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Abstract. In recent years, the increasing availability of data describing the dy-
namics of real-world systems led to a surge of interest in the complex networks
of interactions that emerge from such systems. Several measures have been intro-
duced to analyse these networks, and among them one of the most fundamental
ones is vertex centrality, which quantifies the importance of a vertex within a
graph. In this paper, we propose a novel vertex centrality measure based on the
quantum information theoretical concept of Holevo quantity. More specifically,
we measure the importance of a vertex in terms of the variation in graph entropy
before and after its removal from the graph. More specifically, we find that the
centrality of a vertex v can be broken down in two parts: 1) one which is neg-
atively correlated with the degree centrality of v, and 2) one which depends on
the emergence of non-trivial structures in the graph when v is disconnected from
the rest of the graph. Finally, we evaluate our centrality measure on a number
of real-world as well as synthetic networks, and we compare it against a set of
commonly used alternative measures.
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1 Introduction

A large number of real-world systems can be modelled and analysed by looking at the
structure that emerges from the interaction between their components [5]. The resulting
graph is called a complex network, and provides a powerful way to study the static
and dynamic aspects of the underlying system. Typical examples of systems that are
studied in network science include metabolic pathways [9], protein interactions [8],
brain regions interactions [20] and scientific collaborations [13]. Complex networks
often display non-trivial structural properties that distinguish them from Erdös-Rényi
random graphs [4], such as small-worldness and a power-law distribution of vertex
degrees [5].

In these large networks one of the key problems is that of identifying the set of most
relevant nodes, also called central nodes. A number of centrality measure have been
introduced in the literature [3, 5–7,12, 17], each of them capturing different but equally
significant aspects of vertex importance. Commonly encountered examples include the
degree centrality [7], the closeness centrality [21], and the betweenness centrality [7].
Let G be a graph with n nodes. In the degree centrality [7] the normalised (degree) is
taken as the centrality value of a vertex, i.e.,

DC(v) =
dv∑n
u=1 du

,
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where dv denotes the degree of the vertex v. In other words, the number of edges in-
cident on a vertex is interpreted as a measure of its “popularity”, or, alternatively, as
the risk of a node being infected in an epidemiological scenario. The closeness central-
ity [21] links the importance of a vertex to its proximity to the remaining vertices of the
graph. More specifically, the closeness centrality is defined as the inverse of the sum of
the distance of a vertex v to the remaining nodes of the graph, i.e.,

CC(v) =
n− 1∑n

u=1 sp(u, v)
,

where sp(u, v) denotes the shortest path distance between nodes u and v. Finally, the
betweenness centrality [7] measures the extent to which a given vertex lies on the (short-
est) paths between the remaining vertices, i.e.,

BC(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

,

where V is the set of nodes, σ(s, t) and σ(s, t|v) denote the number of shortest paths
between s and t and the number of shortest paths between s and t that pass through v.

Recently, there has been an increasing interest in using concepts from quantum me-
chanics and quantum information theory to probe the structure of graphs [11, 18, 19]
In [11], Lockhart et al. introduced an edge centrality index based on quantum informa-
tion theory, where the importance of an edge is measured in terms of its contribution
to the Von Neumann entropy of the network [16]. This in turn relies on decomposing
the edge set of a graph as follows. Given an edge u, the original graph is decomposed
into two graphs over the same vertex set, but with different number of edges: 1) a graph
where only the edge e is present, and 2) a graph where all the original edges except
e are present. With this decomposition to hand, the centrality of e is measured as the
Holevo quantity of the associated decomposition [11].

In this paper, we show that a similar approach can be taken to measure the centrality
of a vertex. Given a vertex v, we propose to decompose the graph into two graphs over
the same vertex set but with edge sets as follows: 1) one graph where only the edges
incident to v are present, and 2) one graph where all the original edges except those
incident to v are present. Then, the centrality of v is the Holevo quantity associated to
the resulting graph ensemble. We show that the centrality of a vertex v can be broken
down in two parts: 1) one part that is negatively correlated with the degree centrality of
v, and 2) one part that depends on the emergence of non-trivial structures in the graph
when v is disconnected from the rest of the graph by removing all edges incident to
it. Finally, we perform a series of experiments to evaluate the proposed edge centrality
measure on real-world as well as synthetic graphs, and we compare it against a number
of commonly used alternative measures.

The remainder of this paper is organised as follows: Section 2 reviews the necessary
quantum mechanical background and the quantum information theoretical concepts that
underpin our approach. Section 3 introduces the proposed vertex centrality measure,
which is then analysed and compared to alternative measures in Section 4. Finally,
Section 5 concludes the paper.
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2 Quantum Information Theoretical Background

2.1 Quantum States and Von Neumann Entropy

In quantum mechanics, a system can be either in a pure state or a mixed state. Using
the Dirac notation, a pure state is represented as a column vector |ψi〉. A mixed state,
on the other hand, is an ensemble of pure quantum states |ψi〉, each with probability pi.
The density operator of such a system is a positive unit-trace matrix defined as

ρ =
∑
i

pi |ψi〉 〈ψi| . (1)

The von Neumann entropy [14] S of a mixed state is defined in terms of the trace and
logarithm of the density operator ρ

S(ρ) = −Tr(ρ ln ρ) = −
∑
i

λi ln(λi) (2)

where λ1, . . . , λn are the eigenvalues of ρ. If 〈ψi| ρ |ψi〉 = 1, i.e., the quantum system
is a pure state |ψi〉 with probability pi = 1, then the Von Neumann entropy S(ρ) =
−Tr(ρ ln ρ) is zero. On other hand, a mixed state always has a non-zero Von Neumann
entropy associated with it.

2.2 A Mixed State from the Graph Laplacian

Let G = (V,E) be a simple graph with n vertices and m edges. We assign the vertices
of G to the elements of the standard basis of an Hilbert space HG, {|1〉 , |2〉 , ..., |n〉}.
Here |i〉 denotes a column vector where 1 is at the i-th position. The graph Laplacian
of G is the matrix L = D − A, where A is the adjacency matrix of G and D is the
diagonal matrix with elements d(u) =

∑n
v=1A(u, v). For each edge ei,j , we define a

pure state

|ei,j〉 :=
1√
2
(|i〉 − |j〉). (3)

Then we can define the mixed state { 1
m , |ei,j〉} with density matrix

ρ(G) :=
1

m

∑
{i,j}∈E

|ei,j〉 〈ei,j | =
1

2m
L(G). (4)

Let us define the Hilbert spaces HV
∼= CV , with orthonormal basis av , where v ∈ V ,

and HE
∼= CE , with orthonormal basis bu,v , where {u, v} ∈ E. It can be shown that

the graph Laplacian corresponds to the partial trace of a rank-1 operator on HV ⊗HE

which is determined by the graph structure [2]. As a consequence, the Von Neumann
entropy of ρ(G) can be interpreted as a measure of the amount of entanglement between
a system corresponding to the vertices and a system corresponding to the edges of the
graph [2].



4 L. Rossi and A. Torsello

2.3 Holevo Quantity of a Graph Decomposition

Given a graph G, we can define an ensemble in terms of its subgraphs. Recall that
a decomposition of a graph G is a set of subgraphs H1, H2, ...,Hk that partition the
edges of G, i.e., for all i, j,

⋃k
i=1Hi = G and E(Hi) ∩ E(Hj) = ∅, where E(G)

denotes the edge set of G. Notice that isolated vertices do not contribute to a decompo-
sition, so each Hi can always be seen a subgraph that contains all the vertices. If we let
ρ(H1), ρ(H2), ..., ρ(Hk) be the mixed states of the subgraphs, the probability of Hi in
the mixture ρ(G) is given by |E(Hi)|/|E(G)|. Thus, we can generalise Eq. 4 and write

ρ(G) =

k∑
i=1

|E(Hi)|
|E(G)|

ρ(Hi). (5)

Consider a graphG and its decompositionH1, H2, ...,Hk with corresponding states
ρ(H1), ρ(H2), ..., ρ(Hk). Let us assign ρ(H1), ρ(H2), ..., ρ(Hk) to the elements of an
alphabet {a1, a2, ..., ak}. In quantum information theory, the classical concepts of un-
certainty and entropy are extended to deal with quantum states, where uncertainty about
the state of a quantum system can be expressed using the density matrix formalism. As-
sume a source emits letters from the alphabet and that the letter ai is emitted with
probability pi = |E(Hi)|/|E(G)|. An upper bound to the accessible information is
given by the Holevo quantity of the ensemble {pi, ρ(Hi)}:

χ({pi, ρ(Hi)}) = S

(
k∑

i=1

piρ(Hi)

)
−

k∑
i=1

piS(ρ(Hi)) (6)

3 The Holevo Vertex Centrality

Given a graph G = (V,E) and a vertex v ∈ V , we propose to measure the centrality
of v as follows. Let Gv = (V,Ev) denote the subgraph with vertex set V and edge
set Ev = {(u, v) ∈ E|u ∈ V }, and Gv = (V,Ev) be the subgraph with vertex set
V and edge set Ev = {(u, v) ∈ E|(u, v) 6∈ Ev}. In other words, E = Ev ∪ Ev and
Ev ∩ Ev = ∅. Hence, from Eq. 5, we can show that

|Ev|
|E|

ρ(Gv) +
|Ev|
|E|

ρ(Gv) = ρ(G). (7)

With this decomposition to hand, we define the Holevo vertex centrality of v as

HC(v) = χ

({(
|Ev|
|E|

, Gv

)
,

(
|Ev|
|E|

, Gv

)})
= S (ρ(G))−

(
|Ev|
|E|

S (ρ(Gv)) +
|Ev|
|E|

S (ρ(Gv))

)
. (8)

Given a graph G = (V,E) and a vertex v ∈ V , the first term in Eq. 8 (i.e., S (ρ(G)))
does not depend on the choice of v, and thus can be ignored when ranking the nodes
of G according to their Holevo centrality. Moreover, note that we only need to compute
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Fig. 1: Holevo centrality for the nodes of the Wheel graph on 6 (a) and 15 (b) nodes. The
radius of each node is proportional to their Holevo centrality. In (c) we show a line plot
of the Holevo centrality for increasing graph size. Here 0 denotes the hub node.

the spectrum of ρ(Gv), as the spectrum of ρ(Gv) can be easily determined analytically.
Recall that the star graph on n vertices K1,n−1 has Laplacian spectrum

{n[1], 1[n−2], 0[1]},

i.e., it has three eigenvalues n, 1, and 0 with multiplicity 1, n − 2, and 1, respectively.
This in turn implies that the spectrum of the density matrix ρ(K1,n−1) is

{ n

2n2

[1]
,

1

2n− 2

[n−2]
, 0[1]},

as shown in [10]. Since adding disconnected vertices to a graph does not change its Von
Neumann entropy [16], we have that the entropy of ρ(Gv) is

S (ρ(Gv)) = −
dv + 1

2dv
log

(
dv + 1

2dv

)
− dv − 1

2dv
log

(
1

2dv

)
=
dv + 1

2dv
log

(
2dv
dv + 1

)
+
dv − 1

2dv
log (2dv)

=
1

2dv
(2dv log (2dv)− (dv + 1) log(dv + 1)) (9)

where dv denotes the degree of v. In other words, the entropy of ρ(Gv) is completely
determined by the degree of v. As a result, the computational complexity of computing
the Holevo centrality of v is dominated by the cost of computing the eigendecomposi-
tion of ρ(Gv).

Finally note that the Von Neumann entropy of a star graph is 0 when dv = 1, and
it grows logarithmically as a function of dv . This in turn suggests that the Holevo cen-
trality given by Eq. 8 could be negatively correlated with the degree centrality, however
proving this would require finding general analytical form of the spectrum of ρ(Gv).
Moreover, it should be noted that the Von Neumann entropy of ρ(Gv) depends on the
presence of several non-trivial structural patterns, including paths, cliques, and con-
nected components. Therefore the Holevo vertex centrality measures the importance of
a vertex as a combination of its degree as well as the structural patterns that emerge
after its removal.
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(a) m = 4, n = 2 (b) m = 6, n = 2 (c) m = 8, n = 2

Fig. 2: Holevo centrality for the nodes of the (m,n)-lollipop graph for (a) m = 4, n = 2,
(b) m = 6, n = 2, and (c) m = 8, n = 2. The radius of each node is proportional to
their Holevo centrality.

4 Experimental Evaluation

We perform our experiments on two well known real-world networks, the Florentine
families graph [15] and the Karate club network [22], as well as a number of synthetic
graphs. We compare the proposed similarity measure the three commonly used alterna-
tive measures: 1) the degree centrality [7], 2) the closeness centrality [21], and 3) the
betweenness centrality [7].

4.1 Synthetic Networks

Wheel Graph The Wheel graph Wn on n nodes is the graph obtained by taking a
cycle Cn−1 on n− 1 nodes and connecting each of the nodes of Cn−1 to another node,
i.e., the hub. Fig 1 shows 3 wheel graphs of increasing number of nodes n and the
corresponding value of the Holevo centrality. Note that for small values of n the hub is
the least central node. However as n grows the centrality of the hub remains constant
while the centrality of the other nodes decreases, until the hub becomes the most central
node.

Indeed, our centrality measure seems to capture the increasing redundancy of the
nodes along the cycle Cn−1 as n grows. Note that this implies that our measure is
negatively correlated with the degree centrality for small values of n, but positively cor-
related for large values of n. While this may seem surprising given the negative corre-
lation highlighted in Eq. 9, the observed behaviour is likely due to the other component
in Eq. 8, i.e., S(ρ(Gv)), as well as their respective weights.

Lollipop Graph The (m,n)-lollipop graph on m + n nodes is the graph obtained by
joining the clique Km on m nodes with the path graph Pn on n nodes. Fig. 2 shows
the value of the Holevo centrality for increasing size of the clique, while keeping the
size of the path fixed. For small clique sizes, the most central node is the central node
on the path. However, as the size of the clique increases, the centrality of the path node
decreases, while the clique nodes become increasingly important. We observe a similar
behaviour when the length of the path is increased, with the nodes belonging to it being
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(a) m = 2, n = 3 (b) m = 3, n = 3 (c) m = 4, n = 3

Fig. 3: Holevo centrality for the nodes of the Barbell graph joining two cliques Km

through a path Pn, for (a) m = 2, n = 3, (b) m = 3, n = 3, and (c) m = 4, n = 3. The
radius of each node is proportional to their Holevo centrality.

the most central ones for small values of n. However, as we increase n, the most central
node in the graph becomes the node the shared node between the clique and the path.

Similarly to the Wheel graph, the Holevo centrality measure seems to capture the
importance of the nodes belonging to the path when the total number of nodes in the
graph is small. However, as m + n grows, our measure places most of the importance
on the tightly connected nodes of the clique, while the centrality of the path is “diluted”
as its length increases.

Barbell Graph The Barbell graph is the graph obtained by joining two cliques Km

through a path Pn (i.e., a bridge between the two cliques). Note that when m = 2
the corresponding Barbell graph is the path graph Pn+2m. Fig 3 shows three Barbell
graphs with n constant (i.e., the length of the bridge is 3 in all the graphs) and m equal
to 2, 3, and 4, respectively. When m = 2 the graph is a path over 7 nodes. In this
case, our centrality measures assigns the largest weight to the two nodes that connect
the two ends of the path to the rest of the nodes. As the m increases, the weight of the
cliques shifts the importance from the bridge to the cliques, with the node connecting
the cliques to the path becoming then most central ones. If we increase the path length,
we observe that the junctions between the cliques and the path remain the most central
nodes. However we start to discriminate between the nodes along the bridge, with the
nodes closer to the center of the bridge being assigned a higher centrality. Note that this
is contrast with the degree centrality, which would assign the same weight to all the
nodes on the bridge (since they all have the same degree).

Scale-free Graph Finally, we consider a set of scale-free graphs generated by the
Barabási-Albert preferential attachment model [1]. Starting from an empty graph, we
iteratively add nodes to it until a user-defined size n is reached. At each iteration, the
new node is connected to at most m nodes chosen according to their degree, i.e., nodes
with a higher degree are more likely to be selected. We let m and n vary between 1
and 3, and 10 and 20, respectively, and for each pair of parameters we generated 100
graphs.

We are interested in measuring the correlation between the Holevo vertex centrality
and the degree centrality. In the previous subsections we have observed that the corre-
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Fig. 4: Average correlation with the degree centrality for different realisation of the
Barabási-Albert preferential attachment model [1]. Here we varied the number of nodes
of the generated graph, as well as the number of edges k that are created from a new node
to existing nodes.

lation with the degree centrality seems to increase as the size of the graph increases.
Fig 4 confirms that this is the case. The figure also shows that the correlation increases
as we increase the number of connections added per iteration. Note that when m = 1
the resulting graph is guaranteed to be a tree. Indeed, Fig 4 seems to suggest that the
correlation is particularly high on trees, however further investigation is needed to un-
derstand if the observed effect is instead due to the particular degree distribution of
scale-free graphs or to the presence of high degree nodes.

4.2 Real-world Networks

We conclude our experimental evaluation by measuring the centrality of two well-
known networks, the Florentine families graph [15] and the Karate club network [22].
Figs 5(a) and 5(b) show the two networks, where the radius of the nodes is propor-
tional to their Holevo centrality. We also compute the degree (DC), closeness (CC),
and betweenness (BC) centralities over these networks and we show the corresponding
correlation matrices in Figs 5(c) and 5(d).

In these networks, the Holevo centrality measure shows a large positive correlation
with all the other measure, in particular the degree centrality. However, if we look at the
ranking induced by our measure there are some important differences. Table 1 shows
the ranking given by the Holevo centrality, as well as the degree of each family in the
network. Clearly, the degree centrality cannot distinguish between those families that
have the same degree, while the Holevo centrality allows to define a more fine-grained
ranking. For example, the Salviati family (node 10) is ranked higher than the Barbadori
family (node 14), although both families have degree two. However the Salviati family
is the only node connecting the Pazzi family (node 6) to the Medici family (node 2) and
the rest of the graph, and therefore its importance is higher.

5 Conclusion

In this paper we have proposed a novel vertex centrality measure based on the quantum
information theoretical notion of Holevo quantity. The idea underpinning our approach
is that the importance of a vertex is proportional to the variation in the information con-
tent of the network before and after its removal. We have shown that the centrality of a
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Fig. 5: The Karate network (a) and the Florentine families network (b). (c) and (d) show
the correlation matrices between the Holevo (HC), degree (DC), closeness (CC), and
betweenness (BC) centrality measures on the Karate and Florentine families networks,
respectively. Each node of (b) is labeled with the index associated to the corresponding
family in Table 1.

Family Centrality Family Centrality Family Centrality

Medici (2) 0.6582 (0.150) Peruzzi (9) 0.4409 (0.075) Barbadori (14) 0.3586 (0.050)
Guadagni (13) 0.5728 (0.100) Bischeri (8) 0.4403 (0.075) Pazzi (6) 0.2615 (0.025)
Strozzi (0) 0.5057 (0.100) Ridolfi (5) 0.4259 (0.075) Ginori (4) 0.2501 (0.025)
Albizzi (3) 0.4834 (0.075) Tornabuoni (1) 0.4242 (0.075) Lamberteschi (12) 0.2424 (0.025)
Castellani (11) 0.4615 (0.075) Salviati (10) 0.4075 (0.050) Acciaiuoli (7) 0.2305 (0.025)

Table 1: The Holevo and the degree (in bold) centrality of the families of Florentine
families network. The number next to the name of each family is the index of the corre-
sponding node in Fig. 5(b).

vertex v can be broken down in two parts, one which is negatively correlated with the
degree centrality of v, and one which depends on the emergence of non-trivial struc-
tures in the graph when v is disconnected from the rest of the graph. Finally, we have
evaluated the Holevo centrality measure on a number of synthetic as well as real-world
networks, and we have compared it against commonly used alternative measures. Fu-
ture work will be aimed at investigating further the structural pattern that influence this
centrality measure.
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