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NEUROSAT: An OverviewDan Cornford and Ian Nabneyd.cornford@aston.ac.uk, i.t.nabney@aston.ac.ukTechnical Report NCRG/98/011 May 1, 1998Project Report Version 1.01 IntroductionThis report gives an overview of the work being carried out, as part of the NEUROSAT project, inthe Neural Computing Research Group at Aston University. The aim is to give a general review ofthe work and methods, with reference to other documents which provide the detail. The documentis ongoing and will be updated as parts of the project are completed. Thus some of the referenceshave yet to be completed.In the broadest sense, the Aston part of NEUROSAT is about using neural networks (and otheradvanced statistical techniques) to extract wind vectors from satellite measurements of oceansurface radar backscatter. The work involves several phases, which are outlined below. A briefsummary of the theory and application of satellite scatterometers forms the �rst section. The nextsection deals with the forward modelling of the scatterometer data, after which the inverse problemis addressed. Dealiasing (or disambiguation) is discussed, together with proposed solutions. Finallya holistic framework is presented in which the problem can be solved.2 Satellite Scatterometer TheoryObtaining wind vectors over the ocean is important to Numerical Weather Prediction (NWP) sincethe ability to produce a forecast of the future state of the atmosphere depends critically on knowingthe current state accurately (Haltiner and Williams, 1980). However, the observation network overthe oceans (particularly in the southern hemisphere) is very limited (Daley, 1991). Thus it ishoped that the global coverage of ocean wind vectors provided by satellite borne scatterometerswill improve the accuracy of weather forecasts by providing better initial conditions (Harlan and



2 NEUROSAT: An OverviewO'Brien, 1986; Lorenc et al., 1993). The scatterometer data also o�ers the ability to improvewind climatologies over the oceans (Levy, 1994) and the possibility of studying, at high resolution,interesting meteorological features such as cyclones (Dickinson and Brown, 1996).
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Figure 1: The ERS-1 scatterometer geometry.The ERS-1 satellite was launched in July 1991 by the European Space Agency. Many instrumentswere carried by the satellite (O�ler, 1987), including the Advanced Microwave Instrument whichis capable of indirectly measuring both ocean surface waves and winds. The on-board microwaveradar operates at 5.3 GHz and measures the amount of backscatter generated by small ripples onthe ocean surface of around 5 cm wavelength. Measured backscatter from the ocean surface is givenas the Normalised Radar Cross Section, and generally denoted by �o, which has units of decibels.A 500 km wide swathe is swept by the satellite along the track of its polar orbit, with nineteencells sampled across the swathe, each cell having dimensions of roughly 50 by 50 km (Figure 1).Thus there is some overlap between cells. Also, each cell is sampled from three di�erent directionsby the fore, mid and aft beams respectively giving a triplet of �o's, (�o1 ; �o2 ; �o3). This �o triplet,together with the incidence angle of the beams (which varies across the swathe) can be used todetermine the average wind vector within the cell (O�ler, 1994).Many methods to compute wind vectors from scatterometer data exist. Most have consideredmodelbased techniques (Wentz, 1991; Sto�elen and Anderson, 1992; O�ler, 1994) where a physicallybased mapping from wind vectors to �o is formulated. Thiria et al. (1993) modelled the mappingfrom �o to wind vectors using simulated data, and a neural network based classi�er, which gaveprobabilities1 of the wind direction being in each of thirty-six intervals. Simulated data wasused since real �o measurements were not available at the time the work was undertaken. Thisgroup (Sylvie Thiria, Michel Crepon, Carlos Badran and Phillipe Richaume) are also involved inNEUROSAT, enhancing their model. To our knowledge, no other published work has consideredthe prediction of wind vectors directly from �o.2.1 The geophysical scatterometer modelMuch e�ort has been put into understanding the theoretical relationship between �o and winddirection (Wentz, 1991; Sto�elen and Anderson, 1992; O�ler, 1994). This has been based onstudies of the physical processes that govern backscattering from water surfaces (Ebuchi et al.,1993) together with analysis of the relationship between wind vectors (both buoy observed andNWP derived) and scatterometer measurements (O�ler, 1994). From these studies empiricalforward models between single �o's and relative wind direction (#) have been established of the1Strictly, a classi�cation problem was solved, interpretting the network outputs as direction-class conditionalprobabilities, although these could be negative and need not sum to one.
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modelFigure 2: A theoretical sketch of the relationship between backscattered radiation and winddirection, for a �xed wind speed. This corresponds to a slice across the `cone-like'manifold. The height up the cone de�nes the wind speed.general form �o � b0 + b1cos(#) + b2cos(2#) (1)where the coe�cients are complicated functions of the scatterometer incidence angle and the windspeed. The most widely used and currently operational forward model is known as CMOD4(O�ler, 1994; Sto�elen and Anderson, 1997). We have three �o measurements for each cell andthese together de�ne a cone-like manifold in 3 dimensional space. For most �o triples, which areobserved with noise, there is ambiguity over the optimal direction to select (Figure 2).This is typical of many inverse problems in the geophysical sciences, where the forward modeloutput is uni-valued for a given set of inputs (e.g. �o as a function of wind direction) but theinverse model is multi-valued (e.g. wind direction as a function of �o). The relationship betweenwind speed and �o is, however, known to be uni-valued (Thiria et al., 1993). Since the wind speedis largely uncorrelated with the relative wind direction, the problem of modelling a wind vectorcan be split into modelling the speed and direction separately. We should note that in generalwe are considering relative wind direction - that is wind direction which is relative to the satelliteazimuth angle2 - rather than absolute wind direction.It is worth noting the distinction between the forward model:(u; v)! �o (2)and the inverse problem: �o ! (u; v) (3)The use of the term inverse problem here is rather loose. In the engineering literature an inverseproblem is generally concerned with the estimation of model parameters given some observations(Cornford, 1998b). Here we use the term inverse problem, in the sense of statistical terminology,to denote the fact that the problem is multi-valued.3Operationally, the problem of obtaining wind directions from scatterometer data is resolved usingthe CMOD4 forward model (at present) and minimising some cost function (which is typically2The azimuth angle gives the clockwise angle from north of the scatterometer beam incident on the cell.3Taking a Bayesian perspective leads to the conclusion that model parameters and variables can be treated inexactly the same way, thus no distinction would be necessary.



4 NEUROSAT: An Overviewa sum of squares error) between the observed �o triplets and the manifold de�ned by CMOD4.A look up table is used and NWP forecasts improve the chances of �nding the correct solution(O�ler, 1994). Up to 4 possibly valid solutions are generally obtained (although there are oftenonly 2 solutions with 180 degree ambiguity | the true and alias solutions) and some other methodis applied to decide which direction is to be selected. Two techniques have been employed basedon local median �lters (Schultz, 1990; Sha�er et al., 1991) and the use of background wind vectorsfrom NWP forecasts (Chelton et al., 1989). The ambiguity removal problem is discussed later.3 The NEUROSAT Approach at AstonThe work carried out in this project is performed within a pragmatic Bayesian (O'Hagan, 1994)framework. It is felt that probability theory is one of the most powerful ways to deal with un-certainty in natural systems. For instance when we measure backscatter from the surface of theocean we are not measuring the `true' value (if this even exists). There are a multitude of factorsfrom transmission errors, instrument errors and errors derived from the transmissivity propertiesof the atmosphere (which vary in space and time) which prevent us measuring the backscatter itselfexactly. Thus the probabilistic framework (Cornford, 1997a) provides a natural framework withwhich we can address, and cope with, these errors. Once one has accepted that the probabilisticframework is the correct way to proceed, one naturally arrives at a Bayesian conclusion, sinceBayes theorem is nothing more than a de�nition of the rules of conditional probability.We adopt a pragmatic framework because we recognise that while the Bayesian solution is oftenthe `correct' solution (given your modelling assumptions) it is often desirable to take into accountthe computational feasibility. Bayesian methods tend to be based on Monte Carlo methods whichoften makes them very computationally demanding. While this is no argument for not applyingBayesian methods the results of this project might not be greatly appreciated if it took one weekon an `average' workstation to derive one wind �eld from a single scatterometer swathe. Thus weare pragmatic (rather than dogmatic) and are happy to use other principled methods along sidethe Bayesian ones and justi�ed simpli�cations within the Bayessian approach.The most general information we can have about the scatterometer data and wind vectors is givenby the joint probability P (ui;�oi ) where we use ui = (ui; vi) to represent the wind vector in the i'thcell. Note that we can also write the vector ui as the speed and direction (kuik; #i). Throughoutthis document we assume that �oi is a vector of observations of backscatter triple together withother information necessary such as the incidence angle of the beam, all from the i'th cell of thescene4. We also assume that we are working in a reference frame relative to the satellite azimuthangle, which allows us notational simplicity since we can neglect the azimuth angle and neverexplicitly mention the incidence angle unless speci�cally required.The joint probability can be written:P (ui;�oi ) = P (uij�oi )P (�oi ) = P (�oi jui)P (ui) (4)The conditional probability P (�oi jui) can be interpreted as the forward model (2) while P (uij�oi )describes the inverse problem (3). What we are really after is:P (uj�o) = Qi P (�oi jui)P (u)Qi P (�oi ) /Yi P (�oi jui)P (u) (5)where P (uj�o) is the conditional probability density of u and �o the wind vectors and backscat-ter over the whole scene. This is just Bayes theorem (in one form) and forms the basis of the4Cell is used to describe the 50 � 50 km region which forms one observation by the satellite. A group of cells,measured almost simultaneously as the satellite over-passes, is called a scene.



NEUROSAT: An Overview 5NEUROSAT approach at Aston. Note that:P (�oju) =Yi P (�oi jui) (6)because given the wind vector in each cell, theoretically there is a one to one mapping to thebackscatter values. Given a good model, there is no reason for the conditional probabilities (errors)to be spatially correlated5. However:P (uj�o) 6=Yi P (uij�oi ) (7)because this time even if we have the backscatter measurements for each cell the ambiguity (oneto many mapping) means that we cannot uniquely determine the probability of the wind �eld6.We have proposed several algorithms to retrieve wind vectors from the scatterometer data andthese are outlined below.In the �rst approach we attempt to directly estimate P (uij�oi ) using mixture density networks. Wecan then use a number of heuristics to choose the correct solution from those possible (ambiguityremoval). This is developed in section 4. We shall also examine the use of the so called scaledlikelihood trick to use the inverse model with prior models over wind �elds (Williams, 1997)In the second approach we model the forward problem, P (�oi jui) using neural networks and thenuse Bayes theorem (5) together with a (spatial) prior �eld wind model P (u) to determine theposterior P (uj�o) which should be unimodal, or nearly so. This is developed in section 5.4 Solving the Inverse ProblemRecall that we seek to model P (uij�oi ). We will use the framework of mixture density networks(Bishop, 1994; Williams, 1996) to estimate the conditional probability distributions as functions ofthe input variables, �o. There are several ways that one could attempt to perform this estimation.We have already done some work examining the possibility of the splitting the wind vector intospeed and direction component. A multi-layer perceptron (Bishop, 1995) with linear output unitsis used to estimate the wind speed - which is a single valued function and can thus be trainedusing a sum of squares error function (which corresponds to maximum likelihood estimation underthe assumption of Gaussian errors). The wind direction is the predicted using a mixture densitynetwork which includes wind speed as an input. Care must be taken to ensure the periodic natureof wind direction is taken into account. We use mixtures of circular normal distributions to do this(Bishop and Nabney, 1996). The results are promising, however it is still necessary to select thecorrect directions (speed is uniquely predicted). We must also note at this point we do not haveP (uij�oi ) rather we have E[kuikj�oi ] and P (#ij�oi ; kuik) where E denotes the expectations. If wehad a density model for kuik then we could theoretically combine the two probabilities to obtainP (uij�oi ).75Actually the conditional probabilities may be correlated since satellite borne sensors often have correlated errors.This would be due to the same sensor being used to observe every cell.6In this we are assuming perfect observations and models. When observation and model errors are consideredthen strictly speaking neither (6) or (7) are likely to have equality. Also, surrounding observations may impart usefulinformation to the individual cell probabilities. It then becomes a modelling descision as to whether the spatialcontext is given in u or �o. We choose to put priors over u because wind �elds are reasonable well understood.7The density model is emplicitly de�ned to be a �xed variance Gaussian in the wind speed network. This isprobably not a very reasonable model - the noise might be expected to increase with ui.



6 NEUROSAT: An OverviewWe assume kuik to be the unique (correct) value and choose the four most likely directions #i fromP (#ij�oi ; kuik). We have then attempted to use several ambiguity removal procedures, which areall rather ad-hoc, yet fast and potentially very useful. One powerful method for de�ning a wind�eld is to use div-curl splines (Wahba, 1982; Amodei and Benbourhim, 1991; Cornford, 1997b).The div-curl spline is �tted to all the wind vectors and then the `correct' directions are chosen fromthe possible directions on the basis of the minimum error between the spline and chosen direction.This procedure can be iterated, but clearly requires at least 50% of the most likely solutions to becorrect. There are many di�erent heuristics and models available here - see Cornford (1997b) formethodological details and Cornford (1998a) for implementation heuristics and results.We are also using mixture density networks to directly model P (uij�oi ) together with MSc studentDavid Evans. This approach mitigates the need for combining distributions at the end, and allowsus to apply the scaled likelihood trick of Williams (1997). This will require priors over possible wind�elds and will be dealt with in the next section. We can also apply the set of heuristic techniques(such as div-curl splines) to the two or four most likely wind vectors extracted from P (uij�oi ).In addition to the considerations outlined above we shall assess the role of the neural networkmodel which forms the basis of the mixture density network (that is the multi-layer perceptron orradial basis function network) investigate the role of regularisation (Bishop, 1995) and assess thee�ect of changing the inputs to the networks (for instance the possibility of having one model foreach of the satellite tracks and the use of information from surrounding scatterometer observations- cf. (Thiria et al., 1993)).
5 Solving the Forward ProblemAlthough there are a number of forward models currently in existence, such as CMOD4, none areprobabilistic. In order to progress we needed a probabilistic forward model: P (�oi jui). This isbeing developed using the mixture density network framework of Williams (1996) by another MScstudent Guillaume Ramage. Once we have this forward model we can use Bayes theorem to get:P (uj�o) / Z  Yi P (�oi jui)!P (uj�u)P (�u)d�u (8)where P (�oi jui) is a local model for each scatterometer cell, while P (uj�u) is a spatial (prior)model for wind �elds de�ned by parameters �u. In this case we are going to use random �eldbased priors (Cornford, 1997a). We may be able to evaluate this integral analytically (which willbe a good thing) and thus compute the posterior analytically since P (�oi jui) is Gaussian. If wecannot evaluate the posterior analytically then we will be able to sample from it using MarkovChain Monte Carlo (MCMC) methods (Smith and Robserts, 1993; Neal, 1997). This will be morefully discussed elsewhere.In order to enhance the prior model P (uj�u) we have investigated wind �eld models based on theexible modi�ed Bessel function based covariance (Cornford, 1997a; Cornford, 1998c) and mod-els which include discontinuities (Cornford, 1998d) which allow us to represent fronts (Cornford,1997c). The model becomes considerably more complex, but may help greatly to resolve fronts -which are important features.



NEUROSAT: An Overview 76 Ambiguity RemovalThe problem of ambiguity removal has been largely addressed in the preceding two sections. Weshall be investigating two main methods. The �rst involves heuristically based (`quick and dirty')methods based on models for wind �elds. Div-curl splines (Cornford, 1997b) are suitable for thissection although random �eld model priors are also possible (Cornford, 1997a). The four (or two)most likely solutions are chosen from P (uij�oi ) and heuristics are used to select those which best�t the adaptive wind �eld model. These methods will be fast but sensitive to the heuristics used.The methods are unlikely to perform well unless 75 percent of the most likely solutions are thecorrect ones (this is based on recent results yet to be published).The second method uses Bayes theorem together with the forward (probabilistic) model and therandom �eld wind �eld prior. As outlined previously, this is likely to be computationally intensivebecause of the need to use MCMC techniques. We hope to use Hybrid Monte Carlo (Duane et al.,1987) methods to speed up the convergence of the Markov Chain and ensure we are sampling fromregions of high posterior density.6.1 Final ProcessingIt is envisaged that once the correct ambiguous solution has been selected, an accurate forwardmodel, developed by Carlos Badran in France, will be used to produce the �nal wind vectors. Itis important that this forward model is initialised near the true (as given by the scatterometermeasurement) wind vector, thus the previous modelling steps are crucial. It is hoped to use theJacobian of the forward model to �nd the `true' value. It remains to be seen whether this step willimprove the quality of the wind �elds produced.7 ConclusionThe above report has given an overview of what work is being carried out in the NCRG as partof the NEUROSAT program. The intention is not to completely specify all parts of the project,rather to provide pointers to relevant sources of information. This is an ongoing project and thussome of the reports may not yet be available. It is envisaged that this will be updated as progressis made.ReferencesAmodei, L. and M. N. Benbourhim 1991. A Vector Spline Approximation. Journal of Approxi-mation Theory 67, 51{79.Bishop, C. M. 1994. Mixture Density Networks. Technical Report NCRG/94/004, Neural Com-puting Research Group, Aston University, Aston Triangle, Birmingham, UK.Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford University Press.Bishop, C. M. and I. T. Nabney 1996. Modelling Conditional Probability Distributions forPeriodic Variables. Neural Computation 8, 1123{1133.Chelton, D. B., M. H. Freilich, and J. R. Johnson 1989. Evaluation of Unambiguous VectorWinds from the Seasat Scatterometer. Journal of Atmospheric and Oceanic Technology 6,1024{1039.
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