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Splines and Vector SplinesDan Cornfordd.cornford@aston.ac.ukTechnical Report NCRG/97/024 March 13, 19981 IntroductionThe thrust of this report concerns spline theory and some of the background to spline theoryand follows the development in Wahba (1991). We also review methods for determining hyper-parameters, such as the smoothing parameter, by Generalised Cross Validation. Splines have anadvantage over Gaussian process based procedures in that we can readily impose atmosphericallysensible smoothness constraints and maintain computational e�ciency. Equivalent methods arepresented in (Amodei and Benbourhim, 1991) and (Wahba, 1982) by which we can penalise gra-dients of vorticity and divergence. Wahba (1982) provides a formulation in spherical coordinates(using the ideas of reproducing kernels) and Amodei and Benbourhim (1991) provide a Cartesianinterpretation (couched in terms of Distributions - i.e. generalised functions). Both are summarisedand improvements based on robust error functions and restricted numbers of basis functions given.A �nal, brief discussion of the application of vector splines to the problem of scatterometer dataassimilation highlights the problems of ambiguous solutions.2 Reproducing KernelsReproducing kernel Hilbert spaces de�ne classes of functions that have the required properties forthe solution of general spline smoothing problems where the penalty functional involves derivativeof the �tted function. The data is assumed to come from the model:z(xi) = Lif + "i (1)where the Li is the evaluation functional (often Lif = f(xi)) allows a more general form for f .The noise model " is assumed to be independently distributed (and usually Gaussian with variance�2i ). As we shall see later the Beppo-Levi space (Amodei and Benbourhim, 1991) is a specialreproducing kernel Hilbert space with relevance to vector splines.



2 Splines and Vector SplinesHaving de�ned the properties of reproducing kernels (Wahba, 1991) we now need understand whatform of kernel will be appropriate. Clearly we will be interested in functions involving derivativesand these functions will have to be continuous. An insight to one formulation of the spline problemcomes from Taylors theorem with remainder which states:f(x) = �m�1Xv=0 xvv! f (v)(0)�+�Z 10 x� um�1+(m� 1)! f (m)(u)du�where f(x) is a real valued function on [0; 1] with m� 1 continuous derivatives and f (m)�L2[0; 1],and (x+) means x if x � 0 and 0 otherwise. If we now choose a class of functions Bm satisfyingthe boundary conditions f (v)(0) = 0, v = 0; ::::;m� 1 then if f�Bm we have:f(x) = �Z 10 x� um�1+(m� 1)! f (m)(u)du� = �Z 10 Gm(x; u)f (m)(u)du�where Gm(x; u) is the Green's function for the problem Dmf = g with Dm the mth derivative(Wahba, 1991).
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Figure 1: A reminder of the terminology of mappings and functionsIf we now denote byW 0m the collection of all functions on [0,1] with ff : f�Bm; f; f 0; ::::; f (m�1) ab-solutely continuous, f (m)�L2g thenW 0m is a Hilbert space with square norm kfk2 = R 10 (f (m)(x))2dx.Furthermore it can be shown (Wahba, 1991) that W 0m is a reproducing kernel Hilbert space, withreproducing kernel: R(xi; xj) = Z 10 Gm(xi; u)Gm(xj ; u)duIt can be observed that the Hilbert space de�ned by W 0m does not contain the polynomials ofdegree less than m�1 - in other words they are in the null space. In most applications m is chosento be small and thus low order polynomials are included in the solution.De�ne �v(x) = xv�1=(v � 1)! for v = 1; ::::;m and denote the m-dimensional space of poly-nomials spanned by �v as H0. This is a Hilbert space when given the squared norm k�k2 =Pm�1v=0 ((Dv�)(0))2 and has reproducing kernel:R(xi; xj) = mXv=1 �v(xi)�v(xj)



Splines and Vector Splines 3Now consider the Sobolev-Hilbert space Wm given by ff : f; f 0; ::::; f (m�1) absolutely continuous,f (m)�L2g. This space includes a more general class of functions than W 0m, however each elementof Wm has a Taylor series expansion to order m and thus a unique decomposition f = f0 + f1,with f0�H0 and f1�W 0m. It can be shown that the two spaces H0;W 0m are perpendicular and thus:Wm = H0 �W 0mwith the square norm kfk2 =Pm�1v=0 ((Dv�)(0))2 + R 10 (f (m)(x))2dx. The reproducing kernel is thedirect sum of the reproducing kernels of the perpendicular subspace and is thus:R(xi; xj) = mXv=1�v(xi)�v(xj) + Z 10 Gm(xi; u)Gm(xj ; u)duThis constructive de�nition of the spline interpolation problem is rather unusual in that we havesaid rather little about the problem we wish to address - that is of interpolation or approximation.However it will become clear that the smoothness penalty functional will simply be an orthogonalprojection of the function f onto W 0m in Wm. Setting the problem in the space Wm as de�nedabove allows us to formulate the spline problem relatively simply for general cases. This will beseen as we consider the 2 dimensional thin plate spline. Now we seek a solution to the generalspline problem.3 The General Spline Problem
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4 Splines and Vector Splineswith dim(H0) =M < n. We �nd an estimate of f which minimises:1n nXi=1(Lif � zi)2 + �kP1fk2Rwhere P1 is the orthogonal projection of f onto H1. With this type of penalty the reproducingkernel Hilbert space Wm is the natural setting.Given a reproducing kernel it is always possible to obtain a representer �i for any bounded linearfunctional Li, that is: h�i; fi = Lifand �i(xj) = h�i; Rxj i = LiRxj = Li(:)R(xj ;:)For example when Lif = f(xi) then �i(xj) = LiRxj = R(x; xj)jx=xi or if Lif = @2f(xi)@x2 then�i(xj) = LiRxj = @2R(x;xj)jx=xi@x2 . The above de�nition is more general and allows more complexfunctionals Li. We can now write the minimisation problem as:1n nXi=1(h�i; fi � zi)2 + �kP1fk2R (2)If we again de�ne a polynomial basis �i, i = 1; ::::;M to span the null space (kernel) of P1 (i.e.H0) and de�ne Ti;j as the n by M matrix of the j'th polynomial evaluated at the i'th data point.If T has full column rank (that is there is a non-degenerate least squares solution) then we can�nd the minimiser f� of (2) given by:f� = MXi=1 dv�v + nXi=1 ci�iThe solution is given by: �sc+ Td = zT 0c = 0 (3)where: d = (d1; : : : ; dM )0; c = (c1; : : : ; cn)0; �i = P1�i:with �s = �+ n�I , � = h�i; �ji. Now we only need to determine �i to solve the problem. (2) canthen be written as: 1nkz � (�c+ Td)k2 + �c0�c (4)Recall that the Hr was de�ned as the sum of two orthogonal spaces, and thus the reproducingkernel of HR is the sum of the reproducing kernels of the two subspaces. Then we have �i(x) =h�i; Rxi = hP1�i; Rxi = h�i; P1Rxi = LiR1x where R1x is the representer of evaluation in H1. Thus:h�i; �ji = LiLjR1(xi; xj)It can be seen that the �i will be determined by the form of the penalty functional. In the nextsections we will examine how.



Splines and Vector Splines 54 Thin Plate SplinesLet us now de�ne the data model to be:zi = Lif(x) + "i i = 1; ::::; n (5)where x 2 Ix is some index set with arbitrary range. In this application the index set Ix willbe some small 'scene`over the ocean, with components either in Cartesian of spherical coordinatesxi = (xi; yi).We will consider the 2 dimensional smoothing (`thin plate') spline. We seek a function f tominimise: 1n nXi=1(Lif � zi)2 + �J2(f) (6)with n observations (xi; yi; zi), based on the model zi = f(xi; yi)+"i with the errors being indepen-dent of f and each other and with equal variance. Li is a linear functional such that Lif ! f(xi; yi).The smoothness penalty term J2(f) is given by:J2(f) = ZZR2��@2f@x2�2 + 2� @2f@x@y�2 +�@2f@y2�2�dxdy (7)Now de�ne H to be a Hilbert Space of functions f such that J2(f) is �nite. Choose some �xed(arbitrary) points s1; : : : ; sM �R2 such thatMXv=1 av�v(sj) = 0; j = 1; : : : ;M ) av = 0That is the �v are linearly independent. It will become clear later that these �v are simply thebasis functions that span the null space of the smoothness penalty J2(f). An inner product isde�ned on H by: hf; gi = MXj=1 f(sj)g(sj) + ZZR2 @2f@x2 @2g@x2 dxdy ++ 2 ZZR2 @2f@x@y @2g@x@ydxdy + ZZR2 @2f@y2 @2g@y2 dxdy (8)and thus: k f k2= hf; fi = MXj=1 f2(sj) + J2(f)It can be seen that this space is similar to Wm as de�ned in the �rst section - that is it is areproducing kernel Hilbert space. Again, using the Riesz representation theorem we associate withthe linear functional Li a representer �i�H such that:Lif = h�i; fi = f(xi; yi) = f(si)Now suppose we are given the �i's. This implies we now want to minimise:1n nXi=1(h�i; fi � zi)2 + �J2(f) (9)



6 Splines and Vector SplinesConsidering (9) we note that geometrically any f in the Hilbert Space H can be written as a linearcombination of �1; : : : ; �n; �1; : : : ; �M plus some function � which is perpendicular to each �i and�v , that is: f = nXi=1 ci�i + MXi=1 dv�v + �for coe�cients c = (c1; : : : ; cn)0;d = (d1; : : : ; dM )0. Since we are interested in minimising (9),then � must be equal to zero as it is perpendicular to all the other terms in (9), but is otherwisearbitrary. We can also show that:h�v ; nXi=1 ci�ii = 0; v = 1; : : : ;M (10)We still do not know what form the �i's take, and to determine them we need to use the theory ofreproducing kernel Hilbert spaces. Recall a Hilbert space H is said to possess a reproducing kernelif for all x�R2 the functional Lf = f(x) is a continuous linear functional. If this condition is metthe there exists a representer qx�H such that:Lf = f(x) = hqx; fiWe de�ne the function Q(xi;xj) by:Q(xi;xj) = hqxi ; qxj i; xi;xj�R2Q is called the reproducing kernel of H . The basic property of the reproducing kernel is thatgiven Q one can �nd representers of any continuous functionals acting on elements of H . Thus therepresenters �i are given by: �i(x) = Li(xj)Q(xi;xj) (11)where Li(xj) means the functional L is applied to what follows considered as a function of xj .Also: h�i; �ji = Li(xi)Lj(xj)Q(xi;xj)Knowing the form of the inner product (8) it is possible to deduce the form of the reproducingkernel for certain special cases. These kernels are solutions to particular Green's functions - thushave a fundamental solution: Q(xi;xj) = K(xi;xj) + P (xi;xj)where: K(xi;xj) = Em(xi;xj) � MXv=1 pv(xj)Em(xiv;xi)�� MXu=1 pu(xi)Em(xj ;xiu)+ MXu;v=1 pu(xi)pv(xj)Em(xiu;xiv)P (xi;xj) = MXv=1 pv(xi)pv(xj)



Splines and Vector Splines 7Here the p1; : : : ; pM are M polynomials of degree less than 2 satisfying pv(xiu) = 1 when u = vand equal to zero otherwise. m = 2 implies:E2(xi;xj) = E2(kxi � xjk) = E2(r) = �r2ln(r) (12)where r is equal to the (Euclidean) distance between xi and xj and� = 18�from (Wahba, 1991). Using (10) and (11) we can show that:nXi=1 ci�i(xj) = nXi=1 ci�i(xj)� nXi=1 MXv=1 ci�i(xv)pv(xj)Since the double sum on the right is a polynomial of less than degree 2, and since these are in thenull space of J2(f) the minimiser is:fn;M;�(x) = nXi=1 ci�i(x) + MXi=1 dv�v(x) (13)where M = 3 �1 = 1, �2 = x and �3 = y.What we have so far examined is the decomposition of the solution to the spline problem from onefunction space into 2 subspaces - de�ned by the range and the null space of the penalty functional.Because these spaces are orthogonal we simply add the solutions from the two subspaces to yieldthe �nal solution. This makes the problem tractable, however it is very di�cult to see how onemight alter the penalty functional to encompass some of the wind �elds we might expect, forinstance those which contai fronts (Cornford, 1997b).5 Generalised Cross ValidationGeneralised Cross Validation (GCV) is a method used to estimate the optimal value of a hyper-parameter such as the smoothing parameter of the thin plate spline � on the basis of data. Theidea is to determine the smoothing parameter which produces the smallest root mean squarederror at data points which are withheld one at a time. The technique is useful because we can usemathematical tricks to compute the GCV quickly, which do not involve repetitive �tting of thesplines.If we consider equation (13) then we seek minimiser f� of the standard thin plate smoothing splineproblem. But how do we set �? One method is to use GCV. We want to �nd a � to minimise:V (�) / 1n nXk=1 (zk � Lkf�)2where zk is the kth data value and Lkf� evaluates f� at the point xk (without using zk to determinethe spline parameters).[Actually what we really are interested in is:T (�) / 1n nXk=1 (Lkf� � Lkf)2



8 Splines and Vector Splinesthe predictive mean square error. Wahba (1991) gives a `weak GCV theorem' which says that thereexists a sequence (as n! 0) of minimisers �̂ of E[V (�)] that comes close to achieving min�E[T (�)].See Wahba (1991), section (4.3) for more details.]We actually compute: V (�) = 1nPnk=1 (zk � Lkf�)2(1� �1(�))2 = 1nk (I �A(�)) zk2� 1n tr (I �A(�))�2 (14)where A(�) is the in
uence matrix given by:264L1f�...Lnf�375 = A(�)z = Td+�sc (15)We can compute A(�) using a QR decomposition of T given by:T = �Q1 Q2� �R0�where Q1 is n �M , Q2 is n � (n �M) and the square matrix Q = [Q1 Q2] is orthogonal. R isupper triangular. Now: I �A(�) = n�Q2(Q02�sQ2)�1Q02Bates et al. (1987) give an e�cient algorithm for the computation of the GCV V (�) using thesame QR decomposition, a Cholesky decomposition and a singular value decomposition, which alsomakes computation of the solution to the smoothing spline very e�cient.6 Splines and Random Field ModelsThere is a strong connection between spline techniques and random �eld models (Cornford, 1997a)- and this has been frequently explored in the geostatistics literature (Laslett, 1994). The dualitycan be seen by considering the the Hilbert space spanned by a random �eld and the associatedreproducing kernel Hilbert space.We start with a random �eld Z(x), x�Ix � R2 with E[Z(xi)Z(xj)] = covZ [(xi;xj)] = R(xi;xj).We let H be the Hilbert space spanned by Z(x) as de�ned in Parzen (1961). This Hilbert spaceis the collection of all random variables of the form:ZH =Xk akZ(xk)with ak�R, xk�Ix and possesses an inner product de�ned by hZ1; Z2i = E[Z1Z2] where Z isunderstood to mean ZH . To complete this Hilbert space H we also need the quadratic meanlimits, that is Z�H i� there is a sequence Zl, l = 1; 2; ::::: of random variables as de�ned abovesuch that liml!1E[(Z �Zl)2] = kZ �Zlk2 ! 0. If we now de�ne HR to be a reproducing kernelHilbert space with reproducing kernel R as de�ned above then HR has a one to one, inner productpreserving correspondence with H , sincehZ(xi); Z(xj)i = E[Z(xi)Z(xj)] = R(xi;xj) = hRxi ; Rxj iOptimisation of splines can be shown to correspond to Bayesian estimation on a random �eld. Ifwe assume that X(x), x�Ix is a stationary (zero-mean) Gaussian process with E[Z(xi)Z(xj)] =



Splines and Vector Splines 9R(xi;xj) as before. If we are now given Z(xi) = zi at points xi, i = 1; : : : ; n then for a �xed x,E[Z(x)jZ(xi)], the kriging estimator (the best linear unbiased estimator - in a minimum variancesense) is given by: f̂(x) = [R(x;x1); : : : ; R(x;xn]R�1nnzwhere Rnn is the square, n � n covariance matrix Rnn(xi;xj) and z is a vector of the observedvalues. This is also true for the case when the process is not Gaussian - but the Gaussian assumptionallows us to link the conditional expectation with f̂ .If we now consider the problem set in the reproducing kernel Hilbert space HR, then we must �ndsome f�HR which minimises kfk2 (recall the process is zero mean - hence this will correspond tominimum variance) subject to f(xi) = zi. Thus the solution must be of the form:f = nXj=1 cjRxjwhere this time the null space of the penalty functional is the empty set. Thus kfk2 = c0Rnncwith Rnn as previously. At the points xi we have Pnj=1 cjRxj (xi) = zi, or Rnnc = z and f isgiven by: f = z0R�1nn [Rx1 ; : : : ; Rxn ]0 (16)This is exactly equal to f̂ and thus the penalty functional approach (using reproducing kernelHilbert spaces) can be seen to be equivalent to the kriging approach. Of course we have considereda rather restricted class of problems here - with the assumption of stationarity being particularlytroublesome in practice. Wahba (1991) claims that one cannot consistently estimate the parametersof the (generalised) covariance function (from the theory of Intrinsic Random Functions of orderk (Matheron, 1973)) from data thus a spline prior is just as good unless one has prior knowledgeon these parameters.7 Vector SplinesOne possible method for the inclusion of some smoothness constraint on the wind �eld is throughthe use of vector splines, which are reviewed in this section. We will be concerned with theestimation (smoothing) of a vector valued function (that is wind!). Cornford (1997b) gives adecomposition of the wind vector into two (hopefully uncoupled) scalars (Helmholtz theorem). Inpractice these scalars, the stream function and the velocity potential, are not totally uncoupled.Both Wahba (1982) and Amodei and Benbourhim (1991) give similar versions of vector splinesspeci�cally for winds.7.1 Wahba's Vector SplinesWahba (1982) gives a more 
exible framework with the splines being �t over the surface of a sphere(the Earth!!). The penalty functional minimised is:Jm(	;�) = Z �(r2)m2 	(p)�2 dp+ 1� Z �(r2)m2 �(p)�2 dp (17)with the usual sum of (vector) squares error term. The actual computation is performed using anexpansion in the eigen-functions of the Laplacian evaluated over the sphere (spherical harmonics).



10 Splines and Vector SplinesThey seek a solution of the form:	 = NXl=1 lXs=�l�lsY sl � = NXl=1 lXs=�l �lsY sl (18)Reordering the indices using: ~N = NXl=1 lXs=�l 1 (19)and assuming observations (ui; vi), i = 1; : : : ; n, setting the n� ~N matrix X� with (i; ls)th entry:X�(i; ls) = 1A @@�Y sl (pi) (20)where A is the radius of the earth, pi is the location of the ith observation and (�; �) are the latitudeand longitude (recall we are working on the surface of a sphere) and Y sl are the normalised sphericalharmonics (Wahba, 1982), together with:X�(i; ls) = 1A cos(�i) @@�Y sl (pi) (21)we can create the 2n� 2 ~N matrix: X = ��X� X�X� X�� (22)which is like the matrix of low order polynomials used in thin plate splines. It is clear that thematrix gives estimates of (u; v) based on �tting to (�;	). Under this model the penalty matrixfor (17) has a particularly simple form. Let Di be the ~N � ~N diagonal matrix with (ls; ls)th entry�ls(i) for i = 1; 2 with: �ls(i) = (l(l+ 1))m i = 1; 2 (23)Write: D = �D1 00 �D2� (24)then with u = (u1; : : : ; un; v1; : : : ; vn)0 and � = (�1; : : : ; � ~N ; �1; : : : ; � ~N )0 we need to �nd � tominimise: 1nku�X�k2 + �s�0D�1� (25)Note that the formulation of the problem ensures that it is not necessary to consider the nullspace terms (particularly the orthogonality condition) as in thin plate splines, since these areautomatically part of the solution, through the use of spherical harmonics. There remain twofree parameters; � which controls the ratio of vorticity to divergence and �s, which controls thedegree of smoothing, both of which can be set from the data using Generalised Cross Validation, or�xed using historical data. Wahba (1982) suggests that the �ls(i) could be chosen from historicaldata, by analysing the power spectrum (of winds or other �elds) and �tting these with some formof model - not entirely unlike the method of moments used to �t variograms in random �eldmodels (Cornford, 1997a). With m = 2 these correspond to the div-curl splines of (Amodei andBenbourhim, 1991).



Splines and Vector Splines 117.2 Amodei and Benbourhim's Vector SplinesAmodei and Benbourhim (1991) take a slightly di�erent approach, in that the problem domain isposed in a Cartesian framework using the theory of Distributions (generalised functions). We shallnow brie
y review the method of Amodei and Benbourhim (1991), noting those areas where theso called div-curl splines may not meet our needs. A function is sought to minimise:J�;�(u) = � Z kr(r � u)k2dxdy + � Z kr(r� u)k2dxdy (26)together with the interpolating constraints u(xi) = ui for i = 1; : : : ; n, where u is the wind vector(u; v). Thus the spline can be seen to penalise gradients in divergence and vorticity the relativeimportance of which are �xed by the choice of � and �. These can be chosen on the basis of whatwe already know about the behaviour of the winds (a prior in other words) or estimated from thedata using cross validation. For our problem with noisy targets it might be unwise to try andchoose both (or even either) the degree of smoothing and the ratio of divergence / vorticity fromthe data. In practice one chooses � 2 [0; 1] and de�nes � = 1� �, with a smoothing parameter �acting to weight the penalty function J�;� as in the usual spline case.The solution to the above problem is sought in the so called Beppo-Levy space of order 2. Thisis a (generalised) function space over R of Distributions (generalised functions) whose second(Distributional) derivatives are square integrable. The solution to this problem takes a form verysimilar to that of the thin-plate spline problem:u�;�(x) = nXi=1 ai� 1� @2K(x� xi)@x2 + 1� @2K(x� xi)@y2 �+ nXi=1 bi� 1� � 1��@2K(x� xi)@x@y + 2Xi=0 ci�i(x)v�;�(x) = nXi=1 bi� 1� @2K(x� xi)@y2 + 1� @2K(x� xi)@x2 �+ nXi=1 ai� 1� � 1��@2K(x� xi)@x@y + 3Xi=0 di�i�3(x) (27)where �i are the polynomials of degree one or less as before. This solution can be seen to takethe same form as the others outlined in previous sections. K is the reproducing kernel for theBeppo-Levy space de�ned above. It takes the form K(r) = �krk4lnkrk, with � = �( 12 )7� andkrk = (x2 + y2)1=2. This can be derived from the fact that K is the fundamental solution of(r2)3K = � with � the Kronecker delta (this is where the Green's functions come in). The aboveequations together with the constraints:nXi=1 ai�(xi) = nXi=1 bi�(xi) = 0 (28)for all � as polynomials of degrees one or less de�ne a system of linear equations:2664 1�K(xx) + 1�K(yy) 1�K(xy) � 1�K(xy) � 01�K(xy) � 1�K(xy) 1�K(yy) + 1�K(xx) 0 ��0 0 0 00 �0 0 037752664abcd3775 = 2664uv003775 (29)



12 Splines and Vector Splineswhere K(xx), K(xy) and K(yy) are n� n matrices with entries:K(xx)i;j = @2K(x� xi)@x2 ����x=xj = � �12�x2i;j + 4�y2i;j� log (ri;j) + 7�x2i;j + �y2i;jK(xy)i;j = @2K(x� xi)@xy ����x=xj = 8��xi;j�yi;j log (ri;j) + 6�xi;j�yi;jK(yy)i;j = @2K(x� xi)@y2 ����x=xj = � �4�x2i;j + 12�y2i;j� log (ri;j) + �x2i;j + 7�y2i;jwith �xi;j meaning xi�xj and other terms similarly. � is the n�3 matrix with vector components[1;x;y] at the data points while a; b; c;d are the parameter vectors and u;v the data vectors. 0is used to signify a zero array of appropriate dimension, while 0 is a zero vector, as usual.The linear equations are solved in MATLAB using the n operator. If the aim is to approximaterather than interpolate (as will be the case in our application) then it is necessary to add someconstant which depends on the noise level (or degree of smoothing desired) to the diagonal of thecovariance matrix. Denoting:� = � 1�K(xx) + 1�K(yy) 1�K(xy) � 1�K(xy)1�K(xy) � 1�K(xy) 1�K(yy) + 1�K(xx)� (30)then �s = � + n�I where � is the smoothing parameter of Wahba (1991) and I is the usualdiagonal identity matrix with the same dimensions as � . Thus one simply replaces the � in (29)with �s and solves as usual.It is likely that vector splines will be 
exible enough for many situations. The ratio of divergenceon vorticity in the atmosphere typically varies with latitude (due to the rotation of the earth) withdivergence dominating at low latitudes (tropics) and vorticity becoming more important pole ward(Cornford, 1997b). Thus we could set � and � as functions of latitude from climatological data,where � and � are estimated from cross-validation - although this has the disadvantage that wewill necessarily be re
ecting any model bias, since models would generate the climatology.7.3 Div-curl splines using robust error functionsInstead of solving the system of linear equations using matrix inversions, the div-curl spline errorfunction is minimised using a gradient based minimisation algorithm. This is necessary becausethe robust error function used means that the system of equations is no longer linear in parameters.The data �t part of the error function is given by:V (t) = �1t2 � ln 1 + �1� �s�2�1 et2(�1��2)! (31)where t is the miss-�t between the predicted and observed values at the data points (Girosi, 1991).Thus with a spline which has a solution of the form �s[a; b] + T [c;d] (where �s is a `covariance'type matrix, derived from the non-local spline basis functions and T is the polynomial part whichlies in the null space of the smoothness constraint) to the following minimisation problem:E[(a; b); (c;d)] = nXi=1 (V ((ui;vi)��s;i(a; b)� Ti(c; d))) + �(a; b)0�s(a; b) (32)together with the constraint T 0[a; b] = 0. When V (x) = x2 then the solution is given by a systemof linear equations which are best solved using matrix manipulation (in MATLAB) - that is the
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Figure 3: Plot of the robust error functionstandard div-curl spline. Where we use more complex error functions (such as Equation 31) a ma-trix based minimisation is not possible. To solve this minimisation problem one needs to computethe derivatives of the error function with respect to the parameters and impose the constraint.The constraint may either be imposed using a penalty function approach (which penalises T 0[a; b]in the solution in such a way that T 0[a; b]! 0) or Lagrange multipliers [ref? - Ian's notes].The error function (31) has a shaped illustrated in Figure 3. It can be seen that as �2 gets smallerin relation to �1, the error function becomes 
atter away from a small region whose width isde�ned by �1. The error function (especially with small �2 values) essentially `ignores' those errorsgreater than a certain threshold, since for these larger errors there is a much smaller gradient ofthe error function. Thus large outliers will have little e�ect on the �nal solution - but this makesthe result rather sensitive to the initial conditions. It may be possible to get around this withsensible initialisations using parameters from a non-robust div-curl spline for example.The advantage of this error function is that we can �t a sensible spline to the data we have using asmoothing parameter that is quite small, and performing the operation only once. In the version Ihave implemented I have used scaled conjugate gradient descent for the �rst 50 iterations and thena succession of quasi-Newton calls for succeeding iterations. These iterations are required since Ihave used a penalty function approach to ensure that T 0[a; b] = 0.7.4 Regularisation networksWe may �nd that while div-curl splines are elegant, the placement of the kernel centres at theobservations may be suboptimal and the option to choose fewer centres than we have observationswill be advantageous to the quality of the results and the speed of computation - especially inthe case where the centres are placed using some quick method prior to optimisation (for exampleevenly spaced over the problem domain, or placed using k-means algorithms). We are thus gettingrather close to the area of Radial Basis Function networks or Regularisation Networks (Girosi etal., 1995).



14 Splines and Vector SplinesThis has also been implemented. The user is free to choose the number of basis functions (derivedfrom the div-curl penalty) and the centres of these are set using a k-means algorithm so that theyare reasonably spaced with respect to the data locations. In general, even for the most complexwind �elds less than 10 basis functions are required, and preliminary results suggest 3 may besu�cient for most cases. By �xing the centres we retain the simplicity of the linear solution andget around trying to set the smoothing parameter which is anyway rather di�cult to determine.We are left with the problem of the number and placement of basis functions.
7.5 Dealing with Ambiguous SolutionsSo far we have assumed that we have selected the best vector from the model output (that is themodel or observation system that generates the initial wind vectors) and that this unique valuewill be used to determine the spline parameters. In the context of scatterometer data assimilationwe must include at least 2 and possibly four solutions when estimating the full wind �eld, sincewe are not able to retrieve unique wind vectors due to the intrinsic multi-modality of the solution(Thiria et al., 1993; O�ler, 1994). One method to try may be a random combination model suchthat we try all possible permutations of the �rst 2 solutions at each of the 361 points in the sceneand pick the permutation with the smallest total penalty. This would involve �tting 2361 splines asomewhat large number and not currently computationally feasible. Of course even then we mayget the 180 degree alias solution so we may well need some heuristics to choose which sense the
ow should be (based on climatology).Since what we actually produce is P (u, other methods could be envisaged such as �tting thespline to the ns most probable vectors (where ns << n the total number of observations) andthen choosing the new vectors to add on the basis of the solution that best agrees with the currentsolution (although this would tend to propagate any errors in the initial ns points. There is noprincipled basis for choosing nS . In general using this ad-hoc approach will lead to a series ofheuristics with little statistical basis to their use - although this has been the dominant meansof treating the ambiguity problem to date. A review of the use of various ambiguity removalalgorithms is not appropriate here and will be given elsewhere, as will a overview of the problemin the framework of scatterometer data assimilation.
8 ConclusionThis report has expanded on some of the ideas on which spline methods are based (particularly fromthe reproducing kernel perspective (Wahba, 1991)). The theory is useful to aid understanding, butnot vital to the application, of any spline. Vector splines were introduced in two formulations, oneover the sphere (Wahba, 1982) and the other in Cartesian space (Amodei and Benbourhim, 1991).Both are equivalent and it was shown that both could be modi�ed by the addition of a robusterror function, or a restriction on the number of basis functions used. Restricting the number ofbasis functions used places the technique into the Regularisation network framework of Girosi etal. (1995). The application of spline based techniques to scatterometer data was touched upon,but will be dealt with more fully elsewhere.
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