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1 Introduction

The thrust of this report concerns spline theory and some of the background to spline theory
and follows the development in Wahba (1991). We also review methods for determining hyper-
parameters, such as the smoothing parameter, by Generalised Cross Validation. Splines have an
advantage over Gaussian process based procedures in that we can readily impose atmospherically
sensible smoothness constraints and maintain computational efficiency. Equivalent methods are
presented in (Amodei and Benbourhim, 1991) and (Wahba, 1982) by which we can penalise gra-
dients of vorticity and divergence. Wahba (1982) provides a formulation in spherical coordinates
(using the ideas of reproducing kernels) and Amodei and Benbourhim (1991) provide a Cartesian
interpretation (couched in terms of Distributions - i.e. generalised functions). Both are summarised
and improvements based on robust error functions and restricted numbers of basis functions given.
A final, brief discussion of the application of vector splines to the problem of scatterometer data
assimilation highlights the problems of ambiguous solutions.

2 Reproducing Kernels

Reproducing kernel Hilbert spaces define classes of functions that have the required properties for
the solution of general spline smoothing problems where the penalty functional involves derivative
of the fitted function. The data is assumed to come from the model:

2(z;) = Lif + &4 (1)

where the L; is the evaluation functional (often L;f = f(z;)) allows a more general form for f.
The noise model ¢ is assumed to be independently distributed (and usually Gaussian with variance
0?). As we shall see later the Beppo-Levi space (Amodei and Benbourhim, 1991) is a special
reproducing kernel Hilbert space with relevance to vector splines.
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Having defined the properties of reproducing kernels (Wahba, 1991) we now need understand what
form of kernel will be appropriate. Clearly we will be interested in functions involving derivatives
and these functions will have to be continuous. An insight to one formulation of the spline problem
comes from Taylors theorem with remainder which states:

0= (£ Zr00) « (f )

where f(z) is a real valued function on [0, 1] with m — 1 continuous derivatives and f("™¢L5[0, 1],
and (zy) means z if z > 0 and 0 otherwise. If we now choose a class of functions B, satisfying
the boundary conditions f(*)(0) =0, v = 0,....,m — 1 then if feB,, we have:

o= ([ 1 %ﬂm)(u)du) -(/ G ) (w)in)

where G, (z,u) is the Green’s function for the problem D™f = g with D™ the m!"* derivative
(Wahba, 1991).
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Figure 1: A reminder of the terminology of mappings and functions

If we now denote by W2 the collection of all functions on [0,1] with {f : feBy, f, f's .o, f(~1) ab-

solutely continuous, f(™eL,} then W9 is a Hilbert space with square norm || f||> = fol (f0)(z))?dz.
Furthermore it can be shown (Wahba, 1991) that WY, is a reproducing kernel Hilbert space, with
reproducing kernel:

1
R(IZ’,Z]‘)Z/ Gm(zi,u)Gp (2, u)du
0

It can be observed that the Hilbert space defined by WY does not contain the polynomials of
degree less than m — 1 - in other words they are in the null space. In most applications m is chosen
to be small and thus low order polynomials are included in the solution.

Define ¢,(z) = z*~!/(v — 1)! for v = 1,....,m and denote the m-dimensional space of poly-
nomials spanned by ¢, as Hy. This is a Hilbert space when given the squared norm ||¢||> =
S (DY) (0))? and has reproducing kernel:

m

R(zi,zj) = Y ¢u(i)¢u ()

v=1
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Now consider the Sobolev-Hilbert space W, given by {f : f, f’,...., f™~1) absolutely continuous,
f(m)ELQ}. This space includes a more general class of functions than W2 however each element
of W,, has a Taylor series expansion to order m and thus a unique decomposition f = fo + f1,
with foeHgy and fieWp. It can be shown that the two spaces Hg, W0 are perpendicular and thus:

Wy = Hy & W2,

with the square norm ||| = 371 (D?$)(0))? + fol(f(m)(a:))2da:. The reproducing kernel is the
direct sum of the reproducing kernels of the perpendicular subspace and is thus:

R(z;,z;) :qu,,(xi)qsv(mj”/o G (@i, w) G (2, u)du

This constructive definition of the spline interpolation problem is rather unusual in that we have
said rather little about the problem we wish to address - that is of interpolation or approximation.
However it will become clear that the smoothness penalty functional will simply be an orthogonal
projection of the function f onto W2 in W,,. Setting the problem in the space W,, as defined
above allows us to formulate the spline problem relatively simply for general cases. This will be
seen as we consider the 2 dimensional thin plate spline. Now we seek a solution to the general
spline problem.

3 The General Spline Problem

The Problem
The Type of Penalty

Smoothness Penalty
Space of Functions

Spline Problem

Reproducing Kemel -

Figure 2: A summary of the links between the different elements in the spline smoothing /
approximation problem.

Let the problem be again defined by the data model:
Z2i = Llf(a:) + & 1=1,...,n

where zel,, I, some index set with arbitrary range. The errors are assumed Gaussian iid. feHpg,
a given reproducing kernel Hilbert space, with decomposition:

Hr=Hye H;
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with dim(Hp) = M < n. We find an estimate of f which minimises:
1 n
- > (Lif = 2)” + AP fllz
i=1

where P; is the orthogonal projection of f onto H;. With this type of penalty the reproducing
kernel Hilbert space W,, is the natural setting.

Given a reproducing kernel it is always possible to obtain a representer n; for any bounded linear
functional L;, that is:

(i f) = Lif
and
ni(z;) = <77iaRz]‘> =LiR,; = Li(-)R(%‘:-)

For example when L;f = f(x;) then n;(z;) = LiR;; = R(x,2;)|q—q, or if Lif = % then

2 .
ni(zj) = LiR,; = %. The above definition is more general and allows more complex

functionals L;. We can now write the minimisation problem as:

=3 (U ) = 2+ NP @)

If we again define a polynomial basis ¢;, i = 1,...., M to span the null space (kernel) of P; (i.e.
Hy) and define T; ; as the n by M matrix of the j’th polynomial evaluated at the i’th data point.
If T has full column rank (that is there is a non-degenerate least squares solution) then we can
find the minimiser f) of (2) given by:

M n
=D dvpy+ ) cib
i=1 i=1

The solution is given by:

Ye+Td =2
o (3)
T'c=0
where:
d:(dl,...,dM),, c:(cl,...,cn)’, ft:Plnz

with ¥, = X +nAl, £ = (§,&;). Now we only need to determine ¢; to solve the problem. (2) can
then be written as:

1
EHZ — (Se+ Td)||* + \c'Se (4)

Recall that the H, was defined as the sum of two orthogonal spaces, and thus the reproducing
kernel of Hp is the sum of the reproducing kernels of the two subspaces. Then we have &;(z) =
(&1, Ry) = (Pimi, Ry) = (ni, PLR,) = L; R} where R} is the representer of evaluation in H;. Thus:

(&, &) = LiL;R (2, ;)

It can be seen that the & will be determined by the form of the penalty functional. In the next
sections we will examine how.



Splines and Vector Splines

4 Thin Plate Splines

Let us now define the data model to be:
zi = Lif(z) + ¢ i=1,..,n (5)

where & € I, is some index set with arbitrary range. In this application the index set I, will
be some small 'scene‘over the ocean, with components either in Cartesian of spherical coordinates

T; = (l’z',yi)-

We will consider the 2 dimensional smoothing (‘thin plate’) spline. We seek a function f to
minimise:

(L = 2 M) )

with n observations (z;,y;, 2;), based on the model z; = f(z;,y;)+¢&; with the errors being indepen-
dent of f and each other and with equal variance. L; is a linear functional such that L;f — f(z;,y;)-

The smoothness penalty term Jy(f) is given by:

//R ((W)z 2(68:51,>2+ (%)3@@ (7)

Now define H to be a Hilbert Space of functions f such that J>(f) is finite. Choose some fixed
(arbitrary) points s1,...,speR? such that

M
> adu(sj) =0, j=1,...,M=a,=0
=1

That is the ¢, are linearly independent. It will become clear later that these ¢, are simply the
basis functions that span the null space of the smoothness penalty J2(f). An inner product is
defined on H by:

M
9 = 2 fei)als) //Rg@a—dd*

2 2 24 92
+2// O*f 0% //8f89 (8)
p2 020y BmBy p2 0y? 0y?

and thus:
M
I £ 1P=(F 1) =D £2(s5) + a(f)
j=1

It can be seen that this space is similar to W,, as defined in the first section - that is it is a
reproducing kernel Hilbert space. Again, using the Riesz representation theorem we associate with
the linear functional L; a representer n;e H such that:

Lif = (i, ) = f(ziyys) = f(s4)

Now suppose we are given the 7;’s. This implies we now want to minimise:

_Z iy [) — 2i) +>\J2(.f) 9)
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Considering (9) we note that geometrically any f in the Hilbert Space H can be written as a linear
combination of n1,... , My, #1,. .., dp plus some function p which is perpendicular to each n; and
¢, that is:

n M
F=Y cmi+> dgy+p
=1 =1

for coefficients ¢ = (c1,...,cn)',d = (d1,...,dnm)’. Since we are interested in minimising (9),
then p must be equal to zero as it is perpendicular to all the other terms in (9), but is otherwise
arbitrary. We can also show that:

(o, > cmi) =0, v=1,...,M (10)

We still do not know what form the 7;’s take, and to determine them we need to use the theory of
reproducing kernel Hilbert spaces. Recall a Hilbert space H is said to possess a reproducing kernel
if for all zeR? the functional Lf = f(x) is a continuous linear functional. If this condition is met
the there exists a representer gzeH such that:

Lf = f(®) = (qx, f)
We define the function Q(x;,x;) by:
Q(:ci,mj) = <qm“qmj>, :ci,:cje]R2

Q is called the reproducing kernel of H. The basic property of the reproducing kernel is that
given () one can find representers of any continuous functionals acting on elements of H. Thus the
representers 7; are given by:

ni(®) = Li(a;)Q(xi, ;) (11)

where L;(,;) means the functional L is applied to what follows considered as a function of x;.
Also:

<nzan]> L; (ml)L](mJ)Q(mzaa"J)

Knowing the form of the inner product (8) it is possible to deduce the form of the reproducing
kernel for certain special cases. These kernels are solutions to particular Green’s functions - thus
have a fundamental solution:

Q(wiawj) = K(xiawj) + P(wiawj)

where:

K(mivm.’i) = En mzam.’l va m.’l mzvaxl) -

- E pu 213, w]axzu)
M

+ > pul@i)py (€5) B (i i)

u,v=1

m,,:cg E pv i pv 33_1
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Here the p;,... ,pym are M polynomials of degree less than 2 satisfying p,(x;,) = 1 when u = v
and equal to zero otherwise. m = 2 implies:

Ex(xi, ;) = Ex(||z: — 2;)) = Ea(r) = 0rin(r) (12)
where 7 is equal to the (Euclidean) distance between x; and x; and

_1
Y

from (Wahba, 1991). Using (10) and (11) we can show that:

n

n n M
Zcmz'(wj) =Y cibi(®s) =Y cibi(@y)po(a;)

=1 i=1 v=1

Since the double sum on the right is a polynomial of less than degree 2, and since these are in the
null space of J>(f) the minimiser is:

n

M
Fraia(@) = Y k(@) + Y dudu(a) (13)

i=1

where M =3 ¢1 =1, ¢ =2 and ¢3 = y.

What we have so far examined is the decomposition of the solution to the spline problem from one
function space into 2 subspaces - defined by the range and the null space of the penalty functional.
Because these spaces are orthogonal we simply add the solutions from the two subspaces to yield
the final solution. This makes the problem tractable, however it is very difficult to see how one
might alter the penalty functional to encompass some of the wind fields we might expect, for
instance those which contai fronts (Cornford, 1997b).

5 Generalised Cross Validation

Generalised Cross Validation (GCV) is a method used to estimate the optimal value of a hyper-
parameter such as the smoothing parameter of the thin plate spline A on the basis of data. The
idea is to determine the smoothing parameter which produces the smallest root mean squared
error at data points which are withheld one at a time. The technique is useful because we can use
mathematical tricks to compute the GCV quickly, which do not involve repetitive fitting of the
splines.

If we consider equation (13) then we seek minimiser f) of the standard thin plate smoothing spline
problem. But how do we set A? One method is to use GCV. We want to find a A\ to minimise:

n

V() o % > (zk = Lifr)?

k=1

where 2y, is the k*" data value and Ly fx evaluates fy at the point x, (without using zj to determine
the spline parameters).

[Actually what we really are interested in is:
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the predictive mean square error. Wahba (1991) gives a ‘weak GCV theorem’ which says that there
exists a sequence (as n — 0) of minimisers A of E[V (\)] that comes close to achieving miny E[T())].
See Wahba (1991), section (4.3) for more details.]

We actually compute:

b (e = Lifn)” AT = AQV) 2|

V() = = 14
2 (1—p(N)? (Ltr (I - A(/\)))2 (4
where A()) is the influence matriz given by:
Lifx
D | = ANz =Td+ S,¢ (15)
Ln.f)\

We can compute A()) using a QR decomposition of T given by:

o ol

where Q1 is n X M, Q2 is n X (n — M) and the square matrix @ = [@1 Q2] is orthogonal. R is
upper triangular. Now:

I— A\ = n)Q2(Q4%:Q2) ' Q)

Bates et al. (1987) give an efficient algorithm for the computation of the GCV V()\) using the
same QR decomposition, a Cholesky decomposition and a singular value decomposition, which also
makes computation of the solution to the smoothing spline very efficient.

6 Splines and Random Field Models

There is a strong connection between spline techniques and random field models (Cornford, 1997a)
- and this has been frequently explored in the geostatistics literature (Laslett, 1994). The duality
can be seen by considering the the Hilbert space spanned by a random field and the associated
reproducing kernel Hilbert space.

We start with a random field Z(z), zel, C R? with E[Z(z;)Z(z;)] = covz|(zi, ;)] = R(zi, x;).
We let H be the Hilbert space spanned by Z(x) as defined in Parzen (1961). This Hilbert space
is the collection of all random variables of the form:

ZH = ZakZ(mk)

k

with apeR, xpel, and possesses an inner product defined by (Z;,Zs) = E[Z1Z;] where Z is
understood to mean Zgy. To complete this Hilbert space H we also need the quadratic mean
limits, that is ZeH iff there is a sequence Z;, | = 1,2,..... of random variables as defined above
such that lim;,~ E[(Z — Z))%] = ||Z — Z;||> — 0. If we now define Hg to be a reproducing kernel
Hilbert space with reproducing kernel R as defined above then Hr has a one to one, inner product
preserving correspondence with H, since

(Z(@i), Z(=5)) = E[Z(2:)Z(2;)] = R(2i; ®5) = (Ra;, Ra;)

Optimisation of splines can be shown to correspond to Bayesian estimation on a random field. If
we assume that X (x), xel, is a stationary (zero-mean) Gaussian process with E[Z(x;)Z(x;)] =
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R(z;, ;) as before. If we are now given Z(z;) = z; at points x;, i = 1,... ,n then for a fixed z,
E[Z(x)|Z(x;)], the kriging estimator (the best linear unbiased estimator - in a minimum variance
sense) is given by:

f(a:) = [R(:L‘, 331), cee ,R(:I:, :I:n]R;éZ

where Ry, is the square, n x n covariance matrix R,,(2;,z;) and z is a vector of the observed
values. This is also true for the case when the process is not Gaussian - but the Gaussian assumption
allows us to link the conditional expectation with f.

If we now consider the problem set in the reproducing kernel Hilbert space Hg, then we must find
some feHp which minimises || f||?> (recall the process is zero mean - hence this will correspond to
minimum variance) subject to f(x;) = z;. Thus the solution must be of the form:

f= Z CjRa;
j=1

where this time the null space of the penalty functional is the empty set. Thus ||f||?> = ¢'Runc
with R, as previously. At the points x; we have Z?zl CjRe;(®i) = 2, or Rype = z and f is
given by:

f=2RRa.,... Ra.] (16)

This is exactly equal to f and thus the penalty functional approach (using reproducing kernel
Hilbert spaces) can be seen to be equivalent to the kriging approach. Of course we have considered
a rather restricted class of problems here - with the assumption of stationarity being particularly
troublesome in practice. Wahba (1991) claims that one cannot consistently estimate the parameters
of the (generalised) covariance function (from the theory of Intrinsic Random Functions of order
k (Matheron, 1973)) from data thus a spline prior is just as good unless one has prior knowledge
on these parameters.

7 Vector Splines

One possible method for the inclusion of some smoothness constraint on the wind field is through
the use of vector splines, which are reviewed in this section. We will be concerned with the
estimation (smoothing) of a vector valued function (that is wind!). Cornford (1997b) gives a
decomposition of the wind vector into two (hopefully uncoupled) scalars (Helmholtz theorem). In
practice these scalars, the stream function and the velocity potential, are not totally uncoupled.
Both Wahba (1982) and Amodei and Benbourhim (1991) give similar versions of vector splines
specifically for winds.

7.1 Wahba’s Vector Splines

Wahba (1982) gives a more flexible framework with the splines being fit over the surface of a sphere
(the Earth!!). The penalty functional minimised is:

wf3

In(@,8) = [(W) %) dp+ 5 [ ()% 8(0) dp (1)

with the usual sum of (vector) squares error term. The actual computation is performed using an
expansion in the eigen-functions of the Laplacian evaluated over the sphere (spherical harmonics).
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They seek a solution of the form:

N 4
v=3 Z Y @=3 % BV (18)

=

H
@
f
1
~
I
I
fi
|
L

Reordering the indices using:

N 1
N=> >"1 (19)

=1 s=—1
and assuming observations (u;,v;), i = 1,... ,n, setting the n x N matrix X4 with (i,1s)" entry:
. 10
Xg(i,ls) = Z%st(pi) (20)

where A is the radius of the earth, p; is the location of the i** observation and (¢, \) are the latitude
and longitude (recall we are working on the surface of a sphere) and Y, are the normalised spherical
harmonics (Wahba, 1982), together with:

1 0
Xy — —Y¥(p, 21
(:19) = Toosta 331 @) (21)
we can create the 2n x 2N matrix:
Xy X
X = |:X)\ X¢] (22)

which is like the matrix of low order polynomials used in thin plate splines. It is clear that the
matrix gives estimates of (u,v) based on fitting to (®, ¥). Under this model the penalty matrix
for (17) has a particularly simple form. Let D; be the N x N diagonal matrix with (Is,s)*" entry
Ais(2) for ¢ = 1,2 with:

Ms() = ((I+1)™  i=1,2 (23)
Write:
D0
D= [0 5D2] (24)
then with v = (u1,... ,up,v1,...,v,) and a = (o,... ,ag,B1,...,05) we need to find a to
minimise:
1 2 rny—1
E||u—Xa|| +Xa' D (25)

Note that the formulation of the problem ensures that it is not necessary to consider the null
space terms (particularly the orthogonality condition) as in thin plate splines, since these are
automatically part of the solution, through the use of spherical harmonics. There remain two
free parameters; § which controls the ratio of vorticity to divergence and Az, which controls the
degree of smoothing, both of which can be set from the data using Generalised Cross Validation, or
fixed using historical data. Wahba (1982) suggests that the A\;5(i) could be chosen from historical
data, by analysing the power spectrum (of winds or other fields) and fitting these with some form
of model - not entirely unlike the method of moments used to fit variograms in random field
models (Cornford, 1997a). With m = 2 these correspond to the div-curl splines of (Amodei and
Benbourhim, 1991).
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7.2 Amodei and Benbourhim’s Vector Splines

Amodei and Benbourhim (1991) take a slightly different approach, in that the problem domain is
posed in a Cartesian framework using the theory of Distributions (generalised functions). We shall
now briefly review the method of Amodei and Benbourhim (1991), noting those areas where the
so called div-curl splines may not meet our needs. A function is sought to minimise:

Jop(u) = a / V(Y - w)|2dady + 6 / V(Y x w)|2dedy (26)

together with the interpolating constraints u(x;) = u; fori = 1,... ,n, where u is the wind vector
(u,v). Thus the spline can be seen to penalise gradients in divergence and vorticity the relative
importance of which are fixed by the choice of a and 8. These can be chosen on the basis of what
we already know about the behaviour of the winds (a prior in other words) or estimated from the
data using cross validation. For our problem with noisy targets it might be unwise to try and
choose both (or even either) the degree of smoothing and the ratio of divergence / vorticity from
the data. In practice one chooses a € [0,1] and defines § = 1 — «, with a smoothing parameter A
acting to weight the penalty function J, g as in the usual spline case.

The solution to the above problem is sought in the so called Beppo-Levy space of order 2. This
is a (generalised) function space over R of Distributions (generalised functions) whose second
(Distributional) derivatives are square integrable. The solution to this problem takes a form very
similar to that of the thin-plate spline problem:

R 10°K(x —x;) 10°K(z —x;)
uap(x) = Z @i (5 Oz2 + ,E Oy? )

i=1

1 0’K(x
+Zb ( ) 3:08y + ZCZ@
2K (x — x; K (x —
o - FAS s

i=1

+Z ( )MW Zd¢,3 (27)

where ¢; are the polynomials of degree one or less as before. This solution can be seen to take
the same form as the others outlined in previous sections. K is the reproducing kernel for the
Beppo-Levy space defined above. It takes the form K(r) = 6||r||*In||r||, with 6 = —(3)"r and
7|l = (> + y?)*/2. This can be derived from the fact that K is the fundamental solution of
(V23K = § with 6 the Kronecker delta (this is where the Green’s functions come in). The above

equations together with the constraints:

Zam(wn = Z big(z;) =0 (28)

for all ¢ as polynomials of degrees one or less define a system of linear equations:

o Ken + 5K gEwy — 5K @ 0] fa]  [u

ey —5Eay aEon t 5K 0 21 1b) _ v (29)
%’ 0 0 0| e[ |O
0 %’ o o] [d |o
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where K (;;), K(4y) and K(,,) are n X n matrices with entries:

K (x — z;

K(zz)i,j = —Egm2 ) ) =46 (125:612,3' + 45y12,j) log (’I‘z'7j) + 75:512,3' + 5341'2,]‘
K (x — z;

K(zy)z}j = 7(8563; ) = 895:{31’,3’5%’]‘ log (’l"l"j) + 65$i,j5yi,j
O’K(x — x;

Ky = % =0 (46z7 ; + 126y7 ;) log (ri ;) + 6x3 ; + T6y;

with dz; ; meaning z; —x; and other terms similarly. ® is the n x 3 matrix with vector components
[1,z,y] at the data points while a, b, ¢, d are the parameter vectors and w, v the data vectors. 0
is used to signify a zero array of appropriate dimension, while 0 is a zero vector, as usual.

The linear equations are solved in MATLAB using the \ operator. If the aim is to approximate
rather than interpolate (as will be the case in our application) then it is necessary to add some
constant which depends on the noise level (or degree of smoothing desired) to the diagonal of the
covariance matrix. Denoting:

%K(M) + %K(yy) %K(zy) -
7K@y = 5K@y Kuy +

K (ay)

¥y =
K (22)

(30)

==

then ¥; = ¥ + nAl where X is the smoothing parameter of Wahba (1991) and I is the usual
diagonal identity matrix with the same dimensions as ¥ . Thus one simply replaces the ¥ in (29)
with X, and solves as usual.

It is likely that vector splines will be flexible enough for many situations. The ratio of divergence
on vorticity in the atmosphere typically varies with latitude (due to the rotation of the earth) with
divergence dominating at low latitudes (tropics) and vorticity becoming more important pole ward
(Cornford, 1997b). Thus we could set o and 3 as functions of latitude from climatological data,
where o and 3 are estimated from cross-validation - although this has the disadvantage that we
will necessarily be reflecting any model bias, since models would generate the climatology.

7.3 Div-curl splines using robust error functions

Instead of solving the system of linear equations using matrix inversions, the div-curl spline error
function is minimised using a gradient based minimisation algorithm. This is necessary because
the robust error function used means that the system of equations is no longer linear in parameters.
The data fit part of the error function is given by:

V(t) = Bit® = In <1 + ﬁ\/%etz(ﬁl‘ﬁ”) (31)
- 1

where ¢ is the miss-fit between the predicted and observed values at the data points (Girosi, 1991).
Thus with a spline which has a solution of the form X [a; b] + T[c; d] (where ¥, is a ‘covariance’
type matrix, derived from the non-local spline basis functions and 7' is the polynomial part which
lies in the null space of the smoothness constraint) to the following minimisation problem:

n
E[(a;b), (c;d)] = Y (V ((wi,v:) — Bs.i(as b) — Ti(e; d))) + Mas b)' Sy (as b) (32)

i=1
together with the constraint 7"[a; b] = 0. When V' (z) = 22 then the solution is given by a system
of linear equations which are best solved using matrix manipulation (in MATLAB) - that is the
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_— V(x), beta\1 =1.0, heta\2 =0.01, epsilon =0.3
12 \ V(x)-2, beta, = 1.0, beta, = 0.001, epsilon = 0.3
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Figure 3: Plot of the robust error function

standard div-curl spline. Where we use more complex error functions (such as Equation 31) a ma-
trix based minimisation is not possible. To solve this minimisation problem one needs to compute
the derivatives of the error function with respect to the parameters and impose the constraint.
The constraint may either be imposed using a penalty function approach (which penalises T'[a; b]
in the solution in such a way that T'[a; b] — 0) or Lagrange multipliers [ref? - Tan’s notes].

The error function (31) has a shaped illustrated in Figure 3. It can be seen that as 3, gets smaller
in relation to [, the error function becomes flatter away from a small region whose width is
defined by B;. The error function (especially with small 35 values) essentially ‘ignores’ those errors
greater than a certain threshold, since for these larger errors there is a much smaller gradient of
the error function. Thus large outliers will have little effect on the final solution - but this makes
the result rather sensitive to the initial conditions. It may be possible to get around this with
sensible initialisations using parameters from a non-robust div-curl spline for example.

The advantage of this error function is that we can fit a sensible spline to the data we have using a
smoothing parameter that is quite small, and performing the operation only once. In the version I
have implemented I have used scaled conjugate gradient descent for the first 50 iterations and then
a succession of quasi-Newton calls for succeeding iterations. These iterations are required since I
have used a penalty function approach to ensure that 7'[a; b] = 0.

7.4 Regularisation networks

We may find that while div-curl splines are elegant, the placement of the kernel centres at the
observations may be suboptimal and the option to choose fewer centres than we have observations
will be advantageous to the quality of the results and the speed of computation - especially in
the case where the centres are placed using some quick method prior to optimisation (for example
evenly spaced over the problem domain, or placed using k-means algorithms). We are thus getting
rather close to the area of Radial Basis Function networks or Regularisation Networks (Girosi et
al., 1995).



14

Splines and Vector Splines

This has also been implemented. The user is free to choose the number of basis functions (derived
from the div-curl penalty) and the centres of these are set using a k-means algorithm so that they
are reasonably spaced with respect to the data locations. In general, even for the most complex
wind fields less than 10 basis functions are required, and preliminary results suggest 3 may be
sufficient for most cases. By fixing the centres we retain the simplicity of the linear solution and
get around trying to set the smoothing parameter which is anyway rather difficult to determine.
We are left with the problem of the number and placement of basis functions.

7.5 Dealing with Ambiguous Solutions

So far we have assumed that we have selected the best vector from the model output (that is the
model or observation system that generates the initial wind vectors) and that this unique value
will be used to determine the spline parameters. In the context of scatterometer data assimilation
we must include at least 2 and possibly four solutions when estimating the full wind field, since
we are not able to retrieve unique wind vectors due to the intrinsic multi-modality of the solution
(Thiria et al., 1993; Offiler, 1994). One method to try may be a random combination model such
that we try all possible permutations of the first 2 solutions at each of the 361 points in the scene
and pick the permutation with the smallest total penalty. This would involve fitting 236* splines a
somewhat large number and not currently computationally feasible. Of course even then we may
get the 180 degree alias solution so we may well need some heuristics to choose which sense the
flow should be (based on climatology).

Since what we actually produce is P(u, other methods could be envisaged such as fitting the
spline to the n, most probable vectors (where ns; << n the total number of observations) and
then choosing the new vectors to add on the basis of the solution that best agrees with the current
solution (although this would tend to propagate any errors in the initial ns points. There is no
principled basis for choosing ng. In general using this ad-hoc approach will lead to a series of
heuristics with little statistical basis to their use - although this has been the dominant means
of treating the ambiguity problem to date. A review of the use of various ambiguity removal
algorithms is not appropriate here and will be given elsewhere, as will a overview of the problem
in the framework of scatterometer data assimilation.

8 Conclusion

This report has expanded on some of the ideas on which spline methods are based (particularly from
the reproducing kernel perspective (Wahba, 1991)). The theory is useful to aid understanding, but
not vital to the application, of any spline. Vector splines were introduced in two formulations, one
over the sphere (Wahba, 1982) and the other in Cartesian space (Amodei and Benbourhim, 1991).
Both are equivalent and it was shown that both could be modified by the addition of a robust
error function, or a restriction on the number of basis functions used. Restricting the number of
basis functions used places the technique into the Regularisation network framework of Girosi et
al. (1995). The application of spline based techniques to scatterometer data was touched upon,
but will be dealt with more fully elsewhere.
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