Acetylene and allenic acid 

Acetylenic and allenic acid are rare fatty acids, and can be found in very few animals and 

plants. Allenic acid, of 2,4,5-tetradecatrienoic acid, is present in insects as a sex 

pheromone. Fatty acids with 5,6 allene can be found in the seed of Labiatae species, 

laballenic acid (C18:2 Δ
5,6

), Figure 13, and some Leucas species, lamenallenic acid 

(C18:3 Δ
 5,6 ,Z16

) [3, 46]. 

Fatty acids which contain the acetylenic group are tariric acid (16:1 
6a

) and crepenyic acid 

(18:2 
9c, 12a

), of Crepis species, Figure 14 [3, 37]. The acetylenic bond of C. alpina is 

introduced by a Δ
12

 desaturase like enzyme [37]. The Δ
12

 desaturase is unlike the 

Euphorbia lagascae epoxygenase which uses the cytochrome P450 like enzyme. The Δ
12

 

desaturase for acetylenation enzyme of Crepis species had biochemical properties similar 

to fatty acid desaturase. The formation of the Δ
12

 acetylenic bond forming reactions used 

acyl chains with a carbon double bond at the Δ
12

 position as a substrate [37]. 
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Conjugated fatty acids 

Fatty acids with two or more double bonds that are conjugated, can be found in a small 

number of plants and animals [1, 3]. Conjugated dienes can be detected in the fats of 

ruminants, and can account for up to 1% of ruminant fat [3]. The fatty acid is termed 

rumenic acid contains a cis and trans bond, C18:2 Δ
E9c, Z11

. Conjugated trienes and 

tetraenes can also be located in many plant species, Table 5 [3]. 

Conjugated trienes and tetraenes are produced from methylene interrupted polyenes by a 

conjugase enzyme similar to Δ
12

 desaturase [47]. The members of Δ
12

 desaturase like 

enzyme have a variety of functions. In addition to the synthesis of conjugated double 

bonds, other functions include desaturation, hydroxylation and epoxidation [47]. These 

collective enzymes have been termed as conjugases [47]. No specific mechanism has 

been identified for the formation of conjugated fatty acids, although the involvement of 

conjugase like enzyme has been speculated [3, 47-49]. A proposed biosynthetic pathway 

for conjugated linolenic acid has included an oxidase reaction [50], and the direct 

isomerisation of linolenic acid (5,6) [51, 52]. A recent publication has found a class of 

plant Δ
12

 oleic acid desaturase (FAD2) related enzymes which modifies a Δ
9
 double bond 

to produce the conjugated trans Δ
8
 Δ

10
 found in calendic acid (18:3 Δ

Z8, Z10, E12
) [53]. 

Besides introducing conjugated double bonds FAD2 class enzymes catalyze the 

formation of hydroxyl, epoxy and acetylenic groups respectively [32, 37, 54]. Studies of 

punicic acid from Pomegranate oil have shown a new type of (1,4)-acyl-lipid desaturase. 

The desaturase converts a cis double bond located at Δ
12

 position of linoleic, or γ-

linolenic acids to a cis-trans double bond system [54].  However the desaturase does not 

convert α-linolenic acid to the conjugated form. The exposure of heat and light can force 
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the cis double bonds of conjugated trienes and tetranenes to isomerise to the trans 

configuration [3].  

 

Branched fatty acids 

A variety of branched chain fatty acids have been identified in bacteria and some animal 

sources. Branched chain fatty acids are either saturated or monoenes, with the alkyl 

branch being a methyl group. Branched chain fatty acids with the methyl group in the n-2 

(iso) or n-3 (anteiso) carbon are common in bacteria, their presence being taxonomic 

indicators, Figure 15 [3].  

The biosynthesis of these fatty acids follows the standard two carbon chain extension, 

although the starting two carbon acetate derived unit required for straight chain fatty acid 

is not employed. The iso and anteiso branched fatty acids require 2-methyl propionic acid 

(from valine) or 2 methyl butanoic acid (from leucine), respectively, as their starting unit 

[3, 55]. 
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Figure 11. Fatty acid derivatives, divinyl ethers 

 

Divinyl ethers, colneleic and colnelenic acids, present in potatoes [3]. 

 

 

Figure 12. Furan fatty acids 

 

Furan fatty acid, F6, a furanoid with methyl groups attached to the furan ring [3]. 
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Figure 13. Allenic acid 

Laballenic acid an allenic fatty acid found in the seeds of labiatae species [3]. 

 

 

Figure 14. Acetylenic acid 

 

Acetylenic acids, tariric acid and crepenynic acid [3]. 

 

Figure 15. Branched chain fatty acids 

 

Branched chain fatty acids with the methyl group in the n-2 (iso) or n-3 (anteiso) carbon, found in bacteria 

[3]. 
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Table 5. Conjugated fatty acids 

Conjugated fatty acids, found in plants, bacteria, fungi and mammalian species [3]. 
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1.1.4 Triacylglycerol biosynthesis and assembly 

In plants the biosynthesis and assembly of TAGs takes place in the membranes of the 

endoplasmic reticulum (ER). The enzymes for the modification of fatty acids are present 

in the ER, therefore elongation and desaturation take place in the ER [4]. The Kennedy 

Pathway or the glycerol-3-phosphate pathway is the major pathway for the biosynthesis 

of TAGs, Figure 16. TAGs are assembled in a specific sequence, catalysed by a specific 

acyl transferase enzyme. The synthesis of TAGs also leads to the formation of 

diacylglycerols (DAGs), monoacyclglycerols (MAGs), and phospholipids (PLs), [4, 56, 

57]. 

Triacylglycerol biosynthesis begins with the acylation of  glycerol-3-phosphate (GP3) to 

form lysophosphatidic acid (LPA), catalysed by glycerol phosphate acyltransferase (AT1) 

[4]. Secondly LPA undergoes acylation to form phosphatidic acid (PA), catalyzed by 

lysophosphatidic acid transferase (AT2). AT2 exhibits strong selectivity for 18 carbon 

unsaturated fatty acids [58]. The PA undergoes a hydrolysis, catalysed by phosphatidic 

acid phosphohydrolase (PAP), yielding DAGs. DAGs are an important intermediate, 

from this point on several reactions occurring simultaneously [56].  

Firstly the DAG can undergo acylation, catalysed by diacylglycerol acyltransferase AT3, 

to form TAGs [59]. Secondly the DAGs formed from the Kennedy pathway can form 

TAGs and MAGs, catalysed by transacylation (TA), the reaction is freely reversible [60]. 

The DAGs from the Kennedy pathway can also freely interconvert in a reversible 

reaction to form phosphatidylcholine (PC), catalysed by cholinephosphotransferase 

(CPT) [61]. The PC can contain oleic acid at the sn-2 position, which enters the acyl-CoA 

pool from the plastid. The reaction is reversible and is catalysed by 
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lysophosphatidylcholine (LPCAT)[62]. The reverse reaction of LPCAT facilitates the 

exchange of fatty acids from their site of desaturation and into the acyl-CoA pool for 

elongation [63]. The activities of LPCAT have been cloned from mammalian sources 

[63-65]. LPCAT demonstrate a strong selectivity of lysophosphatidylcholine (LPC) as an 

acyl-CoA acceptor, no data as to their reverse reaction has been forwarded [63-65].   
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Figure 16. Biosynthesis of triacylglycerols 

 

 

Biosynthesis of triacylglycerol through the Kennedy Pathway, and the new independent pathway for the biosynthesis of triacylglycerols, this pathways sees 

phospholipids:DAG acyltransferase (PDAT) being employed [4, 56]. 



 50 

An acyl-CoA independent pathway for TAG synthesis has been discovered, 

phospholipids:DAG acyltransferase (PDAT), catalyses the reaction between DAG and 

PC to yield TAGs and lysophosphidylcholine, Figure 16 [57]. Since PC is the site for 

substitution for Δ
12

, Δ
15

 and Δ
6
, it offers the opportunity for acyl groups to be further 

desaturated during the exchange.  

 

 

1.1.5 Oil bodies 

Storage triacylglycerols are deposited in the cells of developing oil seeds. The so 

called oil bodies or oleosomes are spherical at early stages of seed development, and 

are slightly greater than 1μm diameter [66], although the size can vary depending on 

species [67]. The biogenesis and ontogeny of the oil body has been under research, 

with two accumulation pathways reported. Firstly it has been suggested that the oil 

body arises from the accumulation of oil between the phospholipid leaflets of the 

rough ER, and is then transferred to the cystol [67, 68]. Secondly it has been reported 

that nascent oil bodies exist in the cystol [69]. In these circumstances microsomal 

membranes from developing oil seeds catalysed triacylglycerol formation, and the oil 

accumulated in discrete droplets in the reaction mixture [70]. Isolated oil bodies are 

surrounded by a boundary layer of protein and phospholipids, Figure 17 [66]. The 

proteins surrounding the oil body are unique, and are termed oleosins [67]. Oleosins 

appear to stabilise the oil body surface and thus synchrony  in the oil and oleosin 

formation would lead to deposition of discrete oil bodies found in oleaceous plant 

tissues [71]. 

Oleosins are alkaline proteins with a low molecular mass of 15 to 26 kDa [67]. The 

amino acid sequences of several oleosins have been obtained. The oleosins have been 
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obtained from maize (16 kDa), carrot (19 kDa), Brassica (19 kDa), and soybean (24 

kDa) [72-77]. Although the oleosins vary in molecular mass, they all possess the 

following three structural domains. Firstly an amphipathic domain of 40-60 amino 

acids at the N-terminus. Secondly a totally hydrophobic domain of 68-74 amino acids 

located at the centre. Thirdly an amphipathic α-helical domain of 33-40 amino acids 

situated at or near the C-terminus. Oleosins have been proposed to serve a structural 

role and to act as a specific site for lipase binding during seed germination [67].  

The energy source for seed germination arises from the β-oxidation of the free fatty 

acids from TAGs of the oil bodies, which have undergone lipase activity. β-oxidation 

is the reversal of fatty acid synthesis, the products of β-oxidation are glycerol-3 

phosphate and acetyl-CoA. Although the process is loosely termed as a reversal of 

fatty acid biosynthesis it must be stressed that different enzymes are employed to 

catalyze the reactions.  

 

 

1.1.6 Triacylglycerol molecular species 

The composition of TAGs is dependant on the biosynthesis and the enzymes present. 

The triacylglycerol molecular structure is of importance in food chemistry and 

technology industries. The TAG molecular structure can be directly correlated to the 

physical and chemical properties of food. Physical properties of fats and oils, such as 

the crystal structure, solubility, viscosity and melting points are influenced by the 

molecular structure of TAGs [78]. The biosynthesis of TAGs favours a saturated fatty 

acid acylated in position sn-1.  
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Figure 17. Formation of Bodies, Oleosome. 

 

Oil body formed in the ER membrane encased in a monolayer of lipids. An oil body (Oleosome), with 

oleosins (proteins) attached to the lipid monolayer [6]. 
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1.2 Fats and Oils Commercialisation and Speciality Products 

 

1.2.1 Commercialization of plant seed oils 

The increased demand for fats and oils over the last decade has seen an increase in the 

production of vegetable oils. Commodity oils such as Palm, Soybean, Rapeseed and 

Sunflower have seen the majority of the growth, Table 6 [79]. 

Fats and oils obtained from plant sources are employed in the food and oleochemical 

industries, where they are used as feed stocks for a variety of products including 

personal care and cleaning process products. The production of biodiesel is also a 

contributing factor for the increased consumption of vegetable oils, other industries 

such as paints and inks, production of polyols, are factors which have lead to an 

increase in the production of commodity oils [80]. Table 7, shows the production 

figures for the food and non food uses of vegetable oils. 

Palm oil is the highest volume vegetable oil produced and subsequently the cheapest 

commodity oil. The oil is produced in the developing worlds, with exports from 

Malaysia and Indonesia being at the forefront of production. During 2008/09 the 

worldwide production of Palm oil was 42.8 million tonnes, Malaysia and Indonesia 

combined contributed to 37.2 million tonnes of the annual production [81]. Soybean 

oil production was surpassed by palm oil production, making Soybean oil the second 

highest volume vegetable oil produced. The oil is grown in North and South America, 

with its main application focused on dietary consumption [82]. Rapeseed oil is 

predominantly grown in Western Europe, China, Canada and India, the oil is 

employed in the production of biodiesel. The production of biodiesel from Rapeseed 

oil reached 8.42 million tonnes in 2009 [83, 84]. Sunflower oil is mainly grown in 
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Russia, Ukraine and Argentina, some EU countries and China. The oil is rich in oleic 

and linoleic acid, and often used for edible applications [85].  

Government biofuel targets have led to an increased demand for vegetable oils, with 

high inevitability of deforestation for production of rapeseed, soy and palm oils. The 

loss of subsistence farming has social impacts, and there have been cases of 

displacement of communities. The loss of agriculture land is also increasing the costs 

of wheat, corn and other common food amenities. 

 

 

1.2.2 Speciality oils 

Commodity oils are produced in large volumes, and are often know as major plant 

seed oils. However a wide range of oils can be obtained from lesser known plant 

seeds, commonly known as speciality oils. These seed oils are produced, sold and 

used in small quantities. Speciality oils have become of interest due to their minor 

components, such as the phytosterols and antioxidants [3]. The fatty acids content of 

speciality and commodity oils does not differ vastly, although for marketability 

purposes speciality oils have been exploited based on their minor components. The 

attractiveness to the consumer of an organic oil grown under sustainable conditions, 

containing natural antioxidants, having a geographical location in Asia or Africa is 

highly marketable. The applications of speciality oils range from health food 

supplements, gourmet oils, and cosmetics. Oils can be grouped in to order depending 

on parameters such as geographical location or physicality of the seed. 
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Table 6. Production of four major vegetable oils 

 

The Production (million tonnes) of the four major vegetable oils, palm, soybean, rapeseed and 

sunflower oil, over 16 year period [79]. 

 

 

Table 7. Food and Non Food Consumption of Nine Vegetable Oils. 

.Food and non-food consumption (million tonnes and %) of the 9 major vegetable oils between 

1994/95 and 2007/08. (Coconut, cottonseed, olive, palm, palm Kernel, peanut, rapeseed, soybean, 

sunflower oils [80]. 
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Nut Oils 

Almonds (Prunus dulcis, P. amygdalsi, Amygdalis communis) are a major tree nut, 

cultivated in areas which exhibit a Mediterranean climate. The almond kernel is the 

edible part of the nut [86]. Almond oil is monounsaturated fatty acid (MUFA) rich, 

with oleic acid accounting for 65-70% of the total fatty acid content. The MUFA 

content of the oil is highly inversely correlated with serium cholesterol levels [3, 86, 

87].  Fatty acid profile of almonds and other nut based oils may help prevent 

cardiovascular diseases and lower plasma cholesterol levels [88-91]. Health benefits 

are not only associated with the fatty acid profile of the oil but other minor 

components, such as phytochemicals (β-sitosterol) and antioxidants compounds 

(tocopherols) [90, 92-95].  

The macadamia tree is a large evergreen tree indeginous to the costal rainforests of 

Australia. With 10 species of the oil being identified, the commercially grown 

macadamia are limited two species M. tetraphylla and M. integrifolia, grown in 

Australia, New Zealand and Hawaii [96]. The oils fatty acid content ranges from C14 

to C24, with the monounsaturated content of approximately 40% of the oils content. 

The high MUFA content is due to the high levels of oleic acid and palmitoleic acid 

[96]. 

Hazelnut oil (Corylus avallana) primarily sourced from Turkey or New Zealand. The 

nut contains approximately 55 to 63% oil, with oleic acid being the dominant fatty 

acid [3]. Diets which contain hazelnuts can have health benefits which include the 

lowering of blood pressure, and low density lipoprotein (LDL) levels [97-102]. The β-

sitosterol content of hazelnuts may help in the prevention of cancer, and reduce 

cholesterol [97-102]. 
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Manketti oil (Ricinodendron rauttanenni) is used in the many regions of Namibia as 

an emollient. The oil contains conjugated linolenic acid, with eleostearic acid (C18:3 

Δ
E9, Z11, Z13

) being the most abundant conjugated octadecatrienoate [3]. The conjugated 

linolenic acids can account for 6 to 28% of the oil content, other fatty acids include 

oleic and linoleic acid [3]. 

 

Berry Oils 

Sea buckthorn (Hippophae rhamnoides) grows in the wild in several parts of Asia and 

Europe and the hardy bush is now cultivated in Europe, north America and Japan [3]. 

Two oils can be extracted from the plant, one from the seed and another from the 

berry (pulp/peel). The seed contains approximately 10% oil, where the peel/pulp can 

range from 1.4% to 13.7%, depending on morphological characteristics such as size 

and colour of the berries [103]. The seed oil is rich in linoleic (30-40%) and linolenic 

acid (20-35%), and the berry contains a significant amount of palmitoleic acid (17-

47%) [104]. The seed oil contains 100-300 mg/kg of tocopherols, whilst the berry oil 

contains 350-500 mg/kg. The soft parts produce an oil with a yellow-orange colour, 

due to its high content of β-carotene [103, 104]. The oil from the sea buckthorn has 

health benefits ranging from healing wounds, burns, lowering the risk of 

cardiovascular and cerebrovascular diseases, regulating immunofunctions and 

attenuating inflammation [103, 104]. 

The seeds of blackcurrants (Ribes niger) are a by product of the juice industry, the 

seeds can be pressed and the oil extracted. The oil is of importance nutritionally as it 

contains γ-linolenic acid (C18:3 
Δ6, 9, 12

) and stearidonic acid (C18:4 
Δ6, 9, 12, 15

), with 

high levels of tocopherols (1700mg/kg) [105]. The associated health benefits of γ-

linolenic acid (C18:3 
Δ6, 9, 12

) have been reported with regards to Evening Primrose oil 
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and Borage oil. In humans there can be a deficiency in the conversion of linolenic 

acid to γ-linolenic due to the impairment of Δ
6
 desaturase [106]. The inclusion of γ-

linolenic in the human diet can allow for γ-linolenic to be converted to dihomo- γ-

linolenic acid, yielding further metabolites such as arachidonic acids [107]. This 

theory can be illustrated by atopic eczema and diabetes, which may signify inherited 

and acquired examples of insufficient Δ
6
 desaturase [106, 107]. 

Grape (Vitis vinifera) seed oil’s content can range from 6 to 20%, with linoleic being 

the dominant fatty acid [3, 108]. As with many linoleic rich oils, grape seed shows 

beneficial effects once applied to the skin. Grapes have long been associated with 

their high abundance of phenolic compounds such as flavonoids, phenolic acids and 

stilbenes [109]. Health benefits associated with grape seeds antioxidant properties 

include prevention of cataracts [110], antihyperglycemic effects [111], and anti-

inflammatory effects [112]. The use of the phenolic compounds from grape seed has 

recently received much interest. The phenolic compounds can be found in a wide 

range of health foods and dietary supplements [113]. 

 

Fruit Oils 

Apricot kernel (Prunus armeniaca) contains approximately 27-66% oil, with an 

average content of 47.2%. The unsaturated fatty acid content of Apricot oil has been 

reported to be 91.5% to 91.8% [114], with  oleic acid accounting for 58.3-73.4% and 

linoleic accounting for 18.8-31.7%. The neutral lipids form 95% of the oil, with 

glycolipids and phospholipids accounting for 1.3-1.8% and 2% respectively [3, 114]. 

Apricot oil is a rich source of MUFAs, tocopherols and phytosterols, which may play 

a beneficial role in human nutrition, by lowering cholesterols and LDL levels [114]. 

Oil obtained from the kernel of apricot is employed in cosmetic products, with an 
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emphasis on skin conditioning agents. The oil can also be used as a food source often 

sold as a speciality oil for cooking [3]. 

Avocados (Persea americana and P. gratissima) are grown in tropical and sub 

tropical regions. The lipid is often concentrated in the pulp (4 to 25%), although lipids 

in the seed do exist in lesser amounts (2%) [3]. Nutritionally avocados contain high 

levels of unsaturated fatty acids, with a significant content of vitamin E (tocopherols 

130 to 200 mg/kg), ascorbic acid, vitamin B 6, β-carotene and potassium [3, 115]. 

Avocado oil can be found in a variety of cosmetic products with skin care 

applications. The unsaponifiable matter has been reported to provide protection 

against the sun, based upon its vitamin A and E content [3]. 

Pomegranate (Punica granatum) is a shrub which belongs to the family Punicaceae, 

which is found in North America, Mediterranean regions and the western part of Asia. 

Pomegranate oil contains conjugated linolenic acid and punicic acid (C18:3 
Δ9, 11, 13

), 

which has been reported to have a positive effect on many health issues ranging from 

anti obesity to anti-hypertension [116]. Pomegranate seeds have a significant 

nutritional value and have been reported antioxidant bioactivity and anti inflammatory 

activities [117, 118].   

 

Tree Oils 

Moringa (Moringa oleifera, M. stenopetala) seed contains approximately 35% oil. 

The oil is rich in oleic acid, with fatty acids including palmitic, stearic, linoleic, 

linolenic, and eicosenoic acid [3, 119, 120]. The oil has been reported to have high 

oxidative stability due to its low PUFA content and the presence of a powerful 

antioxidant flavone myricetin [3]. Moringa belongs to the Moringaceae family, which 

is native to the sub-Himalayan regions of northwest India [121]. The tree is also 
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indigenous to many regions of Africa, Arabia, southeast Asia, the pacific, Caribbean 

islands and south America [122]. Moringa oleifera has health benefits which include 

medicinal treatment of ascites, rheumatism, venomous bites, and as a cardiac and 

circulatory stimulant [119, 123, 124]. 
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1.3 Lipid Oxidation 

 

1.3.1 Lipid oxidation 

The oxidation of lipids, fats and oils can have a detrimental effect on their quality and 

marketability. The attack of oxygen on the methylene carbons between double bonds 

of monounsaturated and polyunsaturated fatty acid’s produces hydroperoxides. The 

hydroperoxides can deteriorate further to potentially harmful compounds, such as 

aldehydes [125]. A variety parameters can cause the onset of oxidation. Free radical 

and photoxoxidation are to be considered for fats and oils analysed in this project. 

The onset of oxidation in PUFAs such as n-3 fatty acids gives rise to products which 

may be detrimental to human health. The inclusion of n-3 fatty acids into human diets 

may prevent heart disease, and show anti inflammatory properties [126]. Therefore 

protecting PUFAs from oxidation is of importance, both in health and longevity of 

extracted oils. Inhibition of oxidation can be achieved by include the addition of 

antioxidants, metal inactivators and protecting the oil with nitrogen blanketing. 

 

 

1.3.2 Free radical oxidation 

The oxidation of lipids occurs through a free radical chain mechanism, which has 

three phases termed initiation, propagation and termination. These phases consist of 

complex sequential and overlapping reactions. 

Initiation reactions of an unsaturated fatty acid (LH) occur in the presence of an 

initiator (I), with the loss of hydrogen radical (H
.
), to yield a fatty acid free radical, 

Equation 1, [125].  Propagation of the unsaturated alkyl lipid radical (L
.
), occurs with 

the rapid reaction with molecular oxygen to form a peroxy radical, Equation 2. This 
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reaction occurs at a greater rate compared to the following hydrogen transfer reaction, 

the formation of a hydroperoxide, Equation 3, [125].  

There are various termination reactions possible. The high content of peroxyl 

accumulation, can lead to the radicals interacting with one another to form non radical 

products, Equation 4, [125]. Alternatively at atmospheric pressure termination can 

occur firstly by the combination of peroxyl radicals, to form an unstable tetroxide 

intermediate, followed by rapid decomposition to yield non-radical products, 

Equation 5, [125]. Termination at low temperatures causes the peroxyl radicals to 

combine and produce dimers, peroxyl linked and molecular oxygen species, Equation 

6, [125]. In an environment with low oxygen pressure and elevated temperatures, 

alkoxyl and alkyl radicals can combine to produce a mixture of dimers. Alkoxyl and 

alkyl dimers, Equation 7, and carbon carbon dimers Equation 8 [125]. 
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Equations 1 to 8. Free radical oxidation [125] 
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1.3.3 Hydroperoxide formation 

The oxidation of unsaturated fatty acids, initially leads to the formation of 

hydroperoxides. The mechanism and rate of formation is dependant on the fatty acid 

undergoing oxidation.  

The pathway for the oxidation of oleic acid starts with the abstraction of hydrogen 

from the allylic carbon-8 and carbon-11, which yields two delocalised three-carbon 

allylic radicals. The mechanism shows oxygen attack at the end positions of these 

intermediates to produce an equal mixture of four allylic hydroperoxides, which 

contain OOH groups on carbons 8, 9, 10, and 11, Figure 18 [125, 127]. GC-MS and 

HPLC studies showed consistently higher amounts of 8 and 11 OOH (25-29%) 

compared to 22-25% of 9- and 10-OOH. The oxidation of pure methyl oleate with 

increasing temperature showed that the amount of cis-8-OOH and cis-11-OOH 

isomers decreased. The trans-8-OOH and trans-11-OOH isomers and the cis-9 and 

cis-10 isomers increased, whilst the trans-9 and trans-10-OOH showed no change 

[125, 127]. 

Linoleic acid contains two double bonds, and has been reported to be 40 times more 

reactive than oleic acid. The increase in reactivity is attributed to its active bis-allylic 

methylene group at C-11, situated between two double bonds. The abstraction of 

hydrogen from C-11, yields a hybrid pentadienyl radical, which reacts with oxygen at 

C-9 and C-13. This produces two conjugated diene hydroperoxides, 9 and 13, Figure 

19 [125, 128]. The increased reactivity of linoleate to autoxidation is attributed to the 

pentadienyl radical intermediate, which can be effectively stabilized by resonance, 

and the dienoic hydroperoxides formed are stabilized by conjugation [125, 128]. 

HPLC and 
13

C-NMR stereochemical studies showed the formation of four cis, trans 

and trans, trans conjugated diene hydroperoxides. At low temperatures and early 
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stages of oxidation, the cis, trans-OOH isomers are in greater abundance [125, 128, 

129]. The trans, trans-OOH isomers increase with the increased temperature and level 

of oxidation. The cis, trans 9- and 13-OOH isomers can be inter converted into 

mixtures of the corresponding trans, trans-OOH isomers [125, 128, 129]. 

Methyl linolenate has two bis-allylic methylene groups therefore it reacts twice faster 

with oxygen than linoleate. As the reactivity is twice as fast, the assumption would be 

that the bis-allylic methylene groups in linolenate are reacting independently of each 

other. The mechanism is similar to linoleate, although two pentadienyl radicals are 

formed through hydrogen extraction. Hydrogen is abstracted from C-11 and C-14, 

with the 1,4 diene systems on C-9 and C-13 for the first radical and C-12 and C-16 on 

the second radical. The oxygen reacts with the end carbons of each pentadienyl 

radical, yielding a mixture of four peroxyl radicals, Figure 20 [125, 130, 131]. 

Analysis of linolenate subjected to autoxidation at various stages and temperatures 

showed that the 9- and 16-OOH were about four times higher than the 12- and 13-

OOH [125, 130, 131]. 
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Figure 18. Oleic acid hydroperoxide formation [125, 127] 

 

 

 

 

9-hydroperoxy-trans-10-octadecenoate (trans-9-OOH) 

11-hydroperoxy-cis-9-octadecenoate (cis-11-OOH) 

10-hydrperoxy-trans-8-octadecenoate (trans-10-OOH) 

8-hydroperoxy-cis-9-octadecenoate (cis-8-OOH)  
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Figure 19. Linoleic acid hydroperoxide formation [125, 128] 

 

 

 

9-hydroperoxy-trans-10, cis-12-octadecadienoate (cis, trans-9-OOH) 

9-hydroperoxy-trans-10, trans-12-octadecadienoate (trans, trans-9-OOH) 

13-hydroperoxy-cis-9, trans-11-octadecadienoate (cis, trans-13-OOH) 

13-hydroperoxy-trans-9, trans-11-octadecadienoate (trans, trans-13-OOH) 
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Figure 20. Linolenic acid hydroperoxide formation [125, 130] 

 

 

 

 

9-hydroperoxy-trans-10, cis-12, cis-15-octadecatrienoate (trans, cis, cis-9-OOH) 

13-hydroperoxy-cis-9, trans-11, cis-15-octadecatrienoate (cis, trans, cis-13-OOH) 

12-hydroperoxy-cis-9, trans-13, cis-15-octadecatrienoate (cis, trans, cis-12-OOH) 

16-hydroperoxy-cis-9, cis-12, trans-14-octadecatrienoate (cis, cis, trans-16-OOH) 
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1.3.4 Lipid oxidation detection methods 

Detecting lipid oxidation can be conducted at different stages of oxidation. A variety 

of markers can be detected including hydroperoxides, volatiles, non-volatiles and 

consumption of oxygen and antioxidants, Figure 21 [132]. Detection of the 

hydroperoxides is the first marker measured when conducting research into the 

oxidation of oils. Hydroperoxide measurement coupled with several secondary 

oxidation compound measurements provides an in depth insight into the oxidation of 

oils.  

 

Peroxide Value 

The peroxide value is a widely used method, and has been used for many years to 

measure the extent of oxidation in oils. The iodometric procedure can be conducted 

via titration, colourimetric and electrometric methods. Potassium iodide is used as a 

reducing agent. When added to the oxidised oil, the liberated iodine can be titrated to 

a starch end point with sodium thiosulphate, Figure 22 [125].  

A ferric thiocyanate method for peroxide value has been developed, based on the 

oxidation of ferrous to ferric ions. This is determined colourmetrically as ferric 

thiocyanate. Although it is more sensitive than the iodometric method, the values do 

tend to be increased by a factor of 1.5 to 2 [125]. The ferric thiocyanate method does 

have its advantages over the traditional titration method, as it requires a smaller 

amount of sample and there is minimal waste.  
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Figure 21. The Kinetics of oil oxidation. 

 

Markers which can be measured throughout the oxidation of oils, including hydroperoxides, volatiles, 

non volatiles oxygen and antioxidant consumption [132]. 

  

 

Figure 22. Reaction scheme for peroxide value 

 

The liberated iodine from the reaction of potassium iodide with hydroperoxide gives a blue colour with 

the addition of starch. The addition of sodium thiosulfate binds to the iodine to the sodium and turns 

the starch colourless [133]. 
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The FOX (ferrous oxidation in xylenol orange) and FOX2 methods have been used to 

determine hydroperoxide content in edible oils, mammalian tissues and serum. The 

FOX method is based upon the oxidation of ferrous (Fe
2+

) to ferric (Fe
3+

) ions by 

hydroperoxides , with the binding of Fe
3+

 ion to the ferrous sensitive dye xylenol 

orange [134]. The technique is sensitive, inexpensive and not affected by ambient 

oxidation concentrations. The FOX method has been exclusively used for 

determination of hydroperoxides in membrane systems and mammalian tissue and 

serum extracts [134, 135]. A modification of the FOX method was developed to 

determine the hydroperoxide content of edible oils, FOX2 [136]. 

 

Conjugated Diene 

The conjugated diene hydroperoxides are produced from polyunsaturated lipids. The 

conjugated diene has a strong absorption at 234 nm, which can be observed 

spectrophotometerically. The method requires little sample 50-100 mg, and sensitivity 

makes it a reliable method for the determination of lipid hydroperoxides [137]. The 

method is often used in the early stages of lipid oxidation, where hydroperoxides 

undergo little or no decomposition. Conjugated diene hydroperoxide content can only 

be used with oils which have two or more double bonds (C18:2), therefore oleate rich 

oils are excluded. 

 

Carbonyl Compounds 

The carbonyl content of oxidized lipids can be determined through various methods, 

the total carbonyl content and p-anisidine test, are the most widely used. 

The total carbonyl content of oxidized lipids is determined by a reaction of 2,4-

dinitrophenylhydrazine. The coloured hydrazone (2,4-DNPH) derivatives are 
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measured at 430-460nm. The carbonyl value is directly related to the decomposition 

of the carbonyl compounds, which contributes to flavour deterioration. The assay 

gives an insight into relevant sensory evaluation [125]. 

The p-anisidine method measures high molecular weight saturated and unsaturated 

carbonyl compounds [125]. The p-anisidine value is defined as the absorbance of a 

solution resulting from the reaction of 1g fat in 100ml of isooctane solvent and p-

anisidine reagent. Oxidised linolenic acid and other n-3 PUFAs have a tendency to 

produce significantly higher p-anisidine values than oxidized linoleic acid; due to n-3 

PUFAs having a greater tendency to decompose to carbonyl compounds [125]. The 

reaction of p-anisidine with an aldehyde under acidic conditions yields yellowish 

products which absorb at 350nm, Figure 23 [133]. 

Carbonyl compounds can be measured through other methods, which involve 

derivitisation followed by column chromatography or by HPLC or GC [125]. 

 

2-Thiobarbituric Acid (TBA) Value 

The TBA value measures the rancidity in foods and oxidation in biological systems; 

although the test is old it still remains popular. The oxidation of PUFAs containing 

three or more double bonds yields the minor component malonaldehyde (MA), an 

enolic form of MDA. The MA can be reacted with TBA, to give a pink complex MA-

TBA, which can be measured spectrophotometerically at 530-535nm. Figure 24 [125, 

133]. Precaution must be taken when using this method to determine the level of 

oxidation as many MA-like substances can arise in biological systems, which can lead 

to a false indication of the level of oxidation. Precursors of MA have been suggested 

including monocyclic endoperoxides and bicyclic endoperoxides, which are produced 

as secondary products in PUFA lipids containing three or more double bonds [125]. 
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Consequently the TBA test is more sensitive with PUFA lipids and underestimates the 

oxidation products from lipid that contain oleic and linoleic acid [125]. TBA assay 

does have limits as it can only be used with oils which contain three or more double 

bonds.   

 

Gas Chromatography 

Gas chromatography has the capability of determining the volatile oxidation products 

that serve as markers for oxidation [125]. Determining oxidation via GC methods has 

many advantages, such as high sensitivity and the detection of low levels of oxidation 

in oils and food sources. The volatile components of oxidation include aldehydes, 

ketones and hydrocarbons. Volatile compounds can be determined by various GC 

techniques and methods, namely static headspace, dynamic headspace and direct 

injection methods [125]. 

 

 

 

 

 

 

 

 

 

 

Figure 23. Proposed reaction scheme for p-anisidine reaction with oxidised lipids 

 



 74 

The possible reactions between p-anisidine reagents with the aldehyde malonaldehyde [133]. 

 

Figure 24. The reaction of 2-thiobarbituric acid with malonaldehyde 

 

 

The reaction of TBA with MA to yield the pink complex TBA-MA, which absorbs at 530-535nm [125, 

133]. 
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1.3.5 Oxidative stability 

Oxidative stability is often defined as an organic compound’s resistance to oxidation, 

and further deterioration which causes rancidity and loss of quality. Various methods 

have been developed to observe the oxidative stability of lipids, and many tests have 

been designed to accelerate the normal oxidation process. With such procedures it is 

possible to understand how the lipid may deteriorate once subjected to oxidation. 

Understanding the kinetics of oxidative deterioration can allow for correct prevention 

techniques to limit deterioration. 

For research purposes the oxidative stability of an oil is often tested by subjecting it to 

an accelerated process by elevated temperatures and bubbling with oxygen. It is 

possible to determine the oxidation of oils at ambient temperature and oxygen levels. 

Using the methods described above, a significant insight to the oil resistance to 

oxidation can be evaluated. To fully understand the oxidative stability of oils, 

measuring the hydroperoxides and secondary oxidation products is important to get an 

overview of its oxidative stability. 
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1.4 Antioxidants 

 

1.4.1 An introduction to antioxidants 

Antioxidants can inhibit the onset of lipid oxidation with the ability to preserve 

PUFAs from deterioration. Antioxidants have also become an important additive in 

foods, chemicals and cosmetics. Antioxidant mechanisms for preserving PUFAs 

involve retarding lipid oxidation, by interfering with propagation or initiation [125]. 

Antioxidants can be classed as synthetic or natural. Synthetic antioxidants are 

effective and relatively cheap. A worldwide trend has emerged in recent years where 

synthetic additives (antioxidants) have been reduced in foods. With the decline in use 

of synthetic antioxidants in food sources there has been a growth in the use of natural 

antioxidants. Antioxidants from plant sources have become considerably attractive 

due to their benefits as anticarcinogenic agents and inhibitors of biologically harmful 

reactions in the body [125]. Diets which tend to be rich in plant antioxidants, 

consumed from fruits and vegetables have been associated with lower risks of 

coronary heart disease and cancer [125]. The inclusion of 5-a-day fruit and vegetables 

allows the body to gain important nutrients, which include natural antioxidants. The 

World Health Organisation have advised the intake of 500 g/day of fruits and 

vegetables [138]. There is reported evidence that the inclusion of vitamins E, C and β-

carotene can reduce the risk of cancer, cataracts and cardiovascular disease [138]. 

Fruits and vegetables vary in their antioxidant content and levels, determining the 

antioxidant levels in fruit can be conducted using the ABTS radical cation assay. The 

assay screens the antioxidant activity. Mono-cation ABTS
.+

 is generated from the 

oxidation of ABTS with potassium persulfate, and is reduced in the presence of 

hydrogen donating antioxidants [139]. The assay is applicable for lipophilic and 
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hydrophilic antioxidants, including flavonoids, hydroxycinnamates, carotenoids and 

plasma antioxidants [139]. 

 

1.4.2 Antioxidant mechanism 

The chain breaking mechanism of antioxidants inhibits or retards lipid oxidation. The 

antioxidant interferes with either chain propagation or initiation. This is achieved 

through hydrogen atom transfer and the antioxidant readily donating hydrogen atoms 

to lipid alkyl, alkoxyl and peroxyl radicals. 

An effective chain breaking antioxidant must have the ability to produce a relatively 

stable radical (A
.
). These radicals will then react slowly with the lipid substrate LH, 

Equation 3, but react quickly with peroxyl radical (LOO
.
), Equation 9. The 

antioxidant radical can then react again with the peroxyl radical to form stable 

peroxides, Equation 11. The antioxidant radical can also dimerize with another 

antioxidant radical to form A-A, equation 12 [125].  

For the active antioxidant to effectively break the free radical chain, the antioxidant 

must produce phenoxyl radicals. The radical’s unpaired electrons are delocalised 

around the aromatic structure and stabilized by the resonance energy. The antioxidant 

radicals of hindered phenols are stabilized by electron delocalisation of their phenoxyl 

structures. The effectiveness these antioxidants are directly related to the resonance 

stabilisation of its phenoxy radical [125]. 
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Equations 1 to 12.  The mechanism of antioxidants [125]. 
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1.4.3 Synthetic and natural antioxidants 

Synthetic antioxidants are applicable to food products as they are stable and can 

withstand processing conditions. Compared to natural antioxidants, synthetic 

antioxidants may be more effective when used at lower concentrations [140]. 

Synthetic antioxidants are relatively inexpensive and impart little effect to the flavour, 

colour and aroma of the final product [125]. Synthetic antioxidants used for food 

applications worldwide include BHA, BHT, PG and ascorbyl palmitate, Figure 25 

[125].  

Flavonoids are natural polyphenolic antioxidant compounds which are diverse in 

chemical structure and characteristics. Over 4000 classes of flavonoids have been 

identified with the major classes including flavones, flavanones, catechins, 

anthocyanidins, isoflavones, dihydroflavonols, and chalcones [141].  Flavonoids are 

found in seeds, bark and flowers of plants. Fruits rich in flavonoids are often seen to 

have a red or blue colour, hence its presence in berries and grapes [142]. Flavonoids 

in plants, provides protection against ultra violet radiation and pathogens. In humans 

flavonoids have demonstrated cardio protective effects [142]. 

The structure of flavonoids consists of two benzene rings combined with an oxygen 

containing pyrene ring. Different substitutions and further hydroxylation of the 

subsisted rings can yield a variety of antioxidants, Figure 26 [125]. The metal 

chelating properties of flavonoids indicates a greater inhibition of metal ion-induced 

oxidation than peroxyl radical oxidation [125, 143]. 
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Figure 25. Synthetic antioxidants 

Synthetic antioxidants used in food sources in low concentrations due to their effectiveness [125]. 
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Rosemary extracts provide a source of natural antioxidants and at present are 

commercially available in food sources. The two main antioxidant components are 

phenolic diterpene, carnosic acid and carnosol. Carnosic acid consists of three six-

membered rings including a dihydric phenolic ring. Carnosol is a derivative of 

carnosic acid containing a lactone ring, Figure 27 [125, 144]. Rosemarinic acid is the 

least effective fraction of rosemary extract, in bulk corn oil and oil-water emulsion it 

was the least effective extract [144].  

Carotenoids are natural pigments and 600 different compounds have been identified 

with β-carotene and lycopene being the most common, Figure 28 [145]. The 

conjugated double bond system of carotenoids determines its light absorbing 

properties which contributes to the antioxidant properties [146]. The antioxidant 

activity of carotenoids is widely considered to occur through singlet oxygen 

quenching, and peroxyl radical scavenging.   
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Figure 26. Flavonoids and hydroxylation products 

 

Flavonoids of the hydroxylation products provide a wide variety of antioxidants [125]. 
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Figure 27. Rosemary extracts 

Rosemary extracts include the Carnosic acid, Carnosol and Rosemarinic acid [125, 144]. 

 

Figure 28. Carotenoids. 

β-carotene and lycopene conjugated double bond system determines their light absorbing properties 

which contributes to the antioxidant properties [145]. 
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1.5 Vitamin E 

 

1.5.1 Vitamin E, tocopherols and tocotrienols 

Oxidation of fats and oils is a process of degradation, through a free radical 

mechanism. The pathways, rates of reaction and mechanism of degradation have been 

well documented and illustrated in earlier sections. It can be summarised that 

peroxidation is greatly affected by other chemical species in the oil as well as the 

physical conditions the oil is subjected too [147]. 

Vitamin E is a popular natural antioxidant, although it covers a combination of 

tocopherols and tocotrienols, all which have been well recognised for their inhibition 

of oxidation [147]. Tocopherols are present in the seed of plants, but can also be 

found in the leaves and other green parts of the higher plants. Tocotrienols are not 

found in the green parts of the plant, they are situated in the bran and germ parts of 

plant seeds. The antioxidant activity of tocopherols and tocotrienols is due to their 

ability to donate their phenolic hydrogens to lipid free radicals. 

The basic structure of both tocopherols and tocotrienols are similar, and both consist 

of a chroman head (two rings one phenolic one heterocyclic) and a phytyl chain, 

Table 8. Tocopherols have a saturated phytyl chain, with varying numbers of methyl 

substituent’s situated along the chain and around the phenolic ring. Tocotrienols also 

have the same chroman head with the varying methyl substituent’s. 
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Table 8. Tocopherols and Tocotrienols 

 

The structures and Chemical Names of the Tocopherols and Tocotrienols [147]. 
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1.5.2 The effects of tocopherols on lipid peroxidation: Tocopherols as free radical 

scavengers. 

 

The oxidation of PUFAs have three distinct phases, initiation, propagation, (includes 

chain branching and chain transfer) and termination [148]. The generation of radicals 

occurs in the initiation stage of oxidation. The radicals generated are alkyl radicals 

(L
.
) generated from PUFAs, Equation 1. The alkyl radicals formed are highly reactive 

and will combine with an available oxygen, at an intense rate, producing peroxy 

radicals (LOO
.
), Equation 2 [149]. 

A proposed explanation for the mechanism for antioxidant action of tocopherols, 

involves the tocopherol molecule (TOH) and the peroxy radical (susceptible to 

donating and receiving an electron respectively), move into close proximity to each 

other [150]. Their electron clouds begin to overlap and a transition state with a charge 

transfer is reached (LOO
-
---TOH

+
). Once the tocopherol molecule and the peroxy 

radical have reached a specific distance, proton tunnelling takes place. The chromanol 

molecule loses a hydrogen to a lipid peroxy, forming a chromanoxyl radical, Figure 

29 [150]. The resultant chromanoxyl radical (TO.) formed, undergoes radical-radical 

coupling, with other radicals forming various adducts, Figure 30 [151-153]. 

Chromanols have been shown to be the most effective lipid antioxidants in nature. 

Firstly this is due to tocopherol phenolic compounds having special structural 

properties; a phytyl chains which make the lipid insoluble [147]. Secondly lipid 

peroxy radicals react faster with tocopherols, than their reactions with acyl lipids. One 

tocopherol molecule can protect 10
3
-10

8
 PUFA molecules at low peroxide levels 

[154]. 
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Tocopherols can also either react with alkoxyl radicals (LO
.
), which are formed from 

the propagation step, Figure 31, or can undergo self coupling to form dimers/trimers, 

Figure 32. [155]. 

In rare circumstances where oxygen is present in trace amounts and the 

hydroperoxides are present in minimal concentrations, tocopherols can then react 

direct with alkyl radicals (L
.
), Figure 33. The reaction leads to the formation of a 

tocopherol radical and the lipid substrate. 
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Figure 29. Formation of a chromanoxyl radical [125] 

 

Figure 30. Formation of adducts [125] 

 

 

 

 Figure 31. Tocopherols reaction with alkoxyl radicals [125] 
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Figure 32. The formation of dimmers from tocopherol radicals [125] 
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1.5.3 Tocopherols as pro-oxidants 

An effective antioxidant would produce stable radicals which do not react with stable 

molecules, such as molecular oxygen, lipid molecules and lipid hydroperoxides.  

The above is not always achieved as antioxidants and/or their radicals can often 

undergo side reactions which can lead to the antioxidant acting as a pro-oxidant. The 

severity of such pro-oxidant reactions is due to many factors such as the structure of 

the antioxidant, temperature and concentration, [156, 157].  

The pro-oxidant activity of α-tocopherol is related to its tocopheroxyl radical (α-TO
.
), 

[158]. The assumption being if TO
.
 was found in high concentrations, there would be 

an increase in the number of side reactions, which could initiate a reaction chain or 

even increase the rate of peroxidation, [158]. Suggested side reactions which may 

contribute to pro-oxidant effect of α-TO
.
 include, the reversible reaction of α-TO

.
 with 

unperoxidised lipids and hydroperoxides, leading to the formation of alkly and peroxy 

radicals [147]. Tocopherols also have the ability to recycle metal ions, which can act 

as pro-oxidants in Fenton and Fenton-like reactions [159].  

 

 

1.5.4 Major factors affecting tocopherol antioxidant potency 

Concentration 

It has been reported that high levels of antioxidants, α-tocopherol, in vegetable oils 

can enhance pro-oxidant activity, [147, 160-164]. The pro-oxidant effects is often due 

to tocopheroxy radical (TO.), [158]. Tests have been carried out from 0-2000ppm, on 

oils stripped of tocopherols, iron, copper and pigments. The findings of the 

experiment found that tocopherols are not pro-oxidants themselves, but can act as a 

pro-oxidant synergistically. Tocopherols incorporated at high concentrations with 
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known pro-oxidants such as transition metals, lipid peroxides and other oxidising 

agents, can lead to an overall pro-oxidant effect on an oil [147]. 

 

Temperature 

The order of tocopherol antioxidant efficiency at low to mild temperatures have been 

reported to be α>β>γ>δ, and the reverse order for higher temperatures [147, 165]. It 

has been shown that at higher temperatures and with high concentrations of 

tocopherol, there was less pro-oxidant effect of α-TOH [166]. This may be due to oils 

having a lower oxygen solubility at high temperatures. The autoxidative peroxide 

formation proceeds at lower rates and gradually becomes substituted by a 

polymerisation reaction. Polymerisation occurs due to the radicals cross linking to 

high molecular weight molecules. Increased temperature leads to a greater rate of 

hydroperoxide decomposition and a higher reactivity of transition metal ions. This 

leads to metal ions catalysing the rate of oxidation and reduction reactions [167]. 

Temperature effects on the anti/pro oxidant effects of tocopherol within an oil is 

greatly dependant on the chemical composition and the physical properties of the 

system [147]. 

 

Photoxoxidation 

In the presence of light and a photosensitizer (chlorophyll), tocopherols act as free 

radical scavengers. Although tocopherols can react with singlet oxygen in similar 

conditions [147, 168]. Previous research has found that stripped oils with the higher 

levels of α-tocopherol had the best light stability but showed the least stability once 

aged in the dark at 60
o
C [169]. 
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The oxidation of PUFAs is accelerated by the exposure of light. Photoxoxidation is 

due to free radicals produced by ultraviolet light irradiation. These radicals can 

catalyse the decomposition of hydroperoxides and other peroxide containing species, 

carbonyl compounds and other complexes of unsaturated lipids [125]. The reaction 

proceeds via the free radical oxygen mechanism and can be inhibited by chain 

breaking antioxidants, or ultraviolet light deactivators [125]. 
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Aims of PhD Research 

 

The trading of speciality oils requires quality control measure to be in place, to ensure 

oils have not been degraded or adulterated. The quality of an oil will ultimately 

determine its trading possibilities and commercial application. The programme of 

research aims to firstly conduct quality control measures on a wide variety of 

speciality oils. Secondly it would be envisaged that the oils can be characterised and a 

database created to detail the lipid characteristics of the individual oils. The database 

will provide a future reference when comparing highly degraded and adulterated oils. 

The database will include commercial assays such as the peroxide and free fatty acid 

values. The inclusion of the lipid and fatty acid profile of individual oils will also give 

an insight into the quality of the oil. The stereochemical analysis of the TAGs may 

reveal underlying novel acylating activity which could insert a saturate at sn-2 

position.  

The deterioration of the oil quality through oxidation is of interest commercially, as 

the oils must undergo long periods of storage before use. Research carried out centred 

on oxidation of the oils will include developing and evaluating a suitable method 

which will accelerate oxidation. Determining oxidation through classical methods and 

inhibiting the rate of oxidation with the addition of antioxidants will also be 

conducted. 

The understanding of oxidative thermostability of oils and methods to inhibit 

oxidation is of importance to Earthoil. The inhibition of oxidation with antioxidants is 

a desirable research venture.  

The outcome of the research would be to attain a greater understanding of speciality 

oils through characterisation and the understanding of oxidative thermostability, with 



 94 

an emphasis placed on the effectiveness of antioxidants.  The data obtained from the 

characterisation of the oils can be relayed to Earthoil. In circumstance where oils have 

high free fatty acid and peroxide content, advice can be provided to reduce levels. The 

oxidative stability of oil was evaluated with the addition of tocopherols and 

pomegranate oil. The addition would allow for oils to be stabilised for longer periods 

during storage. 
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Chapter 2 

Materials and Methods 

 

2.1 Materials 

 

All reagents and solvents (HPLC grade only) were purchased from Fisher Chemicals 

(Leics, U.K.) and Sigma-Aldrich (Dorset U.K.) collectively. Consumables for the 

Aglinet 6890 GC were purchased from Agilent Technologies (West Lothian, U.K.). 

Bleaching earths Tonsil 414 FF and 210 FF were supplied by Süd Chemie AG, 

(Moosburg, Germany). Fullers bleaching earth was supplied by Eurolabs (Leics, 

U.K.). Thin layer chromatography plates, Silica G60 were purchased from VWR Int, 

(Leics, U.K.).  

 All seed oils were supplied by Earthoil Plantations Ltd (Lichfield, U.K.), from 

organically grown crops where the oils were obtained by mechanical cold pressing at 

the site of origin and stored under commercial operative conditions. 

 

 

2.2 Methods 

 

2.2.1 Formation of fatty acid methyl esters 

The oil (20 μl) was purged with nitrogen, followed by the addition of 2 ml 2.5% 

acidic dry methanol (sulphuric acid). The solution was refluxed at 70
o
C for 1 hour, 

then removed and cooled to room temperature. The fatty acid methyl esters were 

extracted with 1.5 ml iso-hexane and 1.0 ml HPLC water. The whole was inverted 
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several times to ensure both phases have mixed. Once both phases had separated the 

fatty acid methyl ester upper phase was removed and placed into a 2.0 ml amber vial. 

Fatty acid methyl esters were analysed by GC-MS and GC-FID (Agilent 6890, MSD 

5973), separated with a DB-23 column (50%-cyanopropyl)-methylpolysiloxane. Fatty 

acid methyl esters (1 µl) were separated by thermo gradient elution 180-240
o
C, with a 

1/50 split injection and a helium flow rate of 1ml/min. The inlet temperature of the 

GC was set at 250
o
C with a constant head pressure (230 kPa).  

The FID was set at 280
o
C, the detector gases were hydrogen and air, with flow rates 

of 40 ml/min and 450 ml/min respectively. The Electron Ionisation Mass 

Spectrometer (Agilent MSD 5973), transfer line was set at was set at 250
o
C, with a 

scan of 40 to 500 amu, threshold of a 100, MS quad at 150
 o

C and MS source at 230
 

o
C.  

 

2.2.2 Punicic acid fatty acid methyl ester 

The preparation of punicic acid, fatty acid methyl esters differed from the standard 

derivitization method. The selected temperature for reflux was 40
o
C for one hour. The 

lower temperature was selected to reduce bond migration [170]. 

 

 

2.2.3 Peroxide value 

The peroxide value (PV) was determined following the Standard Operating Procedure 

V.4, Mylnefield Lipid Analysis [171]. 

The oil (5 g) was purged with nitrogen for 2 minutes, followed by the addition of 

acetic acid and chloroform (3:2 by vol; 30 ml). The addition of 0.5 ml saturated 

potassium iodide started the reaction which proceeded for 1 minute. The addition of 
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distilled water (30 ml) stopped the reaction. Starch indicator (5 ml) was added and 

titrated to colourless endpoint with 0.01N sodium thiosulphate. 

Treatments were preformed in duplicate. 

 

 

PV= (A-B) x N x 1000 /W 

A= Titre of oil sample 

B= Titre of blank 

N= Normality of sodium thiosulphate 

W= Mass of sample 

 

 

2.2.4 Free fatty acid value 

Acid value (free fatty acid value) was determined following AOCS Official Method 

Cd 3d-63 [172].  

Phenolphthalein indicator (2 ml) was added to solvent system isopropyl alcohol and 

toluene (1:1 by volume; 125 ml), and neutralised with potassium hydroxide (0.1N) 

until a faint permanent pink colour was visible. The oil (2.5 g) was added to the 

neutralised solvent mixture, and mixed until it was completely dissolved. The solvent 

mixture was titrated with potassium hydroxide (0.1N) until the faint permanent pink 

colour returned. The assay was completed in duplicate.   
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FFA % Oleic acid = ((A-B) x N x 56.1 /W) /2.81 

A= Titre of sample 

B= Titre of blank 

N= Normality of potassium hydroxide 

W= Mass of sample 

 

 

2.2.5 Conjugated diene [137] 

The oil (100 mg) was added to a 100 ml volumetric flask followed by the addition of 

75ml iso-octane. The flask was rotated and warmed until all the oil was completely 

dissolved; the solution was made up to volume with iso-octane. The fat solution was 

removed and furthered diluted to give a final concentration of 0.5 g/L. The 

absorbance was measured at 234 nm using a UV-Vis spectrophotometer Jenaway 

6505, with the matching blank cell containing iso-octane. The conjugated diene value 

was reported as a percentage of conjugated dienoic acid. 

 

C.D % = 0.84 (As/bc-Ko)  

Ko = Absorptivity by acid (0.03) or ester (0.07) groups 

As = Observed absorbance at 233 nm 

b = Cell length (cm) 

c = Concentration of sample in g/l 
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2.2.6 p-Anisidine 

p-anisidine value (p-AV) was determined following AOCS Official Method Cd18-90 

[173]. 

The oil (1.0 g) was added to a 25 ml volumetric flask followed by the addition of iso-

octane, the whole was inverted several times. The absorbance of the solution was 

measured at 350 nm, reference cuvette contained iso-octane as a blank. The fat 

solution (5 ml) was pipetted into stoppered test tubes followed by the addition of p-

anisidine reagent (1 ml). The whole was inverted several times; the procedure was 

repeated for iso-octane. After 10 minutes the absorbance of the fat solution was 

measured with the reference cuvette containing iso-octane p-anisidine solution as a 

blank. 

 

p-AV= 25(1.2 x A2 –A1) / M 

A1= Absorbance of fat solution 

A2= Absorbance of p-anisidine fat solution 

M= Mass of sample   

 

 

2.2.7 Saponification value 

Saponification value was determined following the AOCS Official Method Cd 3-25 

[174]. The oil (2.0 g) was added to a 50 ml round bottom flask followed by the 

addition of ethanolic potassium hydroxide (25 ml). The solution was refluxed until all 

the sample was completely saponified (1 hour). The whole was cooled to room 

temperature, with avoidance of the solution becoming gel like. Phenolphthalein 
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indicator was added (1.0 ml) and titrated with hydrochloric acid (0.5M), until the pink 

colour disappeared. A blank determination was carried out in parallel. 

 

SV= ((B-S) x M /W) x 56.1 

B= Titre of blank 

S= Titre of sample 

M= Molarity of hydrochloric acid 

W= Mass of sample 

 

 

2.2.8 Thin layer chromatography 

The sample (5-10 mg) was re-suspended in 100-200 μl chloroform, an aliquot (5 μl) 

was spotted onto an activated thin layer silica coated thin layer chromatography plate 

(Silica G60, 20x20 cm). The plate was developed with a polar or non polar solvent 

system. Once the plate had developed it was dried under nitrogen and stained gently 

with iodine vapour. The corresponding lipids were located and removed by spraying 

gently with water and scrapping the silica from the plate. The silica was placed into 

stoppered test tubes. The sample was covered with dry methanol (1.5 ml) followed by 

the addition of heptadecanoic acid internal standard (50μl, 1 mmol
-1

). The samples 

were purged with nitrogen and stored overnight at 4
o
C.  

The dry methanol was removed under nitrogen and the sample was methylated as 

given above. 
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Polar Solvent 

Chloroform, methanol, acetic acid and water (85:15:7.5:2.5 by vol; 110 ml), Figure 34 

[175]. 

 

Non Polar Solvent 

Hexane, diethyl ether and acetic acid (70:30:1 by vol 101 ml), Figure 35 [175]. 
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Figure 34. Non polar TLC separation. 

Figure 34. Non polar TLC separation of oils, a, cholesterol esters; b, triacyglycerols; c, free fatty acids; 

d, 1,3-diacylglycerols; e, cholesterol; f, 1,2-diacylglycerols; g, monoacyclglycerols; h, phospholipids. 

 

 

Figure 35. Polar TLC separation of stereochemistry products 

Figure 35. Polar separation of phosphatidylcholine from stereochemical analysis of triacylglycerols; a, 

free fatty acids; b, phosphatidylcholine; c, lysophosphatidylcholine. 
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2.2.9 Oxidative stability 

The method was conducted in triplicate for each of the oils. 

The oil (2.5 g) was placed in a 50 ml conical flask and exposed to the atmosphere for 

the selected time period (0, 2, 4, 6, 24, 48, 120, 144, 168 hours). At the selected time 

period the peroxide value was conducted, Method 1. 

Modifications to Method 1 included Method 2, the oil (2.5 g) being placed in a Pyrex 

test tube, the peroxide and conjugated diene values determined. Method 3 the oil (4.5 

g) was placed in a 50 ml conical flask and the peroxide, conjugated and p-anisidine 

was determined. Method 4 (4.0 g) of oil was placed in a 50 ml conical flask the 

peroxide and p-anisidine was determined at 18
o
C and at 60

o
C  

 

  

2.2.10 Stereochemistry [175] 

Purification of Triacylglycerols 

The crude oil (200 mg) was dissolved in iso-hexane and added to a silica column 

(5cm x 0.5 cm). The triacylglycerols were eluted with washing the column with 5 

column volumes (80 ml) of iso-hexane containing 5% dry diethyl ether. The eluent 

was evaporated under a steady stream of nitrogen, the corresponding triacylglycerols 

were re-suspended in 1.0 ml iso-hexane.  

 

Preparation of Grignard Reagent 

Magnesium turning (5 pieces) was added to 2 ml of dry diethyl ether followed by the 

addition of 1 iodine crystal. Bromoethane (0.2 ml) was added, the reaction was heated 

to 40
o
C until the reaction began, after several minutes and once the grey precipitate 

was visible the diethyl ether was evaporated off under a steady stream of nitrogen. 
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The corresponding Grignard reagent, ethyl magnesium bromide, was diluted to the 

concentration 0.5M. 

 

Hydrolysis of Triacylglycerols 

The purified triacylglycerols (40 mg) was dissolved in 2 ml dry diethyl ether, 

followed by the addition of 0.5M Grignard reagent (1.0 ml). The mixture was shaken 

vigorously for 1 minute followed by the immediate addition of glacial acetic acid 

(0.05 ml) and distilled water (2 ml). The products were extracted with dry diethyl 

ether (3x10 ml). The extract was washed with 2% potassium bicarbonate solution (5 

ml) and distilled water (5 ml). 

The α,β-diacylglycerols which are required for the preparation of phosphatidylcholine 

derivatives were isolated by thin layer chromatography on boric acid impregnated 

plates. The plate was developed in hexane, diethyl ether solvent system 1:1 (100 ml), 

the isolated α,β-diacylglycerols were removed and extracted in 3x5 ml diethyl ether. 

 

Preparation of Phosphatidylcholine Derivatives 

To the α,β-diacylglycerols a mixture of chloroform, pyridine, phosphorus oxychloride 

(45.5/47.5/5 0.65 ml ) was added. The solution was stored at 4
o
C for an hour, and then 

at room temperature for an hour. To the mixture dry powdered choline chloride (200 

mg) was added and stirred overnight at 30
o
C. To the mixture distilled water (20 μl) 

was added followed by a further 30 minutes of stirring at 30
o
C, the solvent was 

removed under evaporation with nitrogen. The products were extracted with 

chloroform, methanol, water and acetic acid (50:39:10:1 by vol;12 ml), and 

partitioned with 4M ammonia (4 ml). The products were re-extracted with fresh lower 

phase (2 ml).    
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The phosphatidylcholine derivatives were isolated through polar thin layer 

chromatography. The lipids were eluted from the silica gel with two washes with 

solvents methanol, chloroform (2:1 by vol; 6 ml). The first wash was for 18 hours and 

the second was for 2 hours. The solvent was evaporated off under nitrogen, and the 

lipid residue was re-suspended in chloroform (1 ml), and stored at -80
o
C until the 

enzymatic hydrolysis. 

 

Enzymatic Hydrolysis of Phosphatidylcholine 

The phosphatidylcholine was dissolved in 2 ml diethyl ether, and sonicated for 10 

mins at 0
o
C with 0.01M Tris-HCl buffer (1 ml), pH 8.9. Phospholipase A2 (Naja naja, 

calcium dependent) was added, the enzymatic hydrolysis was allowed to proceed at 

25
o
C for 90 minutes with vigorous mixing. The ether phase was evaporated off under 

nitrogen, and the products were extracted with acidified butan-1-ol; butan-1-ol, water, 

acetic acid (1:0.95:0.05 by vol; 1 ml), followed by extraction with butan-1-ol (1 ml). 

The extracts were combined and evaporated to dryness under a gentle stream of 

nitrogen. The lipids were re-suspended in chloroform (20 μl) and applied to an 

activated thin layer chromatography plate. The plate was developed in a polar solvent 

system; the procedure for thin layer chromatography is followed from this point on. 

The fatty acids were methylated at this stage and the stereochemistry was elucidated. 

 

 

2.2.11 Bleaching 

Method 1 

The oil (1 g) was mixed with 0.33 sodium carbonate (18 ml), followed by the addition 

of adsorbent (Tonsil 4191FF, 2 mg). The solution was mixed for 5 minutes at 60
o
C, 
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followed by the addition of calcium hydroxide (780 mg) and mixed for a further 10 

minutes. The solution was filtered; the filtrate was mixed with 2% w/w bleaching 

earth, and mixed for 15 minutes at 100
o
C. The mixture was filtered followed by the 

filtrate being centrifuged at 12 000 rpm. The oil was separated from the solid and 

analysed. 

 

Method 2 

The oil (1g) was mixed with 0.33 sodium carbonate (18ml), followed by the addition 

of adsorbent (Tonsil 4191FF, 2 mg). The solution was mixed for 5 minutes at 60
o
C, 

followed by the addition of calcium hydroxide (780 mg) and mixed for a further 10 

minutes. To the heated solution 2% w/w bleaching earth was added, and mixed for 15 

minutes at 100
o
C. The mixture was filtered followed by the filtrate being centrifuged 

at 12 000 rpm. The oil was separated from the solid and analysed. 

 

 

2.2.12 Oil extraction  

Bligh & Dyer [176] 

The seeds (0.1-0.9 g) were homogenised in a pestle and mortar with a solution of 

chloroform, methanol and 0.15M acetic acid (10/20/7.5 v/v). The homogenate was 

transferred to stoppered measuring cylinder, with the pestle and mortar being rinsed in 

chloroform (10 ml) and added to the extract in the measuring cylinder. Distilled water 

was added (10 ml) and the measuring cylinder was inverted several times to ensure 

mixing of both phases. Once the phase had separated the lipid containing lower phase 

was removed, and the chloroform was removed under nitrogen. The corresponding 

lipids were re-suspended in chloroform (1ml) and stored at -80
o
C, until used.  
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Hexane [177] 

The seeds (1.0 g) were homogenised with 20 ml hexane, the homogenate was stirred 

for 2 hours at 4
o
C. The hexane was removed through filtration and the sample was 

extracted a further two times. The extracts were pooled together and evaporated with 

a rotary evaporator at temperature below 30
o
C. The oil was re-suspended in 1.0 ml 

hexane, purged with nitrogen and stored at -80
o
C until analysis. 

 

 

2.2.13 Punicic acid extraction [170, 178] 

Pomegranate oil (10 g) was saponified with 150ml 0.3M KOH/ethanol solution under 

nitrogen protection for 24 hours at 25
o
C. The mixture was acidified to pH 1.0 using 

1M sulphuric acid. The upper layer containing the free fatty acids was extracted with 

hexane (20 ml x 3). The crude free fatty acids were obtained by the evaporation of the 

hexane at temperatures below 30
o
C, with a rotary evaporator. The punicic acid was 

purified by recrystallisation twice from 90% ethanol at -20
o
C. The isolation of punicic 

acid was determined through GC-MS, following the FAME method given above 

section, 2.2.1. 

 

 

2.2.14 Removal of natural occurring antioxidants and tocopherols [179, 180] 

The oil (10 g) was placed in a stoppered conical flask containing activated alumina 

(Aluminium oxide, Brockmann grade 2) (5 g), blanketed with nitrogen and sealed. 

The mixture was stirred for 48 hours at 25
o
C, the slurry was removed and centrifuged 

at 12 000 rpm. The oil was removed and the lower alumina phase was discarded. The 

antioxidant content of the oils were analysed by Eurofins Laboratories. 
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Chapter 3  

Characterisation of plant seed oils 

 

3.1 Introduction 

 

The introduction of speciality plant seed oils into the market place has created a need 

for characterisation and quality control of these oils. The fatty acid profile, peroxide 

(PV) and free fatty acid value (FFA) are standard requirements used when trading 

oils. The data obtained can affect the price and potential applications of these oils. 

Oils which contain undesirable high amounts of peroxides and free fatty acids would 

be considered difficult to trade, as the applications of poor quality oils are limited.  

The aim was to characterise a broad spectrum of speciality plant seed oils. 

Characterisation techniques would include determining the oil content in the seeds, 

lipid profiling of the oils, and stereochemistry of fatty acids esterified to the 

triacylglycerols (TAG). The oils will be characterised with assays such as peroxide 

and free fatty acid value. 

The proposed outcome was to create a database containing the characteristic of plant 

seed oils and to classify the oils according to the major acyl component of the TAGs. 

The database would be used in the future to asses other oils from the same plant, to 

determine its quality. 

The outcome of the research carried out lead to the formation of a database, which 

allowed for trends to be distinguished in oils. The database also contained PV and 

FFA values which are key determinants of the overall quality of an oil. 

Stereochemical analyses are also included for some of the oils.  
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3.2 Results 

Initially the peaks of the GC chromatograms were identified by electron ionisation 

mass spectrometry. The key ions were identified through key fragments, and 

compared with reference spectra provided by the AOCS. 

 

Table 9. Fragmentation ions of fatty acid methyl esters. 

 

Fatty acid Library 

% 

Fatty acid 

m/z 

Methoxyl 

ion m/z 32 

McLafferty 

ion m/z 74 

α ion Δ
9
 α ion Δ

6
 

 

16:0 94 270 239/241 227 n.d. n.d. 

16:1 99 268 236 194 236 n.d. 

18:0 91 298 267 224 n.d. n.d. 

18:1 93 296 264 222 n.d. n.d. 

18:2 91 294 263 220 n.d. n.d. 

α -18:3 90 292 n.d. n.d. 235 n.d. 

γ-18:3 90 292 n.d. n.d. n.d. 194 

18:4 82 289 n.d. n.d. n.d. 194 

20:0 72 326 294 252 n.d. n.d. 

20:1 47 324 291 249 n.d. n.d. 

18:1 OH 91 312 n.d. n.d. n.d. n.d. 

The table collates the data obtained from mass spectra of fatty acid methyl esters of various seed oils. 

The ions represent the fragments detected in oil sample. 
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Figure 36. Mass spectra of methyl palmitic acid: sample and reference. 

 

 

Methyl palmitic acid m/z 270 of a seed oil analysed. Key fragments include the loss of the methoxyl 

ion, m/z 239 and the loss of the McLafferty ion, m/z 227. 

Mass spectra of methyl palmitic acid provided by AOCS archive, Lipid Library [181]. 
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Figure 37. Mass spectra of methyl palmitoleic acid: sample and reference 

 

 

Methyl palmitoleic acid m/z 268 of a seed oil analysed. Key fragments include the loss of the methoxyl 

ion, m/z 236 and the loss of the McLafferty ion, m/z 194. 

 

 

Mass spectra of methyl palmitoleic acid provided by AOCS archives, Lipid Library [182]. 
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Figure 38. Mass spectra of methyl stearic acid: sample and reference 

 

Methyl stearic acid m/z 298 of a seed oil analysed. Key fragments include the loss of the methoxyl ion, 

m/z 266/267 and the loss of the McLafferty ion, m/z 224. 

Mass spectra of methyl stearic acid provided by the AOCS archives, lipid library [183]. 
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Figure 39. Mass spectra of methyl oleic acid: sample and reference 

 

 

The molecular ion at m/z 296 is the methyl oleate of a seed oil analysed. The ion m/z 264 represents the 

loss of methoxyl group plus a hydrogen atom ([M-32]
+
).  

Mass spectra of methyl oleic acid provided by lipid library [184]. 
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Figure 40. Mass spectra of methyl linoleic acid: sample and reference 

 

 

The ion 294 represents the methyl linolenic acid of a seed oil analysed, with the ion at m/z 220 the loss 

of the McLafferty ion. The ion m/z 236 is the alpha ion  Δ
9,12

. 

Mass spectra of methyl linoleic acid provided by lipid library [185]. 
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Figure 41. Mass spectra of methyl α-linolenic acid: sample and reference 

 

 

The ion 291 represents the methyl α-linolenic acid of a seed oil analysed. The ion m/z 236 is the alpha 

ion  Δ
9,12

. 

 

 

Mass spectra of methyl α-linolenic acid provided by lipid library [186]. 
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Figure 42. Mass spectra of γ-linolenic acid: sample and reference 

 

 

The ion 294 represents the methyl γ-linolenic acid of a seed oil analysed. 

 

Mass spectra of methyl γ-linolenic acid [187]. 
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Figure 43. Mass spectra of methyl stearidonic acid: sample and reference 

 

  

The ion 290 represents the methyl stearidonic acid of a seed oil analysed. 

Mass spectra of methyl stearidonic acid [188]. 
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Figure 44. Mass spectra of methyl eicosanoic acid: sample and reference 

 

 

The ion 326 represents the methyl eicosanoate acid of a seed oil analysed. 

 

Mass spectra of methyl eicosanoic acid [189]. 
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Figure 45. Mass spectra of methyl eicosenoic acid: sample and reference 

 

 

The ion 292 represents the methyl eicosenoate acid of a seed oil analysed. 

Mass spectra of methyl eicosenoic acid [190]. 
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Figure 46. Mass spectra of methyl ricinoleic acid: sample and reference 

 

  

The ion 312 represents the methyl ricinoleic acid of castor oil analysed. 

 

Mass spectra of methyl ricinoleic acid [191].  
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Table 10. Oleic acid rich oils. 

 

Oil <C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 ΣSat ΣMUFA ΣPUFA M/P
1
 PV FFA 

Camellia sinensis  9.3 

±0.5 

 1.8 

±0.3 

80.4 

±1.5 

8.6 

±1.1 

  11.1 80.4 8.6 9.3 7.0 ±3.6 

(n = 7) 

0.9 ±0.5 

(n = 7) 

Moringa  7.3 

±0.4 

2.1 

±0.8 

4.9 

±1.3 

80.0 

±3.2 

1.1 

±0.8 

 4.7 ±2.4 14.3 84.6 1.1 76.9 1.4 ±0.9  

(n = 9) 

0.7 ±0.5  

(n = 9) 

Olive  11.8 

±0.4 

0.5 

±0.6 

3.0 

±0.1 

77.9 

±1.3 

7.0 

±0.2 

  14.8 78.4 7.0 11.2 13.8 ±12.3  

(n = 3) 

0.2 ±0.2 

(n = 3) 

Marula  11.6 

±2.5 

 5.2 

±1.9 

74.9 

±3.3 

8.3 

±1.4 

  16.8 74.9 8.3 9.0 1.0 ±1.1  

(n = 5) 

2.6 ±0.5  

(n = 5) 

Sweet Almond  6.5 

±0.2 

0.6 

±0.2 

1.2 

±0.6 

71.9 

±4.5 

19.9 

±3.9 

  7.7 72.5 19.9 3.6 4.5 ±5.9 

 (n = 14) 

0.4 ±0.2  

(0.4 n = 14) 

Hazelnut  6.6 

±1.1 

 1.4 

±0.5 

69.2 

±8.1 

22.8 

±7.2 

  8.0 69.2 22.8 3.0 6.7 ±4.1 

 (n = 3) 

1.4 ±0.8  

(n = 3) 

Rapeseed  4.8 

±0.7 

 0.8 

±0.1 

68.2 

±1.6 

19.6 

±1.0 

6.7 

±0.2 

 5.6 68.2 26.3 2.6 40.4 ±57.8  

(n =3) 

0.5 ±0.4 

(0.5 n = 3) 

Apricot  5.6 0.8 1.0 66.1 26.6   6.6 66.9 26.6 2.5 4.0 ±5.5  0.4 ±0.3  
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±0.8 ±0.2 ±0.2 ±3.8 ±3.8 (n = 12) (n = 12) 

Oil <C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 ΣSat ΣMUFA ΣPUFA M/P
1
 PV FFA 

Avocado  19.0 

±3.6 

8.0 

±2.5 

0.3 

±0.2 

60.7 

±7.3 

11.6 

±2.6 

0.4 

±0.3 

 19.3 68.7 11.6 5.9 6.0 ±4.7  

(n = 13) 

1.3 ±1.0  

(n = 13) 

Shea Butter 

Nilotica 

 5.0 

±0.2 

 27.4 

±2.3 

59.6 

±2.2 

7.7 

±0.3 

 0.4 ±0.5 32.8 59.6 7.7 7.7   

Macadamia 0.8 ±0.3 9.0 

±0.6 

24.3 

±1.5 

2.8 

±0.4 

56.9 

±2.0 

2.3 

±0.4 

 3.5 ±1.6 14.4 83.3 2.3 36.2 2.2 ±3.1  

(n = 28) 

0.7 ±0.8  

(n = 28) 

Shea Butter  4.7 

±0.6 

 32.9 

±6.8 

54.4 

±6.3 

7.4 

±0.7 

 0.6 ±0.5 38.2 54.4 7.4 7.4 4.7 ±3.3  

(n = 21) 

3.6 ±3.2  

(n = 21) 

Andiroba  29.1 

±0.3 

1.1 

±0.0 

7.6 

±0.6 

49.2 

±1.1 

12.3 

±0.2 

 0.8 ±0.4 37.5 50.3 12.3 4.1 15.2 ±11.9 

(n = 4) 

0.9 ±0.4  

(n = 4) 

Ground Nut  13.4 

±0.8 

 5.1 

±1.2 

48.2 

±0.4 

31.0 

±1.0 

 2.2 ±0.4 19.0 48.7 31.0 1.6   

Cherry*  9.4 0.7 42.1 47.5 0.3   51.1 48.2 0.3 160.7   

Neem  19.4 

±1.0 

 17.0 

±1.8 

45.2 

±1.4 

18.5 

±1.1 

  36.4 45.2 18.5 2.4 0.9 ±0.3  

(n = 3) 

2.9 ±1.2  

(n =3) 
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Oil <C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 ΣSat ΣMUFA ΣPUFA M/P
1
 PV FFA 

Calophyllum  14.4 

±0.4 

0.1 

±0.1 

11.2 

±3.8 

42.3 

±3.3 

31.8 

±2.3 

0.2 

±0.3 

 25.6 42.4 32.0 1.3 1.3 ±1.2  

(n = 8) 

 

Palm 1.3 ±0.9 42.0 

±3.7 

 3.4 

±0.9 

42.1 

±2.9 

11.2 

±1.6 

  46.7 42.1 11.2 3.8 5.2 ±7.4  

(n = 6) 

0.1 ±0.1  

(n = 6) 

Yangu  19.1 

±0.6  

4.6 

±0.3 

42.1 

±1.1 

33.5 

±0.9 

1.1 

±0.1 

 23.7 42.1 34.6 1.2 8.5 ±12.2  

(n = 5) 

2.1 ±2.5  

(n = 5) 

Rice Bran* 0.2 18.2 0.2 1.4 39.0 38.2 1.6 1.2 21.0 39.8 39.8 1.0   

Acerola Cherry* 

 

24.2 1.8 14.6 38.4 16.8 1.8 2.4 41.2 38.4 18.6 2.1   

Baobab 

 

 25.8 

±1.1  

4.2 

±1.3 

37.0 

±1.4 

31.7 

±2.0 

1.3 

±1.1 

 30.0 37.0 33.0 1.1 1.3 ±1.9 

(n = 11) 

0.4 ±0.3   

(n = 11) 

Cocoa Butter 

 

 28.1 

±1.5  

32.0 

±1.8 

34.8 

±1.7 

5.1 

±1.1  

 60.1 34.8 5.1 6.8   

Sea Buckthorn 

Pulp* 

 37.1 

 

28.2 

 

1.0 

 

27.9 

 

4.6 

 

1.2 

 

 38.1 56.1 5.8 9.7   

 

Values are a mean of ±SD for 20 samples, nd = not detected, *Represents oils which are not a mean, n=1. PV are values in Meq/kg.  %FFA is a percent of oleic acid. 
1
MUFA/PUFA ratio. 
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Table 11.  Linoleic acid rich oils. 
 

 

Oil C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 ΣSat ΣMUFA ΣPUFA M/P
1
 PV FFA 

Passion Seed 9.1 ±0.5  1.6 ±0.6 11.7 ±0.8 77.7 ±1.5   10.7 11.7 77.7 0.2 4.1 ±1.1  

(n = 6) 

0.4 ±0.4 

(n = 6) 

Guava 8.7 ±1.1  3.2 ±1.6 10.7 ±3.2 77.6 ±2.6   11.9 10.7 77.6 0.1   

Evening Primrose 6.3 ±0.2  1.6 ±0.3 5.6 ±0.7 76.3 ±1.1 10.3 ±0.7  7.9 5.6 86.6 <0.1 13.7 ±18.9 

(n = 20) 

0.4 ±0.2 

(n = 20) 

Grape 7.8 ±0.5  3.5 ±0.9 14.6 ±0.6 74.1 ±1.2   11.3 14.6 74.1 0.2 13.5 ±2.9  

(n = 6) 

0.7 ±0.1  

(n = 6) 

Poppy* 10.0  1.1 17.0 71.2 0.7  11.1 17.0 71.9 0.2 6.0 0.7 

Melon* 10.6  4.8 19.2 65.4 0.7  15.4 19.2 66.1 0.3   

Sunflower 6.2 ±0.3  3.3 ±1.4 26.5 ±3.1 64.0 ±2.8   9.5 26.5 64.0 0.4 7.5 ±10.1 

(n = 12) 

0.9 ±1.3 

(n = 12) 

Wheat germ 17.1 ±0.7  4.1 ±6.7 8.9 ±6.7 62.5 ±1.0 7.5 ±0.3  21.2 8.9 70 0.1 13.0 ±16.9 

(n = 2) 

2.7 ±0.2 

(n = 2) 

Oil C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 ΣSat ΣMUFA ΣPUFA M/P
1
 PV FFA 

Pumpkin 14.2 ±0.4  4.0 ±1.4 21.7 ±0.2 60.2 ±1.3   18.2 21.7 60.2 0.4 20.4 ±16.7 1.3 ±0.1 
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(n = 3) (n = 3) 

Black cumin 13.0 ±0.8  2.5 ±0.9 23.6 ±1.8 60.1 ±1.7 0.1 ±0.2 0.7 ±1.2 15.5 23.6 60.9 0.4 36.0 ±17.8 

(n = 6) 

2.7 ±0.6 

(n = 6) 

Hemp 6.2 ±0.3  2.3 ±0.1 11.2 ±0.7 57.7 ±0.6 22.2 ±0.8 0.6 ±0.5 8.5 11.2 80.5 0.1 17.7 ±19.9 

(n = 6) 

1.0 ±1.0 

(n = 6) 

Soybean 11.0 ±0.8  4.0 ±0.4 22.6 ±1.3 55.4 ±0.6 7.2 ±1.1  15.0 22.6 62.6 0.4 8.0 ±7.8 

(n = 2) 

1.2 ±0.5 

(n = 2) 

Raspberry 2.9 ±0.2  0.7 ±0.3 11.6 ±0.7 55.2 ±1.1 29.6 ±1.3  3.6 11.6 84.8 0.1 46.6 ±39.2 

(n = 3) 

3.0 ±2.5 

(n = 3) 

Cotton* 20.4 0.6 2.1 22.4 54.5   22.5 23.0 54.5 0.4   

Sesame 9.7 ±0.8  4.2 ±1.4 37.7 ±1.8 48.0 ±1.4 0.4 ±0.6  13.9 37.7 48.4 0.8 3.0 ±3.3 

(n = 18) 

1.2 ±1.7 

(n = 18) 

Manketti 10.3 ±1.3  6.2 ±0.4 16.4 ±1.5 46.9 ±4.2 20.2
a
 ±7.2  16.5 16.4 67.1 0.2 8.4 ±6.9 

(n = 4) 

1.4 ±1.4 

(n = 4) 

Oil C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 ΣSat ΣMUFA ΣPUFA M/P
1
 PV FFA 

Strawberry 4.0 ±1.1  0.9 ±0.2 15.4 ±2.5 46.1 ±8.0 33.8 ±4.7  4.9 15.4 79.9 0.2 53.9 2.3 

                                                 
a
 Conjugates 
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Rosehip 3.3 ±0.3  1.3 ±0.3 14.0 ±1.4 44.2 ±1.3 37.3 ±1.4  4.6 14.0 81.5 0.2 27.2 ±28.9 

(n = 15) 

0.5 ±0.5 

(n = 15) 

P Grapefruit 15.8 ±5.8  3.2 ±0.8 31.3 ±7.7 45.4 ±7.9 4.3 ±1.0  19.0 31.3 49.7 0.6 11.7 ±27.3 

(n = 15) 

0.2 ±0.3 

(n = 15) 

Kakui 6.6 ±0.5  2.3 ±0.6 21.9 ±0.6 41.2 ±1.3 28.0 ±1.5  8.9 21.9 69.2 0.3 4.6 ±3.8 

(n = 4) 

2.0 ±2.1 

(n = 4) 

Borage  10.8 ±0.3  3.9 ±0.4 17.1 ±0.8 40.6 ±0.5 24.2 ±0.9 3.4 ±0.3 14.7 20.5 64.8 0.3 5.7 ±3.2 

(n = 19) 

1.2 ±1.6 

(n = 19) 

Yuzu* 20.9 0.6 3.5 33.2 39.8 2.0  24.4 33.8 41.8 0.8   

Lime 26.3 ±2.7 0.7 ±1.0 4.2 ±0.6 23.9 ±3.4 35.1 ±1.7 10.0 ±1.7  30.5 24.6 45.1 0.5 6.8 ±6.8 

(n=4) 

0.6 ±0.5 

(0.6 n=4) 

Sea Buckthorn seed 9.9 ±2.2 1.5 ±0.6 1.8 ±0.6 19.3 ±3.5 35.0 ±3.5 32.2 ±2.8        

 

 

Values are a mean of ±SD for 20 samples, nd = not detected, *Represents oils which are not a mean, n=1. PV are values in Meq/kg.  %FFA is a percent of oleic acid. 
1
MUFA/PUFA ratio. 
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Table 12. Linolenic acid rich oils 
 

Oil C16:0 C18:0 C18:1 C18:2 C18:3 ΣSat ΣMUFA ΣPUFA M/P
1
 Perox FFA 

Pomegranate 4.0 ±1.0 2.0 ±0.7 7.5 ±3.8 

 

9.6 ±3.3 76.9
b
 ±7.7 6.0 7.5 86.5 <0.1 3.7 ±1.9 

(n=20) 

2.0 ±1.2 

(n=20) 

Kiwi* 5.8 2.3 10.9 14.6 66.4 8.1 10.9 81 0.1 8.0 3.1 

Brown Flax 5.0 ±0.6 2.7 ±0.5 16.5 ±2.3 15.2 ±1.2 60.6 ±2.9 7.7 16.5 75.8 0.2 5.7 ±6.4 

(n = 8) 

0.5 ±0.4 

(n = 8) 

Values are a mean of ±SD for 10 samples, nd = not detected, *Represents oils which are not a mean, n=1. PV are values in Meq/kg.  %FFA is a percent of oleic acid. 
1
MUFA/PUFA ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
b
 Conjugated linolenic acid, Punicic acid accounting for 70% 
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Table 13. Speciality oils rich in short chain saturates 
 

Oil C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C18:1 C18:2 ΣSat ΣMUFA ΣPUFA M/P
1
 Perox FFA 

Babacu*  6.3 45.2 17.8 9.7 2.9 15.8 2.3 81.9 15.8 2.3 6.9   

Coconut 7.6 ±1.2 6.9 ±0.6 51.9±1.9 17.6±1.0 7.4 ±0.7 2.7 ±0.5 4.8 ±1.0 1.0 ±0.3 94.1 4.8 1.0 4.8 0.3 ±0.2 

(n = 20) 

0.2 ±0.2 

(n = 20) 

Values are a mean of ±SD for 10 samples, nd = not detected, *Represents oils which are not a mean, n=1. PV are values in Meq/kg.  %FFA is a percent of oleic acid. 
1
MUFA/PUFA ratio. 

 

 

 

Table 14. Ricinoleic acid rich oil 

 
Oil C16:0 C18:0 C18:1 C18:2 C18:3 18:1(OH) ΣSat ΣMUFA ΣPUFA M/P

1
 Perox FFA 

Castor 

Oil 

1.5 ±0.5 1.5 ±0.5 4.4 ±2.2 

 

6.1 ±2.4 0.6 ±0.2 85.8 ±5.3 3.0 90.2 6.7 13.5 3.9 ±1.8 

(n = 14) 

0.2 ±0.1 

(n = 14) 

Values are a mean of ±SD for 10 samples, nd = not detected, *Represents oils which are not a mean, n=1. PV are values in Meq/kg.  %FFA is a percent of oleic acid. 
1
MUFA/PUFA ratio. 
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Table 15. Oil Content of plant seeds 
 

Seed % Lipid Range % Lipid (Literature) 

Acerola Cherry 1.8 n.d. n.d. 

Almond (Kernel) 49.6 n.d. 42-60 [90] 

Apricots (Bitter) 12.9 n.d. 16 [3] 

Ground Nuts* 54.8 ±9.1 44.3-59.9 40-50 [3] 

Guava* 13.9 ±1.7 12.7-15.1 16 [192] 

Hazelnuts 57.0 n.d. 55-63 [3] 

Pomegranate 13.0 n.d. 6-19 [193] 

Rosehip 8.9 n.d. 8.2 [194] 

Sesame* 43.4 ±10.3 33.7-49.1 50-60 [3] 

*Values are a mean of ±SD for 5 samples, nd = not detected.  Literature values, [3, 90, 192-194]. Oils selected by Earthoil, to determine oil content of potential seeds for 

purchase. 
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Table 16. Lipid classes of oils. 
 

 

Oil Lipid Class Fatty Acid 

  C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 Lipid % 

Baobab          

 PL 33.8  15.5 30.2 20.5   0.3 

 MG 47.1  12.2 25.4 15.3   0.1 

 DG 21.2  5.2 46.1 25.9 1.6  3.2 

 UFA 34.4  10.4 34.9 19.4 0.9  2.5 

 TG 23.5  0.2 43.7 30.4 2.2  92.5 

 SE 23.5  5.1 35.4 36.0   1.4 

          

Brown Flax          

 PL 26.1  23.9 15.2 12.5 22.3  0.2 

 MG 8.3  3.6 19.2 33.7 35.2  2.4 

 DG 6.5  5.0 29.6 19.9 39.0  7.1 

 UFA 11.9  3.7 30.7 26.3 27.4  1.5 

 TG 5.2  3.3 15.8 15.3 60.5  87.7 

 SE 4.6  13.9 24.3 31.0 26.2  1.1 

          

Grape          

 PL 13.0  8.8 14.7 36.0 27.5  0.1 

 MG 26.9  18.7 54.4    0.2 

 DG 17.2  7.0 27.7 47.8 0.3  3 

 UFA 19.4  7.3 22.6 1.9 48.8  4.3 

 TG 13.2  0.2 15.0 71.4 0.3  92.2 

 SE 13.9  21.2 15.6 49.3   0.2 
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Oil Lipid Class Fatty Acid 

  C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 Lipid % 

Guava          

 PL 12.6  8.1 14.2 65.1   3.2 

 MG 9.8  6.1 12.2 71.9   7.3 

 DG 10.2  6.6 12.7 70.5   14.6 

 UFA 15.4  9.0 20.1 55.5   11.9 

 TG 9.7  5.6 12.1 72.6   61.7 

 SE 10.3  6.0 13.5 70.2   1.3 

          

Macadamia          

 PL 34.2  28.8 31.7 5.3   0.2 

 MG 37.8  27.3 23.1 11.8   0.2 

 DG 13.7 10.3 6.6 64.6 3.0  1.8 2.1 

 UFA 27.0 5.3 17.4 35.1 15.2   0.9 

 TG 8.7 17.4 3.8 63.3 0.5  6.5 96 

 SE 20.6 11.9 12.9 50.0 4.6   0.6 

          

Manketti          

 PL 14.6  16.4 22.5 46.5   0.5 

 MG 14.9  14.3 22.8 48.0   0.8 

 DG 11.5  10.8 22.2 49.0 6.5  8.8 

 UFA 13.2  10.8 22.7 51.2 2.1  16.1 

 TG 12.7  10.2 22.7 48.7 5.7  72.5 

 SE 13.0  9.8 19.7 55.8 1.7  1.3 
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Oil Lipid Class Fatty Acid 

  C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 Lipid % 

Moringa          

 PL 35.7  42.3 22.0    0.5 

 MG 43.4  31.7 24.9    0.5 

 DG 12.9  13.5 72.0 1.6   3.4 

 UFA 17.7  19.0 63.3    4.2 

 TG 7.5  8.2 83.7 0.6   89.7 

 SE 21.3  16.8 55.2 6.7   1.7 

          

Pomegranate          

 PL 16.8  14.3 25.0 29.3 14.6  1.2 

 MG 16.4  8.3 22.3 47.5 5.5  1.1 

 DG 11.8  8.1 21.7 39.0 19.4  7.0 

 UFA 23.6  13.4 36.6 23.5 2.9  5.0 

 TG 6.4  4.5 15.3 14.3 59.5  82.2 

 SE 13.2  4.7 20.7 45.3 16.1  3.5 

          

Poppy          

 PL 22.2  6.9 17.3 53.6   0.7 

 MG 14.1  5.5 17.0 63.4   2.3 

 DG 12.9  5.1 20.9 61.1   3.1 

 UFA 14.4  5.4 17.8 62.4   3.9 

 TG 9.4  3.4 21.4 65.8   89.2 

 SE 9.2  3.3 21.0 66.5   0.8 
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Oil Lipid Class Fatty Acid 

  C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 Lipid % 

Sweet Almond          

 PL 32.4  26.4 30.1 11.1   0.3 

 MG 28.3  18.6 43.4 9.7   0.7 

 DG 10.2  5.7 70.2 13.9   3.5 

 UFA 20.9  11.0 54.5 13.6   2 

 TG 7.7  1.8 78.8 11.7   92 

 SE 22.4  11.7 52.6 13.3   1.5 

          

Wheat Germ          

 PL 22.2  1.6 10.3 59.9 6.0  2 

 MG 48.9  0.0 0.0 51.1 0.0  0.4 

 DG 24.8  0.9 14.0 55.4 4.9  5.6 

 UFA 32.3  1.5 20.4 42.3 3.5  6.9 

 TG 21.0  0.6 16.6 56.0 5.8  77.9 

 SE 7.8  1.1 11.9 74.2 5.0  7.2 
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Table 17. Free Fatty Acid Content Determined Through AOCS Official Method and 

Thin Layer Chromatography. 

 
 Free Fatty acid % Oleic acid 

 AOCS TLC 

Baobab 0.1-1.0 (0.4) 0.8 

Brown Flax 0.1-1.4 (1.9) 0.5 

Grape 0.7-0.8 (0.7) 1.0 

Macadamia 0.1-2.4 (2.2) 0.3 

Manketti 0.1-2.7 (1.4) 3.7 

Moringa 0.1-1.3 (0.7) 2.7 

Pomegranate 0.2-4.1 (0.5) 1.8 

Poppy 0.7 0.7 

Sweet Almond 0.2-0.6 (0.4) 1.1 

Wheat Germ 2.6-2.8 (2.7) 2.9 
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Table 18. Stereochemistry of fatty acids esterified to triacylglycerols. 

 
Oil Position FA 

  C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 >C20:0 

Calophyllum TG 14.0 n.d. 12.3 39.0 34.7 n.d. n.d. 

 Sn-1 35.6 n.d. 30.2 23.7 10.4 n.d. n.d. 

 Sn-2 12.0 n.d. 4.7 20.5 62.8 n.d. n.d. 

 Sn-3 5.6 n.d. 1.9 65.0 27.5 n.d. n.d. 

         

Cherry TG 6.0 0.5 1.8 40.7 51.1 n.d. n.d. 

 Sn-1 30.8 n.d. 31.4 25.2 12.6 n.d. n.d. 

 Sn-2 36.2 n.d. 27.2 25.9 10.7 n.d. n.d. 

 Sn-3 21.8 0.2 20.2 30.5 27.3 n.d. n.d. 

         

Coffee* TG 6.0 n.d. 2.2 11.2 59.4 20.9 n.d. 

 Sn-1 69.2 n.d. 15.6 5.2 10.0 n.d. n.d. 

 Sn-2 13.8 n.d. 6.1 14.2 66.0 n.d. n.d. 

 Sn-3 63.9 n.d. 16.7 13.2 6.2 n.d. n.d. 

         

Marula TG 12.5 n.d. 7.3 74.2 5.5 n.d. 0.6 

 Sn-1 18.9 n.d. 10.0 70.4 0.4 n.d. 0.2 

 Sn-2 10.0 n.d. 5.0 84.5 0.5 n.d. 0.2 

 Sn-3 8.4 n.d. 6.9 67.7 15.6 n.d. 1.3 

         

Pomegranate* TG 7.6 n.d. 3.6 10.8 11.1 67.0 n.d. 

 Sn-1 23.6 n.d. 13.5 17.7 42.3 2.9 n.d. 
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 Sn-2 10.2 n.d. 2.9 6.8 74.5 5.6 n.d. 

 Sn-3 2.1 n.d. 5.0 14.6 69.7 8.6 n.d. 

         

Poppy TG 7.8 n.d. 2.2 16.9 72.7 0.5 n.d. 

 Sn-1 39.6 n.d. 12.9 20.0 27.5 0.0 n.d. 

 Sn-2 20.9 n.d. 13.1 26.1 39.9 0.0 n.d. 

 Sn-3 6.7 n.d. 7.1 52.9 33.4 0.0 n.d. 

         

Sea Buckthorn TG 35.0 26.8 0.8 33.2 3.7 0.5 n.d. 

 Sn-1 38.7 25.8 0.1 28.1 7.4 0.1 n.d. 

 Sn-2 22.8 17.8 7.3 40.3 11.6 0.2 n.d. 

 Sn-3 33.6 28.4 4.8 24.1 8.1 1.0 n.d. 

nd = not detected. * Indicates errorness results.  

 

 

 

 

 

 

 

Table 19. Methylation of punicic acid 
 

Temperature / 
o
C % Punicic acid 

40 95.7 ±1.6 

60 87.3 ±5.2 

80 70.5 ±5.8 

Values are a mean of ±SD for 2 samples. Punicic acid salts extracted from pomegranate oil The salts were 

methylated at various temperatures to evaluate the optimum temperature for low content of punicic acid 

isomers.  
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Figure 45. Punicic acid isolated from Pomegranate oil 

 

 

The isolation of punicic acid from pomegranate oil. The potassium salt was methylated and separated using 

GC-MS. At 40
o
C isomers appears in small quantities. 
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3.3 Results and Discussion 

 

The oil samples analysed have been grouped to reflect their degree of fatty acid 

unsaturation. The fatty acid content of the oil was analysed through GC-MS and GC-FID. 

The mass spectral data confirmed that the key fragmented ions represented the associated 

fatty acid. 

 

3.3.1 Mass spectral data. 

The mass spectral data was obtained for the majority of the fatty acids analysed. The 

mass spectrometer was an electron ionisation (EI). The methyl esters were subjected to an 

electron impact, the resulting charged aliphatic chain being broken into a determinate 

number of fragments [195]. 

The derivitisation of the fatty acids leads to a methyl ester being formed at the carboxylic 

end of the fatty acid. The data can be interpreted with the fragments formed from the loss 

of the methoxyl (m/z [32]
+
) and the McLafferty (m/z [74]

+
) ions. The McLafferty ion 

rearrangement ion is important in determining esters derivatives of most fatty acids. The 

McLafferty rearrangement is one of the most widely occurring ions, and has been studied 

in depth in the process of mass spectrometry. The McLafferty ion is an important ion for 

identification purposes. The presence of double bonds also gives specific fragments 

which can be identified on the spectra. The common fragments from PUFA are the alpha 

(α) and the omega (ω) ions, which occur at either side of the double bond. These specific 

fragments can be used to determine the double bond position, and how many double 

bonds are present in the fatty acid methyl ester.  



 139 

The fragmented key ions of all the fatty acids analysed are displayed in Table 9. The key 

ions for all the fatty acids is the methoxyl ion m/z 43
+
, and the McLafferty ion m/z 74

+
. 

The introduction of double bonds in fatty acids, give rise to fragments which can account 

for the double bond. The fragmented ion m/z 108 is present from the fragmentation of 

methyl oleic acid (Figure 39). The fragment arises from the cleavage which takes place 

between carbons 5 and 6, with the addition of a hydrogen [184].  

The fragmented ions of linolenic acid was used to distinguish between the α and γ form 

of the fatty acid. Methyl linolenic acid molecular ion m/z 292 was present in the α and γ 

fatty acid (Figure 41 & 42). α-linolenic acid fragments gave two key ions m/z 235 and 

108. The ion m/z 235 indicates the alpha ion of the Δ
9,12

 bond was present [186]. The ion 

m/z 108 is characteristic for methyl esters of PUFAs with the n-3 moiety, which was 

present in the spectra for α-linolenic acid [186].  γ-linolenic acid gave key fragment ions 

m/z 194 and 150. The ion m/z 194 represents the fragment of the alpha ion of Δ
6,9

 bond, 

which was present in γ-linolenic spectra [187]. The ion m/z 150 is a characteristic ion of 

methyl esters from PUFAs with the n-6 moiety, this ion was present in the γ-linolenic 

spectra [187].  

The key ions of the spectra become important when the methyl ester fatty acid ion 

becomes difficult to detect due to low abundance. The ion m/z 289 represents methyl 

stearidonic acid (Figure 43), and is characteristically undistinguishable. The ion m/z 108 

was present in the spectra of methyl stearidonic acid. The ion represents the n-3 structure 

of methyl stearidonic acid. The alpha ion for 
6,9

 was also visible at m/z 194. Fatty acids 

which have four or more double bonds, fragment to give a cyclic tropylium ion m/z 91 

[188]. The ion m/z 91 was present in the spectra of methyl stearidonic acid. The mass 
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spectral library also confirmed that the fragments represented stearidionic acid, giving a 

library match of 82%. 

Methyl ricinoleic acid can be distinguished by the ion m/z 312. The ion m/z 312 was not 

detected in the spectra (Figure 46). Fragmented ions which arise from the loss of water 

were detected in the high mass region, m/z 294. The ion m/z 198 was also detected, which 

indicates the cleavage between carbons 11 and 12. The ion at m/z 166 was present in the 

spectra which represents the further loss of methanol from the carboxyl group [191]. The 

spectra obtained for methyl ricinoleic acid was in agreement with the spectra obtained 

from the AOCS archives [191], and a library match of 91%. 

 

 

3.3.2 Oleic acid rich oils (Table 10). The oleic content of Camellia sinensis and Moringa 

oil reached 80% of the oils content. Moringa oil contained 84.6% monounsaturated fatty 

acids (MUFAs), and Camellia sinensis containing 80.4% MUFAs. Macadamia and Sea 

buckthorn oil both contained palmitoleic acid which exceeded 20% of the total fatty acid 

content. Palmitoleic acid is not observed in a large quantities in  plant oils [96, 103]. 

Macadamia oil contained significant amounts of palmitoleic acid, 24.3%. The levels 

analysed coincided with reported levels [96]. Sea buckthorn pulp has been reported to 

contain 39-12% palmitoleic acid [104]. The study also showed that oils obtained from the 

rhamnoides species contained higher amounts of palmitoleic acid compared to the 

sinensis species [104]. The oil did not have a recorded FFA and PV due to the colour of 

the oil. The dark orange colour of sea buckthorn is attributed to the β-carotene content. 
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The levels of β-carotene in sea buckthorn oil has been reported to be approximately 15-

55% of the total carotenoid content of the soft parts of the berry [103].   

The presence of long chain fatty acids, >C20 was observed in Moringa, Shea butter, 

Macadamia, Andiroba, Ground nut, Acerola cherry and Rice bran oils. Macadamia oils 

fatty acid content contained C20:0 and C20:1, which accounted for 3.5% of the oils 

content. Macadamia oil has been reported to contain 3-4% of C20:0 and C20:1 [96]. The 

study also revealed Macadamia oil to contain trace amounts of C22:0, C22:1 and C24:0, 

which was not detected in Earthoil samples [96]. Moringa oil also contained a significant 

amount of C20:0 and C20:1 fatty acids, 4.7%. Moringa has been reported to contain 4.6-

6.0% C20:0 and C20:1 [119]. The study also reported a substantial levels of C22:0, 5.7-

6.0% [119].  

The oleic acid rich oils showed a range of MUFA/PUFA (M/P) ratio from 76.9 (Moringa) 

to 1.1 (Baobab). The M/P ratio of Baobab oil coincides with published values of 

approximately 1.2 [196]. Moringa oil M/P ratio can vary depending on geographical 

location. Moringa cultivated in various regions of Pakistani showed a M/P ratio of 41.4-

85.6 [119]. The Moringa sub species Moringa pterygosperma had a M/P ratio of 108 

[197]. The change in geographical location and species can have an effect of the fatty 

acid content of Moringa oil.  

The PV and FFA content of the oils gave an insight to the quality of the oils. Rapeseed oil 

displayed the largest range in peroxide content 4.3-107 meqkg
-1 

(with a mean of 40.4 

meqkg
-1

) for oleic rich oils. Rapeseed oils high peroxide value may be attributed to the oil 

being exposed to oxygen for prolonged periods. A study showed Rapeseed oil exposed to 

the atmosphere for 16 days at 40
o
C, had a peroxide content of 166meqkg

-1
 [198]. 
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Avocado oil exhibited the widest FFA content 2.5-7.8% (1.5%) for oleic rich oils, this 

may be attributed to the oils enzymatic activity, whereby lipases cleave fatty acids from 

lipid molecules. 

 

 

3.3.3 Linoleic acid rich oils (Table 11). Passion seed oil (M/P, 0.2) had a linoleic 

content of 77.7%, which was the highest of all linoleic rich oils. The reported levels of 

linoleic acid in Passion seed oil vary from 74-77%, with a given M/P ratio of 0.1-0.2 

[199, 200]. Evening primrose oil (EPO) (M/P, <0.1) comprised of 88.6% PUFAs. The 

high PUFA content was attributed to the linoleic acid content, and a significant content of 

γ-linolenic acid. The levels of γ-linolenic acid content of oils supplied by Earthoil 

coincide with literature values of 8-9% [201, 202]. The reported PUFA levels for EPO 

ranged from 80-82 % [201, 202]. The literature showed EPO to contain trace levels of 

C14:0 and C20:0 to C24:0 fatty acids, which were not detected in the oils supplied by 

Earthoil [201, 202]. Blackcurrant oil (M/P, 0.2) contained 3.1% stearidonic acid (C18:4 

6,9,12,15
) and 14.8% γ-linolenic. The reported levels of stearidonic acid and γ-linolenic 

are given as, approximately 3% and 13% respectively [194, 203, 204]. The importance of 

stearidonic acid and γ-linolenic in human diets allow for the biosynthesis of EPA and 

DHA. Borage oil (M/P, 0.3) also contained γ-linolenic, 24%. The literature values for the 

content of γ-linolenic in Borage oil coincide with the levels analysed here [205].  

Black cumin (M/P, 0.4) has been reported to contain moderate levels of C20:2, 2.4% 

[206, 207]. The levels analysed in three samples supplied by Earthoil was approximately 
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2.4% ±0.2. The long chain fatty acid has not been observed in all Black cumin samples 

analysed, and may be a result of a differing sub species.  

The M/P ratio for linoleic rich oils ranged from <0.1 (EPO) to 0.8 (Sesame). Peroxide 

value and free fatty acids varied depending on oils. Evening Primrose oil showed the 

largest range for peroxide content 2.2-91.5 meqkg
-1 

(13.7 meqkg
-1

) of all the linoleic rich 

oils. Reported peroxide levels in EPO typically range from 1.5-6 meqkg
-1

 [201, 202], 

with an absolute range of <1-12 meqkg
-1

 [201]. The average PV for EPO oils supplied by 

Earthoil did not fall within the reported literature range. Borage showed the largest range 

in free fatty acid content, 0.1-7.9% (1.2%) of all the linoleic rich oils. 

 

 

3.3.4 Linolenic acid rich oils (Table 12). Linolenic rich oils analysed were limited to 

Flaxseed, Kiwi and Pomegranate oil. Flaxseed and Kiwi oil both contained α-linolenic 

acid. Pomegranate oil (M/P, <0.1) contained 76.9% conjugated linolenic acid isomers. 

The abundant isomer was punicic, with an approximate content of 70% of the oils fatty 

acid content. Kiwi oil (M/P, 0.1) did not contain long chain fatty acids. The literature 

however indicates trace amounts of long chain fatty acids C20: and C20:1 [3, 199].  The 

peroxide content for pomegranate and kiwi oil was below the accepted 10 meqkg
-1

. The 

FFA for both oils did exceed the accepted industry levels of 2% oleic acid. 

 

 

3.3.5 Saturated fats (Table 13). Coconut (M/P, 4.8) and Babacu (M/P, 6.9) oils 

contained short chain saturated fatty acids. Coconut oil contained 94.1% saturates, with 
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C12:0 accounting for 50% of the total fatty acid composition. The low PUFA content of 

coconut oil does not make it susceptible to oxidation. The peroxide values ranged from 

0.1 to 0.8 meqkg
-1

. 

 

 

3.3.6 Castor oil (Table 14). Castor oil (M/P, 13.5) contained approximately 85% 

ricinoleic acid. The reported levels of ricinoleic acid in castor oil coincide with the data 

obtained in this current chapter [3, 31]. The oil displayed low levels of FFA and PV. 

 

 

3.3.7 Oil content of seeds (Table 15). Oil content of a selected variety of seeds showed 

nut based seeds contained the largest amounts of oil. Hazelnuts contained the greatest 

content of oil 57%, whilst Acerola cherry seeds contained the lowest content of oil 1.8%. 

The oil content of the seeds was in accordance with the literature values, with Acerola 

cherry having not been previously reported [3, 90, 192-194].  

 

 

3.3.8 Lipid classes of oils (Table 16). The majority of plant seed oils contain 

approximately 80% TAGs, with the remainder 20% accounting for minor lipid 

constituents [4]. Manketti and Guava seed oils contained less than 80% TAGs. Manketti 

contained 72.5% and Guava contained 61.7%, TAGs. Both oils had increased levels of 

free fatty acids and diacylglycerols, which may be the result of hydrolysis of the TAGs 

from processing and/or lipases activity. Oils that contain large amounts of free fatty acids 
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become difficult to trade. When values for free fatty acids were high Earthoil was 

informed. Advice was given on modifying processing and handling conditions, which 

would include reducing friction caused during cold pressing, and nitrogen blanketing 

during extracting oil.   

The free fatty acids levels obtained from thin layer chromatography (TLC) can be 

compared to the %FFA method used by industry, AOCS official method, Table 17. The 

FFA content from the TLC was expressed as a percentage of oleic. 

Manketti and Moringa oil FFA content deduced from TLC, did not compare to the AOCS 

method for %FFA. The remainder of the oils analysed through TLC did fall within the 

given AOCS range for the specific oil. Poppy seed oil, which was from the same batch, 

displayed identical FFA, using both methods.  

The TLC method to determine the free fatty acid would be considered to give greater 

accuracy. Due to the free fatty acids being quantified by GC-MS. This does not rule out 

possible error, which can be caused through the loss of silica gel from the TLC scrapings. 

The AOCS method is dependant on titration, which can be affected by various parameters 

such as human error. 

 

 

3.3.9 Stereochemical analysis (Table 18).  The stereochemical analysis of the fatty acids 

esterified to position sn-1 and sn-2 allow for the fatty acid at position sn-3 to be 

determined. The data obtained from the analysis establishes possible metabolic pathways 

for the incorporation of fatty acids to TAGs. The oils selected have limited literature 

published on their stereochemistry. 
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Calophyllum oils TAGs contained almost equal quantities of oleic and linoleic acid. The 

sn-1 position contained above 60% saturates. Classically the sn-2 position would be 

esterified with an unsaturated fatty acid. Calophyllum oil contained above 60% linoleic 

acid at position sn-2. Position sn-3 was esterified with 65% oleic acid, followed by 27% 

linoleic acid. Calophyllum oil stereochemical distribution of fatty acids on the glycerol 

backbone indicates that the TAGs are assembled according to the classical model. 

The TAGs of Coffee seed oil contained 20% linolenic acid, although this was not 

detected at any of the positions. This maybe due to poor recovery from the TLC plate, or 

small losses throughout the determination of the stereochemistry of the oil. The sn-1 

position contained 70% palmitic acid, and 15% stearic acid. The sn-2 position was 

enriched with PUFAs, with linoleic acid accounting for 65% of its esterified fatty acid. 

The sn-3 position was esterified with over 80% saturated fatty acids.   

Poppy seed oil was rich in linoleic acid, which accounted for 72% of the TAG 

composition. The sn-1 position was enriched with palmitic acid, although significant 

levels of linoleic acid (27%) was detected.  The sn-2 position contained 40% linoleic acid 

and 26% oleic acid.  At the sn-3 position oleic acid accounted for over 50% of its 

distribution. Poppy seed oil showed fatty acid distribution similar to Calophyllum and 

Coffee seed oil. 

Sea buckthorn oil can be distinguished by its high palmitoleic acid content. The TAGs 

contained 26% palmitoleic acid, which was found at high levels at sn-1 and sn-3, 25% 

and 28% respectively. The sn-1 position was dominated with palmitic, palmitoleic and 

stearic acids. Oleic acid accounted for 40% of the fatty acid composition esterified to 

position sn-2. Palmitic and palmitoleic acid were also found at notable levels at position 
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sn-2. The sn-3 position was similar to the sn-1 position with palmitic, palmitoleic and 

stearic acids, being the most abundant fatty acids.  

Cherry, Marula and Pomegranate oils, showed unusual distribution of fatty acids on the 

glycerol backbone. This maybe due to poor recovery of the individual lipid classes from 

the TLC plate, when calculating positions against the TAG fatty acids, an uneven 

distribution is displayed. Therefore these results can not be considered in this current 

study. The data has been provided to highlight the difficulties with the method used to 

evaluate the fatty distribution of fatty acid on the glycerol backbone. The data should 

agree within 5% when using the two calculations provided by Christie. Recent 

developments in this area of lipid chemistry has seen new methods being developed. The 

TAGs stereochemistry can be determined through LC-MS, with a chiral phase columns. 

    

 

3.3.10 Punicic acid methylation (Table 19). During the methylation of Pomegranate oil 

it was observed that the punicic acid content of the oil was low compared to literature 

values [208]. Punicic acid was isolated from the Pomegranate oil and methylated at 

various temperatures. The methylation of punicic acid at 40
o
C, gave a punicic acid 

content of 94% (Figure 45). The chromatogram shows three peaks, the main peak, was 

identified as punicic acid, the two minor peaks were identified as isomers of punicic acid. 

Literature suggest that the high temperature forces the conjugated linolenic acid to 

isomerise [208]. The study found that methylating at 40
o
C was effective in reducing 

isomerisation of conjugated linolenic acid. [208]. 
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3.4 Conclusions 

 

The fatty acid composition, together with the PV and FFA content gave a reasonable 

indication into the quality of the oil. The quality of the oil was based on low peroxide and 

FFA values 10 meqkg
-1

 and 2% respectably. The fatty acid profile gave an indication the 

quality of the oil, in terms of adulteration and extreme degradation through oxidation. 

The large amount of data collected from the analysis of the oils, allowed for the creation 

of basic database which contained information regarding the oils fatty acid profile, PV 

and FFA. The database was used  in future analysis to compare the quality of oils 

analysed, and to determine if oils have been improperly handled during extraction. The 

database also allows Earthoil to track the quality of the oils from the point of extraction to 

processing. 

The stereochemical analysis of Calophyllum, Coffee, Poppy and Sea Buckthorn, have not 

previously been undertaken and no literature values exist for these commodities. The oils 

all contained mainly saturates at position sn-1, a MUFA or PUFA at position sn-2, and a 

saturate or MUFA at position sn-3. This distribution of acyl groups is consistent with the 

general distribution patterns found in oils with similar fatty acid composition. The results 

obtained have highlighted potential problems with the well established method, including 

poor quantification of minor fatty acids, which can be lost throughout the experimental 

stages of the method. 

 

 

 



 149 

Chapter 4 

Evaluating the oxidative stability of plant seed oils 

 

4.1 Introduction 

 

The previous chapter characterised the oils in accordance of their fatty acid composition. 

The fatty acid composition influences the oxidative stability of an oil. The increased 

content of PUFAs should theoretically make the more oil susceptible to oxidation. 

The current chapter aims to evaluate the oxidative stability of a selection of oils varying 

in fatty acid composition and antioxidant content. An oil which can be easily oxidised 

would require correct preventative measure to reduce oxidation. The oxidative stability of 

an oil can be affected by extraction and storage conditions. Storage of oils for long 

periods of time, without correct preventative measures towards oxidation can cause the 

oil to degrade. 

Whilst evaluating the oxidative stability and the thermo oxidative stability of the selected 

oils, it has also been proposed to supplement the oils with readily available and effective 

antioxidant, α-tocopherol (α-TOC). The addition of α-TOC may help increase the host 

oils oxidative stability.  The addition of α-TOC could, however, potentially lead to pro 

oxidant activity, which would decrease the oils oxidative stability. It is the purpose of this 

chapter to evaluate the anti/pro oxidant effects of adding C to a range of speciality 

oils varying in their degree of unsaturation. In order to evaluate this effect it is also 

necessary to establish the best experimental approach to evaluate lipid oxidation.  
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4.2 Results 

 

Table 20. Oxidative stability of plant seed oils 

 PV meqkg
-1

 

Time (Hours) 0 1 4 6 24 48 120 

Grape 20.2 0.6 24.9 1.5 27.3 1.1 36.6 0.5 47.6 1.4 89.0 0.7 170.1 8.0 

Kakui 1.1 0.1 2.1 0.1 4.3 0.2 5.1 0.7 9.6 1.7 18.1 1.7 47.4 8.9 

Lime 28.7 0.0 33.2 3.0 29.9 0.3 43.5 0.3 72.1 1.0 76.2 0.9 94.5 2.1 

Manketti 3.5 0.2 3.8 0.0 4.5 0.1 6.0 0.6 6.7 0.0 8.8 0.3 9.1 1.7 

Marula 2.1 0.8 3.9 1.2 3.0 0.3 5.1 0.2 7.7 0.4 15.5 0.6 31.6 0.1 

Moringa 2.7 0.8 nd nd nd 3.2 0.4 15.8 0.9 32.9 2.6 

Papaya 1.2 0.0 1.6 0.0 2.0 0.0 2.7 0.2 4.8 0.0 8.4 0.0 21.9 2.9 

Passion 4.9 0.4 5.1 0.1 6.2 0.3 6.0 0.1 8.9 0.5 11.9 0.0 20.8 1.1 

Grapefruit 4.0 0.0 6.4 0.0 12.2 0.9 nd 21.5 0.5 39.1 0.5 85.1 2.7 

Pomegranate 1.1 0.1 1.2 0.0 2.8 0.0 2.4 0.0 3.2 0.3 7.8 0.8 11.8 0.1 

Sesame 1.0 0.0 3.6 0.3 4.2 0.3 4.5 0.1 6.9 1.3 8.8 1.1 13.5 0.3 

PV are values in meqkg
-1

, analyses was conducted at 18
o
C. Results represent the mean ±SD for triplicate analyses. Nd = not detected.  
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Graph 1. Oxidative stability of plant seed oils 

 

Oxidative stability time course of plant seed oils. 
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Table 21. Peroxide accumulation of MUFA rich oils.  

PV are values in meqkg
-1

, storage and analyses conducted at 18
o
C. The PV accumulation represents 120 hour minus 0 hour.  

 

 

 

 

 

 

 

 

 

 

Oil Saturates MUFA PUFA MUFA/PUFA PV Increase (meqkg
-1

) 

Moringa 14.3 84.6 1.1 76.9 30.2 

Marula 16.8 74.9 9.0 8.3 29.5 

Papaya 20.2 74.9 4.9 15.3 20.7 
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Table 22. Peroxide accumulation of PUFA rich oils. 

Oil Saturates MUFA PUFA MUFA/PUFA PV Increase (meqkg
-1

) 

Passion 10.7 11.7 77.7 0.2 15.9 

Grape 11.3 14.6 74.1 0.2 49.9 

Kakui 8.9 21.9 69.2 0.3 46.3 

P. Grapefruit 19.0 31.3 49.7 0.6 81.1 

Sesame 13.9 37.7 48.4 0.8 12.5 

Manketti 16.5 16.4 67.1*
1
 0.2 5.6 

Lime 30.5 24.6 45.1 0.5 65.8 

Pomegranate 6.0 7.5 86.5*
2
 <0.1 10.7 

PV are values in meqkg
-1

, storage and analyses conducted at 18
o
C. The PV accumulation represents 120 hour minus 0 hour. *

1
 Manketti contained 20.2% 

conjugated linolenic acid, *
2 
Pomegranate contained 76.9% conjugated linolenic acid. 
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Table 23. Oxidative stability of Brown Flax and Passion Seed Oil 

 Brown Flax Passion Seed 

Time (Hours) 0 24 48 120 0 24 48 120 

Peroxide meqkg
-1

 3.6 ±0.6 5.1 ±0.1 8.8 ±1.37 9.6 ±0.4 3.6 ±0.1 13.5 ±1.1 16.7 ±0.6 28.1 ±3.6 

C.D. % 2.4 ±0.4 2.4 ±0.1 3.1 ±0.1 2.9 ±0.1 0.2 ±0.1 0.2 ±0.1 0.2 ±0.1 0.3 ±0.1 

p-Anisidine 0.00 ±0.00 3.1 ±1.1 1.9 ±0.8 2.00 ±1.3 1.2 ±0.3 1.1 ±0.1 2.5 ±0.4 3.5 ±3.3 

Oxidative stability of brown flax and passion seed oil, assays conducted in 50ml conical flasks with a surface area of 13.9 cm
2
. Results represent the mean ±SD 

for triplicate analysis. C.D %, refers to conjugated diene percentage in oil. 
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Table 24. Oxidation of oleic rich oils at 18
o
C and 60

o
C 

 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

Baobab       

18
o
C       

Control 1.2 ±0.7 nd  8.5 ±0.2 0.6 ±0.3 9.9 ±1.7 1.5 ±0.1 

+ α-TOC 0.7 ±0.2 nd  12.2 ±0.3 nd  16.0 ±0.5 0.5 ±0.1 

60
o
C       

Control 1.2 ±0.7 nd  1.3 ±0.2 nd  3.2 ±1.1 2.0 ±0.4 

+ α-TOC 0.7 ±0.2 nd  2.5 ±0.2 nd  3.6 ±0.0 1.6 ±0.9 

Macadamia       

18
o
C       

Control 0.0 ±0.0 nd  3.6 ±0.4 nd  5.2 ±0.0 nd  

+ α-TOC 0.0 ±0.0 nd  3.9 ±0.1 nd  5.3 ±0.2 nd  

60
 o
C       

Control 0.0 ±0.0 nd  0.3 ±0.1 nd  0.3 ±0.1 nd  

+ α-TOC 0.0 ±0.0 nd  0.4 ±0.0 nd  0.5 ±2.0 nd  



 156 

Moringa       

18
 o
C       

Control 2.7 ±0.8 nd  15.8 ±0.9 1.5 ±0.8 32.9 ±2.6 nd  

+ α-TOC 2.1 ±0.3 0.6 ±0.3 13.6 ±1.0 nd  19.1 ±7.0 0.8 ±0.5 

60
 o
C       

Control 2.7 ±0.8 nd 8.0 ±1.0 Nd 4.3 ±0.8 nd  

+ α-TOC 2.3 ±0.2 nd 8.4 ±0.4 Nd 5.6 ±0.4 1.7 ±0.9 

Yangu*       

18
 o
C       

Control 15.9 ±0.1 4.5 ±0.3 25.5 ±1.1 5.3 ±0.2 27.2 ±1.0 5.3 ±0.5 

+ α-TOC 29.9 ±0.7 0.4 ±0.3 31.7 ±0.7 nd  37.6 ±0.6 2.6 ±0.3 

60
 o
C       

Control 15.9 ±0.1 4.8 ±0.3 39.9 ±1.6 6.3 ±0.4 69.6 ±1.2 7.1 ±0.4 

+ α-TOC 30.3 ±3.1 3.6 ±0.8 76.5 ±7.4 5.9 ±0.4 150.1 ±29.2 8.1 ±2.7 

PV are values in meqkg
-1

 oil. p-A.V. are unitless. Results represent the mean ±SD for triplicate analyses. Poly = polymerization. nd = not detected. *Data of same 

batches with varying time zero values. Concentration of α-TOC was 750 ppm. 

 

 



 157 

Table 25. Oxidation of linoleic acid rich oils at 18
o
C and 60

o
C 

 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

EPO       

18
 o
C       

Control 9.6 ±0.7 3.1 ±0.3 38.8 ±2.4 3.4 ±0.2 62.8 ±0.7 2.9 ±0.2 

+ α-TOC 9.3 ±0.3 3.1 ±0.3 33.9 ±0.4 4.2 ±0.8 56.7 ±3.2 3.2 ±0.8 

Grape       

18
 o
C       

Control 5.8 ±0.5 2.4 ±0.2 36.0 ±1.6 2.8 ±0.2 66.6 ±3.3 2.9 ±1.4 

+ α-TOC 5.3 ±0.5 2.4 ±0.1 35.4 ±1.1 2.9 ±0.2 65.7 ±3.8 2.4 ±0.2 

Manketti*       

18
 o
C       

Control 13.1 ±0.7 16.9 ±2.7 17.2 ±1.4 19.3 ±0.2 14.5 ±2.0 17.5 ±0.6 

+ α-TOC 7.7 ±1.1 16.0 ±0.5 15.6 ±0.8 9.3 ±0.5 11.4 ±1.0 19.8 ±1.2 
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60
 o
C       

Control 13.1 ±0.7 16.9 ±2.7 50.3 ±8.6 50.2 ±5.7 Poly Poly 

+ α-TOC 7.7 ±1.1 16.0 ±0.5 101 ±21.0 23.5 ±2.5 186.8 ±16.1 70.2 ±4.2 

Rosehip       

18
 o
C       

Control 37.7 ±0.3 18.1 ±0.5 51.0 ±0.1 18.1 ±0.5 54.8 ±0.1 16.6 ±0.4 

+ α-TOC 37.6 ±0.2 18.2 ±0.3 50.8 ±0.2 18.3 ±0.1 58.8 ±2.3 17.2 ±0.4 

Wheat Germ       

18
 o
C       

Control 8.6 ±0.1 3.4 ±0.5 12.7 ±0.4 7.3 ±1.1 24.7 ±0.3 13.7 ±0.4 

+ α-TOC 8.1 ±0.2 4.4 ±0.1 11.3 ±0.2 5.7 ±0.5 17.5 ±0.4 nd  

60
 o
C       

Control 8.6 ±0.2 3.4 ±0.5 77.7 ±1.1 5.2 ±1.2 228.3 ±1.3 10.8 ±2.2 

+ α-TOC 8.1 ±0.2 4.4 ±0.1 94.7 ±9.7 5.9 ±1.3 280.8 ±11.1 15.1 ±3.2 

PV are values in meqkg
-1

 oil. p-A.V. are unitless. Results represent the mean ±SD for triplicate analyses. Poly = polymerization. nd = not detected. *Data of same 

batches with varying time zero values. Concentration of α-TOC was 750 ppm. 
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Table 26. Oxidation of linolenic rich oils at 18
o
C and 60

o
C 

 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

Brown Flax*       

18
o
C       

Control 15.6 ±0.4 0.8 ±0.3 18.6 ±0.4 Nd 20.0 ±0.7 0.9 ±0.8 

+ α-TOC 15.6 ±0.4 0.8 ±0.3 18.3 ±0.7 1.0 ±0.2 19.1 ±0.4 1.3 ±0.3 

60
 o
C       

Control 15.6 ±0.4 0.8 ±0.3 602.7 ±5.9 20.0 ±0.3 poly Poly 

+ α-TOC 15.6 ±0.4 0.8 ±0.3 234.4 ±29.2 9.8 ±1.1 583.9 ±10.9 20.9 ±2.1 

Pomegranate*       

18
 o
C       

Control 7.3 ±0.2 14.3 ±0.2 7.7 ±1.1 19.4 ±0.3 8.7 ±1.1 22.3 ±0.4 

+ α-TOC 7.3 ±0.2 14.3 ±0.2 8.0 ±0.7 21.0 ±0.8 10.4 ±0.7 24.2 ±1.9 

60
 o
C       
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Control 7.3 ±0.2 14.3 ±0.2 56.6 ±2.5 21.4 ±1.6 poly Poly 

+ α-TOC 7.3 ±0.2 14.3 ±0.2 94.2 ±8.3 25.2 ±1.6 poly Poly 

PV are values in meqkg
-1

 oil. p-A.V. are unitless. Results represent the mean ±SD for triplicate analyses. Poly = polymerization. nd = not detected *Result 

provided by MSc Students working on same research project. Concentration of α-TOC was 750 ppm. 
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4.3 Results and Discussion 

 

The datasets have been grouped according to the major fatty acid component in the oil 

prior to evaluating their oxidative stability. Initially, oils were screened for peroxides 

(PV) in order to get a general indication of their likely stability. However, in order to 

follow the breakdown of peroxides we later employed the p-anisidine test to monitor the 

production of non volatile carbonyl compounds.  

 

4.3.1 Oxidative stability of plant seed oils (Table 20 and Graph 1). Initial studies 

carried out on various plant seed oils, solely relied on the peroxide value to determine the 

extent of oxidation. The peroxide values displayed in Table 20 and Graph 1, track the 

peroxide value from the initial exposure of oxidation up to 120 hours of exposure. The 

data can vary depending on oil, for instance the starting PV at time point zero for 

pomegranate is 1.1 meqkg
-1

, whereas lime has a starting peroxide of 28.7 meqkg
-1

. The 

accumulation of the peroxide content gives a more in-depth insight into the level of 

oxidation of each oil, and proceeding tables display the data in such format. Interestingly 

the table does indicate that all oils had a differing starting PV, and for clarification 

purposes, oils were analysed directly from the bottles supplied by Earthoil. Oils such as 

Grape and Lime, displayed a high initial PV, which indicates the oil, has already been 

exposed to oxygen and that peroxide accumulation is active. 
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4.3.2 Peroxide accumulation in MUFA rich oils (Table 21). Moringa oil’s (M/P, 76.9) 

peroxide accumulation through the 120 hour time period at 18
o
C was 30 meqkg

-1
. 

Moringa oil has been reported to have remarkable oxidative stability. The oxidative 

stability was attributed to its low PUFA content and high abundance of flavone myricetin, 

a powerful antioxidant [3]. The tocopherol content of Moringa oil has been reported to be 

dependant on cultivar [119]. The tocopherol content has been reported to range from 247-

289 ppm [119]. Moringa oils high oxidative stability makes it an ideal oil which can been 

blended to less stable oils, to increase its oxidative stability [121].  

Marula (M/P, 8.3) oil’s oxidative stability was similar to Moringa oil, with an 

accumulation of 29.5 meqkg
-1

at 18
o
C. A comparative study of Marula and Moringa oil, 

reported Marula oil to be less stable than Moringa oil, when using the OSI Rancimat to 

determine the oxidative stability of the oil [197]. The data obtained in this current chapter 

showed the oils to have similar oxidative stability, even though their MUFA/PUFA ratio 

was largely different. The peroxide content for both oils being similar indicated that both 

oils were accumulating peroxides. Another scenario could be one of the oils was 

accumulating peroxides and other breaking down peroxides. The oxidative stability of the 

oils can not be fully determined based on the peroxide content of both oil’s. The need to 

measure secondary oxidation products would give an insight to the oxidation state of the 

oil’s.  

Papaya oil (M/P, 15.3) showed the lowest accumulation in peroxide. Based on the 

peroxide content, papaya oil would be considered to be the most stable oil. Although this 

is not a complete conclusion as only the primary oxidation products have been measured. 
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The MUFA rich oils low peroxide content maybe de to the high levels of MUFA’s which 

are not easily oxidisable and other parameters such as antioxidant content. 

  

 

4.3.3 Peroxide accumulation in PUFA rich oils (Table 22). Pink grapefruit (M/P, 0.6) 

exhibited the greatest accumulation in peroxide content over 120 hours at 18
o
C was 81 

meqkg
-1

. Passion seed oil (M/P, 0.2) had a low accumulation in peroxide content 

throughout the 120 hour period, 15.9 meqkg
-1

. The oils low peroxide accumulation may 

be due to the presence of natural occurring tocopherols reported as 465 ppm [199].  

Sesame oils (M/P, 0.8) peroxide accumulation was relatively low, 12 meqkg
-1

. The low 

peroxide accumulation may be attributed to the oils tocopherol content of 400-700 ppm 

[3]. The low peroxide content may also be due to the other antioxidant species present in 

the oil, including ligans such as sesamin, sesamolin, sesamolin [3]. Grape seed oil has 

been associated with high levels of antioxidants. Grape seed oil (M/P, 0.2) has been 

reported to contain rich quantities of flavonoids, phenolics and stilbenes [109]. The 

peroxide accumulation of grape seed oil was 50 meqkg
-1

.  The peroxide content for the 

oil was relatively high, and considering its antioxidant properties it would be expected be 

more stable. Grape seed oil has be used as a blending oil ideal for use with unstable oils 

such as sunflower oil [209]. The antioxidant content makes it an oil which increases the 

stability of oils with low stability [209]. 

Lime and Grape seed oils both exhibited high starting peroxide values, 28 meqkg
-1

 and 

20 meqkg
-1

 respectively, (Table 20). The high starting peroxide values indicated that the 

oils have been oxidised prior to evaluating their oxidative stability. 
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Manketti (M/P, 0.2) and Pomegranate (M/P, <0.1) oils both contained conjugated 

linolenic acid. Manketti contained approximately 20% conjugates with α-eleostearic acid 

being the dominant isomer. Pomegranate contained approximately 76% conjugates of 

which 80% was punicic acid. The peroxide accumulation of Manketti oil was the lowest 

exhibited by all the PUFA rich oils, 5.6 meqkg
-1

. Pomegranate’s peroxide accumulation 

throughout the 120 hour period was 10.7 meqkg
-1

. The high oxidative stability of both 

oils may be due to the antioxidant of the oils. Pomegranate oil has been reported to 

contain 161-170 ppm -tocopherol and 80-92 ppm -tocopherol [118].  The antioxidant 

content of Manketti oil has been reported to contain 233 ppm tocopherols. [210]. When 

comparing the tocopherol content of Manketti and pomegranate oil, to Passion seed oil 

(465 ppm), it is evident that the low tocopherol content of Manketti and Pomegranate 

may not be the only contributing factor to their oxidative stability, and the conjugated 

fatty acid content may need to be considered. 

 

 

4.3.4 Assays to evaluate oxidation (Table 23). The peroxide value can not be used 

solely to determine the oxidative stability of oils. The above data for the peroxide value 

can sometimes be misleading, and does not always give a true indication of the state of 

oxidation. The values obtained do not give an indication as to whether the peroxide 

content was from the formation or breakdown of peroxides. To asses the oxidative 

stability of an oil, measuring the secondary oxidation products would give a more 

informed indication of the current state of oxidation. The non volatile aldehyde 

compounds formed from the breakdown of hydroperoxides can be measured using the p-
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anisidine assay. The p-anisidine (p-A.V) assay, which primarily measures the aldehydes, 

principally 2-alkenals and 2,4-dienals [211]. The peroxide value also measure minor 

secondary products such as epoxides, therefore the conjugated diene was used to measure 

the formation of the hydroperoxides. 

Passion seed oil (M/P, 0.2), was previously analysed, the data showed it to have a low 

peroxide accumulation in Table 20. When the oil was further examined, the peroxide 

accumulation was low, 24.5 meqkg
-1

 (Table 23). The conjugated diene content remained 

constant through the 120 hour period. The non volatile aldehyde (NVA) content 

increased steadily. The oxidative stability of Passion seed oil is relatively high during a 

120 hour period, which was indicated by the peroxide and NVA content. 

Brown flax oil (M/P, 0.2) accumulated a peroxide content of 6.0 meqkg
-1

. The conjugated 

diene content remained relatively constant. The NVA content increased to a maximum 2. 

The oils oxidative stability was remarkably high. Brown flax is rich in linolenic acid, 

which would render the oil susceptible to oxidation. The tocopherol content of Brown 

flax seed oil has been reported to be approximately 39.5-50 mg/100g [3, 212]. The oils 

stability maybe due to the oils optimum levels of tocopherols. There have been studies 

were the natural occurring tocopherol content has been too concentrated, leading to a pro 

oxidant effect. This was observed in Soybean oil, the removal of a proportion of the 

tocopherols improved the oils oxidative stability [180]. 

The addition of p-anisidine assay added an extra dimension to the interpretation of the 

oils oxidative stability. The following oils analysed, were assayed using the p-anisidine 

assay, as it gave a greater understanding of the oils secondary oxidation behaviour during 

oxidation. 
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4.3.5 Oxidation of oils rich in oleic acid (Table 24). Baobab oil (M/P, 1.1) remained 

relatively stable at 18
o
C accumulating low levels of peroxides, and NVAs, 9.9 meqkg

-1
 

and l.5 respectively. The addition of 750 ppm α-TOC increased the PVs by 38%, 

although lowering the NVAs. At 60
o
C Baobab oil PVs were lowered with no significant 

change in the NVAs. The addition of α-TOC had no effect on the oxidative stability at 

60
o
C; the PVs remained similar to Baobab control. The increased temperature may have 

increased the rate of oxidation, leading to the formation of volatile compounds, hence the 

low accumulation of NVAs. 

Macadamia oil, (M/P, 36.2) remained relatively stable through the 120 hour time period. 

The PV reached 5.2 meqkg
-1

, and the NVAs were undetectable. The addition of α-TOC 

had no effect on the oxidative stability of the oil; there was no significant change in the 

peroxide and the NVA content. At 60
o
C the levels of peroxides detected were 

proportionally lower than for all treatments at 18
o
C. The addition of α-TOC had no effect 

on the oxidative stability. The increased rate of oxidation with increasing temperature 

again suggests that oxidation proceeds through the formation of volatile compounds. 

Macadamia has been reported to contain low levels of peroxides 0.6-3.6 meqkg
-1

 when 

fresh, which is consistent with the data obtained here [96]. It has been reported that the 

tocopherol and phenolic content of Macadamia oil is considerably low compared to other 

nut oils [213]. Increased oxidative stability with increased levels of antioxidants was 

observed by some cultivars in the study, the data set for this chapter showed 750 ppm α-

TOC to have no effect on the oxidative stability of Macadamia oil [96]. This maybe due 

to the levels of the α-TOC being to low to have a significant effect on the oxidative 

stability. 
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Yangu oil (M/P, 1.2) at 18
o
C, PV was markedly increased over 120 hours with an 

accumulation of  11.3 meqkg
-1

, and NVAs levels at 5.3. It must be noted that Yangu oil 

which was supplemented with 750 ppm α-TOC had an increased peroxide content at time 

zero. Therefore comparison of the data will be based on the overall accumulation of 

peroxides and NVA in each individual oils. The addition of 750 ppm α-TOC decreased 

the peroxide accumulation to 7.7 meqkg
-1

, and increased the NVA content by 1.4. The 

incubation of Yangu oil at 60
o
C increased the PV to 69.6 meqkg

-1
 and the NVAs to 7.1. 

The addition of α-TOC at elevated temperatures increased the peroxide content by 66 

meqkg
-1

 to give an overall accumulation of 120 meqkg
-1

.  There was no significant 

change in the NVA content with the addition of 750 ppm α-TOC, suggesting volatile 

compounds may have been formed through hot oxidation.  

The PV of Moringa oil (M/P, 76.9) exposed to the atmosphere increased over 120 hours 

to 33 meqkg
-1

. The addition of α-tocopherol reduced the peroxide content by over 40%. 

Moringa oil incubated at 60
o
C showed PVs that were significantly lower than the PVs at 

18
o
C. At 48 hours a reduction of 38-50% and at 120 hours 70-87% reduction in PVs, this 

maybe due to increased levels of oxidation. The incubation of Moringa oil with α-TOC at 

60
o
C showed an increase in the non-volatile aldehydes. The PV for the addition of α-

TOC to Moringa oil at elevated temperature remained unchanged. Oxidation rate of oils 

generally increases with temperature, the lower PVs at 60
o
C indicates the oil has rapidly 

decomposed to volatile compounds as the levels of NVAs were low. 

A comparative study of two oleic rich oils, Moringa and Marula, where both oils 

contained approximately 70% oleic acid, showed Moringa to be more stable [197]. The 

study used an accelerated oxidation method (AOCS Cd 12b-92). Moringa oil with the 
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addition of 1000 ppm of tocopherols had an oil stability index (OSI) value of 133h, 

compared with Marula 37h [197]. The difference in the OSI values confirmed the oils 

were not comparable in terms of their ability to resist oxidation. The authors suggested 

the 7% PUFA content of Marula oil compared to the 1% PUFA content of moringa oil 

was an important factor [197]. The oleic rich oils that were analysed in the current 

chapter vary in PUFA content and their antioxidant content. The variation of PUFA and 

antioxidant content may indicate contrast in levels of oxidation. 

Low levels of peroxides and NVAs detected in Baobab, Macadamia and Moringa oils 

exposed to oxidation at 60
o
C suggests that volatile compounds are generated at elevated 

temperatures. Decomposition of oleic acid (18:1n9) occurs from the cleavage of alkoxyl 

radical formed from the hydroperoxides autoxidation. The homolytic cleavage of either 

side of the alkoxyl intermediate from 8 hydroperoxide forms decanal and 2-undeacanal. 

Nonanol is formed from either side of the 9- or 10-hydroperoxide, octane is formed from 

10-hydroperoxide and octanol and heptane is formed from the 11-hydroperoxide [125]. 

Determining the presence of volatiles would require GC headspace analysis. 

In summary the addition of α-tocopherol did not give the desired effect of increasing the 

oxidative stability of the oleic rich oils. A positive effect was observed in Moringa and 

Yangu oil at room temperature. 

 

 

4.3.6 Oxidation of oils rich in linoleic acid (Table 25). Five linoleic rich oils were 

examined for their oxidative stability, namely, Evening primrose oil (EPO), Grape, 

Manketti, Rosehip and Wheat germ.  
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Evening primrose oil, EPO (M/P, <0.1) was shown to be relatively unstable with a PV of 

62.8 meqkg
-1

 and NVAs content of 2.9. The addition of α-TOC had no marked effect on 

the oxidative stability at 18
o
C. Contradictory reports have shown that the addition of a 

mixture of α,γ tocopherol and phosphatidylethanolime (PE) increased the oxidative 

stability of EPO [205, 214]. Grape oil (M/P, 0.2), showed similarities to EPO, the PV and 

NVAs was relatively elevated. The  addition of 750 ppm α-TOC showed no effects on the 

PV and NVA levels. The low oxidative stability of Grape seed oil is in contrast with its 

reported rich content of phenolic compounds and flavonoids [109]. The peroxide content 

of Grape seed oil was shown to be high in the previous chapter. The oxidative stability of 

Grape seed from the current data indicates a low oxidative stability.   

Manketti oil (M/P, 0.2) contained 20% conjugated linolenic acid and showed a low 

peroxide accumulation of 1.4 meqkg
-1

.The NVA content was recorded at 17.5. It must be 

noted that Manketti oil which was supplemented with α-TOC had a decreased peroxide 

content at time zero. Therefore comparison of the data will be based on the overall 

accumulation of peroxides and NVA in each individual oils. The addition of α-TOC 

increased the peroxide content by 2meqkg
-1

. The addition of α-TOC had no significant 

effect on the oxidative stability at 18
o
C. The oil’s oxidative stability at 18

o
C showed 

degradation due to the high NVA levels. This suggests that the slow oxidation at room 

temperature may yield NVA as opposed to volatile compounds. The incubation of 

Manketti oil at 60
o
C polymerized beyond 48 hours, which may be due to the heat which 

lowers the oil’s solubility leading to polymerization [147]. The addition of α-TOC did not 

increase the oil’s oxidative stability. The PV was recorded as 186.8 meqkg
-1

. The 
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addition of α-TOC increased the NVA content to 70.2. The addition of α-TOC did not 

enhance manketti oil’s oxidative stability, and showed to have adverse effects. 

Wheat germ oil (M/P, 0.2) increased steadily in peroxide content with the final PV of 25 

meqkg
-1

 at 18
o
C. The NVA level was recorded as 13.7 at 120 hours. The addition of α-

TOC reduced the PV by 29% and the NVAs became undetectable at the end of the time 

course. At 60
o
C the peroxide content surpassed 200 meqkg

-1
 and the NVAs was above 

10. The addition of α-TOC increased the PV by 23%, indicating a proxidants effect. The 

addition of α-TOC increased the oxidative stability at 18
o
C but had adverse effects at 

60
o
C. 

Wheat germ has been reported to be rich in tocopherols, 1790-3200 mg/kg [215]. Wheat 

germ antioxidant extracts were added to various stripped oils at 50
o
C, and it was found to 

reduce the hydroperoxide content of the oils [216]. The antioxidant unsaponifiable matter 

has been reported to provide stability to rapeseed oil during storage at 60
o
C [215]. The 

addition of α-TOC did increase the oxidative stability of Wheat germ oil at 18
o
C, but 

failed to enhance the oils thermo oxidative stability.  

All the 18:2 n6 oils showed different oxidative properties with the addition of α-TOC at 

18
o
C and 60

o
C. The data indicates that the oils’ oxidative stability is complexed and that 

the oil’s natural antioxidant content may play an underlying role. 

 

 

4.3.7 Oxidation of oils rich in linolenic acid (Table 26). Brown flaxseed oil (M/P, 0.2) 

oxidised at a slow rate at 18
o
C. The addition of α-TOC had no marked effect on the 

oxidative stability. At 60
o
C the oil showed an increase in peroxide content at 48hrs (>600 
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meqkg
-1

), the oil polymerized by 120 hours. The addition of α-TOC reduced the peroxide 

content by 60% at 48 hours. The reduction in the peroxide and NVA content delayed the 

onset of polymerisation by approximately 12-24 hours. The current data set has showed 

Brown flaxseed oil to be stable. The addition of α-TOC has been shown to increase the 

oils thermo-oxidative stability. 

Brown flaxseed oil was analysed earlier in the chapter, and was found to be stable. The 

data obtained from the current data set, has also shown Brown flaxseed to be stable. The 

oils high linolenic acid content may be a direct reflection of the oils antioxidant activity 

toward protection of the PUFAs. 

Pomegranate oil (M/P, <0.1) contains approximately 77% conjugated linolenic acid, with 

punicic acid being the predominant isomer. The peroxide content of PO increased by 

16% over the 120 hour period with the NVAs steadily increasing. The addition of α-TOC 

had no effect on the oxidative stability of PO at 18
o
C. At 60

o
C the oil’s PV and NVA 

increased until 48 hours, thereafter the oil polymerised. The addition of 750 ppm α-TOC 

at 60
o
C acted as a proxidants increasing the PV by 40% and the NVAs by 15%, at 48 

hour, at 120 hours the oil is fully polymerised. 

The reasonable oxidative stability at 18
o
C may be due to the antioxidant content. PO has 

been reported to contain 2630-2900 mg/Kg tocopherols [118], and 7.8-72.1 mg/g 

phenolic compounds [217]. 

The oxidation of conjugated fatty acid differs from non conjugated fatty acids, the 

mechanism and kinetics of conjugated fatty acid oxidation is still not fully understood 

[218-220]. The pathway for the oxidation of conjugated fatty acids does have elements of 

the pathway for non conjugated fatty acid hydroperoxide formation [218], although 
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breakdown products formed include dimers and polymers [220]. Under mild oxidation 

conditions (30
o
C in the dark) conjugated C18:2 was more stable than non conjugated 

18:2 [220]. However recent studies have shown conflicting interest, comparison of 

C18:2, C18:3 and their conjugated forms showed stability in the order of 

18:2>18:3>conj18:2>conj18:3 [221].  
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4.4 Conclusions 

 

The time course studies on a wide range of oil’s varying in their degree of unsaturation, 

and their subsequent oxidative stability differed depending on supplementation with α-

tocopherol. 

The oxidative stability of a variety of oils has been analysed and it can be concluded that 

the fatty acid content is a determinant factor. The antioxidant content of the oil also plays 

a role in the oxidative stability mechanism. Supplementing oil’s with 750 ppm α-TOC 

did not enhance the oxidative stability of the majority of the oil’s analysed. Positive 

results were obtained for Moringa, Yangu, Wheat germ and Brown flaxseed oils. In the 

case of these oils it maybe that the addition of 750 ppm α-TOC was an optimum 

concentration to influence the delay of the oxidation. The addition of 750 ppm α-TOC at 

60
o
C to Manketti and Pomegranate oil, delayed the onset of polymerisation. Manketti and 

Pomegranate oil both polymerised at 120 hours with out the addition of α-TOC. The 

addition of 750 ppm α-TOC may delay the onset of oxidation, although there maybe 

interaction between the free radicals generated from the conjugated fatty acids and the α-

TOC. The addition of 750 ppm α-TOC allowed the oil to remain viscous at 120 hours at 

elevated temperatures.  
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Chapter 5 

Preliminary blending of Pomegranate oil 

 

5.1 Introduction 

 

The oxidative stability of plant seed oil’s was evaluated in the previous chapter. The 

addition of α-tocopherol did not increase the oxidative stability of the majority of the oils 

assayed.  

It has been proposed that unstable oil’s can be blended with stable oil’s to increase the 

oxidative stability of the unstable oils. Sunflower oil has been blended with minor 

amounts of Moringa oil, which led to a reduction in the peroxide content of Sunflower oil 

[121].  

Pomegranate oil showed to have a relatively high oxidative stability, which was observed 

in chapter 4. The reason for the high oxidative stability is not fully known, but the 

antioxidant content and possibly the conjugated fatty acid content may be a contributing 

factor. The oxidative stability may be attributed to the high content of conjugated 

linolenic acid. Conjugated linolenic acid may have antioxidant properties similar to 

carotenoids. The oil is readily available as it is a commercial implicit product of Earthoil. 

Therefore it would be an ideal oil for blending with unstable oils.  

A current patent prevents Moringa oil being supplemented with Vitamin E to increase its 

oxidative stability. It is envisaged that Pomegranate oil or other plant seed oil’s, when 

blended with Moringa oil could increase its oxidative stability. Pomegranate has been 

selected as a preference as it has previously shown to have a relatively high oxidative 
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stability. Earthoil also produces a large quantity of Pomegranate oil, which makes it 

commercially viable for there purposes.  

The aim of the current chapter is to determine the effectiveness of Pomegranate blends 

with Moringa and Borage oils. It would be envisaged that Pomegranate oil may have 

positive effects on the oxidative stability of Moringa and Borage, due to its antioxidant 

properties. The antioxidant properties may be due to the oils conjugated linolenic acid, 

punicic acid, which may have similar properties to lycopene and other carotenoids. 
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5.2 Results 

 

Table 27. Peroxide accumulation in Moringa Oil 

 PV meqkg
-1

 

 0hr 1hr 4hr 24hr 48hr 120hr Accumulation* 

Moringa 0.4 ±0.0 3.0 ±0.3 6.6 ±0.3 40.7 ±2.5 82.8 ±11.4 182.8 ±9.0 182.4 

Moringa 1% PO 3.0 ±0.1 6.1 ±0.1 12.1 ±0.0 28.4 ±0.2 43.2 ±0.1 82.5 ±0.3 79.5 

Moringa 5% PO 1.4 ±0.3 4.0 ±0.6 12.1 ±0.3 19.9 ±3.4 42.3 ±3.6 68.0 ±1.4 66.6 

Moringa 13% PO 3.3 ±0.1 5.9 ±0.1 11.6 ±0.3 17.7 ±0.6 28.5 ±4.2 71.7 ±5.1 68.4 

Peroxide accumulation in moringa oil over a 120 hour time period. Moringa oil additives, pomegranate oil (PO). Assays were conducted in 50ml conical flasks 

with a surface area of 13.9 cm
2
. Results represent the mean ±SD for triplicate analysis. * Represents the peroxide accumulation from time point zero. All zero 

hour samples differ due to assays prepared on different days. The accumulative peroxide has been determined to offset the zero hour differences. 
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Graph 2. Peroxide accumulation in Moringa Oil 

 

Graph 2..Peroxide accumulation in moringa oil over a 120 hour time period. Moringa oil additives, pomegranate oil (PO). Assays were conducted in 50ml 

conical flasks with a surface area of 13.9 cm
2
. Results represent the mean ±SD for triplicate analysis.  

 

Peroxide Accumulation in Moringa Oil 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

0 2 4 6 8 

Time (hours) 

PV 
(meq/kg) 

Moringa 

Moringa 1% PO 

Moringa 5% PO 

Moringa 13% PO 



 178 

Table 28. Moringa peroxide accumulation with the addition of α-TOC and PO. 

 Peroxide meqkg
-1

 

Antioxidant 0ppm 50ppm 100ppm 500ppm 1000ppm 5000ppm 

Moringa 26.4 ±0.9 nd  nd  nd  nd  nd  

Moringa PO 27.3 ±1.3 nd  17.2 ±1.3 18.6 ±1.6 19.9 ±1.8 26.3 ±1.8 

Moringa α–TOC 27.3 ±1.3 nd  15.4 ±1.3 17.0 ±2.2 12.7 ±0.14 10.2 ±1.9 

Peroxide accumulation in moringa oil over a 120 hour time period. Moringa oil additives, pomegranate oil (PO), and α-tocopherol (α-TOC) at various 

concentrations.. Assays conducted in 50ml conical flasks with a surface area of 13.9 cm
2
. Results represent the mean ±SD for triplicate analysis. 
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Table 29. Peroxide and non volatile aldehyde accumulation in Borage oil treated with 1% PO and 750ppm α-TOC. 

 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

Borage       

Control 8.0 ±0.0 0.9 ±0.6 43.3 ±1.9 1.5 ±0.7 87.1 ±8.3 0.8 ±0.7 

+ 1% PO 7.3 ±0.2 3.3 ±0.2 10.2 ±0.5 2.7 ±1.0 11.8 ±0.2 2.9 ±0.7 

+ α-TOC 7.2 ±0.0 1.2 ±0.7 23.8 ±2.2 1.8 ±0.6 43.7 ±3.9 1.1 ±0.5 

60
 o
C       

Control 8.0 ±0.0 0.9 ±0.6 32.2 ±0.6 6.1 ±1.0 107.0 ±6.7 22.6 ±2.2 

+ 1% PO 7.3 ±0.2 3.3 ±0.2 47.5 ±2.8 11.1 ±0.8 187.7 ±81.5 63.7 ±5.5 

+ α-TOC 7.2 ±0.0 1.2 ±0.7 125.1 ±3.8 18.7 ±1.8 304.0 ±56.2 61.7 ±1.3 

Peroxide values of Borage oil over a 120 hour time period. Borage oil additives, pomegranate oil (PO) and α-tocopherol (α-TOC). Assays conducted in 50ml 

conical flasks with a surface area of 13.9 cm
2
. Results represent the mean ±SD for triplicate analysis. The analysis was carried out at 18

o
C. 

 

 



 180 

5.3 Results and Discussion 

 

Pomegranate oil (PO) was blended into Moringa firstly as a percentage weight and 

secondly as parts per million (ppm). Moringa and Borage oil were both host oils for the 

addition of PO. 

  

 

5.3.1 Percentage addition of pomegranate oil (Table 27). Pomegranate oil was added 

as a percentage weight to Moringa oil. The addition of PO ranged from 1 to 13%. The 

previous chapter’s data showed Moringa oil to be relatively stable, with a low 

accumulation in peroxides and non volatile aldehydes. Moringa oil analysed in this 

current chapter was freshly extracted from the seed on the day of analysis. In this instance 

the accumulation of peroxide reached a maximum of 182 meqkg
-1

. It can only be 

assumed that the high peroxide content was due to contamination of the oil at some point 

during the extraction. Although the contamination was a set back, the oil did provide 

consistent results with the addition of PO oil.  

The presence of PO blended to the heavily oxidised Moringa oil reduced the peroxide 

content significantly. The greatest reduction in peroxide was observed with the addition 

of 13% followed by 5% and finally 1%. The addition of 1% would be an ideal 

supplementation as it would provide a significant reduction in the peroxide content, 

without altering the fatty acid content by a significant amount. The addition of 1% PO 

would also be more cost effective when considering long term usage of the oil.   
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5.3.2 Pomegranate and α-tocopherol (Table 28). The addition of PO to Moringa oil 

was compared with α-tocopherol. In this instance PO and α-tocopherol were blended at 

ppm. 

Moringa oil peroxide content appears to be in agreement with the peroxide content of the 

pervious chapter. The peroxide content of Moringa oil was furthered reduced with the 

addition of α-TOC and PO. The optimum supplementation of α-TOC addition to Moringa 

oil was 5000 ppm, whilst PO optimum supplementation to Moringa oil was 100 ppm. 

Comparing the data obtained from the percentage weight addition to the ppm addition of 

PO to Moringa oil, percentage addition was more effective. The addition of 5 and 13% 

PO to Moringa oil, reduced the peroxide content by 63%. The addition of 1% PO oil to 

Moringa oil reduced the peroxide content by 56%. The addition of 100ppm PO reduced 

the peroxide content by 35%.  

The addition of PO to Moringa oil at various concentrations has provided positive data. 

The data shows that highly oxidised and relatively stable Moringa oil can be stabilised by 

the addition of PO. The addition of PO and α-TOC can be expressed as ppm or as a 

percentage weight, the concentration remains the same in both aspects. 

 

 

5.3.3 Borage oil blended with 1% PO (Table 29). Borage oil (M/P, 0.3) was shown to 

be unstable at 18
o
C over 120 hours, with a PV of 87.1 meqkg

-1
, and NVA content of 8.30. 

The addition of α-TOC and PO greatly improved the oxidative stability. α-TOC reduced 

the PV by 50% and the NVAs by 53%, whilst PO reduced the PVs by 85% and the NVAs 

by 98%. At 60
o
C the PV of Borage oil was 107.2 meqkg

-1
 and the NVAs was 22.6. The 
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addition of α-TOC and PO at elevated temperatures showed negative effects on Borage 

oil increasing the peroxide content and NVA content by up to 3-fold. The addition of α-

TOC and PO may have caused a proxidant effect, by increasing the rate of oxidation. 

Borage oil has been subjected to blending in a published study. The addition of virgin 

Olive oil to Borage oil did not increase the Borage oils oxidative stability [222]. The data 

obtained for PO addition to Borage oil indicates an increased oxidative stability. The 

thermo-oxidative stability was reduced by the addition of PO.  

 

 

5.3.4 Radical scavenging properties of punicic acid. 

 The blending of PO with Moringa and Borage oil showed positive effects, which may be 

attributed to the tocopherol and phenolic compounds in the oil. The tocopherol content of 

Pomegranate oil used for blending was determined through an external analytical 

institution, Eurofins. The tocopherol content of the PO was 43 mg/kg. Reported levels of 

tocopherols and phenolics have been given as 2630-2900 mg/Kg tocopherols [118], and 

7.8-72.1 mg/g  [217] respectively. To fully evaluate PO stabilising properties, individual 

components would need to be isolated and analysed. Each component would need to be 

isolated and analysed to determine the component which is responsible for PO’s 

antioxidant properties. 

Pomegranate oil contains conjugated fatty acids which may have stabilising properties. 

The effects of conjugated fatty acids in biological systems have shown positive effects 

[116, 223, 224], but negative effects have also been observed [225, 226]. The 
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concentration of the conjugated fatty acids may play a critical role in the oxidative 

stability of the oils. 

Pomegranate oil has a variety of conjugated linolenic acids, with punicic acid accounting 

for over 70% of the conjugates. The conjugated double bond system may have 

antioxidant capabilities similar to that displayed by carotenoids such as β-carotene and 

lycopene. Lycopene and β-carotene have the ability to quench singlet oxygen, 
1
O2, 

species and have peroxyl radical scavenging properties. This may be exhibited by the 

conjugated system of punicic acid (PA) [146, 227]. 

The antioxidant capability of punicic acid may be due to light filtering, 
1
O2 quenching, 

sensitizer inactivation and free radical scavenging. Firstly the singlet oxygen quenching 

1
O2 could occur by energy transfer from the singlet 

1
O2 to punicic acid, without the 

generation of oxidised products, similar to carotenoids, Equation 12 & 13 [228]. 

It has been reported that carotenoids inactivated the excited sensitizers; this is achieved 

by absorbing the energy from the sensitizer. The excited carotenoid returns to its ground 

by the transfer of energy to the oil [228]. The punicic acid antioxidant mechanism is 

modelled on carotenoids, the excitation of PA may also occur. It has been reported that β-

carotene has great difficulty in donating its hydrogen to a alkyl or peroxyl radical of 

PUFAs [229]. Although β-carotene can donate hydrogen to the hydroxyl radical, giving 

rise to a carotene radical, which is relatively stable due to the delocalisation of unpaired 

electrons through its conjugated polyene system, Equation 14 [229].  

The punicic acid radical may have the ability to react with peroxyl radicals and form non 

radical products. This would only occur in an environment with a low presence of 

oxygen, Equation 15 [228]. 
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A lipid peroxy radical may have the ability to add to punicic acid, giving rise to a punicic 

acid peroxy radical (LOO-PA
.
). This would be likely in an oxygen rich atmosphere, 

Equation 16. The punicic peroxy radical could then react with the 
3
O2 followed by the 

reaction with lipid molecules, Equation 17. The corresponding alkyl radical propagates 

the chain reaction of lipid oxidation, Equation 18 [228]. 

The proposed mechanism of punicic acid antioxidant ability was based on the mechanism 

of carotenoids [227-230]. Further research into punicic acid antioxidant mechanism 

would need to be carried for a fuller understanding. Research is ongoing in the field of 

conjugated fatty acids with regards to their beneficial health properties, the research into 

punicic acid is limited, hence the lack of literature available on this conjugated fatty acid. 

The theory that punicic acid may have stabilising properties is only a proposal at this 

point. It would require extensive research, beginning with the isolation of punicic acid 

and assaying it in a variety of oils. 

An alternative evaluation of the efficacy of pomegranate oil/punicic acid would be to 

screen a variety of oils with the addition of pomegranate oil. If positive results were to be 

obtained it would be a strong justification for further research to be conducted into 

punicic acid. 
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Proposed radical mechanism for punicic acid antioxidant abilities [227-230].  
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5.4 Conclusions 

 

The addition of Pomegranate oil has shown positive effects when blended with highly 

oxidised Moringa oil. Pomegranate oil also showed positive effects when added to 

moderately oxidised Moringa and Borage oils. The addition of 1% PO leads to a 

significant reduction in the peroxide content of both oils. It has been speculated that 

punicic acid may be the active component in pomegranate that helps stabilise oils. 

Punicic acid activity is a speculation, and it must be highlighted that all other antioxidant 

components have not been disregarded at this early stage of evaluation. To evaluate this 

proposal Pomegranate oils’ efficacy will need to be further tested with oils varying in the 

degree of unsaturation. 
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Chapter 6 

Screening Pomegranate oil for oxidation stabilising potential  

 

6.1 Introduction 

 

The preliminary blending of PO with Moringa and Borage oil, showed PO to reduce the 

peroxide content by significant amounts. To distinguish the component which acts as the 

stabilising component of Pomegranate oil, would require extensive research. The 

tocopherol content of PO oil used for blending in the previous chapter was 4.3 mg/100g 

and the same batch off Pomegranate oil was used for this current chapter.  

The aim of this chapter was to evaluate the effectiveness of PO’s stabilising properties. 

The oil was blended with a selection of oil’s varying in fatty acid and antioxidant content. 

The oxidative stability and thermo-oxidative stability was evaluated, and a definitive 

conclusion was reached. A positive outcome from PO blends to plant seed oil’s would 

lead to further research into punicic acid and other potential stabilising components of 

PO. 

As previously discussed in earlier chapters, existing patents prohibits the use of vitamin E 

as a stabilising agent for a selection of oils. A positive outcome from the blending of PO 

with plant seed oils would have potential commercial gains. It would allow Earthoil to 

overcome patent restrictions, with the potential to licence PO blending with plant seed 

oil’s.  
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6.2 Results 

 

Table 30. Oxidation of oleic rich oils blended with 1% PO at 18
o
C and 60

o
C 

 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

Baobab       

18
o
C       

Control 6.8 ±1.7 0.2 ±0.1 8.5 ±0.2 0.6 ±0.3 9.9 ±1.7 1.5 ±0.1 

+ 1% PO 6.0 ±0.4 0.8 ±0.3 6.8 ±0.4 1.3 ±0.2 8.8 ±0.0 v 

60
o
C       

Control 1.2 ±0.7 nd  1.3 ±0.2 nd  3.2 ±1.1 2.0 ±0.4 

+ 1% PO 0.9 ±0.2 1.9 ± 0.0 1.7 ±0.2 nd  4.8 ±1.7 3.6 ±0.7 

Macadamia       

18
o
C       

Control nd  nd  3.6 ±0.4 nd  5.2 ±0.0 nd  
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 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

+ 1% PO 0.2 ±0.0 0.4 ±0.3 1.9 ±0.1 2.8 ±0.5 8.1 ±0.5 1.9 ±0.3 

60
o
C       

Control nd  nd  0.3 ±0.1 nd  0.3 ±0.1 nd  

+ 1% PO 0.2 ±0.0 0.4 ±0.1 0.6 ±0.2 2.1 ±0.9 0.9 ±0.2 2.3 ±0.6 

Moringa       

18
o
C       

Control 2.7 ±0.8 nd  15.8 ±0.9 1.5 ±0.8 32.9 ±2.6 nd  

+ 1% PO 2.1 ±0.2 nd  15.5 ±0.8 nd  29.6 ±1.4 nd  

60
o
C       

Control 2.7 ±0.8 nd  8.0 ±1.0 nd  4.3 ±0.8 nd  

+ 1% PO 2.4 ±0.4 nd  9.8 ±0.2 nd  5.0 ±0.2 2.1 ±0.4 

Yangu*       

18
o
C       

Control 15.9 ±0.1 4.5 ±0.3 25.5 ±1.1 5.3 ±0.2 27.2 ±1.0 5.3 ±0.5 
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 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

+ 1% PO 27.1 ±0.1 nd  30.4 ±0.4 0.0 ±0.0 33.9 ±0.8 2.8 ±0.2 

60
o
C       

Control 15.9 ±0.1 4.8 ±0.3 39.9 ±1.6 6.3 ±0.4 69.6 ±1.2 7.1 ±0.4 

+ 1% PO 34.4 ±0.2 3.7 ±0.4 66.9 ±0.9 8.5 ±1.3 286.8 ±154.7 47.8 ±0.9 

PV are values in meqkg
-1

 oil. p-A.V. are unitless. Results represent the mean ±SD for triplicate analyses. Poly = polymerization. nd = not detected. *Data of same 

batches with varying time zero values. 
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Table 31. Oxidation of linoleic rich oils blended with 1% PO at 18
o
C and 60

o
C 

 

 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

EPO       

18
o
C       

Control 9.6 ±0.7 3.1 ±0.3 38.8 ±2.4 3.4 ±0.2 62.8 ±0.7 2.9 ±0.2 

+ 1% PO 9.8 ±0.3 3.5 ±1.4 37.6 ±0.4 5.5 ±1.2 58.5 ±2.0 4.8 ±1.9 

Grape       

18
o
C       

Control 5.8 ±0.5 2.4 ±0.2 36.0 ±1.6 2.8 ±0.2 66.6 ±3.3 2.9 ±1.4 

+ 1% PO 5.8 ±0.8 2.9± 0.2 25.4 ±1.1 3.2 ±0.5 59.8 ±2.1 2.4 ±0.1 

Manketti*       

18
o
C       

Control 13.1 ±0.7 16.9 ±2.7 17.2 ±1.4 19.3 ±0.2 14.5 ±2.0 17.5 ±0.6 
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 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

+ 1% PO 9.9 ±0.2 20.1 ±0.6 13.1 ±0.3 17.9 ±0.7 14.1 ±0.5 17.5 ±0.9 

60
o
C       

Control 13.1 ±0.7 16.9 ±2.7 50.3 ±8.6 50.2 ±5.7 Poly Poly 

+ 1% PO 16.9 ±1.2 8.5 ±0.3 85.1 ±1.6 28.6 ±4.6 166.7 ±38.2 66.9 ±8.8 

Rosehip       

18
o
C       

Control 37.7 ±0.3 18.1 ±0.5 51.0 ±0.1 18.1 ±0.5 54.8 ±0.1 16.6 ±0.4 

+ 1% PO 37.4 ±0.4 17.4 ±0.4 49.5 ±0.4 17.9 ±0.8 53.3 ±0.5 17.0 ±0.2 

Wheat Germ       

18
o
C       

Control 8.6 ±0.1 3.4 ±0.5 12.7 ±0.4 7.3 ±1.1 24.7 ±0.3 13.7 ±0.4 

+ 1% PO 12.5 ±0.2 3.6 ±0.6 18.4 ±0.4 0.7 ±0.6 31.9 ±1.1 Nd 

60
o
C       

Control 8.6 ±0.2 3.4 ±0.5 77.7 ±1.1 5.2 ±1.2 228.3 ±1.3 10.8 ±2.2 
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 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

+ 1% PO 12.5 ±0.2 3.6 ±2.3 93.2 ±4.0 7.1 ±1.4 201.4 ±19.6 13.5 ±2.4 

PV are values in meqkg
-1

 oil. p-A.V. are unitless. Results represent the mean ±SD for triplicate analyses. Poly = polymerization. nd = not detected. *Data of same 

batches with varying time zero values. 
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Table 32. Oxidation of linolenic rich oils blended with 1% PO at 18
o
C and 60

o
C 

 Time (h) 

 0 48 120 

 P.V. p-A.V. P.V. p-A.V. P.V. p-A.V. 

Brown Flax*       

18
o
C       

Control 15.6 ±0.4 0.8 ±0.3 18.6 ±0.4 nd  20.0 ±0.7 0.9 ±0.8 

+ 1% PO 15.6 ±0.4 0.8 ±0.3 16.9 ±0.4 1.3 ±0.2 17.0 ±0.4 0.2 ±0.2 

60
o
C       

Control 15.6 ±0.4 0.8 ±0.3 602.7 ±5.9 20.0 ±0.3 poly Poly 

+ 1% PO 15.6 ±0.4 0.8 ±0.3 166.3 ±5.8 7.8 ±1.0 605.9 ±8.2 18.2 ±1.0 

Pomegranate*       

18
o
C       

Control 7.3 ±0.2 14.3 ±0.2 7.7 ±1.1 19.4 ±0.3 8.7 ±1.1 22.3 ±0.4 

60
o
C       

Control   56.6 ±2.5 21.4 ±1.6 poly Poly 

PV are values in meqkg
-1

 oil. p-A.V. are unitless. Results represent the mean ±SD for triplicate analyses. Poly = polymerization. nd = not detected *Result 

provided by MSc Students working on same research project
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6.3 Results and Discussion 

 

The oil’s have been grouped according to their degree of sataturation. The data for the 

addition of 1% PO has been presented with the control data for the host oils, which was 

previously displayed in chapter 4. It must be noted that the control was carried out at with 

the current data, which was completed as one large study. The oxidative stability is 

determined by employing the peroxide and p-anisidine assays. 

Pomegranate oil which was added to the oils contained 4.3 mg/100g of tocopherols.  

 

 

6.3.1 Oleic acid rich oils (Table 30). Baobab oil (M/P, 1.1) remained relatively stable at 

18
o
C accumulating low levels of peroxides, and NVAs, 9.9 meqkg

-1
 and l.5 respectively. 

The addition of PO did not enhance the oil’s oxidative stability. The peroxide and NVA 

content remained relatively constant. At 60
o
C the PVs were lowered with no significant 

change in the NVAs.  The addition of PO did not enhance Baobab’s thermo-oxidative 

stability. The peroxides remained similar to the control, although an increase was 

observed in the NVAs. The increased temperature may have increased the rate of 

oxidation. This may have lead to the formation of volatile compounds, hence the low 

accumulation of NVAs in the control and PO blend. 

Macadamia oil, (M/P, 36.2) remained relatively stable during the 120 hour time period. 

Macadamia oil control has been discussed in detail in chapter 4. The addition of PO at 

18
o
C increased the peroxide content by 55%. The NVAs which were undetectable in the 

control have been detected upon the addition of PO. At elevated temperatures Macadamia 
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oil showed remarkable stability. The addition of 1% PO increased the content of 

peroxides and NVAs. The increased rate of oxidation with increasing temperature again 

suggests that oxidation proceeds through the formation of volatile compounds. The 

addition of 1% PO did not enhance Macadamia oil’s oxidative/thermo oxidative 

stabilities. 

Yangu oil (M/P, 1.2) at 18
o
C accumulated 11.3 meqkg

-1
 of peroxide. The NVA content at 

120 hours was recorded as 5.3. It must be noted that Yangu oil which was supplemented 

with PO had an increased peroxide content at time zero. Therefore comparison of the data 

will be based on the overall accumulation of peroxides and NVA in each individual oils. 

The addition PO lowered the peroxide accumulation to 6.8 meqkg
-1

. The addition of PO 

lowered the NVA content in Yangu oil. At 60
o
C the peroxide content was increased, 

although the data was erroneous as the ±SD was above100 meqkg
-1

. Yangu control had a 

p-anisidine value of 7.1, the addition of PO increased the p-anisidine value to 47.8, a 6 

fold increase. The addition of PO to Yangu oil had no effect on the oxidative stability and 

negative effects on the thermo-oxidative stability. At the elevated temperature the 

negative effect maybe due to the proxidants effects of the PO, which has caused an 

increase in oxidation. 

Moringa oil (M/P, 76.9) had a peroxide content of 33 meqkg
-1

, with undetectable 

amounts of NVAs. The addition of PO at 18
o
C had no effect on the oxidative stability of 

the oil. The peroxide content remained similar to the control, and low levels of NVAs 

was detected. At an elevated temperature of 60
o
C Moringa oil’s peroxide content was 

reduced and NVAs remained undetectable, this maybe due to the peroxides have been 

broken down into volatile compounds. The addition of PO at elevated temperatures had 
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no effect on the oxidative stability of Moringa oil. Therefore the addition of PO to 

Moringa oil did enhance the oil’s oxidative stability.   

The previous chapter showed on two separate occasions that PO stabilised Moringa oil. 

The addition of PO stabilised highly oxidised and moderately oxidised Moringa oil. The 

current data set has shown Pomegranate oil to have no effect on the oxidative stability of 

the oil. The confliction in the data obtained, highlights the complexity of Pomegranate 

oils stabilisation properties. The complexity maybe due to the concentration of the 

antioxidants in PO and the host, if the antioxidant content of PO and the host oil are 

optimised then the oil would become stabilised. If the antioxidant content of the oil is not 

optimised then a proxidant effect can be the outcome. 

 

 

6.3.2 Linoleic acid rich oils (Table 31). Evening primrose oil (M/P, <0.1), was relatively 

unstable with a PV of 62.8 meqkg
-1

 and NVA content of 2.9. The addition of PO had no 

marked effect on the peroxide content and the NVAs content. Therefore PO blended with 

EPO did not have an effect on the oxidative stability. 

Grape oil (M/P, 0.2) control was unstable at 18
o
C. The peroxide content accumulation 

was 60 meqkg
-1

. The NVAs reached a value of 2.4. The blending of PO with Grape seed 

oil had no effect on its oxidative stability. The peroxide and NVAs remained similar to 

the control.  

The addition of PO to Manketti oil (M/P, 0.2) showed an increase in the peroxide 

accumulation at 18
o
C. It must be noted that Manketti oil which was supplemented with 

PO had a decreased peroxide content at time zero. Therefore comparison of the data will 
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be based on the overall accumulation of peroxides and NVA in each individual oil.  

Manketti oil’s control sample increased NVA content shows that the oil has degraded at 

18
o
C. This may indicate oxidation at low temperatures leads to the formation on non 

volatile compounds as opposed to volatile compounds. 

The incubation of Manketti oil at 60
o
C lead to its polymerisation beyond 48 hours. 

Polymerization of oils at elevated temperatures has been reported due to heat lowering 

the oils solubility leading to polymerization [147]. PO addition to Manketti oil at 60
o
C 

increased the oil’s oxidative stability, by delaying the onset of polymerisation. The 

addition of PO to Manketti had no significant effect on the oils oxidative stability at 

18
o
C. The addition of PO to Manketti oil at elevated temperature showed a positive effect 

by delaying the onset of polymerisation. The reason for the delay in oxidation maybe due 

to the antioxidant effects exhibited by PO. 

Wheat germ oil (M/P, 0.2) peroxide content increased steadily at 18
o
C, with a final value 

of 25 meqkg
-1

. The NVA levels at 18
o
C were relatively high, with the content of 13.7 at 

120 hours. The blending of 1% PO to Wheat germ oil showed no significant effect on the 

PV, but did lead to a reduction in the NVA levels. The peroxide content of Wheat germ 

control at 60
o
C surpassed 200 meqkg

-1
. The NVA content of Wheat germ was recorded to 

be greater than 10. The blending of PO to Wheat germ oil at 60
o
C reduced the PV by 

10%, although no reduction was observed for the NVA levels. The addition of PO to 

Wheat germ oil did not have a significant effect on its oxidative stability at 18
o
C or 60

o
C. 
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6.3.3 Linolenic acid rich oils (Table 32). Brown flaxseed oil (M/P, 0.2) oxidised at a 

slow rate at 18
o
C. The addition of PO did not have an effect on the peroxide or NVA 

content. Brown flaxseed oil oxidative stability at 60
o
C can not be fully evaluated as the 

oil polymerises, suggesting poor oxidative stability. The addition of PO to Brown 

flaxseed oil at 60
o
C reduced the oils PV by 72% at 48 hours, this lead to the preservation 

of the oil from polymerization. The oxidative stability of Brown flaxseed oil was not 

enhanced with the blending of 1% PO. The thermo-oxidative stability of Brown flax oil 

has shown positive results with the blending of 1% PO. 
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6.4 Conclusions 

 

The previous chapter showed positive results when PO was blended with Moringa and 

Borage oil and this was the basis for the screening in this chapter.  The blending of PO 

failed to prevent oxidation of a number of oil’s based on assessments made using 

peroxides and anisidine values. The results obtained highlight the complexities in 

evaluating the effectiveness of Pomegranate oils stabilising properties. The progressive 

study does show that future studies would require the isolation of PO individual 

antioxidant components, and then evaluating the each component’s antioxidant 

properties.  
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Chapter 7 

 Processing of oils 

 

7.1 Introduction 

 

Crude oils extracted from the seeds of the plants often require processing to remove non-

glyceride impurities [44]. The processing procedure includes degumming, alkali refining, 

bleaching, hydrogenation and deodorisation, or deodorisation directly after bleaching 

[125]. Degumming of an oil removes the phosphatides (gums), a process that involves 

treating the oil with water at 50-70
o
C. Post degumming the oils undergo alkali refining to 

neutralise the fatty acids, and convert the free fatty acids into insoluble soaps [44]. The 

soaps are removed from the oil prior to bleaching with acid treated clay (Earth). 

Bleaching often renders the oil colourless in appearance. Bleaching also has the added 

effect of removing impurities such as chelated pro oxidant metals, sulphur compounds, 

peroxides and traces of aldehydes and ketones [44, 231].  

Alkali refining and bleaching of an oil can be time consuming and costly, reducing both 

the cost and processing time could be achieved if both steps could be combined. This 

would effectively encompass adding the bleaching earth directly to the oil/soap mixture. 

Earthoil has proposed a method whereby the refining and the bleaching would be 

combined to make one step process as opposed to two steps. Effective combinations both 

processes is the proposed aim of this current chapter. A small scale laboratory trial will 

be conducted, simulating commercial processing of oils. A positive outcome from the 
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trial would allow Earthoil to tailor build a processing plant which would be able to carry 

out the combined process of alkali refining and bleaching. 
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7.2 Results 

Cotton seed is an oil with a distinctive black colour. The reduction in colour is a process 

which involves the removal of gossypol. 

 

Figure 46. Colour reduction in cotton seed oil. 

 

 

Cotton seed oil (D) treated with activated carbon to reduce the colour content of the oil prior to processing. 

Cotton seed oil was incubated with activated carbon under constant mixing. Samples A-C were incubated 

for 18 hours at 45
o
C, with 400mg (A), 200mg (B) and 50mg (C) activated carbon. The oils were also 

incubated at 18 hours at 18
o
C, with 400mg (G), 200mg (F) and 50mg (E) activated carbon.  
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Alkali refining and bleaching of various oil’s to remove colour and impurities. This is 

required by many consumers in the oil industry. 

 

Figure 47. Alkali refining and bleaching of cotton seed oil 

 

 

Cotton seed oil treated with Tonsil 419 FF adsorbent and acid activated Tonsil Optimum 210 FF bleaching 

earth.C1, alkali refined oil; C2, alkali refined and bleached; C3, combined alkali refining and bleaching 

with 2% earth; C4, combined alkali refining and bleaching with 10% earth. 

 

 

 

 

 

 

 

Oil C1 C2 C3 

 

C4 
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Figure 48. Alkali refining and bleaching of Moringa oil 

 

 

Moringa oil treated with Tonsil 419 FF adsorbent and acid activated Tonsil Optimum 210 FF bleaching 

earth.C1, alkali refined oil; C2, alkali refined and bleached; C3, combined alkali refining and bleaching 

with 2% earth; C4, combined alkali refining and bleaching with 10% earth 

 

Table 33. The removal of Vitamin E from pomegranate and macadamia oil 

 
 Vitamin E mg/100g 

Time Macadamia Pomegranate 

Control (0 hrs) <0.1 4.3 

24 hrs <0.1 1.6 

48 hrs <0.1 0.7 

The removal of vitamin E from macadamia and pomegranate oil. the oils were extracted with alumina for 

24 to 48 hours. 

 

Oil C1 C2 C3 

 

C3 
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7.3 Results and Discussion 

 

The effectiveness of bleaching can be determined through the colour removal of the oil. 

Two oils were selected, a dark coloured oil, Cotton seed, and a light coloured oil, 

Moringa. 

 

 

7.3.1 Colour removal from cotton seed oil (Figure 46). Cotton seed oil visually was a 

dark coloured oil. The dark colour has been attributed to the gossypol content (0.12%) 

[232]. The removal of gossypol was required prior to the bleaching of the oil. The 

treatment of the oil with activated carbon and stirred at 18
o
C and 45

o
C. The colour 

removal was not observed in the oils, at both temperatures with varying concentrations of 

activated carbon. The complexity of colour removal of Cotton seed oil highlights the 

need to take caution when cold pressing the oil. Poor pressing conditions can lead to an 

increase in the oil’s gossypol content.  

 

 

7.3.2 Cotton seed oil (Figure 47). The dark brown colour of Cotton seed oil was greatly 

reduced when the alkali refining and bleaching were carried out as two separate processes 

(C2). The combined steps of alkali refining and bleaching did not prove to be successful 

at 2% (C3) and 10% (C4) bleaching earth addition. A colour reduction was observed 

when comparing C3 and C4 with the un-processed cotton seed oil, but on comparison 

with C2, combined processing was unsuccessful. 
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Cotton seed has been reported to be a difficult oil to bleach, due to the dark colour of the 

oil, which is attributed to the gossypol content [232]. A modification to the method would 

to double bleach the oil, which would effectively help reduce the colour of the oil. Due to 

time constraints of the project this was never attempted, although is a possible route to 

follow in future research. 

 

 

7.3.3 Moringa oil (Figure 48). The yellow colour of Moringa oil was completely 

removed when alkali refining and bleaching was carried out as two separate processes 

(C2). The combined steps of alkali refining and bleaching proved to be successful at 2% 

(C3) and 10% (C4) bleaching earth addition. Comparison of the two step process (C2), to 

the combined process (C3&4), showed the combined process oils to be turbid, which may 

have arisen from filtering. To accurately measure the colour of each of the oils obtained 

through both processes, a Lovibond tintometer would be required to measure colour 

change. 

 

Pumpkin seed oil was alkali refined and bleached separately with Tonsil Optimum 210 

FF bleaching earth. The data obtained from the Lovibond tintometer showed the initial oil 

to have a reading of 10,9 Red and 15 Yellow units. The post processing readings were 5,0 

Red and 3,2 Yellow units [231]. A similar study was carried out with Tomato seed oil, 

again Tonsil Optimum 210 FF bleaching earth was used, the Lovibond tintometer gave an 

initial reading of 22 Red and 10 Yellow units. The post processing readings were 10 Red 

2 Yellow, again a significant reduction in colour [233].  
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In both studies the bleaching earth used was Tonsil Optimum 210 FF, which is an acidic 

bleaching earth. The importance of the bleaching earth can determine the efficiency of 

the colour removal [234]. 

A linear relationship has been reported based on the bleaching efficiency relationship 

towards the bleaching earths surface area and the acidity [234].  Earths which have been 

treated with an acid have increased void spaces in their particles. The increased voids 

lead to an increase in the total surface area. A greater surface area increases the contact of 

the bleaching earth with the oil,  leading to increased bleaching activity [44].  

Each individual plant is unique and demands its own optimal processing conditions [235]. 

Individual oils require specific bleaching earths, with varied temperature and bleaching 

earth contact time [235]. Acidity, moisture and the initial quality of the oil are parameters 

which would determine the processing pathway required to produce an oil which is 

marketable [235]. 

 

 

7.3.4 Tocopherol removal (Table 33). Several oils were processed to remove the 

tocopherols from the oil. The removal of the tocopherols can be achieved through column 

chromatography with activated alumina. A modification to method was proposed 

whereby the oil was incubated with activated alumina in an inert atmosphere such as 

nitrogen.  

The removal of the tocopherols would allow for a blank oil to be assayed for its oxidative 

stability. The tocopherol content was analysed through HPLC at Eurofins laboratories, 
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UK. A range of samples were processed although the costly analysis only allowed for two 

oils be analysed. Macadamia and Pomegranate oils were selected for analysis.  

Macadamia oil had an initial tocopherol content of <0.1 mg/100g. The incubation of 

Macadamia oil with alumina for 24 and 48 hours, gave a tocopherol content of <0.1 

mg/100g. The tocopherol content of untreated and treated Macadamia oil was at the 

lower limits of detection. Macadamia has been reported to be a nut oil with low levels of 

tocopherols, which was displayed by the results obtained in this present study [213]. 

Untreated Pomegranate oil had a tocopherol content of 43 mg/100g. The reported levels 

of tocopherols in pomegranate oil has been recorded as 16-17 mg/100g α-tocopherol and 

8-9 mg/100g γ-tocopherol [118]. The levels of tocopherols can be dependant on the 

cultivar and geographical location. 

Pomegranate oil which was incubated with alumina for 24 and 48 hours showed a 

reduction in the tocopherol content, 63 and 84% respectively. Therefore plant seed oils 

which require tocopherol removal would require treating for a minimum 48 hours to 

effectively reduce the tocopherol content. Although as with all processing procedures of 

oils, contact time and alumina concentration would be dependant on the oil selected.  
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7.4 Conclusions 

 

The effectiveness of combing the alkali refining and bleaching showed a positive 

outcome with Moringa oil. The combined processing did not prove to be successful with 

the dark coloured cotton seed oil. To accurately determine the effectiveness of combined 

refining a larger variety of oils would need to be studied, with various acidified bleaching 

earths.  

The processing of oils would ultimately be dependant on the oil. The processing would be 

modified and adjusted based on the oils physical and chemical properties.  
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Chapter 8 

General Conclusions 

 

Research focused on evaluating the oxidative stability and characterisation of plant 

speciality oils supplied by the sponsor, Earthoil Plantations (Bury St Edmunds, Suffolk, 

UK).The fatty acid profiles, free fatty acid and peroxide content of the all speciality oils 

was collated into a database. Oils within the database were categorised based on their 

major fatty acid content. Using the database as a reference source it is now possible to 

compare the variation in composition from different batches harvested for example from 

different geographic locations or from closely related species. It is also possible to 

observe oils which characteristically had high peroxides or free fatty acid content. This 

can be used to inform extraction and subsequent processing protocols for such oils. The 

database also enabled Earthoil to asses the quality of oils they have processed for 

example Macadamia, Evening Primrose and Sweet Almond oil. If an oil had consistent 

high PV of FFA then advice was given to the company on how to overcome these 

problems. The reference source was also used to identify anomalies in specific batches 

and to allow the company to self evaluate how this may have occurred for that batch 

handling process. For example an oil that had a high peroxide, the feed back would have 

been to handle and store the oil in an inert atmosphere. Relaying information back to 

Earthoil on the quality of the oils was a major part of the interaction with the company. 

A number of the speciality oils provided by Earthoil are very new commodities which 

have not yet gained a significant market niche. Oils such as Callophyllum, Poppy seed, 

Coffee seed and Sea Buckthorn oils, were stereochemically analysed for the first time.  
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The oils were enriched with a saturated and/or a monounsaturated fatty acids at positions 

sn-1 and sn-3. The sn-2 position of the four oils was esterified with a polyunsaturated 

and/or a monounsaturated fatty acid consistent with known acylation patterns in are well 

studied species 

The oxidative stability of a selection of oils was evaluated at 18
o
C and 60

o
C. The oils 

were supplemented with α-tocopherol to enhance the oxidative stability. The addition of 

750ppm of α-tocopherol at 18
o
C increased the oxidative stability of Brown flax, Moringa, 

Wheat germ and Yangu oils. At 60
o
C Brown flax, Manketti and Pomegranate oil all 

polymerised beyond 48 hours. The addition of 750ppm α-tocopherol delayed the onset of 

polymerisation by up to 48 hours in Brown flaxseed oil. The addition of α-tocopherol 

also showed proxidants effects at 18
o
C with Baobab oil. At 60

o
C, α-tocopherol addition 

showed proxidants effects in Yangu oil and Wheat germ oil. For both oils α-tocopherol 

increased the oxidative stability at 18
o
C. Therefore the addition α-tocopherol to Yangu 

and Wheat germ oil must be at low temperatures, as the antioxidant begins to act as 

proxidants at elevated temperatures.  

Pomegranate oil showed a high resistance to oxidation, and was blended into other 

speciality oils at 1%. Pomegranate oil increased the oxidative stability of Yangu oil at 

18
o
C. The addition of Pomegranate oil to Wheat germ oil at 60

o
C, decreased the peroxide 

content by 10%. In Manketti and Brown flax seed oil at elevated temperatures, 

Pomegranate oil delayed the onset of polymerisation. Preliminary studies of Pomegranate 

oil blending to Moringa and Borage oil showed it to be more effective than α-tocopherol. 

The addition of 1% Pomegranate oil displayed pro oxidant activities in Macadamia and 

Wheat germ oil at 18
o
C. At 60

o
C the addition of 1% Pomegranate oil showed proxidants 
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activity in Baobab oil. The effectiveness of Pomegranate oil maybe due to it conjugated 

linolenic acid fatty acid, Punicic acid.  

 

Future research for characterisation of the oils should be focused on employing a variety 

of assays to characterise the oils. Determinations of the antioxidant content using high 

throughput screening methods such as the ABTS radical cation assay would provide 

valuable data on the antioxidant potential of the oils which could then be used to further 

interpret the kinetics of oxidation currently assessed by PV and p-AV determinations. 

Additional determinations such as volatile production, using GC headspace analysis 

would be valuable and provide another parameter with which to assess oil oxidation.   

Further characterisation of parameters such as density, unsaponifiable matter and 

chlorophyll content could all be added to the database  Stereochmical analysis provides 

valuable information on underlying acylation patterns  and this could achieved at a faster 

pace  using  LC-MS based methods which has  more rapid turn around times than the 

Brockerhoff procedures used here.  

The future research directions for the oxidative of speciality oil should be focused on 

evaluating the antioxidant potential of punicic acid. This will require its isolation from 

triacylglycerols by hydrolysis and removal of any other potential components in the oils 

with antioxidant properties. Addition of purified punicic acid to other oils will allow 

evaluation of its potential antioxidant properties and if proven successful would allow 

processing protocols to be patented. This would be a highly favoured route as the use of 

natural antioxidants is favoured over synthetic additives because of worldwide health 

concerns.   
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Appendix 

 

Data for Graph 1. Oxidative stability of plant seed oils 

 

Oil Time 

  0 1 4 6 24 48 120 

Grape 20.2 24.9 27.3 36.6 47.6 89.0 170.1 

Kakui 1.1 2.1 4.3 5.1 9.6 18.1 47.4 

Lime 28.7 33.2 29.9 43.5 72.1 76.2 94.5 

Manketti 3.5 3.8 4.5 6.0 6.7 8.8 9.1 

Marula 2.1 3.9 3.0 5.1 7.7 15.5 31.6 

Moringa 2.7 nd Nd nd 3.2 15.8 32.9 

Papaya 1.2 1.6 2.0 2.7 4.8 8.4 21.9 

Passion 4.9 5.1 6.2 6.0 8.9 11.9 20.8 

Grapefruit 4.0 6.4 12.2 nd 21.5 39.1 85.1 

Pomegranate 1.1 1.2 2.8 2.4 3.2 7.8 11.8 

Sesame 1.0 3.6 4.2 4.5 6.9 8.8 13.5 

nd = not determined 
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Data for Graph 2. Peroxide accumulation in Moringa oil 

 

Oil Time 

  0hr 1hr 4hr 24hr 48hr 120hr 

Moringa 0.4 3.0 6.6 40.7 82.8 182.8 

Moringa 1% PO 3.0 6.1 12.1 28.4 43.2 82.5 

Moringa 5% PO 1.4 4.0 12.1 19.9 42.3 68.0 

Moringa 13% PO 3.3 5.9 11.6 17.7 28.5 71.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




