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AbstractTrainingMixture Density Network (MDN) con�gurations within theNetlab framework takes timedue to the nature of the computation of the error function and the gradient of the error function.By optimising the computation of these functions, so that gradient information is computed inparameter space, training time is decreased by at least a factor of sixty for the example given.Decreased training time increases the spectrum of problems to which MDNs can be practicallyapplied making the MDN framework an attractive method to the applied problem solver.



2 Mixture Density Network Training by Computation in Parameter Space1 IntroductionMixture Density Networks (MDNs) provide a framework for modelling conditional probabilitydensities p(tjx) (Bishop, 1995). The distribution of the outputs, t, is described by a parametricmodel whose parameters are determined by the output of a neural network, which takes x as itsinputs. The general model is described by equation 1 below:p(tjx) = MXj=1 �j(x)�j(tjx) (1)Were �j(x) represent the mixing coe�cients (which depend on x) and �j(tjx) are the kerneldistributions of the mixture model whose parameters also depend on x.Training of mixture density networks for modelling wind vectors requires data sets of at least threethousand examples, with a MDN complexity of at least two centres and �fteen hidden units. Usingthe Netlab1 toolbox for Matlab, training MDNs of this complexity takes at least a week, butcan be longer dependent on the machine con�guration and loading.The majority of training time is spent computing two functions, the gradient of the error functionand the error function. The bottle neck in these functions is the Matlab for loop which is poorlyoptimised. These two functions are re-engineered to take advantage of the Matlab optimisedmatrix functionality.2 Software Techniques for Computation in Parameter SpaceThis section describes software techniques used to facilitate computation of the error and errorgradient of a MDN by matrix operations. For a complete discussion of the implementation ofMDNs see (Bishop, 1994)2. The parameter space is de�ned as the outputs of the Multi-LayerPerceptron (MLP), after the inputs x have been forward propagated through the network. Theoutputs of the MLP are vectors which contain the parameters that de�ne the coe�cients of themixture model conditional on the inputs x. For spherical Gaussian mixture models the coe�cients3are, �j;n the mixing coe�cient for the jth kernel of pattern n, �jk;n the kth element of the centre ofthe jth kernel of pattern n and �2j;n the width or variance of the jth kernel of pattern n. The orderof the coe�cients in the parameter vector have been changed from that in the current Netlabimplementation of the MDN to clarify the notation of the problem. The parameter vector for thenth pattern is now described as:[�1;n; �2;n; � � � ; �j;n; � � � ; �M;n| {z }M mixing coe�cients ;�11;n; �12;n; � � � ; �1c;n| {z }1st kernel centre ; � � � ; �j1;n; �j2;n; � � � ; �jc;n| {z }jth kernel centre ; � � � ; �M1;n; �M2;n; � � � ; �Mc;n| {z }Mth kernel centre ; � � � ;�21;n; �22;n; � � � ; �2j;n; � � � ; �2M;n| {z }M widths ] (2)where M is the number of kernels (mixtures) in the model and c is the dimension of the targetspace (when modelling wind vectors c = 2). For all patterns we have a matrix of parameters P,1Available from http://www.ncrg.aston.ac.uk/netlab/2Available from http://www.ncrg.aston.ac.uk/Papers/3Throughout this document the subscript identi�es the model parameter and the pattern for which the modelparameter refers too. For example �j;n is the mixing coe�cient of the jth kernel for the nth pattern.



Mixture Density Network Training by Computation in Parameter Space 3which is split into three sub-matrices de�ned by P� the mixing coe�cients, P� which describesthe centres of each kernel and P� the parameters de�ning the variance of each kernel. Each rowcorresponds to a training pattern (total N):
P� = dimensionMz }| {2666666664�1;1 �2;1 � � � �M;1�1;2 �2;2 � � � �M;2... ... ... ...�1;n �2;n � � � �M;n... ... ... ...�1;N �2;N � � � �M;N

3777777775 (3)
P� = dimensionMcz }| {2666666664�11;1 �12;1 � � � �1c;1 � � � �M1;1 �M2;1 � � � �Mc;1u11;1 u12;2 � � � u1c;2 � � � �M1;2 �M2;2 � � � �Mc;2... ... ... ... ... ... ... ... ...�11;n �12;n � � � �1c;n � � � �M1;n �M2;n � � � �Mc;n... ... ... ... ... ... ... ... ...�11;N �12;N � � � �1c;N � � � �M1;N �M2;N � � � �Mc;N

3777777775 (4)
P� = dimensionMz }| {2666666664�

21;1 �22;1 � � � �2M;1�21;2 �22;2 � � � �2M;2... ... ... ...�21;n �22;n � � � �2M;n... ... ... ...�21;N �22;N � � � �2M;N
3777777775 (5)

There is the corresponding matrix t which describes the target values for each pattern:
t = dimensionMz }| {2666666664 t1;1 t2;1 � � � tc;1t1;2 t2;2 � � � tc;2... ... ... ...t1;n t2;n � � � tc;n... ... ... ...t1;N t2;N � � � tc;N

3777777775 (6)
2.1 Computing the Gaussian activations and probabilitiesEach kernel within the MDN framework is implemented using a c dimensional Gaussian. Thecomputation of a Gaussian requires the squared distance between the targets and the centres ofthe Gaussian to be computed. For each centre for each pattern we require:dj;n = ktn � �j(xn)k2 (7)



4 Mixture Density Network Training by Computation in Parameter SpaceIn computing the squared distance we are interested in the parameters which correspond to thecentres of the Gaussian.To compute the distance the following operation is computed for each centre of each Gaussian foreach pattern: 0BBB@t1;nt2;n...tc;n1CCCA�0BBB@�j1;n�j2;n...�jc;n1CCCA (8)This operation can be completed as one matrix operation as follows:
D = dimensionMcz }| {2666666664 t1;1 t2;1 � � � tc;1 � � � t1;1 t2;1 � � � tc;1t1;2 t2;2 � � � tc;2 � � � t1;2 t2;2 � � � tc;2... ... ... ... ... ... ... ... ...t1;n t2;n � � � tc;n � � � t1;n t2;n � � � tc;n... ... ... ... ... ... ... ... ...t1;N t2;N � � � tc;N � � � t1;N t2;N � � � tc;N

3777777775
� dimensionMcz }| {2666666664�11;1 �12;1 � � � �1c;1 � � � �M1;1 �M2;1 � � � �Mc;1u11;1 u12;2 � � � u1c;2 � � � �M1;2 �M2;2 � � � �Mc;2... ... ... ... ... ... ... ... ...�11;n �12;n � � � �1c;n � � � �M1;n �M2;n � � � �Mc;n... ... ... ... ... ... ... ... ...�11;N �12;N � � � �1c;N � � � �M1;N �M2;N � � � �Mc;N

3777777775 (9)That is
D = dimensionMcz }| {2666666664 t1;1 t2;1 � � � tc;1 � � � t1;1 t2;1 � � � tc;1t1;2 t2;2 � � � tc;2 � � � t1;2 t2;2 � � � tc;2... ... ... ... ... ... ... ... ...t1;n t2;n � � � tc;n � � � t1;n t2;n � � � tc;n... ... ... ... ... ... ... ... ...t1;N t2;N � � � tc;N � � � t1;N t2;N � � � tc;N

3777777775�P� (10)
Inspection of equation (9) reveals that the target data is repeated for each centre, and so by re-shaping the target matrix the distances can be computed as matrix operations within Matlab.The followingMatlab code reshapes the t vector into the form required in equation (9).% Build t that suits parameters,% that is repeat t for each centret = kron(ones(1,ncentres),t);



Mixture Density Network Training by Computation in Parameter Space 5% Which gives results like the following% --------------------------------------t = 1 2 34 5 67 8 9t = 1 2 3 1 2 3 1 2 34 5 6 4 5 6 4 5 67 8 9 7 8 9 7 8 9The following code the completes the squared distance operation.% Do subtractiondiff = t - centres;% Square each resultdiff2 = diff.^2;% reshape and sum each componentdiff2 = reshape(diff2',dim_target,(ntarget*ncentres))';% This is the transformation after the reshape% centres are zero for this illustration% diff2 =%% 1 4 9 1 4 9 1 4 9% 16 25 36 16 25 36 16 25 36% 49 64 81 49 64 81 49 64 81%%% diff2 =%% 1 4 9% 1 4 9% 1 4 9% 16 25 36% 16 25 36% 16 25 36% 49 64 81% 49 64 81% 49 64 81sum2 = sum(diff2,2);% Calculate the sum of distance, and reshape% so that we have a distance for each centre per target



6 Mixture Density Network Training by Computation in Parameter Space% i.e. ntarget * ncentresdist2 = reshape(sum2,ncentres,ntarget)';% This is the transformations after the reshape% sum2 =%% 14% 14% 14% 77% 77% 77% 194% 194% 194%%% dist2 =%% 14 14 14% 77 77 77% 194 194 194Where
dist2 = dimensionMz }| {2666666664 d1;1 d2;1 � � � dM;1d1;2 d2;2 � � � dM;2... ... ... ...d1;n d2;n � � � dM;n... ... ... ...d1;N d2;N � � � dM;N

3777777775 (11)
and the equation (7) is now in matrix form. Now that the distance has been computed it is anatural progression to compute the activations of each Gaussian kernel.

A = dimensionMz }| {2666666664a1;1 a2;1 � � � aM;1a1;2 a2;2 � � � aM;2... ... ... ...a1;n a2;n � � � aM;n... ... ... ...a1;N a2;N � � � aM;N
3777777775 (12)

where aj;n = �j(tnjxn) = � 1(2��2j;n) c2 exp� dj;n2�2j;n� (13)The probabilities of each Gaussian are then computed by multiplying each activation by the re-



Mixture Density Network Training by Computation in Parameter Space 7spective mixing coe�cient:
Pr = dimensionMz }| {2666666664 �1;1a1;1 �2;1a2;1 � � � �M;1aM;1�1;2a1;2 �2;2a2;2 � � � �M;2aM;2... ... ... ...�1;na1;n �2;na2;n � � � �M;naM;n... ... ... ...�1;Na1;N �2;Na2;N � � � �M;NaM;N

3777777775 (14)
These principles are implemented in a function called f_prob listed below. Where mixparams.varsrefers to the matrix P� , line 12 computes the squared distance, line 22 computes the matrix Aand �nally line 28 is the computation of Pr1 function [prob,a] = f_prob(net,mixparams,t)23 ncentres = net.mix.ncentres;4 dim_target = net.mix.nin;5 nparams = net.mix.nparams;6 ntarget = size(t, 1);78910 % Calculate squared norm matrix, of dimension (ndata, ncentres)11 % vector (ntarget * ncentres)12 dist2 = f_dist2(net,mixparams,t);1314 % Calculate variance factors15 variance = 2.*mixparams.vars;161718 % Compute the normalisation term19 normal = ((2.*pi).*mixparams.vars).^(dim_target./2);2021 % Now compute the activations22 a = exp(-(dist2./variance))./normal;232425 % Accumulate negative log likelihood of targets262728 prob = mixparams.mixcoeffs.*a;292.2 Computing the probability of a point, �jThe probability of a point is de�ned as:



8 Mixture Density Network Training by Computation in Parameter Space
�j = �j�jPml=1 �l�l (15)The computation of equation (15) is implemented using row and column operations on the matrixdescribed by equation (14): �j;n = prj;npr1;n + pr2;n + � � �+ prM;n (16)and

� = dimensionMz }| {2666666664�1;1 �2;1 � � � �M;1�1;2 �2;2 � � � �M;2... ... ... ...�1;n �2;n � � � �M;n... ... ... ...�1;N �2;N � � � �M;N
3777777775 (17)

which is implemented in Matlab as follows;1 function [post, a] = f_post(net, mixparams, t)2 %3 % Check that inputs are consistent45 [prob a] = f_prob(net,mixparams,t);67 s = sum(prob, 2);8 % Set any zeros to one before dividing9 s = s + (s==0);10 post = prob./(s*ones(1, net.mix.ncentres));
2.3 Reshaping the parameter matrixWhen computing the derivative @En@z�jk its is necessary that each of the components of the kernelcentres is operated on by its respective variance and posterior. To facilitate this operation as asingle matrix operation one further reshape is required. This takes a matrix (say P�) and rebuildsthe columns so that the dimensions are the same as P�, and populated such that for each �jk;nthere is a corresponding �2j;n. An example would be as follows where each of the centre parameters



Mixture Density Network Training by Computation in Parameter Space 9is matched to their corresponding width parameter.
P� = dimensionMcz }| {2666666664�11;1 �12;1 � � � �1c;1 � � � �M1;1 �M2;1 � � � �Mc;1u11;1 u12;2 � � � u1c;2 � � � �M1;2 �M2;2 � � � �Mc;2... ... ... ... ... ... ... ... ...�11;n �12;n � � � �1c;n � � � �M1;n �M2;n � � � �Mc;n... ... ... ... ... ... ... ... ...�11;N �12;N � � � �1c;N � � � �M1;N �M2;N � � � �Mc;N

3777777775 (18)
corresponding widths = dimensionMcz }| {2666666664�

21;1 �21;1 � � � �21;1 � � � �2M;1 �2M;1 � � � �2M;1�21;1 �21;2 � � � �21;2 � � � �2M;2 �2M;2 � � � �2M;2... ... ... ... ... ... ... ... ...�21;n �21;n � � � �21;n � � � �2M;n �2M;n � � � �2M;n... ... ... ... ... ... ... ... ...�21;N �21;N � � � �21;N � � � �2M;N �2M;N � � � �2M;N
3777777775 (19)

The following Matlab code shows how to reshape the parameter matrix into the desired form,z = [ 1 2 3;4 5 6; 7 8 9]z = kron(ones(dim_target,1),z);z = reshape(z,ntarget,(ncentres*dim_target));% Gives results like this% z =%% 1 2 3% 4 5 6% 7 8 9%%% z =%% 1 1 1 2 2 2 3 3 3% 4 4 4 5 5 5 6 6 6% 7 7 7 8 8 8 9 9 9
3 Computing the error function in parameter spaceThe negative log likelihood error function for a MDN is de�ned as (Bishop, 1995; Bishop, 1994):E = NXn=1� ln� mXj=1 �j(xn)�j(tnjxn)� (20)



10 Mixture Density Network Training by Computation in Parameter SpaceThen each element in equation (14) is de�ned as follows :Prj;n = �j(xn)�j(tnjxn) (21)and the implementation becomes row and column operations in Matlab. The following codeshows the function f_mdnerr, which implements equation (20).1 function err = f_mdnerr(net, x, t)2 %F_MDNERR Evaluate error function for Mixture Density Network.34 % Check arguments for consistency56 errstring = consist(net, 'f_mdn', x, t);7 if ~isempty(errstring)8 error(errstring);9 end1011 % Get the output mixture models12 mixparams = f_mdnfwd(net, x);13 probs = f_prob(net,mixparams,t);14 err = sum( -log(max(eps,sum(probs,2))));Line 13 returns a matrix of probabilities, and so the computation of the error for each patternis a summation along the rows of probs, and the total error becomes a summation of the vectorresulting from sum(probs,2)4 Computing the gradient of the error function in parame-ter spaceFirst forward propagate the inputs x through the MLP, which returns a matrix containing theparameters for each pattern (see Appendix A for source code listing)[mixparams, z] = f_mdnfwd(net, x);mixparams is a structure containing three matrices P�, P� and P� of the form described inequations (3), (4) and (5) respectively. Using techniques similar to those described in Section 2 allthe derivatives are then computed with matrix operations.4.1 Computing the error gradient with respect to the mixing coe�-cients, @En@z�The standard result for each centre is: @En@z�j = �j � �j (22)



Mixture Density Network Training by Computation in Parameter Space 11is simply computed as @En@z� = �� = P� �� (23)4.2 Computing the error gradient with respect to the kernel centres,@En@z�jkThe general result is @En@z�jk = �j��jk � tk�2j � (24)Using techniques described in Section 2.3 matrices P� and � can be reshaped, and the followingoperation is computed within Matlab:@En@z�jk = �� = dimensionMcz }| {266666666666666664
�1;1��11;1�t1;1�21;1 � � � � �1;1��1c;1�tc;1�21;1 � � � � �M;1��M1;1�t1;1�2M;1 � � � � �M;1��Mc;1�tc;1�2M;1 ��1;2��11;2�t1;2�21;2 � � � � �1;2��1c;2�tc;2�21;2 � � � � �M;2��M1;2�t1;2�2M;2 � � � � �M;2��Mc;2�tc;2�2M;2 �... ... ... ... ... ... ...�1;n��11;n�t1;n�21;n � � � � �1;n��1c;n�tc;n�21;n � � � � �M;n��M2;n�t2;n�2M;n � � � � �M;n��Mc;n�tc;n�2M;n �... ... ... ... ... ... ...�1;N��11;N�t1;N�21;N � � � � �1;N��1c;N�tc;N�21;N � � � � �M;N��M2;N�t2;N�2M;N � � � � �M;N��Mc;N�tc;N�2M;N �

377777777777777775(25)4.3 Computing the error gradient with respect to the kernel widths @En@z�jThe general result: @En@z�j = ��j;n2 �ktn � �j(xn)k2�2j;n � c� (26)is computed using the functions and matrices de�ned previously. Using the Matlab operator ./and .*, for element-wise division and multiplication respectively, the computation becomes:@En@z�j = �� = �2 �dist2P� �C� (27)where C is a matrix of dimension (npatterns; ncentres) with each element taking the value c, thedimension of the target space.



12 Mixture Density Network Training by Computation in Parameter SpaceA full listing of the Matlab function to compute the gradient of the error function is given inAppendix B5 Testing5.1 Training AccuracyTests using `gradcheck' from Netlab toolbox show that, for the con�gurations tested, the im-plementation of the gradient function performs to speci�cation.Comparison of demmdn1 and f_demmdn1 produces interesting results. Initially the training errorsappear to be identical (to the 6th decimal place). After the 36th iteration (demmdn1 trains for 200)the errors diverge in the 6th decimal. Comparing scale, they are identical (to the 6th decimal place)until the 105th iteration, where f_demmdn1 remains static for one iteration, there after the one steplagged scale of f_demmdn1 is the same as demmdn1. An explanation of these di�erences is o�eredby inspecting the average delta4 and the average of the modulus of delta for the results returnedby gradcheck as shown in table 1.MDN type mean(delta) mean(abs(delta))f_demmdn -3.4169e-009 4.0190e-008demmdn -1.6406e-009 4.1471e-008Table 1: Results of running gradcheck
The mean delta for f_demmdn1 is at least twice that of demmdn1, whilst the mean(abs(delta))are of the same magnitude but di�er in the 9th decimal place. The scaled conjugate gradientsoptimisation algorithm (Bishop, 1995) uses information on the gradient of the error function tominimise the error function. It is suggested that the di�erences in computed gradient accumulatesduring training and accounts for the divergence of training errors between demmdn1 and f_demmdn1.5.2 Training SpeedThe programme demmdn1was also used to illustrate the improvement in training time by comparingthe results of the Matlab profile function for each implementation. Two examples of profilereports are shown in Appendix C. Ten pro�le reports of each method where collected by runningbatch jobs (on a Silicon Graphics Challenge L, holding 4 x 200MHz R10000 CPUs, 512 Mb RAM,and running IRIX 6.2.). The summaries of these reports are tabulated in table 2. Note althoughthe standard deviation of demmdn1 seems large, both standard deviations relative to their means areof the same order. The di�erence in mean execution time illustrates the improvement in trainingtime by computation of the error and error gradient functions in parameter space.4delta is the di�erence between the computation of the error derivatives obtained from the analytic expressionsand those calculated using �nite di�erences (Bishop, 1994).



Mixture Density Network Training by Computation in Parameter Space 13MDN type mean(execution time) s std(execution_time) sf_demmdn1 10.99 0.23demmdn1 723.18 51.52Table 2: Summary results of running demmdn1 Netlab package ten times.6 ConclusionsThe techniques presented here for training Mixture Density Networks show that training in pa-rameter space leads to substantial gains in training time without loss of accuracy. Examinationof the gradient information shows that di�erences in training errors are due to small di�erencesin the computation of the gradient information. The example presented in this report shows animprovement in mean training time of at least a factor of sixty. The decreased training time allowsus to tackle more complicated problems, which previously took too long to train to be of any prac-tical use. Such an example, modelling wind vectors conditional on satellite information, discussedbriey in Section 1, shows training times improved from several days to a few hours.AcknowledgementsI thank Dan Cornford, for his patient reading and constructive comments on the draft versionsof this report, and Ian Nabney, for his constructive comments on the second draft of this reportand suggesting to change mixparams from a matrix to a Matlab data structure and to use theMatlab function kron instead of complex matrix reshapes implemented in the �rst version of thesoftware.AppendicesA Listing of MDN forward propagation functionfunction [mixparams, z, a] = f_mdnfwd(net, x)%F_MDNFWD Forward propagation through Mixture Density Network.%% Description% MIXPARAMS = MDNFWD(NET, X) takes a mixture density network data% structure NET and a matrix X of input vectors, and forward propagates% the inputs through the network to generate a structure MIXPARAMS which% describe the parameters of a mixture model. Each row of X represents% one input vector and the corresponding row of MIXPARAMS represents the% data structure vector of the corresponding mixture model parameters% for the conditional probability of target vectors.%% [MIXPARAMS, Z] = MDNFWD(NET, X) also generates a matrix Z of the% hidden unit activations where each row corresponds to one pattern.%



14 Mixture Density Network Training by Computation in Parameter Space% [MIXPARAMS Z, A] = MLPFWD(NET, X) also returns a matrix A giving the% summed inputs to each output unit, where each row corresponds to one% pattern.%% See also% GMM, MDN, F_MDNERR, F_MDNGRAD, MLPFWD, MDNMIX%% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)% Copyright (c) David J Evans (1998)% Check arguments for consistencyerrstring = consist(net, 'f_mdn', x);if ~isempty(errstring)error(errstring);end% Extract mlp and mixture model descriptorsmlpnet = net.mlp;mix = net.mix;ncentres = mix.ncentres; % Number of components in mixture modeldim_target = mix.nin; % Dimension of targetsnparams = mix.nparams; % Number of parameters in mixture model% Propagate forwards through MLP[y, z, a] = mlpfwd(mlpnet, x);% Compute the postion for each parameters in the whole% matrix. Used to define the mixparams structuremixcoeff = [1:1:ncentres];centres = [ncentres+1:1:(ncentres*(1+dim_target))];variances = [(ncentres*(1+dim_target)+1):1:nparams];% Convert output values into mixture model parameters% Use softmax to calculate priors% Prevent overflow and underflow: use same bounds as glmfwd% Ensure that sum(exp(y), 2) does not overflowmaxcut = log(realmax) - log(ncentres);% Ensure that exp(y) > 0mincut = log(realmin);temp = min(y(:,1:ncentres), maxcut);temp = max(temp, mincut);temp = exp(temp);mixpriors = temp./(sum(temp, 2)*ones(1,ncentres));% This is the dimension of the centres(1, ncentres*dim_target)mixcentres = y(:,(ncentres+1):ncentres*(1+dim_target));% Variances are exp of network outputsmixwidths = exp(y(:,(ncentres*(1+dim_target)+1):nparams));% Now build up all the mixture model weight vectors



Mixture Density Network Training by Computation in Parameter Space 15ndata = size(x, 1);% Return parametersmixparams.mixcoeffs = mixpriors;mixparams.centres = mixcentres;mixparams.vars = mixwidths;B Listing of the MDN error gradient implementationfunction g = f_mdngrad(net, x, t)%F_MDNGRAD Evaluate gradient of error function for Mixture Density Network.%% Description% G = F_MDNGRAD(NET, X, T) takes a mixture density network data% structure NET, a matrix X of input vectors and a matrix T of target% vectors, and evaluates the gradient G of the error function with% respect to the network weights. The error function is negative log% likelihood of the target data. Each row of X corresponds to one% input vector and each row of T corresponds to one target vector.%% See also% F_MDN, F_MDNFWD, F_MDNERR, MLPBKP, MDNMIX%% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)% Copyright (c) David J Evans (1998)% Check arguments for consistencyerrstring = consist(net, 'f_mdn', x, t);if ~isempty(errstring)error(errstring);end[mixparams, z] = f_mdnfwd(net, x);% Compute gradients at MLP outputs: put the answer in deltasncentres = net.mix.ncentres; % Number of components in mixture modeldim_target = net.mix.nin; % Dimension of targetsnmixparams = net.mix.nparams; % Number of parameters in mixture modelntarget = size(t,1);deltas = zeros(ntarget, net.mlp.nout);e = ones(ncentres, 1);f = ones(1, dim_target);post = f_post(net,mixparams,t);% Calculate prior derivativesdeltas(:,1:ncentres) = mixparams.mixcoeffs - post;



16 Mixture Density Network Training by Computation in Parameter Space% Calculate centre derivativeslong_t = kron(ones(1,ncentres),t);centre_err = mixparams.centres - long_t;% Get the post to match each ujk% this array will be (ntarget,(ncentres*dim_target))long_post = kron(ones(dim_target,1),post);long_post = reshape(long_post,ntarget,(ncentres*dim_target));% Get the variance to match each ujk% this array will be ntarget*(ncentres*dim_target)var = mixparams.vars;var = kron(ones(dim_target,1),var);var = reshape(var,ntarget,(ncentres*dim_target));% Compute deltadeltas(:,(ncentres+1):(ncentres*(1+dim_target))) = ...(centre_err.*long_post)./var;% Compute variance derivativesdist2 = f_dist2(net,mixparams,t);c = dim_target*ones(ntarget,ncentres);deltas(:,(ncentres*(1+dim_target)+1):nmixparams) = ...post.*((dist2./mixparams.vars)-c)./(-2);g = mlpbkp(net.mlp, x, z, deltas);
C Timing comparisonsExample results from running profile function in MatlabResults for f_demmdn1Total time in "~/Netlab/netopt.m": 10.89 seconds100% of the total time was spent on lines:[38 35]34: % Extract weights from network as single vector0.01s, 0% 35: w = feval(pakstr, net);36:37: % Carry out optimisation10.88s, 100% 38: [s{1:nargout}] = eval(optstring);39: w = s{1};Results for demmdn1



Mixture Density Network Training by Computation in Parameter Space 17Total time in "~/Netlab/netopt.m": 700.48 seconds100% of the total time was spent on lines:[38 35] 34: % Extract weights from network as single vector0.02s, 0% 35: w = feval(pakstr, net);36:37: % Carry out optimisation700.46s, 100% 38: [s{1:nargout}] = eval(optstring);39: w = s{1};ReferencesBishop, C. M. 1994. Mixture density networks. Technical Report NCRG/94/004, Department ofComputer Science and Applied Mathematics, Aston University, Birmingham, B4 7ET, UK.Bishop, C. M. 1995. Neural Networks and Pattern Recognition. Oxford University Press.


