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1 IntroductionThis report seeks to make concrete some of the ideas we have been discussing about sensible priorsfor winds over the ocean. In particular, random �eld models are reviewed, as are permissiblecovariance functions. The criteria which these covariance functions must satisfy in order thatvorticity and divergence exist and are continuous are de�ned. The impact of Helmholtz theoremis discussed, and sensible choices for the covariances are suggested.
2 Random Field Models2.1 Random variablesIf we recall basic probability theory, a probability space (
; F; P ) where 
 is the sample space (i.e.all possible elementary events), F is a �-�eld of subsets of 
 (i.e. a collection of subsets of 
 thatalso contains the empty set and 
 itself, which is closed under �nite intersection, countable union



2 Random Field Models and Priors on Windand set complement) and P is a probability measure on (
; F ) must satisfy Kolmogorov's axioms:P (
) = 10 � P (Ai) � 1 8Ai 2 FifAi \ Aj = ; (8i 6= j) =) P  1[i=1Ai! = 1Xi=1 P (Ai)where the Ai's are called events. This probability space is the underlying model for all of theforthcoming discussion.We can use this de�nition of probability to de�ne a random variable (Christakos, 1992). Let z(u)be a random variable where u 2 
 are the elementary events. Thus z is a (measurable) mappingfrom (
; F ) into (R1 ; F 1) such that:8B 2 F 1; z�1(B) = fu 2 
 : z(u) 2 Bg 2 FThis measureability induces a probability measure �z on (R1 ; F 1), such as:8B 2 F 1; �z(B) = P (z�1(B)) = P (z = z(u) 2 B)We usually study the distribution of this probability measure through the (cumulative) distributionfunction: Fz(�) = P (z � �)where � 2 R1 or the probability density function:fz(�) = P (z = �)when Fz is absolutely continuous. Using these de�nitions we can go on to de�ne a random �eld.2.2 Random �eldsA random �eld is a collection of random variables de�ned by their joint distribution functions.Now de�ne Z(x), x 2 R2 to be a (spatial) random �eld1, then we have:Fx1;:::;xn(�1; : : : ; �n) = P (z1 � �1; : : : ; zn � �n) (1)where z1 = Z(x1) and n can be any integer. We can also de�ne the probability density function:fZ(�1; : : : ; �n) = fx1;:::;xn(�1; : : : ; �n)= @n@�1 � � � @�nFx1;:::;xn(�1; : : : ; �n)A random �eld can also be characterised in terms of its characteristic function, which is the n-dimensional Fourier transform of the probability density (Christakos, 1992).In a very straightforward manner we can extend the concept of a scalar random �eld (as outlinedabove) to a vector random �eld Z(x). This will be necessary when we consider winds.Classically, random �elds are characterised by their �rst and second order moments. These are themean: mz(x) = E[Z(x)] = Z �fx(�)d� (2)1In this report we will consider 2 dimensional random �elds since these are most relevant to our problem.



Random Field Models and Priors on Wind 3and covariance: cz(xi;xj) = E[(Z(xi)�mz(xi))(Z(xj)�mz(xj))] (3)= E[Z(xi)Z(xj)]�mz(xi)mz(xj)It is also useful to de�ne the (spatial) correlation function:�z(xi;xj) = cz(xi;xj)p�2z(xi)p�2z(xj) (4)where �2z(xi) is the variance of the random �eld at the point xi. When the random �eld is Gaussian,then these �rst two moments completely characterise its behaviour (i.e. Gaussian processes2).Making the `Gaussian assumption' is very common in practice, since inference and estimation arethen straightforward.To be a valid covariance, the function cz(xi;xj) must be non-negative de�nite3, that is:nXi=1 nXj=1 qiqjcz(xi;xj) � 0 (5)8n 2 N, points xi;xj and q1; : : : ; qn 2 R. Every permissible covariance is a symmetric functionand if the random �eld is ergodic: limjxi�xj j!1 cz(xi;xj) = 0If we move to vector random �elds then if we consider a two component (e.g. u; v) random �eld,with components Z1(x) and Z2(x) then in addition to the standard means and covariances we cande�ne the cross-covariance:cz1;z2(xi;xj) = E[(Z1(xi)�mz1(xi))(Z2(xj)�mz2(xj))]and a cross-correlation as before. We now can de�ne the joint covariance matrix:CZ = � cz1(xi;xj) cz1;z2(xi;xj)cz2;z1(xj ;xi) cz2(xi;xj) �The condition corresponding to Equation 5 for this vector case is:q0CZq � 0where q0 = [q1; : : : ; q2n], the augmented vector, and the other conditions are as before.2.3 Convergence propertiesTo study the properties of random �elds we need to consider the concept of stochastic convergence4.There are several types of stochastic convergence. If fzng is a sequence of random variables(Christakos, 1992) fzng is said to converge to z (also a random variable) with2In the geophysical sciences a process is generally regarded as being one dimensional and usually refers to time-series modelling.3This ensures that the variance is non-negative (as it must be).4This is rather like the deterministic case where we study the continuity, di�erentiability etc. of functions throughthe convergence of their series.



4 Random Field Models and Priors on Wind� mean square convergence: zn m:s:�! z () limn!1E[jzn � zj2] = 0� almost sure convergence: zn a:s:�! z () P [ limn!1 zn = z] = 1� convergence in probability:zn p�! z () 8� > 0; limn!1P [jzn � zj > �] = 0Mean square and almost sure convergence both imply convergence in probability. If zn m:s:�! zthen E[zn]! E[z] and the operators lim and E[�] commute. Thus a random �eld Z(x) is said toconverge to Z(x0) when x! x0 in one of the above categories if the sequence of random variablesfzn = Z(x)g at x = x1; : : : ;xn; : : : tends to z0 = Z(x0) as n ! 1. We can now state the meansquare convergence criterion for a random �eld:Let Z(x) be a random �eld with x0 a �xed point in two dimensional space. Then:Z(x) m:s:�! Z(x0) () E[Z(xi)Z(xj)]! E[Z(x0)]2 xi;xj ! x0 (6)where the convergence of the expectations is in the usual sense (i.e. not mean square). We cannow de�ne continuity, di�erentiability (and integrability if needed) in terms of mean square (m.s.)or almost sure (a.s.) convergence of the random �eld. Note that in general m.s. convergence doesnot imply a.s. convergence nor vice-versa.2.4 ContinuityA (second-order)5 random �eld Z(x) is m.s. continuous at x 2 R2 if:Z(xi) m:s:�! Z(x); xi ! xor Z(x+ h) m:s:�! Z(x); h! 0 (7)This de�nition can be extended to the whole domain to yield an everywhere m.s. continuousrandom �eld. Now Z(x) is m.s. continuous at x 2 R2 if and only if cz(x;xi) is continuous at(x;xi = x) (assuming that the mean is continuous - indeed here without loss of generality we willassume a zero mean).A random �eld Z(x) is a.s. continuous at x 2 R2 if:Z(x+ h) a:s:�! Z(x); h! 0 (8)If Z(x) is everywhere a.s. continuous it is called sample function continuous. Sample functioncontinuity can be expressed in terms of the covariance function of a random �eld. If x;h 2 C � R2then: cz(x+ h;x+ h)� cz(x+ h;x)� cz(x;x+ h) + cz(x;x) � �khk4j log khkj1+� (9)5this refers to the order of the norm of the probability space - which is almost always 2 - i.e. Euclidean



Random Field Models and Priors on Wind 5for � > 0; � > 2 implies that Z(x) is a.s. continuous (Christakos, 1992; Adler, 1981). It shouldbe noted that this is a very tight bound which is very di�cult to attain (none of the practicallyused covariances satisfy this bound). If we make a `Gaussian' assumption on the random �eld, andassume it to be stationary (see later), then we can signi�cantly relax the bound to give conditionsfor sample function continuity (Abrahamsen, 1997; Adler, 1981):cz(0)� cz(h) � �j log khkj1+� ; � > 0; � > 0 (10)This much weaker bound is met by almost all used covariance functions, thus if a Gaussian random�eld possesses continuous expectations and a continuous covariance function then it has continuoussample paths with probability one (Abrahamsen, 1997).Sample function continuity tells us about the behaviour of the realisations (simulations) of a random�eld. M.s. continuity does not necessarily imply a.s. continuity although in the Gaussian case itis an `almost' su�cient condition (Abrahamsen, 1997).2.5 Di�erentiabilityA random �eld Z(x) is m.s. di�erentiable at x 2 R2 with respect to the x component of x = (x; y)if 9Z(x)(x) such that: Z(x+ (hx; 0))� Z(x)hx m:s:�! Z(x)(x); hx ! 0where Z(x)(x) is the partial derivative with respect to x:@Z(x)@x = limhx!0 Z(x+ hx)� Z(x)hxThis can be written in terms of the covariance function if the mean value E[Z(x)] is di�erentiableand the covariance:cov�@Z(xi)@xi ; @Z(xj)@xj � = @2cz(xi;xj)@xi@xj= limhxi ;hxj!0 1hxihxj [cz(x+ hxi ;x+ hxj )� cz(x+ hxi ;x)� cz(x;x+ hxj ) + cz(x;x)] (11)exists and is �nite at all diagonal points xi = xj . We can extend this de�nition of di�erentiabilityto higher order derivatives viz:cov @vZ(xi)@xvi ; @vZ(xj)@xvj ! = @2vcz(xi;xj)@xvi @xvjwhich must exist and be �nite at xi = xj .For sample function di�erentiability we have:Z(x+ (hx; 0))� Z(x)hx a:s:�! Z(x)(x); hx ! 0so long as Z(x)(x) exists. If we assume that Z(x)(x) is the m.s. partial derivative derivative ofZ(x) which has covariance: cz(xk;xl)(xi;xj) = @2cz(xi;xj)@xk@xl (12)



6 Random Field Models and Priors on Windthen using (9) we can see that Z(x)(x) is a.s. continuous if:cz(xk;xl)(x+ h;x+ h)� cz(xk;xl)(x+ h;x)�cz(xk;xl)(x;x+ h) + cz(xk;xl)(x;x) � �khk4j log khkj1+� (13)This rather odd notation is simply saying that the derivative of the original random �eld is a.s.continuous if the random �eld de�ned by the second derivative of its covariance function is a.s.continuous as de�ned in (9). If we make the `Gaussian' assumption then we can relax the bound tobe that in (10). For criteria concerning the integrability of random �elds see Abrahamsen (1997)or Christakos (1992).2.6 Spectral representationAll random �elds can be expressed in a Fourier-Stieltjes representation:Z(x) = ZR2 exp(iw � x)dNz(w)where dNz(w) is a random �eld over w 2 R2 . Z(x) has a covariance given by:cz(xi;xj) = ZR2 ZR2 exp(i(wi � xi �wj � xj))dQz(wi;wj) (14)whereQz(wi;wj) is the spectral distribution function of Z(x) - and is not necessarily di�erentiable.If dNz(w) is di�erentiable then we obtain the Riemann integral representation:Z(x) = ZR2 exp(iw � x) ~Z(w)dw (15)Thus Z(x) and ~Z(w) are Fourier pairs with:~Z(w) = 12� ZR2 exp(�iw � x)Z(x)dx (16)The covariance function of Z(x) can be written as:cz(xi;xj) = ZR2 ZR2 exp(i(wi � xi �wj � xj))Cz(wi;wj)dwidwj (17)where Cz(wi;wj) is the spectral density function of Z(x) - and corresponds to the derivative ofthe spectral distribution function. A covariance function that admits the representation (17) iscalled harmonizable.The spectral representation of random �elds is important because it o�ers another method ofchecking for and generating (conditionally) positive de�nite covariance functions. Note that in allthe above integrals when cz is real then the exponentials can be replaced by cosines.3 Using Random Field ModelsWe have de�ned some of the mathematics for random �eld models in the preceding section, howeverwithout further assumptions they are not practically applicable. This is because the full knowl-edge of the �rst and second moments (if we are assuming Gaussian processes) implies a completeknowledge about the variable of interest in any case. In reality we only have a �nite sample, oftenfrom only one realisation, and thus to make progress we must make further assumptions.



Random Field Models and Priors on Wind 73.1 Homogeneity and stationarityA random �eld6 is called homogeneous in the wide sense or second-order stationary7 ifmz(x) = E[Z(x)] = m (18)and cz(xi;xj) = cz(xi � xj) = cz(h) (19)where m is the constant mean value, and the covariance depends only on the separation vectorh = xi � xj . In practice this assumption allows us to make inferences from only one realisationof a random �eld, but care must be taken since if the �eld is not actually second-order stationarythen the model may produce unrealistic results.In geostatistics another form of stationarity is often invoked. Intrinsic stationarity is de�ned by:E[Z(x+ h)� Z(x)] = m(h) = 0 (20)and var[Z(x+ h)� Z(x)] = E[(Z(x+ h)� Z(x))2] = 2
z(h) (21)where 
z(h) is the so called variogram8 of the random �eld Z(x). Intrinsic stationarity is weakerthan second-order stationarity - thus second-order stationarity implies intrinsic stationarity but notvice-versa. We can see that the assumption of intrinsic stationarity is on the �rst order increments ofthe random �eld Z(x+h)�Z(x) rather than the actual �eld. Practical experience in geostatisticalmodelling of physical processes suggests that intrinsic stationarity is more common than second-order stationarity, and thus the variogram is frequently used in preference to a covariance function.Where a random �eld is second-order stationary we have:
z(h) = cz(0)� cz(h) (22)and we can use either a variogram or covariance function. In general when we use random �eldmodels we will specify some form of parametric function (which satis�es the properties requiredfor it to be valid) to represent the variogram or covariance. There are several permissible models,some of which are listed later.Related to stationarity is the concept of ergodicity which implies that we can compute the meansand covariances of a random �eld Z(x) from only one realisation.3.2 IsotropyIt is often observed that the random �eld being studied is invariant to rotation, that is the covari-ance or variogram depends only on the separation distance h = kxi � xjk where k � k denotes thestandard Euclidean norm, rather than the separation vector h. For wind �elds this will be a ratherunlikely situation since there is generally considerably more correlation along the 
ow than acrossit. Thus we will generally be dealing with anisotropic covariance functions, although the form ofthe anisotropy will remain simple.It is possible to have h = kxi � xjkK where k � kK is a more general norm given by:h = kxi � xjkK =q(xi � xj)0K(xi � xj)6Or indeed the natural process.7Also called strict stationarity if the random �eld is Gaussian.8Strictly 
z(h) is the semivariogram but I will use the term variogram.



8 Random Field Models and Priors on WindandK is some positive semi-de�nite transformationmatrix. This form of norm allows for anisotropiccovariance functions. It corresponds to a scaling of the axes and is know as geometric anisotropyin the geostatistics literature (Wackernagel, 1995). Note that the isotropic case is simply given byK = I the identity matrix.3.3 Valid covariance functions and the nugget e�ectIf cz(h) is a valid covariance function for a second-order stationary random �eld Z(x) the followingproperties apply (Christakos, 1992)9: cz(h) = cz(�h)cz(h) � cz(0)If Z(x) is isotropic then also: limjhj!1pjhjcz(h) = 0These conditions do not imply the function is positive de�nite and this must be checked separately.In general a (covariance) function is positive de�nite if it can be represented in the form (14). If wego on to assume that the random �eld is real and the spectral distribution function is di�erentiablethen: cz(h) = ZR2 cos(w � h)Cz(w)dw (23)where Cz(w) is the spectral density function (it is always assumed that these integrals exist). Wecan now state that cz(h) is a permissible covariance function if:Cz(w) � 0 8w 2 R2 (24)In general we will require some form of continuity on our random �eld. For wind vectors there arestrong grounds for believing the large scale wind10 will be continuous and at least once di�erentiable- indeed given that vorticity and divergence are also continuous and di�erentiable it could be arguedthat at a minimum the random �eld should be twice di�erentiable. This has implications for thecovariance functions we can use, but we shall come back to this latter. However at smaller scales(both in space and time) there may be strong grounds for treating the wind (random) �eld ascontaining discontinuities.This is a philosophical point but is important to modelling wind �elds. How do we treat turbulence?The wind �eld over any non-smooth11 can be decomposed into two components - the steady state
ow (i.e. the average 
ow over a su�ciently long time interval) and the turbulent 
ow (i.e. thedi�erence between the steady state 
ow and the observed 
ow). Typically the steady state 
ow canbe modelled using the equations of motion, or the geostrophic approximation - that is by modelsbased on the integration of the di�erential equations governing 
uid motion. The same is not truefor the turbulent terms.In practice these are regarded as random and are modelled statistically (although some modelsnow attempt to resolve the largest turbulent eddies over very small domains in a research setting9assuming again that it is ergodic10By which I mean wind averaged over large areas or times.11That is e�ectively any real surface for other than trivially slow wind speeds.



Random Field Models and Priors on Wind 9- often with aim of improving the parametric models used to statistically represent turbulence).Thus we have a dilemma borne of scale12 which is very di�cult to resolve. At the very smallestobservable level (time-scales of milliseconds) the wind appears continuous - if a little complicated.If we consider a larger averaging scale (say one second) then we might observe the wind �eld to bediscontinuous - in both space and time - despite the fact that the underlying process is continuous.This is one source of the nugget e�ect often referred to in geostatistics (Wackernagel, 1995).The nugget e�ect is used to model the variance associated with two sources of uncertainty. Firstlythere is the error due to the representativity of the observations (in space and possibly time) - thatis the error that comes from the observations being made at inconsistent scales compared to theprocess as discussed above. The nugget e�ect can also be used to model uncorrelated observingerrors. The covariance is then given by:cz(h) = ��z(h) + �cb(h) (25)where �z(h) is the Kronecker delta (�z(h) = 1 () h = 0), � is the amount of `uncertainty'variance and cb(h) is a continuous valid covariance function. Given this model we could separateZ(x) into: Z(x) = Z�(x) + Zb(x) (26)where Z�(x) is a white noise random �eld and Zb(x) is the `smooth' component of Z(x).In order to obtain a good model we must try to accommodate the process scales (with referenceto the observation scales). We must also recall the objectives of the modelling. In many cases wewill not want to represent the turbulent component of the wind (in simple numerical models of thelarge scale atmospheric 
ow these turbulent components can amplify and propagate in alarmingfashion and are thus �ltered in various ways) rather we desire to predict the large scale 
ow. Thuswe can view our problem as a smoothing or �ltering one.The data we are dealing with is scatterometer estimated wind �elds which have a spatial resolutionof 50� 50km. Thus we can reasonably assume that at this resolution we are observing the largescale wind 
ow. An interesting question (which I have not seen addressed) is what happens whenthe wind �eld is inhomogeneous. There are two types - �rstly and most simply - that due to theturbulent nature of wind over the ocean (just watch the ripples - which is what the satellite is`seeing' - over a lake). How does this `patchy' ripple pattern aggregate over the 50 � 50km thatthe satellite observes? It is not clear that this should be linear - and is a useful justi�cation forthe use of neural networks to model the (inverse) transfer function. The second question involveswhat happens across fronts. Here there is a large scale (but still less than the observation scale)change in wind direction which may occur under a front. It is not known what the scatterometerwill return.So what does this mean for wind �eld modelling? Well I think we must insist that we are modellingat the observation scale but ensuring that we incorporate our knowledge of the process scales. Thismeans that we will want to use a covariance function that has a nugget component (that is the noisecomponent will cause the �eld to be sample function discontinuous) and a `smooth' componentthat represents a random �eld which is mean square di�erentiable at least twice.3.4 Practical di�erentiabilityIf we are considering a homogeneous (i.e. second-order stationary) random �eld Z(x) then this ism.s. continuous if its covariance function cz(h) is continuous at h = 0. It is m.s. di�erentiable12Which is often referred to in the literature on fractals and chaos.



10 Random Field Models and Priors on Windto the v'th order if the 2v'th partial derivative of cz(h) exists and is �nite at h = 0 (Christakos,1992). This means that @vZ(xi)@xvi (27)exists in the m.s. sense i�: @2v�1cz(h)@h2v�1x ����h=0 = 0 (28)Thus we have the necessary and su�cient conditions for our covariance to be at least twice di�er-entiable. This may be clari�ed by an example.If we consider the two dimensional `squared exponential' covariance function given by:cz(h) = exp��khk2a2 �with the width parameter a > 0;h = (hx; hy) then we can show that the 2v � 1'th derivative(with respect to x) contains only terms in odd powers (greater than 0) of hx times the exponentialterm. At h = 0 this expression is equal to zero for all integer v > 0, thus a random �eld withthis covariance function is in�nitely many times m.s. di�erentiable - something which we rarelyobserve. Indeed this case can be thought of as pathological in that it implies that the knowledgeof the �eld over a very small area (which includes knowledge of all the derivatives up to a givenorder) would make it possible to predict the value of the �eld anywhere over the domain (c.f.Taylor expansion).Now consider the one dimensional example:cz(h) = cos(bh) exp��ha�with both a; b > 0, which is a suitable covariance function for a process with a periodic compo-nent13. This covariance produces a m.s. continuous process, however it is not m.s. di�erentiable:@cz(h)@h = �1a cos(bh) exp��ha�+ b sin(bh) exp��ha�and at h = 0 this is equal to 1=a which is non-zero.In the above sections we have examined two particular cases. This analysis can be generalised forany covariance function. We often assume isotropy of the homogeneous random �elds - this maybe appropriate for the stream function and velocity potential �elds. In this case we have:cz(h) = cz(r) (29)where r = khk. In two dimensions we are now working in polar coordinates, with only r beingrelevant. Thus we can express continuity conditions on the candidate covariance functions in termsof r. Julian and Thiebaux (1975) suggest that the necessary criteria for di�erentiability (and thusexistence of a solution) are: limr!0�1r @cz(r)@r � (30)is �nite and: limr!0�1r @cz(r)@r � @2cz(r)@r2 � = 0 (31)13which is typical of the transient waves in the atmosphere - that is the cycle of highs and lows



Random Field Models and Priors on Wind 11This is di�erent from the criterion for m.s. di�erentiability of an isotropic random �eld given inChristakos (1992) which is: @cz(r)@r ����r=0 = 0 (32)It can be seen that (31) is a zero condition on the Laplacian of the covariance function (in planepolar coordinates) and corresponds to the condition:limx;y!0��@2cz(x; y)@x2 + @2cz(x; y)@y2 � = lim�!0�r2cz(�) = 0 (33)where r = px2 + y2. Thus we are saying that the second derivative of the covariance function(in polar coordinates) tends to zero as r ! 0. Adler (1981) gives the de�nition of mean squaredi�erentiability as being that: @2cz(s; t)@si@ti (34)exists and is �nite at the point (t; t) for all t. This corresponds to the earlier de�nition in Christakos(1992) given in (11). If we assume the �eld is homogeneous and that the covariance is therefore asymmetric function then the requirement (32) can be seen to be a su�cient and necessary conditionfor (34). Thus it would seem that the conditions given in Julian and Thiebaux (1975) are a littledi�cult to reconcile with those above. [The di�erent conditions expressed in Julian and Thiebaux(1975) to those elsewhere can be reconciled if we swap the conditions of the derivatives of thecovariance functions in (30) and (31). I believe there may have been a typo in the original paper(Julian and Thiebaux, 1975).]3.5 Prediction with random �eldsIn the next sections we deal with the practical application of random �eld models to prediction andsimulation of two dimensional Gaussian random �elds. In many instances the Gaussian assumptionis not needed for the results to be true, however under this assumption many of the results areoptimal. In cases where the Gaussian assumption is inappropriate other methods should be used(Diggle et al., 1998; de Oliveira et al., 1997). We shall generally consider scalar output variables,but the extension to vector variables is trivial, with no major modi�cations necessary.Consider a random variable Z(x), x 2 R2 with n � 1 observation vector zm = z(xm). If theseobservations are assumed to come from a (zero mean) random �eld model with covariance functioncz the predicted value zo = z(xo) at some unsampled location xo is given by:ẑo = E[zojzm] = co0C�1zm (35)To see the meaning of the terms, consider the joint n + 1 � n + 1 covariance matrix of [zm; zo]0given by: � C coco0 coo�where C is the n� n covariance matrix of zm, co is the n� 1 covariance vector between zm andzo and coo is the (co)variance of zo. This can all be derived from the properties of the multivariateNormal distribution (in the Gaussian case) or from the minimisation of the (expected) squarederror of prediction under unbiased, linear conditions. Since the distribution P (zojzm) is Gaussianthe estimation variance is given by:�̂2zo = var[zo] = coo � co0C�1co (36)



12 Random Field Models and Priors on Windwhich does not depend on zm but only on cz, xm and xo.The vector case is similar although the matrix dimension changes and the notation becomes lessclear. In the above results we have assumed that the covariance function is completely known, andthat the random �eld is zero mean. In practice we attempt to estimate the covariance functionfrom the data, which is the reason for all the stationarity (ergodicy) assumptions.The next section examines how. Strictly speaking we should adopt a Bayesian approach andevaluate the prediction through the posterior distribution using (hyper)priors over the parametersin the covariance function (Neal, 1997; Brown et al., 1994; Handcock and Stein, 1993).3.6 Estimation of the covarianceThere are two commonly used methods for estimating the parameters in the covariance function;(restricted) maximum likelihood and method of moments (Cressie, 1993). Maximum likelihoodestimation is the more principled approach. Under the Gaussian assumption, with covariancefunction cz parameterised by parameter vector � the log likelihood of the the data zm is:l = P (zmj�) = �n2 log(2�)� 12 log(jCj)� 12zm0C�1zm (37)where jCj means the determinant of C. Thus we can compute the likelihood of the data for anygiven model, and also the derivatives (Williams, 1998; Neal, 1997) which will allow us to determinethe most likely parameters to have generated the observations using gradient based minimisationmethods (conditional on the model being sensible as ever).In the case where we cannot assume zero mean we will also have to estimate the mean function.In this case we might use the (restricted) maximum likelihood estimator (Cressie, 1993) and someparametric mean (often given by a combination of `regression' basis functions). Note that in the�nite data case there is no unique partition into mean and covariance component - this dependson the investigators beliefs and the aim of the model.Ripley (1988) notes that in practice maximum likelihood estimates of parameter values do notagree with visual inspection of the empirical covariogram given by:�C(h) = 1N(h) XN(h) ((Z(xi)�mz) (Z(xj)�mz)) (38)where N(h) is the number of pairs with separation distance hlower � h < hupper and mz is someestimate of the mean function - which we usually assume zero. E�ectively one divides the rangeof h into a number of classes, usually equally spaced, and using the replications within each classone computes the mean covariance in of each class at the mean separation vector.Plotting this allows for visual inspection of the covariance function estimator. One can take theanalysis a step further and estimate the parameters of the covariance function by �tting the functionto the empirical estimator. This is know as method of moments estimation, and is recommendedby Cressie (1993). There are various estimators that can be used and methods for determining theparameters of the �tted model, although most use a weighted least squares estimator with gradientbased optimisation - although since the parameter space is small and of low dimension exhaustivesearches are quick and easy.
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Figure 1: Four realisations from a 1D Gaussian process based on Bessel function covariance(Equation (53) - top) and modi�ed Bessel function covariance (Equation (52) - bot-tom) with varying smoothness (� = 0:5; 1; 2; 5), using the same seeds. In all realisa-tions the variance is 5, the length scale 1 and the nugget 0.0001.3.7 Simulation with random �eldsIn addition to (optimal) prediction (which can be seen as smoothing) we may be interested inrealisations of the process de�ned by the covariance function we are using. To look at thesesample paths we need to know how to simulate realisations from a given random �eld model. Notethat the aim of simulation is di�erent from prediction. The simulation is achieved by a Choleskydecomposition LL0 of Css the ns�ns covariance matrix of the points xs at which the simulation isdesired. One then takes a ns�1 vector of iid Gaussian random variables " and forms the simulatedvalues: zs = L"+mz (39)wheremz is the mean vector as usual. The main problem with this technique is that the Choleskydecomposition scales as n3s with storage of n2s which makes it slow to compute for n > 1000.Other methods such as turning-bands simulation are available and less computationally demanding(Cressie, 1993).In addition to the above unconditional simulation, one may want to simulate conditionally on someobserved data in the n � 1 data vector zm = zm(xm) at simulation points xs. If we denote theconditional simulation by the ns � 1 vector zcs then:zcs(xs) = zs(xs) + C 0msC�1mm(zm(xm)� zs(xm)) (40)where the full covariance matrix between the data and simulation points is given by:�Cmm CmsC 0ms Css �with Cmm the n � n covariance matrix of the observed data, Cms the n � ns (cross) covariancebetween the observation and simulation points and Css is the ns � ns covariance between thesimulation points. The conditional simulation honours the data, yet retains the variability associ-ated with the random �eld model �tted, and has an estimation variance twice that of prediction(Cressie, 1993).



14 Random Field Models and Priors on Wind4 Implications of Helmholtz Theorem for Wind Field Mod-ellingWe now look at the application of random �eld models to vector data, in particular wind �elds.Helmholtz Theorem (Cornford, 1997b) is useful because it allows us to manipulate the covariancefunction for the vector winds into two scalar covariances for 	 and �. If we consider two windvectors (u1; v1) and (u2; v2) at locations (x1; y1), (x2; y2) respectively then the cross-covariance:Cuv((x1; y1)(x2; y2)) = E[u1:v2]= E��@�1@x � @	1@y �:�@�2@y + @	2@x ��= E��@�1@x1 @�2@y2 ��+E��@�1@x1 @	2@x2 ���E��@	1@y1 @�2@y2 ���E��@	1@y1 @	2@x2 �� (41)The 	 and �'s are continuous and di�erentiable, thus using the de�nitions of expectations andderivatives we get:E��@�1@x1 @�2@y2 �� = @2@x1@y2E[�1:�2] = @2@x1@y2C��((x1; y1)(x2; y2)) (42)If we assume the 
ow is homogeneous then the covariances no longer depend on absolute locations,merely the relative locations of the two points:C��((x1; y1)(x2; y2)) = C��(r) (43)where r = (x1 � x2; y1� y2) is the displacement vector, which is usually considered in plane polarcoordinates (r; �). Thus we �nd that:Cuv = @2@x2C�� � @2@y2C		 + @2@x@yC�	 � @2@y@xC	� (44)
(u1,v1)

l1
t1

(u2,v2) t2

l2

(x1,y1)

(x2,y2)

x axis

φFigure 2: A graphical description of the the conversion of velocity components from (u; v) to(l; t). Note that this is with reference to vector pairs.This may not appear to have brought very much to the problem, however we now �nd that weneed not assume isotropic covariances on the wind components, but we can maintain the simplicityof isotropic covariances on the velocity potential and stream function covariances. Furthermoreassuming that the covariances of the stream function and velocity potential are isotropic (that isdepend only on r) and that the cross covariance C	� is zero - that is the velocity potential and



Random Field Models and Priors on Wind 15stream function are uncorrelated and we de�ne longitudinal and transverse velocity components(Figure 2): l = u cos(�) + v sin(�)t = �u sin(�) + v cos(�) (45)where � is the angle between the x-axis and l. The covariances for l and t are given by:�Cll CltCtl Ctt� = � cos(�) sin(�)� sin(�) cos(�)��Cuu CuvCvu Cvv� �cos(�) � sin(�)sin(�) cos(�) � (46)where the cos(�)'s etc. are square matrices of the cosine of the angle (relative to the x-axis)between each observation pair. We can now write:Cll(r) = �1r ddrC		 � d2dr2C��Ctt(r) = � d2dr2C		 � 1r ddrC�� (47)Clt = Ctl = 0Thus given C		 and C�� we can compute the wind covariances - which are not isotropic in general- based on simple scalar isotropic covariance models for the stream function and velocity potential.Computing the covariances in this way ensures that the joint covariance matrix of (u; v) is positivede�nite. This is necessary if we are to simulate realisations (sample) from this prior (covariance).4.1 Common covariance models for wind dataThis is a bit of an oxymoron since there are very few published results which use covariances ofthe wind �elds directly. Almost all studies are concerned with the analysis increments - that is thedi�erence between the observations and the forecast background. These increments will have verydi�erent properties from the true winds.4.1.1 Suitable covariance functionsIf we now replace the covariance functions by correlations Cuv(r; �) = E2u�uu(r; �) for all covari-ances where E2u = Cuu(0; 0), then we can rewrite the equations in terms of `standard' correlationfunctions. We shall start by considering correlation functions of the form:���(r;L�) = �1 + rL�� exp�� rL�� (48)�		(r;L	) = �1 + rL	� exp�� rL	� (49)where L� and L	 are characteristic length scales for the stream function and velocity potential.These will typically be of the order of 1000km with there being little evidence to suggest di�erentlength scales for the di�erent �elds. If we now de�ne:v2 = E2�L2�E2uwhich gives the ratio of the kinetic energy in the divergent 
ow (as given by �) to that in the totalwind 
ow. This allows us to explicitly control the ratio of divergence and vorticity in the resulting
ow �elds.



16 Random Field Models and Priors on WindIt can be noted that the random �elds de�ned by the correlation (i.e. covariance) functions givenabove are once di�erentiable since:@���@r ����r=0 = �� rL2�� exp�� rL�� ����r=0 = 0 (50)however the random �eld is not twice di�erentiable (as it should be so that the divergence andvorticity exist and are continuous) because:@3���@r3 ����r=0 = 1L3� �2� rL�� exp�� rL�� ����r=0 6= 0 (51)Thus the correlation functions of the form (49) are not very good candidates for modelling thewind �eld since they do not produce a continuous vorticity or divergence �eld.One of the most general forms for isotropic correlation functions is:���(r;L; �) = 12��1�(�) � rL0�� K� � rL0� (52)where L0 = L=(2p�), � is the gamma function and K� is a modi�ed Bessel function of the secondkind of order �. In this model L > 0 is a scale parameter and � > 0 is a smoothness parameter.With � = 0:5 the function corresponds to the exponential class of covariance functions, and as� ! 1 we obtain the `squared exponential` covariance. A random �eld with this covariancefunction is d�e � 1 times m.s. di�erentiable and the realisations will be a similar number of timesdi�erentiable if � > d�e � 0:5 (Handcock and Stein, 1993). Thus we desire � > 2 for the vorticityand divergence to exist and be continuous. One of the problems with using covariance functionsof this form is that their computation is rather time consuming, although in relation to the othercomputational burdens this is probably of marginal importance. Also this correlation functioncannot have negative values, which is not very physically realistic - due to the wave-like nature ofthe atmosphere.We can obtain negative correlations if we use:���(r;!; �) = �(� + 1)2�(!r)��J�(!r) (53)where � � 0 and ! > 0. This form of correlation function permits negative correlations and isin�nitely many times m.s. di�erentiable. This may be the most sensible choice of correlation func-tion to use in practice, although like the squared exponential covariance function, the assumptionis that the underlying random �eld is analytic. This means that given a large number of points ina small area (or equivalently a large number of derivatives at a point) we might know the value ofthe function everywhere as the number of points (derivatives) tends to in�nity.Actually, it may be that it will prove impossible to use a covariance function with the desirabledi�erentiability properties (and which is still a valid covariance function). The periodic formoutlined in (53) is likely to give good priors due to the inherent `periodicity' of the atmosphere, butwill produce very smooth wind �elds. The more 
exible modi�ed Bessel based covariance function(52) may be the most suitable candidate since it allows a great deal of control over the smoothnessof the generating random �elds. Although it cannot produce strictly periodic behaviour is willproduce quasi-periodic behaviour so long as the length scale is of the same order of magnitude asthe dimensions of the sampling area (which will be true for scatterometer swathes) - see Figure 1.
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Figure 3: Four realisations from a vector random �eld model based on a modi�ed Bessel func-tion covariance (Equations (52) and (55)) with varying parameters (top - maximumlikelihood parameters for January 1996, bottom - July 1996, North Atlantic). Notethe lighter winds in the summer in the North Atlantic.4.1.2 Wind correlations from velocity potential and stream function correlationsWhatever form of correlation function we choose we can write:�ll(r) = �L2	 �1� v2� 1r ddr �		 � L2�v2 d2dr2 ��� (54)�tt(r) = �L2	 �1� v2� d2dr2 �		 � L2�v2 1r ddr ��� (55)Thus we now have a general method for producing (u; v) covariances under the assumptions givenabove (homogeneity, isotropy - of the scalar covariances, and no correlation between � and 	)when we have a suitable form of correlation function for � and 	 with given length scale (that isthe scale at which the correlation �rst approaches zero for the �eld in question - which relates tothe typical size of features (depressions, anticyclones) in the atmosphere). We also need to specifythe kinetic energy of the wind (kuk2=2) which is assumed to be about 32m2s�2. This will allow usto simulate realisations of the given covariance functions with given parameter values. We couldhypothesise sensible priors for these hyper-parameters.



18 Random Field Models and Priors on Wind5 PracticalitiesRecall, in practice we need to obtain some parametric functional form for the covariances. In windvector assimilation into numerical weather prediction models one usually assumes some form ofbackground �eld - which is typically a forecast �eld (but was sometimes assumed to be a climatologyin the very early days of meteorological data assimilation). Thus one would actually analyse theerror between the observed and background values (Daley, 1991). This is not practicable for us todo - and anyway it is probably better left to the Meteorological O�ce, who have readily availablebackground �elds.We can take two choices. E�ectively we have to assume a non-informative background �eld (i.e. nobackground information). While we could use a climatological background this will probably notbe very useful since we are primarily interested in those events dissimilar to the climatology. Thuswe can try to estimate sensible covariances for (u; v) - quite possibly through (�;	) or we can usea regularisation approach (Cornford, 1997a) and let the choice of penalty dictate the covariance(strictly the basis). These approaches are similar but not necessarily parallel.The success of both methods will depend on the choice of a sensible covariance (constraint). Thisis a very di�cult area, because there have been no publications (which I know of!) that havediscussed choices of priors appropriate to every atmospheric situation. In particular we have dataat 25km resolution, which is much denser than other observed wind data - and thus has unknownproperties. It is quite likely that errors in the data will be strongly correlated (since we are usingthe same instrument to observe all observations) as is true of many space based observation systems(Daley, 1991).In the barotropic atmosphere (a strongly constrained atmosphere where the density depends onlyon pressure - which implies there are no thermal gradients on surfaces of constant pressure) thereshould be relatively few problems. The barotropic model is a good approximation for many at-mospheric situations - but not all. Fronts (Cornford, 1997b) present a particular problem sincein these regions one must assume the atmosphere is baroclinic - that is density depends on bothpressure and temperature. Thus in the vicinity of fronts priors based on a barotropic model of theatmosphere (which most currently used `priors' are) will be inappropriate.5.1 A Hierarchical ApproachI think the way that we will have to tackle this problem is hierarchical. Firstly we will have priorson the probability of each type of feature (high, low, ridge, trough, front). These will vary inspace and time. Then for each feature we have a fair prior on the distribution of vorticity anddivergence, and thus we could simulate these and then conditionally simulate (u; v) on the vorticityand divergence �elds. The trouble is that this is a lot of work (computationally and human wise).There is an easier way, which is to use priors on (u; v) which already contain the features. This istrue for most priors we have discussed for the larger scale features (lows, highs, troughs and ridges- see Figure 3) but is not true for fronts. Thus these will need special attention.6 ConclusionThis short document forms the basis for the Bayesian approach to disambiguation. It has clari�edmany of the concepts surrounding random �eld theory. Much time has been spent examining the
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