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Abstract 18 
 19 
Mathematical methods in systematic conservation planning (SCP) represent a 20 
significant step toward cost-effective, transparent allocation of resources for 21 
biodiversity conservation.  However, research demonstrates important consequences of 22 
uncertainties in SCP.  Current research often relies on simplified case studies with 23 
unknown forms and amounts of uncertainty and low statistical power for generalizing 24 
results.  Consequently, conservation managers have little evidence for the true 25 
performance of conservation planning methods in their own complex, uncertain 26 
applications. SCP needs to build evidence for predictive models of error and robustness 27 
to multiple, simultaneous uncertainties across a wide range of problems of known 28 
complexity.  Only then can we determine true performance rather than how a method 29 
appears to perform on data with unknown uncertainty.  30 
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Systematic Conservation Planning: background and definition 31 
Widespread loss of biodiversity is commonly addressed by attempts to reserve, protect, and 32 
manage habitat for species at risk.  Making good choices for these actions and reserves in a 33 
non-static, spatial and temporal context is an extremely difficult problem when there are 34 
many species and many locations involved.  This leads to problems that are often not 35 
amenable to solution by rules of thumb or exactly solvable by analytic means.   36 
 37 
Over the past 25 years, a family of mathematical approaches has evolved to explicitly define 38 
criteria and computationally solve for near-optimal prioritizations of conservation actions.  A 39 
primary focus has been on mathematical methods for spatial allocation of conservation 40 
reserves 1-3 under the umbrella of systematic conservation planning (SCP) 4-6.  In recent years, 41 
research in this area has also evolved toward a broader emphasis on prioritizing conservation 42 
actions in general through the lens of decision theory 7.  In this paper, we examine the 43 
collision between these high-precision methods and complex, highly uncertain data.   44 
 45 
The ideas behind SCP have much to offer conservation managers in moving beyond ad-hoc 46 
conservation planning, including the promise of quantitative, repeatable, and transparent 47 
decision-making. This is a significant advance given the inscrutable and idiosyncratic nature 48 
of conservation planning and investment across the globe. The resulting methods are 49 
powerful tools that have been used in numerous real-world conservation efforts with 50 
significant biodiversity implications, for example, selecting reserves for Madagascar 8, the 51 
Great Barrier Reef 9, and South Africa 10. 52 
 53 
In spite of its successes and broad application, various authors have noted that SCP still 54 
encounters significant obstacles in bridging the gap from academic research to application.  55 
For example, Prendergast et al.11 found that many conservation managers were not 56 
implementing SCP methods simply because they were unaware of them.  A more vexing 57 
problem comes from the difficulty of implementing suggested actions within a complex web 58 
of socio-political constraints 12. Although these issues are equally important and substantial 59 
challenges for SCP research, we restrict our focus here to problems associated with 60 
mathematical aspects of SCP.  Specifically, we discuss the lack of evidence for approaches to 61 
addressing the complexities and large uncertainties that are associated with all data and 62 
models used in SCP.  63 
 64 
Can we predict the performance of SCP methods under uncertainty? 65 
While current SCP methods are mathematically sophisticated and highlight many important 66 
factors such as complementarity, risk, and uncertainty, there are important mathematical 67 
difficulties in applying these results to real problems.  In particular, research has focused on 68 
studies conducted in simplified circumstances where most real-world complications are either 69 
poorly understood or abstracted away to make the problem mathematically tractable 13. 70 
Unfortunately, uncertainties and approximations in data and models are ubiquitous in SCP, 71 
significantly affecting reliability of information about factors like: costs and budgets; land 72 
availability; species vulnerabilities, presence, abundance, and interactions; as well as large-73 
scale effects of climate, economics, land use change, and politics. These and numerous other 74 
complexities violate the assumptions of methods and effectively eliminate any theoretical 75 
guarantees of finding the best solution, or possibly even a good solution. This is true even for 76 
methods specifically aimed at dealing with uncertainty.   77 
 78 
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Many papers in the field do acknowledge the existence of multiple types of uncertainties and 79 
complications and propose methods for dealing with some of them 14-29.  However, these 80 
methods are only evaluated on case studies that provide little evidence for how they will 81 
perform in different and more complex circumstances.  While these studies are useful in 82 
highlighting the fact that a particular complication can have an effect on outcomes, this is of 83 
limited utility to practitioners; they only warn practitioners of the possibility of various 84 
problems arising, but give no generalizable result to predict the likelihood or degree to which 85 
these problems will apply in their particular situation. In fact, nearly every study very 86 
carefully states that their result is not generalizable beyond the current case study. 87 
 88 
The inability to estimate the likelihood and degree of error in SCP outcomes leaves 89 
conservation planners with the knowledge that there are things that they should worry about 90 
and things they should strive for, but it also leaves them with a range of important questions 91 
that in most cases are currently unanswerable, including: Given uncertainties in underlying 92 
data, can they have confidence in a conservation planning method's outcomes and defend it in 93 
a politically charged decision making environment?  And, how can they be sure that a method 94 
that excelled in a static, simplified case study with unknown uncertainties will suit their 95 
dynamic, complex situation, which may not share the characteristics that determined the 96 
performance documented in the case studies? 97 
 98 
One of the differences between traditional ecological research and SCP that makes dealing 99 
with uncertainty unusually important is that SCP results need to be more than another brick in 100 
the wall of science.  In particular, SCP methods are intended for use in real-world situations 101 
where a decision must be made, regardless of the current state of the science.  While much 102 
ecological research is focussed on trying to explain what factors might influence a process, 103 
SCP that is safe to use in the real world needs to reliably predict something about how a 104 
method will perform to be of genuine use in real world situations. 105 
 106 
This element of prediction requires a different research emphasis.  It means that we need to 107 
pay much more attention to deriving and conveying bounds on the degree and likelihood of 108 
error when SCP methods are applied to conditions well beyond the scope of a case study. 109 
Another equally important distinction of SCP is the focus on efficiency and optimality.  110 
Optimization can have the unfortunate side-effect of producing brittle solutions that are not 111 
robust to uncertainty as they intently rely on the details of the input data, which are known to 112 
be uncertain. 113 
 114 
While we raise many issues here about the accuracy of SCP methods, not all errors are 115 
equally important.  For a user making a decision, what matters is not the exact amount of 116 
error in the output.  Rather, the question is whether the decision and outcome would change if 117 
we could reduce the error, for example, by gathering more information. However, current 118 
SCP research does not enable us to reliably predict or even bound either the level of error or 119 
the likelihood of decision change.  120 
 121 
Underlying problems 122 
Many of the mathematical problems underlying these issues relate to three general problems 123 
that we will refer to as: Unknown amounts of error, the Generalization Problem, and 124 
Reliance on post-hoc sensitivity analysis.  125 
 126 
Unknown amounts of error: Apparent vs. True values 127 
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The first fundamental problem is that it is impossible to quantify the error in case studies 128 
using real data.  .  The problem here is that data inputs to SCP such as the distribution of 129 
species habitat or costs nearly always contain unknown or unknowable amounts of error.  130 
Users must pretend that input data are correct when evaluating model performance, hence 131 
only seeing the apparent results of the techniques of interest.  Consequently, studies 132 
comparing methods or rules of thumb on apparent data may provide meaningless and/or 133 
misleading results.   134 
 135 
The use of apparent data rather than true data also raises significant issues in the application 136 
of existing research.  That research tells us that things like complementarity and cost affect 137 
outcomes, but it tells us that based on true complementarity and true cost.  What does it tell 138 
us about apparent complementarity and apparent cost in real cases where the values used to 139 
compute these measures are all uncertain?   140 
 141 
The Generalization Problem: Reliance on case studies  142 
A second fundamental problem is that the SCP literature relies almost exclusively on case 143 
studies as opposed to proofs or experiments across many types of problems. This means that 144 
most SCP research lacks statistical power to control for problem characteristics that drive the 145 
performance of SCP methods.  Importantly, only a few studies attempt to characterize 146 
problems in a way that might allow users to determine whether a given method will perform 147 
well in their local situation; that is, whether results are generalizable (Box 1).   148 
 149 
In 2009, we demonstrated the importance of case study specificity by exploring a number of 150 
interactions between uncertainty and problem characteristics 30.  We showed examples where 151 
applying SCP methods on the same landscapes, the same number of species, the same costs 152 
and the same input uncertainties yielded very different performance as a function solely of 153 
the structure of species distributions.  That study highlighted how the intrinsic level of 154 
difficulty of a particular case study can have a major effect on the relative and absolute 155 
performance of a method, as well as on how deceptive its apparent performance is compared 156 
to its true performance (Figure 1).  Problem characteristics such as whether the target species 157 
are clumped onto a few hotspots or spread evenly across the landscape may completely 158 
determine whether a problem is easy or difficult, that is, whether a simple method can solve 159 
the problem or whether no method can possibly satisfy constraints.   These characteristics 160 
determine the likely quality and accuracy of a method's outcomes but are almost never 161 
mentioned. For example, studies rarely express problem characteristics such as species rarity 162 
distributions and cost distributions that would allow users to discern whether the 163 
characteristics of their problem (and the gaps in their data, or their knowledge of that data) 164 
are similar to those of published case studies. 165 
 166 
This general lack of controls and statistical power means that there is little or no evidence for 167 
generalization.  While authors nearly always honestly state that their study does not 168 
generalize, it means that there is little evidence to show that methods espoused in specific 169 
case studies will exhibit similar performance in a user’s own situation with its associated 170 
uncertainties and complications.  This is important because most real-world decisions are 171 
conducted in an environment where there is little time, expertise, and resource for local 172 
verification of method performance.   Since SCP results, unlike pure research, are intended as 173 
the basis for action, it is vital that method developers explore and give rigorous evidence for, 174 
the range and types of situations where a proposed method will perform well.  175 
 176 
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Reliance on post-hoc sensitivity analysis 177 
The primary way that uncertainty is addressed in SCP applications is to do a sensitivity 178 
analysis on a proposed solution after it has been derived.  It is based around the idea that if 179 
we perturb the inputs to a method and there is little variation in the results, then the method is 180 
reasonable. While this is a useful way to quickly identify fragile solutions, there are three 181 
major problems with relying on it as the sole evidence for reliability.  First, our results can be 182 
stable, but wrong.  A small variance may be a necessary condition for a good solution, but it 183 
tells us nothing about how close the solution is to being correct, i.e., its bias.  Second, the 184 
perturbations are generally done one variable at a time, in spite of research detailing problems 185 
with ignoring interactions among many uncertain variables 31.  While sensitivity analysis in 186 
higher dimensions is more difficult, there is significant research that makes this approach 187 
more feasible. Third, the choices of parameters, models, and perturbations are generally 188 
based on the investigator’s opinions about what is reasonable rather than on empirical 189 
evidence.  For example, cost is frequently included as an important feature in SCP 32-36 and 190 
there is research on methods to estimate cost data 35, 36, but error estimates on costs are almost 191 
never given even though costs can be a primary driver for outcomes.  Consequently, like 192 
other variables, when sensitivity analysis is applied to costs, it is generally based on opinion 193 
rather than evidence, in spite of the significant literature reflecting the common 194 
overconfidence of experts in their own opinions 37-39. 195 
 196 
The user’s dilemma 197 
To our knowledge there are no studies examining ways to characterise SCP problems that 198 
allow defensible bounds to be placed on a method’s performance under real-world 199 
conditions. Similarly, there is little software support for testing proposed solutions under 200 
complex combinations of local conditions and uncertainties or for sharing models of 201 
behavior, processes, and uncertainties.  Some may claim that generalization is in fact 202 
impossible because the real world is too complex.  However, our central argument is that it 203 
can’t go both ways; we must either generalize rigorously or test much more comprehensively.  204 
If the problem is so complex that reliable bounds on a method's performance in a new, unseen 205 
situation are impossible, then it is also impossible to claim a priori that the proposed method 206 
will give reliable performance there without extensive testing.   207 
 208 
Recommendations 209 
We believe that several positive steps can be taken to reduce the effects of these underlying 210 
problems. We detail these below and provide a summary and template for implementing them 211 
in Text Box 2. 212 
  213 

1) Test SCP methods on multiple problems using correct data, and control for 214 
complexity and uncertainty 215 

Understanding the impacts of uncertainty in real data necessitates the use of simulations and 216 
simulated errors.  Without simulation we can only test how a method appears to perform 217 
under uncertainty, rather than test its true performance. For many ecologists, “simulation” is 218 
a dirty word, but in this context it is an indispensable adjunct to field data, providing another 219 
experimental environment for collecting evidence about the behavior of methods under 220 
uncertainty 40-43.  Clearly, simulation must be grounded in links to the real world, but it is the 221 
only way that we can accurately gather mathematical evidence and statistical power for the 222 
simultaneous effects of uncertainty and complexity, given our limited ability to sample and 223 
experiment on the real world.  224 
 225 
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Other authors have raised the need for an evidence base for real-world conservation practice 226 
44-46.   We believe this is vitally important and our suggestions regarding the use of simulation 227 
complement this approach by providing evidence for the robustness of quantitative SCP 228 
approaches to complexity and uncertainty.  This is not possible with real-world data 229 
containing unknown amounts of error (see Box 2).  230 
 231 
Another advantage of simulation is that it allows us to explore the representational power of 232 
the mathematical methods themselves under uncertainty. By this we mean that SCP methods 233 
must at least be able to represent and perform well in simpler, simulated worlds if they are to 234 
perform well in the more complex and uncertain real world. As long as our simulated worlds 235 
have behaviors that are structurally similar to things that we want our methods to be able to 236 
handle, then we can use them to help explore a method's performance, investigate the 237 
consequences of uncertainties and complexities, and most importantly, weed out methods that 238 
are not robust to them.   239 
 240 

2) Explicitly model error on SCP inputs 241 
To simulate error and perform sensitivity analysis we must know the magnitude of errors in 242 
models and data, as well as the distributions of the errors.  For example, if errors in cost or 243 
species input maps are distributed uniformly across a study area, they will have different 244 
consequences for a reserve selection algorithm or metapopulation model than if the errors are 245 
spatially correlated with factors like soil type and patch boundaries. Unless we know the 246 
distributions, biases, and magnitudes of these errors, we have no evidence for choosing 247 
bounds or distributions of scenarios to test.  Consequently, our sensitivity analyses and 248 
simulations can be looking at the wrong parts of the model input space and mislead us.  249 
Unfortunately, error models for SCP inputs, particularly for spatial error and cost error, have 250 
received almost no attention in the literature.  They require much more research if we are to 251 
accurately evaluate and generalize SCP performance.   252 
 253 

3) More rigorous expectations for publication and funding 254 
Finally, editors, reviewers, and funding agencies would do well to insist that research goes 255 
beyond case studies and mathematical novelty and the impact of a single type of complexity 256 
or uncertainty in a single spatial distribution in a single location.  Ginzburg and Jensen have 257 
made a similar point in relation to theoretical ecology 47: 258 
 259 

“An engineering firm that builds a faulty bridge based on an overfitted model will be 260 
sued or fined out of existence; to date, we know of no ecological theorist whose 261 
similarly overfitted model has evoked comparable penalties.  Because society 262 
demands little from theoretical ecology, one can have a successful lifetime career in 263 
the field without any of one’s theories being put to the practical test of actual 264 
prediction.” 265 
 266 

True progress in SCP methods and outcomes requires a culture that expects new studies to 267 
control for the structure of problems and methods known to affect performance.  We 268 
especially need to evaluate methods on more than one problem and on problem formulations 269 
that reflect the world as it is, rather than as it would be if it were mathematically subservient 270 
to our favorite technique.  271 
 272 
Open questions 273 
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One issue in our suggestions is that we have advocated providing evidence for the models 274 
and bounds on errors used in sensitivity analysis.  While some evidence, such as error in 275 
fitted cost models, is available but seldom used, other evidence such as the spatial variation in 276 
the errors for cost or species distribution models is generally not accessible now.  Similar 277 
issues exist with respect to which types of uncertainty to include and how many uncertainties 278 
to explore at once. This lack of existing predictive information on relative importance and 279 
interactions among uncertainties is exactly why we advocate moving beyond case studies to 280 
studies with statistical power and the use of true rather than apparent data.  As these kinds of 281 
studies begin to appear, we can build reliable knowledge about the magnitude and 282 
distribution of errors in the mathematical methods underpinning SCP and use them to 283 
improve both the performance and the error bounds on our methods.   284 
 285 
As SCP methods have developed they have extended their utility beyond reserve selection to 286 
the choice of conservation actions in general, such as strategies for restoration 48, 49, invasive 287 
species control 50, 51, adaptive monitoring and management 52, 53, and conservation on private 288 
land 54, 55.  Some of these methods may appear not to have the problems described in this 289 
paper as they derive solutions directly from equations rather than through search algorithms.  290 
However, many of these equations hinge on the probabilities and rewards associated with 291 
different actions and outcomes.  These values are generally chosen based on expert opinion 292 
and are therefore, uncertain.  Research has shown that even though these calculations are 293 
designed to help with uncertainty, getting decision-theoretic probability and reward estimates 294 
wrong can lead to making a bad decision 56.  Consequently, it is important to have evidence 295 
and models for the structure and magnitude of those errors as well.    296 
 297 
Conclusion 298 
SCP is undoubtedly a useful and important advance in conservation decision-making. 299 
However, for SCP to be truly useful for conservation managers, the reliability of its outputs 300 
must be honestly characterized. A more rigorous typology and quantification of problem 301 
characteristics and error will also create potential for systematic meta-analysis and 302 
meaningful comparison of results.   303 
 304 
No matter how we arrive at a proposed conservation plan, we need to know:  i) the risks and 305 
rewards of attempting to use the proposed method or strategy in a particular location and ii) 306 
the likelihood of it achieving its claimed outcomes.  Both users and SCP itself will benefit 307 
greatly if we raise the bar and undertake more research that builds evidence for method 308 
performance in a way that reflects the uncertainties and complexities of the real world rather 309 
than over-simplified case studies on data containing unknown amounts of error.  Given that 310 
SCP outcomes may determine the fate of species, this problem is not “just academic”.  311 
 312 
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Box1 - Generalization and problem characterization 321 
When a user approaches their own conservation task and looks to the SCP literature for help, 322 
several questions arise in determining whether the results and method apply to their situation.  323 
In particular, they need to know which studies:  324 

1) Use data where true outcomes are/can be known; 325 
2) Use multiple geographic locations; 326 
3) Use multiple distributions of species co-occurrence, costs, threats, etc.; 327 
4) Explore multiple uncertainties simultaneously;  328 
5) Characterize problem attributes (i.e., explain the test problem in a way that enables 329 

the user to understand how similar it is to their own problem). 330 
 331 

A number of studies do address single uncertainties, but only use case studies without 332 
problem characterization to give users evidence for their situation.  Below we describe four 333 
studies that take positive steps toward characterizing problem structure and performance 334 
bounds, though there are others that take positive steps as well (e.g., 20-22).   335 
 336 
- The best, and perhaps the only, example of putting rigorous bounds on expected 337 
performance under an uncertainty is given by Moilanen et al. 57. Here a worst-case style 338 
analysis is used to mathematically guarantee a lower bound on species representations in 339 
Zonation outputs over input habitat maps assuming a given upper bound on input error.  This 340 
is a positive step but still does not address more complex uncertainties or uncertainties where 341 
it is difficult or impossible to determine the worst-case situation.   342 
 343 
- Pressey et al. 17 address problem characterization by demonstrating variation in outcomes 344 
resulting from changes of data set size, site size, rarity of features, and nestedness of features 345 
in replicated synthetic data sets.  All the data sets, however, were variations derived from a 346 
single original data set, consequently only exposing the variability of outcomes from one 347 
small corner of the problem domain.   348 
 349 
- Drechsler 18 addresses the uncertain dynamics of land acquisition through simulations that 350 
synthesise different combinations of species counts, species occupancy levels, and 351 
nestedness.  While there is explicit uncertainty in the land acquisition, the method assumes 352 
that probabilities are known and correct, which is unlikely and known to bring other risks 56.   353 
 354 
- Turner and Wilcove 19 also examine uncertainty in site availability, this time with a ten year 355 
time frame and three different real-world data sets, budget constraints and loss of sites to 356 
development.  However, they do not characterize the structure of the species sets to control 357 
for those effects and they ignore other complications, including uncertainty in the species 358 
data.  359 

360 
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Figure 1 - Problem difficulty and Apparent vs. True performance 361 
 362 
This figure shows one of the results from Langford et al. 30 to illustrate both the difficulties of 363 
relying on case studies and the utility of using simulated data to examine method 364 
performance under uncertainty. The objective was to find the least-cost reserve network that 365 
contains at least one representation of each species using two common reserve selection rules 366 
of thumb in the presence of error, which in this case was a 30% overestimate of habitat. The 367 
results are shown for three different distributions of species richness:  368 

- “Hot spots”, where species tend to co-occur on the same patch;  369 
- “Victorian”, where the distribution of co-occurrences matches a real distribution  370 
   in Victoria, Australia;  371 
- “Uniform”, where species locations are uncorrelated.  372 

 373 
The bar chart on the left shows the apparent costs of a reserve network that appears to 374 
represent each species at least once based on the erroneous maps.  The bar chart on the right 375 
shows the true costs required (the cost is measured as a proportion of total landscape cost). 376 
The dashed box around the apparent Victorian results highlight what would have been found 377 
in a single case study using "real" data.   378 
 379 
These results illustrate four important points discussed throughout this paper: 380 
 381 
1. Problem difficulty:  Even though the landscapes were identical and the number of patches 382 
occupied by each species was identical, controlling for the spatial distribution of the species 383 
showed a wide range of performance for both methods.  384 
 385 
2.  Misleading ranking of methods:  Based on apparent data, the Unprotected Richness rule of 386 
thumb appears to be far more efficient than the Simple Richness rule of thumb even though 387 
the results were approximately equal on the true data.  388 
 389 
3. Misleading absolute performance:  Using the apparent maps alone, one would grossly 390 
underestimate the cost required to achieve the conservation goal using Unprotected Richness. 391 
Interestingly, even though Simple Richness never appeared to perform as well as Unprotected 392 
Richness, its apparent performance was always similar to its true performance.  393 
 394 
4. Error amplification:  There is often a sense that all input data has errors, but the errors in 395 
the outputs will probably have similar magnitudes to those in the inputs. These experiments 396 
show this is not something that can be safely assumed.  397 

398 
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Box 2 - Summary of specific suggestions for improving SCP studies under uncertainty 399 
 400 
Here we provide a summary of specific recommendations for improving the utility and 401 
accuracy of SCP studies in the presence of uncertainty and real-world complications. 402 
 403 

1. Move beyond case studies The problem is not so much that case studies are done; 404 
rather it is that virtually no research that goes beyond case studies to anything more 405 
comprehensive. Developing libraries of studies that includes multiple problem 406 
structures and multiple interacting uncertainties will enable more predictive results.  407 

 408 
2. Evaluation When evaluating or comparing methods or studying uncertainties the 409 

following 3 steps should be included: (i) Testing using data where the true values are 410 
known, rather than with data containing unknown amounts of error (see below); (ii) 411 
Testing behavior under multiple uncertainties simultaneously, rather than one at a 412 
time;  (iii) Characterization of problem structure  (e.g. the number of species, 413 
landscape configuration, spatial co-occurrence of species or distributions of costs) and 414 
testing on multiple problems with different structures.  415 

 416 
3. Case studies  Sensitivity analyses should be done by simultaneously varying multiple 417 

factors known to influence outcomes rather than studying each factor in isolation. 418 
Where possible, evidence should be given for the range of errors used in the 419 
sensitivity analysis.  For example, if a model has been used to generate costs, 420 
sensitivity analysis should be based on evidence such as mean and variation for the 421 
model's error and for how it is distributed spatially. 422 

 423 
To make the method of testing with true versus apparent values more tangible, we outline the 424 
sequence of steps for this approach below (more detail and examples of use are given in 30):  425 
 426 

• We must first define a dataset as being a true representation of the world. This data 427 
may be synthetic or real, and could represent any or all of the inputs to an SCP 428 
problem such as species habitat maps, cost maps, etc. With synthetic data, direct 429 
control over the input data is possible, or real-world data can be used from multiple 430 
locations where problem characteristics differ. 431 

 432 
• Secondly, we can degrade these true inputs using models representing our beliefs 433 

about possible real-world forms of error, for example, over or under-estimation of 434 
costs or spatial bias in error in predicting species habitat. 435 

 436 
• Thirdly, SCP analysis should then be carried out in parallel on both true and degraded 437 

data. The impact of errors being studied can then be determined by comparing 438 
differences between the SCP outcomes in the true and degraded data.  439 

 440 
 441 

442 
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