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1 Introduction

This report seeks to make concrete some of the ideas we have been discussing about sensible priors
for winds over the ocean. In particular, random field models are reviewed, as are permissible
covariance functions. The criteria which these covariance functions must satisfy in order that
vorticity and divergence exist and are continuous are defined. The impact of Helmholtz theorem
is discussed, and sensible choices for the covariances are suggested.

2 Random Field Models

2.1 Random variables

If we recall basic probability theory, a probability space (Q, F, P) where Q is the sample space (i.e.
all possible elementary events), F' is a o-field of subsets of  (i.e. a collection of subsets of Q that
also contains the empty set and 2 itself, which is closed under finite intersection, countable union
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and set complement) and P is a probability measure on (2, F') must satisfy Kolmogorov’s axioms:
P(Q)=1
0<P(4;)<1 VA, € F
oo oo
ifA,NA; =0 (Vi#j) =P <U Ai> => P(4A)
i=1 i=1

where the A;’s are called events. This probability space is the underlying model for all of the
forthcoming discussion.

We can use this definition of probability to define a random variable (Christakos, 1992). Let z(u)
be a random variable where u € Q are the elementary events. Thus z is a (measurable) mapping
from (£, F) into (R!, F'!) such that:

VB e F', 7' B)={uecQ:2(u)e B}YeF
This measureability induces a probability measure u, on (R!, F1), such as:
VBEF',  ju(B)=P("\(B)) = P(s = :(u) € B)

We usually study the distribution of this probability measure through the (cumulative) distribution
function:

F.(x) = P(z<x)
where x € R! or the probability density function:
f:(x) = P(z=x)

when F, is absolutely continuous. Using these definitions we can go on to define a random field.

2.2 Random fields

A random field is a collection of random variables defined by their joint distribution functions.
Now define Z(z), z € R? to be a (spatial) random field®, then we have:

le,...mn(Xla--'aXn) = P(zl <Xis+-052n < X'n) (1)

where z; = Z(x1) and n can be any integer. We can also define the probability density function:

fz0asoxn) = farea(Xas 0 Xn)
a'ﬂ
= mFm,...,zn(Xlw-an)
A random field can also be characterised in terms of its characteristic function, which is the n-
dimensional Fourier transform of the probability density (Christakos, 1992).

In a very straightforward manner we can extend the concept of a scalar random field (as outlined
above) to a vector random field Z(x). This will be necessary when we consider winds.

Classically, random fields are characterised by their first and second order moments. These are the
mean:

mA@:Ew@ﬂ:/XhWWX (2)

1Tn this report we will consider 2 dimensional random fields since these are most relevant to our problem.
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and covariance:

c:(@i,z5) = El(Z(z:) —m.(2:))(Z(25) — ma(x;))] 3)
= E[Z(zi)Z(x;)] — m.(zi)m.(z;)

It is also useful to define the (spatial) correlation function:

Cz(il!i,il!j) (4)

p2(®i, x5) = o2(xi)\/02 (x;)

where o (z;) is the variance of the random field at the point ;. When the random field is Gaussian,

then these first two moments completely characterise its behaviour (i.e. Gaussian processes?).
Making the ‘Gaussian assumption’ is very common in practice, since inference and estimation are
then straightforward.

To be a valid covariance, the function c,(z;, ;) must be non-negative definite3, that is:
n n
YN qigics (i, x5) >0 (5)
i=1 j=1

Vn € N, points x;,x; and ¢1,...,9, € R. Every permissible covariance is a symmetric function
and if the random field is ergodic:

lim  c,(zi,z;) =0

\mi—mj\—mo

If we move to vector random fields then if we consider a two component (e.g. u,v) random field,
with components Z; (x) and Z>(x) then in addition to the standard means and covariances we can
define the cross-covariance:

Cor 20 (Tiy T5) = E[(Z1 (i) — me, (24))(Z2(25) — mey (25))]
and a cross-correlation as before. We now can define the joint covariance matrix:

CZ = Czy (113,‘,33_7') Cz1,20 (331,33_7)
Czz,21 (213_7‘,:1:,‘) Czs (:L'i,:L‘j)

The condition corresponding to Equation 5 for this vector case is:
4'Czq>0

where ¢' = [q1,...,q2n], the augmented vector, and the other conditions are as before.

2.3 Convergence properties

To study the properties of random fields we need to consider the concept of stochastic convergence®.

There are several types of stochastic convergence. If {z,} is a sequence of random variables
(Christakos, 1992) {z,} is said to converge to z (also a random variable) with

2In the geophysical sciences a process is generally regarded as being one dimensional and usually refers to time-
series modelling.

3This ensures that the variance is non-negative (as it must be).

4This is rather like the deterministic case where we study the continuity, differentiability etc. of functions through
the convergence of their series.
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® mean square convergence:

Zn % 2 = lim E[|z, —2*] =0
n—oQ

e almost sure convergence:

Zn 25 2 <= P[lim 2, =2] =1

n— oo
e convergence in probability:
Zn 5 2 = Ye>0, lim P[lz, —z| > € =0
n—oo

Mean square and almost sure convergence both imply convergence in probability. If z, =% z
then E[z,] — FJ[z] and the operators lim and E[-] commute. Thus a random field Z(x) is said to
converge to Z(xo) when & — xq in one of the above categories if the sequence of random variables
{zn = Z(x)} at x = ®1,...,2Zn,... tends to zo = Z(xg) as n — 0o. We can now state the mean
square convergence criterion for a random field:

Let Z(x) be a random field with xq a fixed point in two dimensional space. Then:
Z(x) ™% Z(xo) <= E[Z(z:)Z(x;)] = E[Z(x0)]? T;, T; — Tg (6)

where the convergence of the expectations is in the usual sense (i.e. not mean square). We can
now define continuity, differentiability (and integrability if needed) in terms of mean square (m.s.)
or almost sure (a.s.) convergence of the random field. Note that in general m.s. convergence does
not imply a.s. convergence nor vice-versa.

2.4 Continuity

A (second-order)® random field Z(z) is m.s. continuous at & € R? if:
Z(x;) ™% Z(x), T, >
or
Z(x + h) ™% Z(z), h—0 (7)

This definition can be extended to the whole domain to yield an everywhere m.s. continuous
random field. Now Z(z) is m.s. continuous at x € R? if and only if c,(x, ;) is continuous at
(z,x; = ) (assuming that the mean is continuous - indeed here without loss of generality we will
assume a zero mean).

A random field Z(z) is a.s. continuous at x € R? if:
Z(x 4+ h) 2% Z(z), h—0 (8)

If Z(x) is everywhere a.s. continuous it is called sample function continuous. Sample function
continuity can be expressed in terms of the covariance function of a random field. If ¢z, h € C C R?
then:

4
@t how+h) — (@ 4 h @) — (@ e+ B) + e (@) < —IP

_ 9
< Tiog [R][F2 ©)

5this refers to the order of the norm of the probability space - which is almost always 2 - i.e. Euclidean
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for @ > 0,8 > 2 implies that Z(x) is a.s. continuous (Christakos, 1992; Adler, 1981). It should
be noted that this is a very tight bound which is very difficult to attain (none of the practically
used covariances satisfy this bound). If we make a ‘Gaussian’ assumption on the random field, and
assume it to be stationary (see later), then we can significantly relax the bound to give conditions
for sample function continuity (Abrahamsen, 1997; Adler, 1981):

a

Cy 0 — Cy h S IO RITEPE
(0) = ex(h) < TRl

a>0,e>0 (10)
This much weaker bound is met by almost all used covariance functions, thus if a Gaussian random
field possesses continuous expectations and a continuous covariance function then it has continuous
sample paths with probability one (Abrahamsen, 1997).

Sample function continuity tells us about the behaviour of the realisations (simulations) of a random
field. M.s. continuity does not necessarily imply a.s. continuity although in the Gaussian case it
is an ‘almost’ sufficient condition (Abrahamsen, 1997).

2.5 Differentiability

A random field Z(z) is m.s. differentiable at € R? with respect to the z component of £ = (z,y)
if 3Z(,)(x) such that:

7z 2,0)) — Z(x) m.s,
@+ () = 2@ w70, g

where Z(,)(x) is the partial derivative with respect to z:

07 (x) I Z(x+ hy) — Z(x)

m
ox hz—0 hz

This can be written in terms of the covariance function if the mean value E[Z(x)] is differentiable
and the covariance:

cov 8Z(a:z) 8Z(a:j) _ 82c2(wi,wj)
(9:6,' ’ (956]‘ N (9:6,(9:6]

. 1 (11)
1 — , ‘
hzi7f1LI::.—)0 hxzhz] [CZ (213 + hmzaw + hl])

—ci (T + hyyyx) —co(T, @+ hy;) + oz, )]

exists and is finite at all diagonal points ; = ;. We can extend this definition of differentiability
to higher order derivatives viz:

. (6”Z(a:i) avZ(mj)> _ 9. (zi,z5)

v ’ v v v
oz} oz} 0z 0z}

which must exist and be finite at x; = z;.

For sample function differentiability we have:

Z(Zl! + (hxao)) - Z(Zl!) a5
hg

so long as Z(,)(x) exists. If we assume that Z,)(x) is the m.s. partial derivative derivative of
Z(x) which has covariance:

B 0%c,(xi, ;)

Cz(zk,zl)(xi7w.’i) - 8Ik8$l (]‘2)
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then using (9) we can see that Z(,)(z) is a.s. continuous if:

Cs (x+h,xz+h)—c., . (z+h

(zp2)

aollh|* (13)
_Cz(zk,zl)(x’x +h)+ Cz(mk,ml)(wvw) < W

This rather odd notation is simply saying that the derivative of the original random field is a.s.
continuous if the random field defined by the second derivative of its covariance function is a.s.
continuous as defined in (9). If we make the ‘Gaussian’ assumption then we can relax the bound to
be that in (10). For criteria concerning the integrability of random fields see Abrahamsen (1997)
or Christakos (1992).

2.6 Spectral representation

All random fields can be expressed in a Fourier-Stieltjes representation:
Z(x) = / exp(iw - )dN, (w)
RrR2
where dNV, (w) is a random field over w € R?. Z(x) has a covariance given by:
crlwnes) = [ [ explitws @i - w; - 2))d0.(wi w) (14)
r2 JR2
where @, (w;, wj;) is the spectral distribution function of Z(z) - and is not necessarily differentiable.

If dN,(w) is differentiable then we obtain the Riemann integral representation:

Z(x) = f exp(iw - )7 (w)dw (15)
RZ
Thus Z(z) and Z(w) are Fourier pairs with:
- 1 .
Z(w) = %fzexp(—zw-a:)Z(w)dw (16)

The covariance function of Z(x) can be written as:

(X, 25) /]R2 /Rzexp i 25))Cy(w;, wj)dw;dw; (17)

where C,(w;,w;) is the spectral density function of Z(x) - and corresponds to the derivative of
the spectral distribution function. A covariance function that admits the representation (17) is
called harmonizable.

The spectral representation of random fields is important because it offers another method of
checking for and generating (conditionally) positive definite covariance functions. Note that in all
the above integrals when c, is real then the exponentials can be replaced by cosines.

3 Using Random Field Models

We have defined some of the mathematics for random field models in the preceding section, however
without further assumptions they are not practically applicable. This is because the full knowl-
edge of the first and second moments (if we are assuming Gaussian processes) implies a complete
knowledge about the variable of interest in any case. In reality we only have a finite sample, often
from only one realisation, and thus to make progress we must make further assumptions.
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3.1 Homogeneity and stationarity

A random field® is called homogeneous in the wide sense or second-order stationary” if
my(z) = E[Z(x)]=m (18)
and
(@i, 5) = cz(@i — ;) = cz(h) (19)

where m is the constant mean value, and the covariance depends only on the separation vector
h = z; — z;. In practice this assumption allows us to make inferences from only one realisation
of a random field, but care must be taken since if the field is not actually second-order stationary
then the model may produce unrealistic results.

In geostatistics another form of stationarity is often invoked. Intrinsic stationarity is defined by:
E[Z(x +h) — Z(z)] =m(h) =0 (20)

and
var[Z(z + h) — Z(x)] = E[(Z(z + h) — Z(z))?] = 2v.(h) (21)

where v, (h) is the so called variogram® of the random field Z(x). Intrinsic stationarity is weaker
than second-order stationarity - thus second-order stationarity implies intrinsic stationarity but not
vice-versa. We can see that the assumption of intrinsic stationarity is on the first order increments of
the random field Z(x+h) — Z(x) rather than the actual field. Practical experience in geostatistical
modelling of physical processes suggests that intrinsic stationarity is more common than second-
order stationarity, and thus the variogram is frequently used in preference to a covariance function.
Where a random field is second-order stationary we have:

7z(h) = ¢2(0) — ¢z (h) (22)

and we can use either a variogram or covariance function. In general when we use random field
models we will specify some form of parametric function (which satisfies the properties required
for it to be valid) to represent the variogram or covariance. There are several permissible models,
some of which are listed later.

Related to stationarity is the concept of ergodicity which implies that we can compute the means
and covariances of a random field Z(z) from only one realisation.

3.2 Isotropy

It is often observed that the random field being studied is invariant to rotation, that is the covari-
ance or variogram depends only on the separation distance h = ||&; — ;|| where | - || denotes the
standard Euclidean norm, rather than the separation vector h. For wind fields this will be a rather
unlikely situation since there is generally considerably more correlation along the flow than across
it. Thus we will generally be dealing with anisotropic covariance functions, although the form of
the anisotropy will remain simple.

It is possible to have h = ||@; — z;||x where || - ||x is a more general norm given by:

h=lz: —z;llx = \/(wz —x;) K(x; — ;)

60r indeed the natural process.
7Also called strict stationarity if the random field is Gaussian.
8Strictly 7. (h) is the semivariogram but I will use the term variogram.
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and K is some positive semi-definite transformation matrix. This form of norm allows for anisotropic
covariance functions. It corresponds to a scaling of the axes and is know as geometric anisotropy
in the geostatistics literature (Wackernagel, 1995). Note that the isotropic case is simply given by
K =TI the identity matrix.

3.3 Valid covariance functions and the nugget effect

If c.(h) is a valid covariance function for a second-order stationary random field Z(x) the following
properties apply (Christakos, 1992)%:

If Z(x) is isotropic then also:

lim +/|h|c,(h) =0
|h|—00
These conditions do not imply the function is positive definite and this must be checked separately.
In general a (covariance) function is positive definite if it can be represented in the form (14). If we

go on to assume that the random field is real and the spectral distribution function is differentiable
then:

c,(h) = /]R2 cos(w - h)C,(w)dw (23)

where C,(w) is the spectral density function (it is always assumed that these integrals exist). We
can now state that c,(h) is a permissible covariance function if:

C.,(w)>0  VweR? (24)

In general we will require some form of continuity on our random field. For wind vectors there are
strong grounds for believing the large scale wind!® will be continuous and at least once differentiable
- indeed given that vorticity and divergence are also continuous and differentiable it could be argued
that at a minimum the random field should be twice differentiable. This has implications for the
covariance functions we can use, but we shall come back to this latter. However at smaller scales
(both in space and time) there may be strong grounds for treating the wind (random) field as
containing discontinuities.

This is a philosophical point but is important to modelling wind fields. How do we treat turbulence?
The wind field over any non-smooth'! can be decomposed into two components - the steady state
flow (i.e. the average flow over a sufficiently long time interval) and the turbulent flow (i.e. the
difference between the steady state flow and the observed flow). Typically the steady state flow can
be modelled using the equations of motion, or the geostrophic approximation - that is by models
based on the integration of the differential equations governing fluid motion. The same is not true
for the turbulent terms.

In practice these are regarded as random and are modelled statistically (although some models
now attempt to resolve the largest turbulent eddies over very small domains in a research setting

9assuming again that it is ergodic

10By which T mean wind averaged over large areas or times.
1 That is effectively any real surface for other than trivially slow wind speeds.
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- often with aim of improving the parametric models used to statistically represent turbulence).
Thus we have a dilemma borne of scale'? which is very difficult to resolve. At the very smallest
observable level (time-scales of milliseconds) the wind appears continuous - if a little complicated.
If we consider a larger averaging scale (say one second) then we might observe the wind field to be
discontinuous - in both space and time - despite the fact that the underlying process is continuous.
This is one source of the nugget effect often referred to in geostatistics (Wackernagel, 1995).

The nugget effect is used to model the variance associated with two sources of uncertainty. Firstly
there is the error due to the representativity of the observations (in space and possibly time) - that
is the error that comes from the observations being made at inconsistent scales compared to the
process as discussed above. The nugget effect can also be used to model uncorrelated observing
errors. The covariance is then given by:

c:(h) = ad.(h) + Bey(h) (25)

where §,(h) is the Kronecker delta (§,(h) = 1 <= h = 0), a is the amount of ‘uncertainty’
variance and ¢,(h) is a continuous valid covariance function. Given this model we could separate
Z(x) into:

Z(x) = Za(z) + Zp(x) (26)
where Z,(x) is a white noise random field and Zj(x) is the ‘smooth’ component of Z(x).

In order to obtain a good model we must try to accommodate the process scales (with reference
to the observation scales). We must also recall the objectives of the modelling. In many cases we
will not want to represent the turbulent component of the wind (in simple numerical models of the
large scale atmospheric flow these turbulent components can amplify and propagate in alarming
fashion and are thus filtered in various ways) rather we desire to predict the large scale flow. Thus
we can view our problem as a smoothing or filtering one.

The data we are dealing with is scatterometer estimated wind fields which have a spatial resolution
of 50 x 50km. Thus we can reasonably assume that at this resolution we are observing the large
scale wind flow. An interesting question (which I have not seen addressed) is what happens when
the wind field is inhomogeneous. There are two types - firstly and most simply - that due to the
turbulent nature of wind over the ocean (just watch the ripples - which is what the satellite is
‘seeing’ - over a lake). How does this ‘patchy’ ripple pattern aggregate over the 50 x 50km that
the satellite observes? It is not clear that this should be linear - and is a useful justification for
the use of neural networks to model the (inverse) transfer function. The second question involves
what happens across fronts. Here there is a large scale (but still less than the observation scale)
change in wind direction which may occur under a front. It is not known what the scatterometer
will return.

So what does this mean for wind field modelling? Well I think we must insist that we are modelling
at the observation scale but ensuring that we incorporate our knowledge of the process scales. This
means that we will want to use a covariance function that has a nugget component (that is the noise
component will cause the field to be sample function discontinuous) and a ‘smooth’ component
that represents a random field which is mean square differentiable at least twice.

3.4 Practical differentiability

If we are considering a homogeneous (i.e. second-order stationary) random field Z(x) then this is
m.s. continuous if its covariance function c,(h) is continuous at h = 0. It is m.s. differentiable

12Which is often referred to in the literature on fractals and chaos.
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to the v’th order if the 2v’th partial derivative of c,(h) exists and is finite at h = 0 (Christakos,
1992). This means that

8”Z(2l!i)
_ 2
Oz (27)
exists in the m.s. sense iff:
82v—lcz(h)
=0 28
8h3071 h=0 ( )

Thus we have the necessary and sufficient conditions for our covariance to be at least twice differ-
entiable. This may be clarified by an example.

If we consider the two dimensional ‘squared exponential’ covariance function given by:

c:(h) = exp (_M>

with the width parameter a > 0,h = (hg,h,) then we can show that the 2v — 1’th derivative
(with respect to z) contains only terms in odd powers (greater than 0) of h, times the exponential
term. At h = 0 this expression is equal to zero for all integer v > 0, thus a random field with
this covariance function is infinitely many times m.s. differentiable - something which we rarely
observe. Indeed this case can be thought of as pathological in that it implies that the knowledge
of the field over a very small area (which includes knowledge of all the derivatives up to a given
order) would make it possible to predict the value of the field anywhere over the domain (c.f.
Taylor expansion).

Now consider the one dimensional example:

¢»(h) = cos(bh) exp (-Z)

with both a,b > 0, which is a suitable covariance function for a process with a periodic compo-
nent'3. This covariance produces a m.s. continuous process, however it is not m.s. differentiable:

dci(h) 1 _h . _h
o acos(bh)exp( a) +bsm(bh)exp( a)

and at h = 0 this is equal to 1/a which is non-zero.

In the above sections we have examined two particular cases. This analysis can be generalised for
any covariance function. We often assume isotropy of the homogeneous random fields - this may
be appropriate for the stream function and velocity potential fields. In this case we have:

cz(h) = c.(r) (29)

where r = ||h||. In two dimensions we are now working in polar coordinates, with only r being
relevant. Thus we can express continuity conditions on the candidate covariance functions in terms
of r. Julian and Thiebaux (1975) suggest that the necessary criteria for differentiability (and thus
existence of a solution) are:

. 19c,(r)
rh—r>r(l) (r or ) (30)
is finite and:
. 10c,(r)  0%c,(r) _
i (950 - ) =0 2

13which is typical of the transient waves in the atmosphere - that is the cycle of highs and lows
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11

This is different from the criterion for m.s. differentiability of an isotropic random field given in
Christakos (1992) which is:

dc, (1)
or

=0 (32)

r=0

It can be seen that (31) is a zero condition on the Laplacian of the covariance function (in plane
polar coordinates) and corresponds to the condition:

. 8202(%1/) 8202(%1/)
lim — ( 922 + By

) = lim ~V?c.() = 0 (33)

where r = /22 + y2. Thus we are saying that the second derivative of the covariance function
(in polar coordinates) tends to zero as 1 — 0. Adler (1981) gives the definition of mean square
differentiability as being that:

0%c,(s,t)

0s;0t; (34)

exists and is finite at the point (¢, t) for all . This corresponds to the earlier definition in Christakos
(1992) given in (11). If we assume the field is homogeneous and that the covariance is therefore a
symmetric function then the requirement (32) can be seen to be a sufficient and necessary condition
for (34). Thus it would seem that the conditions given in Julian and Thiebaux (1975) are a little
difficult to reconcile with those above. [The different conditions expressed in Julian and Thiebaux
(1975) to those elsewhere can be reconciled if we swap the conditions of the derivatives of the
covariance functions in (30) and (31). I believe there may have been a typo in the original paper
(Julian and Thiebaux, 1975).]

3.5 Prediction with random fields

In the next sections we deal with the practical application of random field models to prediction and
simulation of two dimensional Gaussian random fields. In many instances the Gaussian assumption
is not needed for the results to be true, however under this assumption many of the results are
optimal. In cases where the Gaussian assumption is inappropriate other methods should be used
(Diggle et al., 1998; de Oliveira et al., 1997). We shall generally consider scalar output variables,
but the extension to vector variables is trivial, with no major modifications necessary.

Consider a random variable Z(z), £ € R? with n x 1 observation vector z,, = z(Z,,). If these
observations are assumed to come from a (zero mean) random field model with covariance function
¢, the predicted value 2z, = z(x,) at some unsampled location z, is given by:

29 = El20|2m] = €0'C ' 2m (35)

To see the meaning of the terms, consider the joint n + 1 X n 4+ 1 covariance matrix of [2m, 2o’
given by:

C ¢

Co' Coo

where C' is the n X n covariance matrix of z,,, ¢, is the n x 1 covariance vector between z,,, and
2o and ¢,, is the (co)variance of z,. This can all be derived from the properties of the multivariate
Normal distribution (in the Gaussian case) or from the minimisation of the (expected) squared
error of prediction under unbiased, linear conditions. Since the distribution P(2,|2.,) is Gaussian
the estimation variance is given by:

&zo = var[z,] = oo — €o'C o (36)
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which does not depend on z,, but only on c,, x,, and x,.

The vector case is similar although the matrix dimension changes and the notation becomes less
clear. In the above results we have assumed that the covariance function is completely known, and
that the random field is zero mean. In practice we attempt to estimate the covariance function
from the data, which is the reason for all the stationarity (ergodicy) assumptions.

The next section examines how. Strictly speaking we should adopt a Bayesian approach and
evaluate the prediction through the posterior distribution using (hyper)priors over the parameters
in the covariance function (Neal, 1997; Brown et al., 1994; Handcock and Stein, 1993).

3.6 Estimation of the covariance

There are two commonly used methods for estimating the parameters in the covariance function;
(restricted) maximum likelihood and method of moments (Cressie, 1993). Maximum likelihood
estimation is the more principled approach. Under the Gaussian assumption, with covariance
function ¢, parameterised by parameter vector 8 the log likelihood of the the data z,, is:

1 1
[ = P(2ml|0) = —g log(2r) — Z10g(IC) = 52m'C ™" zm (37)

where |C| means the determinant of C. Thus we can compute the likelihood of the data for any
given model, and also the derivatives (Williams, 1998; Neal, 1997) which will allow us to determine
the most likely parameters to have generated the observations using gradient based minimisation
methods (conditional on the model being sensible as ever).

In the case where we cannot assume zero mean we will also have to estimate the mean function.
In this case we might use the (restricted) maximum likelihood estimator (Cressie, 1993) and some
parametric mean (often given by a combination of ‘regression’ basis functions). Note that in the
finite data case there is no unique partition into mean and covariance component - this depends
on the investigators beliefs and the aim of the model.

Ripley (1988) notes that in practice maximum likelihood estimates of parameter values do not
agree with visual inspection of the empirical covariogram given by:

Oh) =

) > (Z(@i) = m2) (Z(z5) = m.)) (38)

N(h)

where N (h) is the number of pairs with separation distance hjpwer < b < Aypper and m, is some
estimate of the mean function - which we usually assume zero. Effectively one divides the range
of h into a number of classes, usually equally spaced, and using the replications within each class
one computes the mean covariance in of each class at the mean separation vector.

Plotting this allows for visual inspection of the covariance function estimator. One can take the
analysis a step further and estimate the parameters of the covariance function by fitting the function
to the empirical estimator. This is know as method of moments estimation, and is recommended
by Cressie (1993). There are various estimators that can be used and methods for determining the
parameters of the fitted model, although most use a weighted least squares estimator with gradient
based optimisation - although since the parameter space is small and of low dimension exhaustive
searches are quick and easy.
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Figure 1: Four realisations from a 1D Gaussian process based on Bessel function covariance
(Equation (53) - top) and modified Bessel function covariance (Equation (52) - bot-
tom) with varying smoothness (v = 0.5,1,2,5), using the same seeds. In all realisa-
tions the variance is 5, the length scale 1 and the nugget 0.0001.

3.7 Simulation with random fields

In addition to (optimal) prediction (which can be seen as smoothing) we may be interested in
realisations of the process defined by the covariance function we are using. To look at these
sample paths we need to know how to simulate realisations from a given random field model. Note
that the aim of simulation is different from prediction. The simulation is achieved by a Cholesky
decomposition LL' of Cys the ng X n, covariance matrix of the points x, at which the simulation is
desired. One then takes a ng x 1 vector of iid Gaussian random variables € and forms the simulated
values:

zs=Le+m, (39)

where m, is the mean vector as usual. The main problem with this technique is that the Cholesky
decomposition scales as n® with storage of n? which makes it slow to compute for n > 1000.
Other methods such as turning-bands simulation are available and less computationally demanding
(Cressie, 1993).

In addition to the above unconditional simulation, one may want to simulate conditionally on some
observed data in the n x 1 data vector 2z,, = 2,,(.,) at simulation points xs. If we denote the
conditional simulation by the n; x 1 vector z.s then:

zes(25) = 25(®5) + Cp O (2m (Tm) — 2a(Tm)) (40)

where the full covariance matrix between the data and simulation points is given by:

[Cmm Oms:|
C;ns CSS

with Cy,,, the n X n covariance matrix of the observed data, C,,s the n x ng (cross) covariance
between the observation and simulation points and C,s is the ng; X ng covariance between the
simulation points. The conditional simulation honours the data, yet retains the variability associ-
ated with the random field model fitted, and has an estimation variance twice that of prediction
(Cressie, 1993).
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4 Implications of Helmholtz Theorem for Wind Field Mod-
elling

We now look at the application of random field models to vector data, in particular wind fields.
Helmholtz Theorem (Cornford, 1997b) is useful because it allows us to manipulate the covariance
function for the vector winds into two scalar covariances for ¥ and ®. If we consider two wind
vectors (u1,v1) and (uz,ve) at locations (z1,y1), (z2,y2) respectively then the cross-covariance:

Ouv((xlayl)(x%yQ)) = E[Ul.’l)z]
- 0B, 00\ (08,  OU,
- E[(@ ay)'(ay * a)]
~ 0%, 0%, 0%, 9T,
= 5| (G a)] Pl (G )

SGal sG] e

The ¥ and ®’s are continuous and differentiable, thus using the definitions of expectations and
derivatives we get:

8@1 8@2 82 82
Ell 7——— | = =5E[®1.] = ——— 49
[(8551 Y2 )] 0z10y> [#1.%,] 0z10ys Caa ((21,91)(22,92)) (42)

If we assume the flow is homogeneous then the covariances no longer depend on absolute locations,
merely the relative locations of the two points:

Coa((r1,y1)(22,y2)) = Caa(r) (43)

where 7 = (21 — ®2,y1 — y2) is the displacement vector, which is usually considered in plane polar
coordinates (r, ¢). Thus we find that:

9? o2 o2 o2

Cyup = =—Css — =—C Coy — C
9pz U2 3y ‘N+8:c8y T dyoz A2

(44)

Figure 2: A graphical description of the the conversion of velocity components from (u,v) to
(I,t). Note that this is with reference to vector pairs.

This may not appear to have brought very much to the problem, however we now find that we
need not assume isotropic covariances on the wind components, but we can maintain the simplicity
of isotropic covariances on the velocity potential and stream function covariances. Furthermore
assuming that the covariances of the stream function and velocity potential are isotropic (that is
depend only on r) and that the cross covariance Cys is zero - that is the velocity potential and
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stream function are uncorrelated and we define longitudinal and transverse velocity components
(Figure 2):

I = wcos(¢p) + vsin(g)
t = —usin(¢) + v cos(d) (45)

where ¢ is the angle between the x-axis and [. The covariances for [ and ¢ are given by:

FE Il et I aaaed | st o (46)

where the cos(¢)’s etc. are square matrices of the cosine of the angle (relative to the x-axis)
between each observation pair. We can now write:

1d d?
Cu (T) = —;ac\lf\ll - Wc’qxb
d? 1d
Cu(r) = —=5Cww— -~ Cas (47)
Ci = Cy=0

Thus given C'yy and Cee we can compute the wind covariances - which are not isotropic in general
- based on simple scalar isotropic covariance models for the stream function and velocity potential.
Computing the covariances in this way ensures that the joint covariance matrix of (u,v) is positive
definite. This is necessary if we are to simulate realisations (sample) from this prior (covariance).

4.1 Common covariance models for wind data

This is a bit of an oxymoron since there are very few published results which use covariances of
the wind fields directly. Almost all studies are concerned with the analysis increments - that is the
difference between the observations and the forecast background. These increments will have very
different properties from the true winds.

4.1.1 Suitable covariance functions

If we now replace the covariance functions by correlations Cyy (r, @) = EZ2pyy(r, @) for all covari-
ances where E2 = (,,(0,0), then we can rewrite the equations in terms of ‘standard’ correlation
functions. We shall start by considering correlation functions of the form:

paa(r; Le) = (1 + L%) exp (_;_(I)) (48)
pew(r; Ly) = (1 + LT_\I,> exp (_Lr_w> (49)

where Lg and Ly are characteristic length scales for the stream function and velocity potential.
These will typically be of the order of 1000km with there being little evidence to suggest different
length scales for the different fields. If we now define:

> _ _F§
Ly B

which gives the ratio of the kinetic energy in the divergent flow (as given by @) to that in the total
wind flow. This allows us to explicitly control the ratio of divergence and vorticity in the resulting
flow fields.
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It can be noted that the random fields defined by the correlation (i.e. covariance) functions given
above are once differentiable since:

80@@

=0 (50)

however the random field is not twice differentiable (as it should be so that the divergence and
vorticity exist and are continuous) because:

1 n) e (5)
= —F —_ — X _
=0 Ld Ls) P\ Ls

Thus the correlation functions of the form (49) are not very good candidates for modelling the
wind field since they do not produce a continuous vorticity or divergence field.

aspcm
or3

#0 (51)

r=0

One of the most general forms for isotropic correlation functions is:

paa(r; L,v) = 2,,?1?(1/) (%)VKV (%) (52)

where L' = L/(2/v), 7 is the gamma function and K, is a modified Bessel function of the second
kind of order v. In this model L > 0 is a scale parameter and v > 0 is a smoothness parameter.
With v = 0.5 the function corresponds to the exponential class of covariance functions, and as
v — oo we obtain the ‘squared exponential‘ covariance. A random field with this covariance
function is [v] — 1 times m.s. differentiable and the realisations will be a similar number of times
differentiable if » > [v] — 0.5 (Handcock and Stein, 1993). Thus we desire v > 2 for the vorticity
and divergence to exist and be continuous. One of the problems with using covariance functions
of this form is that their computation is rather time consuming, although in relation to the other
computational burdens this is probably of marginal importance. Also this correlation function
cannot have negative values, which is not very physically realistic - due to the wave-like nature of
the atmosphere.

We can obtain negative correlations if we use:
paa(r;w,v) =7+ 1)2"(wr) " J,(wr) (53)

where v > 0 and w > 0. This form of correlation function permits negative correlations and is
infinitely many times m.s. differentiable. This may be the most sensible choice of correlation func-
tion to use in practice, although like the squared exponential covariance function, the assumption
is that the underlying random field is analytic. This means that given a large number of points in
a small area (or equivalently a large number of derivatives at a point) we might know the value of
the function everywhere as the number of points (derivatives) tends to infinity.

Actually, it may be that it will prove impossible to use a covariance function with the desirable
differentiability properties (and which is still a valid covariance function). The periodic form
outlined in (53) is likely to give good priors due to the inherent ‘periodicity’ of the atmosphere, but
will produce very smooth wind fields. The more flexible modified Bessel based covariance function
(52) may be the most suitable candidate since it allows a great deal of control over the smoothness
of the generating random fields. Although it cannot produce strictly periodic behaviour is will
produce quasi-periodic behaviour so long as the length scale is of the same order of magnitude as
the dimensions of the sampling area (which will be true for scatterometer swathes) - see Figure 1.
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Figure 3: Four realisations from a vector random field model based on a modified Bessel func-

tion covariance (Equations (52) and (55)) with varying parameters (top - maximum
likelihood parameters for January 1996, bottom - July 1996, North Atlantic). Note
the lighter winds in the summer in the North Atlantic.

4.1.2 Wind correlations from velocity potential and stream function correlations

Whatever form of correlation function we choose we can write:

Thus we now have a general method for producing (u,v) covariances under the assumptions given
above (homogeneity, isotropy - of the scalar covariances, and no correlation between ® and ¥)
when we have a suitable form of correlation function for & and ¥ with given length scale (that is
the scale at which the correlation first approaches zero for the field in question - which relates to
the typical size of features (depressions, anticyclones) in the atmosphere). We also need to specify
the kinetic energy of the wind (||u||?/2) which is assumed to be about 32m?s~2. This will allow us
to simulate realisations of the given covariance functions with given parameter values. We could

1d , o d?

_ 2 2 2
pu(r) = =L (1 —v?) S Prr T Lgv arzPee (54)
d? 1d
_ 2 2 2,2
pit(r) = =Ly (1 - 0?) gzPee — Lav™ == page (55)

hypothesise sensible priors for these hyper-parameters.
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5 Practicalities

Recall, in practice we need to obtain some parametric functional form for the covariances. In wind
vector assimilation into numerical weather prediction models one usually assumes some form of
background field - which is typically a forecast field (but was sometimes assumed to be a climatology
in the very early days of meteorological data assimilation). Thus one would actually analyse the
error between the observed and background values (Daley, 1991). This is not practicable for us to
do - and anyway it is probably better left to the Meteorological Office, who have readily available
background fields.

We can take two choices. Effectively we have to assume a non-informative background field (i.e. no
background information). While we could use a climatological background this will probably not
be very useful since we are primarily interested in those events dissimilar to the climatology. Thus
we can try to estimate sensible covariances for (u,v) - quite possibly through (®, V) or we can use
a regularisation approach (Cornford, 1997a) and let the choice of penalty dictate the covariance
(strictly the basis). These approaches are similar but not necessarily parallel.

The success of both methods will depend on the choice of a sensible covariance (constraint). This
is a very difficult area, because there have been no publications (which I know of!) that have
discussed choices of priors appropriate to every atmospheric situation. In particular we have data
at 25km resolution, which is much denser than other observed wind data - and thus has unknown
properties. It is quite likely that errors in the data will be strongly correlated (since we are using
the same instrument to observe all observations) as is true of many space based observation systems
(Daley, 1991).

In the barotropic atmosphere (a strongly constrained atmosphere where the density depends only
on pressure - which implies there are no thermal gradients on surfaces of constant pressure) there
should be relatively few problems. The barotropic model is a good approximation for many at-
mospheric situations - but not all. Fronts (Cornford, 1997b) present a particular problem since
in these regions one must assume the atmosphere is baroclinic - that is density depends on both
pressure and temperature. Thus in the vicinity of fronts priors based on a barotropic model of the
atmosphere (which most currently used ‘priors’ are) will be inappropriate.

5.1 A Hierarchical Approach

I think the way that we will have to tackle this problem is hierarchical. Firstly we will have priors
on the probability of each type of feature (high, low, ridge, trough, front). These will vary in
space and time. Then for each feature we have a fair prior on the distribution of vorticity and
divergence, and thus we could simulate these and then conditionally simulate (u,v) on the vorticity
and divergence fields. The trouble is that this is a lot of work (computationally and human wise).

There is an easier way, which is to use priors on (u,v) which already contain the features. This is

true for most priors we have discussed for the larger scale features (lows, highs, troughs and ridges
- see Figure 3) but is not true for fronts. Thus these will need special attention.

6 Conclusion

This short document forms the basis for the Bayesian approach to disambiguation. It has clarified
many of the concepts surrounding random field theory. Much time has been spent examining the
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implications of the choice of the covariance function on the properties of the resulting field. It
has been shown that covariances on the stream function and velocity potential can give rise to
sensible and realistic covariances on (u,v). Some potentially useful models for wind fields have
been suggested and their merits examined. A short discussion about methods to include features
such as fronts, which will be expanded elsewhere as progress is made, has highlighted their potential
importance.
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