Random Walk with Restart over Dynamic Graphs

Weiren Yu®' and Julie McCann

* Department of Computing, Imperial College London
7 School of Engineering & Applied Science, Aston University

w. yu3@st on. ac. uk

Abstract—Random Walk with Restart (RWR) is an appealing
measure of proximity between nodes based on graph structuse
Since real graphs are often large and subject to minor changg it
is prohibitively expensive to recompute proximities from ratch.
Previous methods use LU decomposition and degree reordeign
heuristics, entailing O(|V|*) time and O(|V'|*) memory to com-
pute all (|V|?) pairs of node proximities in a static graph. In this
paper, a dynamic scheme to assess RWR proximities is propakse

(1) For unit update, we characterize the changes to all-pag
proximities as the outer product of two vectors. We notice tlat
the multiplication of an RWR matrix and its transition matri x,
unlike traditional matrix multiplications, is commutativ e. This
can greatly reduce the computation of all-pairs proximities from
O(|V]?) to O(]A|) time for each update without loss of accuracy,
where |A| (< |V|?) is the number of affected proximities.

(2) To avoid O(|V'|?) memory for all pairs of outputs, we also
devise efficient partitioning techniques for our dynamic malel,
which can compute all pairs of proximities segment-wisely Vthin
O(l|V]) memory and O([‘lﬂ]) I/O costs, wherel <1< |V|is a
user-controlled trade-off between memory and 1/O costs.

j . nccann@ nperi al . ac. uk

Figure 1:A Website Updated by Three Types of Edge Insertions

SimRank [4] which is a symmetric measure to quantify the
structural equivalence between two nodes, RWR is an asym-
metric measure in a digraph, with the focus on reachability
from one node to another. (3) RWR is a stable measure that
is resilient to noise in a graph. With these advantages, RWR
is very popular in fertile communities [5], [6], [9]-[13].
However, the practicability of RWR is hindered by its high
computational cost. The best-known methods [3], [8] exploi

(3) For bulk updates, we also devise aggregation and hashing LU decomposition with degree reordering heuristics, which

methods, which can discard many unnecessary updates furthe
and handle chunks of unit updates simultaneously.

Our experimental results on various datasets demonstratehiat
our methods can be 1-2 orders of magnitude faster than other
competitors while securing scalability and exactness.

|I. INTRODUCTION

With the increasing scale of the Internet, many applicatio
are dealing with dynamically evolving graphs on a largeesca
For example, the World Wide Web today embraces more th
a trillion links, and 7%—18% of them are updated fortnightl
A key task to manage graphs is link-based proximity sear

i.e., given a graphG = (V, E)) with |V| nodes andE| edges,
the retrieval of all proximities between every two nodes:in

Recently, Random Walk with Restart (RWR) [11] has beeh
proposed as an attractive proximity measure. The success

requiresO(|V|?) time andO(|V'|?) memory in the worst case
to evaluate all |(/|?) pairs of proximities over a static graph.
Due to the dynamics and growing size of the Internet, it is too
expensive to recompute all pairs of proximities from sdratc
when a graph is frequently updated with small changes.
Motivated by this, we consider efficient dynamic computa-
tion of all pairs of RWR proximities on large evolving graphs

I(nsiven all-pairs proximities in old grapt¥, and update\G

g)nG (i.e., a collection of new edge insertions or deletions),
our goal is to evaluate only the changes to all pairs of RWR

ﬁ?]roximities efficiently without loss of exactness. Paricly,

we are interested in the situation: When all-pairs proxasit
cannot fit into memory, can our dynamic RWR model compute
such changes over each segment independently while sgcurin

nlgp efficiency? Let us take the following example.

RWR is mainly ascribed to its intuitive concept that revalveExample 1. Figure 1 is a part of the school websife, where
around random walks. Consider a random surfer starting frazach node is a web page, and each edge is a hyperlink.
a given noder. The surfer has two options at every step — In this semester, the website is updated by adding 4 new

either moving to one of its out-links, or restarting franwith
a certain probability. After the stability is iterativelyitained,
the RWR proximityf every nodey w.r.t. a given node: is the
steady-state probability that the surfer will eventualtyive
at nodev. RWR has a wide spectrum of applicationseiry.,
nearest neighbor search [13], named entity disambigufgion
collaborative filtering [5], and automatic image labeliridL].

pages and 6 new links (see the dashed edges, denote@as
To update all-pairs proximities itz U AG, instead of using
a batch method to reassess all new proximities from scratch,
one can incrementally retrieve only the changes to the old
proximities in response to graph updatas; to GG, by reusing
the information of the old proximity matrix i&.

However, due to memory limitations, the entire old proxymit

Compared with other measures [15]-[19], RWR has threeatrix may not fit in memory. Thus, it is highly desirable that

salient features: (1) It can recursively capture both dieed

in our dynamical RWR model, each segment of the old prox-

indirect neighboring information of each node. (2) Unlikémity matrix can be updated independently (in parallel)

Igorith i Il Pai / . .
ﬁf_o;t . BZT? (_AHZT')FS) 'gi;?sg IOO(TI [RA4E) i"or from our work in that our method is exact and needs only two
Inc-uR O(AG|A) o) omcu@w) 0 “pivot proximity vectors” to describe affected regions.

Bear (8] | O(IAGIIE|VI) — O(VP) 0 0 The recent work of [14] proposed an incremental method to
kdash [3] | OQOGVID - OVID 0 0 compute RWR. However, this method would fail when either
ve 21 Ot V) 0UvI) 0 Prob. end node of an inserted edge is a new one. In contrast, our
DAP [10] | O(KIAGIEIV]) O(V[?) 0 i ! gelsar : ’
B-LIN[11] | O(&|AGIV]®) O(V[>+v[V]) 0 rankes techniques can overcome this limitation.

] . Recently, Shiret al. [8] have given a fresh impetus to fast
Table I: Compardnc-R with others for|AG| edge updates, RWR computation on static graphs. Their scheBear, com-

2 . -
Vl\éh.eretlhlmax| <<[)|AG11,_lA| t<< V] N Tﬂ']S t[]e pe}{rt't'OE n?rgeg bines a block elimination approach with a Schur complement
IS the number ot iterations; 1S he farget rank o '_of submatrix derived from the LU decomposition.

and! is a user-controlled tradeoff between memory and 1/0Os

. . Il. PRELIMINARIES
Due to the recursive nature of RWR definition, there are two

grand challenges to dynamic RWR computation: (1) It seems!N this section, we briefly oyerview the background of RWR.
difficult to exploit the relationship among proximity chargg oF 9raphG = (V. E), let O(j) be the out-degree of node
old proximities inG, andAG. (2) It is hard to avoidD(|V|?) Let A be the backward transition matrix defined as
memory to update all|{’|*) pairs of proximities. A;; =1/0O(j) if 3(j,i) € E, and A, ; = 0 otherwise.
Contributions. To address the above challenges, we propose
a novel dynamic scheménc-R, with three main ingredients: Then, RWR proximity matrixP € RIV1*IV1 is defined by
(1) For unit update, we devise an efficient dynamic model _ _
that can characterize the changes to all-pairs RWR as tlee out P =7AP+(1-7] @
product of two vectors. Moreover, we notice that the muikiplwhereI € RIVIxIVI is an identity matrix, and1 —~) € (0, 1)
cation of an RWR proximity matrix and its transition matrixjs restarting probabilitythat is often set to 0.1n(= 0.9) [11].
unlike traditional matrix multiplication, is commutativEhese In vector forms, Eq.(1) can also be rewritten as
can substantially reduce the time to compute gfl|f) pairs B
of proximities fromO(|V|?) to O(|V|?) in the wo?gi case for Prw=7APe +(1=7)es (vz e V) 2)
each update without loss of accuracy. In generalg/|?) whereP, . is thez-th column ofP, denoting the proximities
time can be reduced 0(|A|) further, whergA| (< |V|?)is of all nodesw.r.t. nodez; ande, is thez-th column ofI.
the number of affected RWR elements. (Section I11)
(2) To reduce its memory further, we also propose efficient HI. UNIT UPDATE
partitioning techniques, in which alli(|?) pairs proximities ~ We mainly focus onunit insertion (Sections IlI-A-lII-E).
can be updated segment-wisely in ja3t/|V'|) memory with Similar techniques also apply tmit deletion(Section IlI-F).
O((%]) I/O costs, wherel < [< |V| is a user-controlled ~ Note that all methods in this section drememorybased,
trade-off between memory and 1/0 costs. (Section V) i.e.,all-pairs old and new proximities need fit in main memory.
(3) For bulk updates, we propose aggregation and hashifigSection 1V, we will extend our methods to handle the cases
techniques for pure updatese(, either insertions or deletionswhen all-pairs proximities cannot fit in main memory.
are allowable) and mixture updates. These can minimize manyGiven graphG = (V; E), for edge(i, j) to be added td7,
unnecessary updates further and handle chunks of unitegpdae consider four cases in each subsection, respectively:
simultaneously. (Section V) (Cl)i¢ V andj € V; (C2)iceV andj ¢ V;
Related Work. In Table I, we summarize the complexity of (C3)ieV andj e V; (ChHi¢Vandj¢V.

the state-of-the-art methods for all-pairs RWR computatio) . . : -
i . : i xample 2. Figure 1 depicts an old digrapty (in solid lines)
Tonget al. [11] provided a pioneering SVD-based methoo\iith a set of edge insertiolAG (dash lines) intoG. In AG,

B-LIN. It first splits a graph inta- dense blocks and a spars . . .
block, and then performs matrix inverse for each dense bIc:%tc0 eC:SSE}eE%OZr;(Z; be)) bgOF)gfotgacsis?Cg:)lx’e’ 9) (e, 1), (e, ml:)|

and a rank- SVD approximation for the sparse block.
Recently, Fujiwareet al. [3] devised an LU decomposition A. Inserting Edge(i, j) withi ¢ V andj € V
method,k-dash, for top-K RWR searchw.r.t. a given query.

We first consider the case (C1): the insertion of efigeé
k-dash entailsO(|V|*) time andO(|V|*) memory to retrieve (C1): the dgg)

with i ¢ V andj € V. After insertion,A becomes

only the top-K proximities in one column of an RWR matrix. |V]cols coli
Thus, it yieldsO(|V|*) time for top-K all-pairs RWR search. o
. . O €; } |V| rows
In contrast, our incremental agproach can compute all pdirs A= 0 0 © rowi (3)
proximities accurately irO(]V|”) worst-case time.

The existing work [2], [7] provided probabilistic methods Note that in Eq.(3), though the last row af is 0, we need
to estimate proximities. Sarkat al.[7] integrated a sampling not replaced by M%IT (wherel” is a row vector of all 1s).
approach with branch and bound pruning. Bahnetral. [2] This is because, unlike the existence of PageRank vector tha
used Monte Carlo to incrementally estimate proximities. requiresA irreduciblity, the existence of RWR is ensured by
Zhu et al. [20] used a hub length-based scheduling schenie—yA) invertibility. Since(I—-~A) is diagonally dominant,
to prioritize random walks for RWR approximation. It difer it is invertible, and thereby its RWR matriR exists.

To derive newP from old P, we have the following result. Utilizing the structure ofA, we next propose an efficient
technique that can incrementally update nBwfrom old P.
Our main idea is to convert the computation®finto solving
(I—~A)~!in terms of oldP. When we combine Lemma 1
with the block matrix inverse formula, ne® will become

Theorem 1. Given a graphG = (V, E) and an old proximity
matrix P, after edge(i, j) with i ¢ V" and j € V is inserted,
the new proximity matri¥» can be computed as

~ P | P, } |V| rows

P= ~ (I — fyAJrA*,in)_l 0 } |V| rows

0| 1—7v| «rowi P=(1-7) . -1
Theorem 1 provides an efficient way to dynamically obtain vy (I-rA+ALy") LI e rowj
new P from old P for insertion case (C1). Specifically, newrps strycture suggests that, ongés determined, solving®
Pis a(|V]+1) x (|V]+1) matrix formed by bordering ol® ... v5ii down to solvingT — vA+A, _yT)*l in terms ofP.
by 3 parts: (a) column vectorP, ;, (b) row vector0, and (c) Fortunately, it is unnecessary to obéﬂw— A+A, T)—l
scalar(l —). Thus, it require©(|V’|) time to incrementally from scratc’h because this inverse can befycompJfg(; effigientl
computeP, which is dominated by the complexity ofP, ;. from (T — A)*l perturbed by the rank-one update, ;37
Notice that the upper-right blockP, ; is a scalar multiple However Zl_ﬂ B 7A>_1 can be expressed as scalingigzhé

of P, ;. This is because, after eddg j),.y, ;¢ is inserted, i . —1
the random walks from to nodez € V are'a concatenation _challenge is ihaiCan we describe th? _changes(TA)
of the edgei — j and the old random walks fromto x: in response to rank-one update,,;y~ in terms of oldP?

To address this issue, we show a commutative la# of
new edge old walks fromj to « tallied by P ;

Lemma 2. For any transition matrixA and its corresponding

Zy e e proximity matrixP, the following property holds:

new walks fromi to z tallied by P, ;
. . . PA = AP.
Since the out-degree of nodds 1, the old walks frony to

x (tallied by P, ;) can be reused with just a multiple factor In general, multiplication of matrices is not commutative.
to evaluate the new walks fromto z (tallied by 15”). However, the commutative property of RWR in Lemma 2
allows us to efficiently compute the changes(fo- vA) ™.
Precisely, the changes ta—yA)_l, as Theorem 2 will
show, involve the computation @A that is amatrix-matrix
multiplication, entailingO(|V|*) time if carried out naively.

Example 3. Recall the old graphG in Figure 1 (left). Given
v = 0.9 and old proximity matrixP for G, when edgeh, b)
is inserted, newP can be updated via Theorem 1 as

oo ffoxmljtimagﬁx P , . }P*,b In contrast, by Lemma 2, computii@A can be reduced to
. T(0100770T 0 0 0 0 T O(!V_|2) time, requiring onlymatrix scaling and subtraction
» 110.030:0.100._ 0 0 0o . 0.1+ 0.000 This is because Lemma 2 enablBA to be computed as
[[0.0308 0 F0.1007707TT0 XY 0 0 1
. : 1 PA=AP==-(P—-(1—79)I
P= 400420041, 0 0.100 0.090 0 0.037 g ((1=7D ©)
0.014;0.045; 0 0 0100 0 0.041 where the last equality holds by rearranging terms in Eq.(1)
£]10.014:0.045: 0 0 0 0.100)](0.041 Leveraging Lemmas 1 and 2, we can characterize Rew
r (0 0 0 0 0 0_J{{0.100] |)) o
\ Theorem 2. Given old graphZ = (V, E') and its old proximity
zero row vector 0 1—v matrix P, after edge(i, j) withi € V andj ¢ V is inserted,
B. Inserting Edgd(i, j) withi € V andj ¢ V the new“p;lrml(lmlty matri¥? can be updated as
cols col 5
We next consider the case (C2): the insertion of edgg) - »-i; ,-ai
with i € V andj ¢ V. This case is more difficult than (C1) P = _4’—} } i ons it O@i)=0; (7)
since this type of insertion will change not only the dimensi TPin [L=7] row;
of old transition matrixA, but also a number of entries . |V| cols col j
_ e =
Lemma 1. Given old graphG = (V, E) and its old transition B | ‘ 0] } V| rows it O(i) £0. (8)
matrix A. After edge(i,j) withi € V andj ¢ V is inserted, = P, LR :
ge(i, j) (S Jé _ﬁ(l_zi) ‘ 1—ny — row j

the new transition matrixA. becomes
‘VL:O'S coly where aqxiliary vector = #H—l_(ei - ﬁPM) € RIVIx1
A— { > 0 } [V| rows if O(i) = 0; @) % is thei-th entry ofz, andP; , is thei-th row of P.

e; 0 — row j

V| cols ool j Theorem 2 gives an efficient way to incrementally compute
~ = new proximity matrixP when edge(z‘,j)ieww is inserted.
A |:A+Vei 0] } V] rows it 0) £0, (5) When O(i) = 0, it requiresO(|V|) time to compute Eq.(7).
’ When O(i) # 0, it requiresO(]V|?) time to compute Eq.(8),
L Vix1 ' including: (@)O(]V|) time for vectorz; (b) O(|V|?) time for
wherev = —gro7 AL € RIVIXY and O(i) denotes the (5. p, |): (c) O(|V]) time to scale row vectoP;,.
out-degree of nodéin old graphG.

!

1 .
mei 0 < row j

Example 4. Recall old graphG in Figure 1 (left) and its old = The rank-one factorization adA A in Lemma 3 is exploited
proximity matrix P (see Example 3). Given = 0.9, after to characterize the corresponding proximity changd3.

edge(e, g) is added toG, newP is updated as follows: Lemma 4. When edgei, j);cv jcv is added toG = (V, E),

SinceO(e) = 1> 0, we first compute by Theorem 2: proximity changeAP (= newP —old P) are expressible as
a b c d e f

T H T
e —=5P..)=[000 —045 0 0]7. AP =Puv’ with v'= (s 5)Pin (10)
where vectom is defined by Lemma 3.

zZ= 141r1(

Then, notingz. = 0, we can obtain new’ from Eq(8):

Lemma 4 suggests that, for case (CAP is a rank-one
matrix, i.e., the product of vectofPu) and row vectorv’,
old row vector P, whereu can be obtained by Eq.(9), and by scalingP; .

Thus, it require®)(|V |?) total time to computeAP, including
[0.514 00450001 é} (@ o(|V) t'me for u and v?; (b) O(|V[*) time for (Pu);
and (c)O(|V|*) time for the product of Pu) andv7.

To speed up the computation &P in Lemma 4 further,
there are two methods: (a) On¢Pu) is computed(P; ,u)

; 2 Pes (ka'one update of P) in Eq.(10) can be obtained directly from tlig¢h row of the
>< ol a b @ d

old proximity matrix P auxiliary vector z

b e d
«[0100 0 0 0
5[0.030 0100 0 0
¢[0.030 0 0100 0 0
] 0.042 0.041 0 0.100 0.090
o FO0TAT0.04507 00700
FL00140045 0 0 0 O

S o o

CIOES =R ¢ s g s resulting (Pu). (b) TheO(|V]?) time to computePu) can
“ gégg . foo 8 8 8 8 8 ¢ be significantly reduced t0(|V|) since we observe th&Pu)
’f e 0 GG i h 0 S can be described as a linear combination of only two old “pivo
P=.|[0.036 0020 0 0100 0045 0 o || £ Proximity vectors"P,; andP. ;:
S o]0t 0045 0 0 0100 0 0 g Pu=0-P,;+¢O P, .
.. s|l0.014 0045 © 0 0 0.100J/Lo0 2 _
0006 0.020 0 0 0045 0 J|(0.100)] To determine scalarsl and >, we use the method below.
\ . ..
GETha Per 11—~ Theorem 3. Given old graphG = (V, E), after edge(s, j)

withi € V andj € V is inserted, proximity changeAP can

It is worth noting that the)(|V|?) time of computingP by be computed as a rank-one matrix:

Eq.(8) is theworst-casecomplexity, dominated byz - P,).

Generally, suctO(|V|*) time can be reduced ©(|z/|P; .|)* AP = (7==)yP;,. with (11)
by updating only a nonzero subset¥fx V' elements ofP: BE. it O() = 0;
{zeV:ilz, #0} x{y eV :[Pi]y, #0} CV x V. Y= { o (P —Pui + (1 —7)e:) if O@) #0.

For instance, to obtain the upper-'eft b|ock]?b'ﬁn Examp|e 4, TheOI’em 3 iS an Optlmlzed VeI’Sion Of Lemgna 4. 1t I’educeS
we actually need update onlg| x [P..| = 1 x 3 = 3 entries the computation ofPu) in Lemma 4 fromO(|V'|") to O(|V']).

(underlined) instead of allV’|? = 36 entries inP. Furthermore, the rank-one structure AfP in Eq.(11) can
) L ‘ reduce the computation AP to O(|y||P; .|) time further,
C. Inserting Edge(i,j) withi € V andj € V by evaluating only a nonzero subsetiéfx V' entries of AP:

We next investigate case (C3): the insertion of edgg) . D
withi € V and j € V. As newA and oldA are of the same eVl 20} x{y eV [Piuly #0} CV XV,
size, it makes sense to denote their changA As:= A—A2 Example 6. Recall old graphG in Figure 1 (left) and its old
To characterizeA A, we have the following lemma. proximity matrix P (see below). Giveny = 0.9, after edge
(a,e) is inserted toG, newP can be updated as follows:
As O(a) = 3, we first obtainy and thenAP by Eq(11):

old proximity matrix P proximity change matrix AP

Lemma 3. Given old graphG = (V, E)) and its old transition
matrix A, after edge(i, j) with i € V andj € V is inserted,
the changesA A can be expressed as

. e; if O@)=0; ~a """ E ro g old row vector P, ,
AA = ue] with u:= { OJ(omrr(e; — Ai) f (’)g % # 0. ©) 50'100' 1 G _ b —03075 :
Lemma 3 implies that all the nonzeros AfA appear only P =/ £l o000
in the i-th column of AA that can be represented as the : 0.0191
scaling of oldA, ; except thej-th entry of A, ;. 1 I Il b
Example 5. When edg€a, e) is added toG in Figure 1, it o200 00 G- A 2 W'l'lary-ffory
follows fromO(a) =3 and A, , = [0 & 3 3 0 0]” that ' TP, P €
a b ¢ d ef =\l 0052 0.041 0 01009 0 e iE G
AA = ue,lT with u = ﬁ(ee —A,)= [0 % % % i O] : % 8.822 8 g 0.30 001 L ggig +09° O%D +(1-09)" (0)
x| is the number of nonzeros iv; [x], is y-th entry ofx. N = j 883 ; 0.(}0 / 8
2Note that in cases (C1), (C2), (C4\ — A makes no sense. new proximity matrix P

Algorithm 1: Unit Insertion

Algorithm 2: Unit Deletion

Input : old graphG = (V,
old proximity matrixP in G, and decay factof.

Output: new proximity matrixP in G U {(¢,7)}.
1 if i ¢V andj eV then

| V| cols coli

~~
P VP ;i } [V rows

2 updateP :=) T=AT « rowi
3 elseifieVandj ¢ V then /] Case (C2)
4 if O(i) # 0 then
— 1 1
5 setz .= W(ez - ﬁP*,i)
| V| cols col j
dateP -P—}—% | 0 -I }\V\rows

6 updateP := - _

O(i7)4r_1(1*2i> ‘ 1,A/J — row j
7 else _‘Vg ols C‘:;J' \

S |[V] rows
8 updateP := P [T-7] < row;
9 elseifi e Vandj € V then /1 Case (C3)
10 if O@)=0 then sety := P, ;
11 elsesety := 0(7)+1 (WP* i—Pei+(1—7)ei)
12 updateP := P + (1==-)yPi.
13 else |fz¢Vand]¢Vthen /] Case (C4)
|V| cols col i col j
=~ ~~ =
_ [P | 0 0] } |V| rows

14 updateP := [0 1—7 0 J — row i

0 (I=9)y 1—~1 «rowj

E), edge(i, j) to be inserted,

/] Case (Cl)

It is worth noticing that, to efficiently compufé, we need
= 5 entries (underlined)

update only|y| x |Pg.| = 5 x 1
instead of all|V|?> = 62 = 36 entries inP.

D. Inserting Edge(i, j) withi ¢ V andj ¢ V

We next handle case (C4): inserting edggj) with i ¢ V'

andj ¢ V. After insertion, new transition matriA is

|[V]cols coli col j

R [A | 0 } |V| rows
A= { 0 0 0 J — row i
0 1 0 — row j

Input : old graphG = (V, E), edge(i, j) to be deleted,
old proximity matrixP in G, and decay factot.

Output: new proximity matrixP in G — {(4,4)}.

if O() =1 then sety —vP,

else sety := 0(7) a5 (Pui — Py — (1 — y)es)

updateP := P + 1777)yP1 .

if 4 or j is an isolated node after deletighen delete: or j

A W N P

E. Incremental Algorithm for Unit Insertion

To summarize the cases (C1)—(C4) in Sections IlI-A-llI-D,
Algorithm 1 gives a complete scheme which can incrementally
compute all pairs of RWR proximities for unit insertion.

The correctness of Algorithm 1 is shown by Theorems 1-4,
corresponding to 4 cases: (C1) (Lines 1-2), (C2) (Lines 3-8)
(C3) (Lines 9-12), and (C4) (Lines 13-14), respectively.

For computational cost, we have the following result.

Theorem 5. For any edge inserted to graptv = (V, E),

it requires O(|V|?) worst-case time an@(|V'|?) memory to

incrementally compute all pairs of proximities accurately
The O(|V|?) worst-case time, in general, can be reduced to

O(max{|V|, |z||P;|, |y||P:i«|}) time if we skip all O entries

of z,y, P; . to computezP, , andyP; , (see Example 6).

F. Decremental Algorithm for Unit Deletion

Unlike edge insertion that is divided into cases (C1)—(C4),
we focus only on one case for edge deletion: Given old graph
G = (V, E), the removal of edgéi, j) withi € V andj € V,
since we can first assume that the deletion of €dgg would
not remove its end nodésandj. If ¢ or j becomes an isolated
node (whose in- and out-degrees are all 0s) after edge ale|leti
then we can removeor j later.

Algorithm 2 provides a decremental way to update all-pairs
proximities for unit deletion. The proofs of its correcteemnd
complexity are similar to those of Theorem 3.

IV. AvoiD MEMOIZING ALL-PAIRS RWR

In the previous section, th@(|V|*) memory is dominated
by storing all pairs of new/old proximities. To avoid(|V|*)
memory, we next propose our partitioning techniques that ca

Based on the block diagonal structureAf newP can be update each segment Bf independently.
expressed in a block diagonal form as well, as shown below.Due to space limitations, we focus only on our partitioning

Theorem 4. Given graphG = (V, E) and its old proximity
matrix P, after edge(i, j) with i ¢ V andj ¢ V is inserted,

new proximity matrixP can be computed as

[V'| cols col i col j
=~ ~ =~ ~ =
P | 0 0 7 } [V| rows

0 (1=7)y 1-7

— row j

f’:{ 0 ‘ 1—7v 0 J — row i

Theorem 4 implies that, the insertion of ed@ej) ¢y ;v
for case (C4) will form another new component in the graph.
After edge insertion, the upper-left block of né¥ remains P
unchanged as there are no edges across the two components.
Likewise, the upper-right and lower-left blocks Bf are 0s.

methods to updat® in case (C2) forO(i) # 0, i.e., Eq.(8),
as this is the most complicated case among (C1)—(C4).

Our central idea of avoidin@(|V|*) memory is to partition
P ¢ RIVIXIVI andz € RIVI*! into [1] segments of sizéx
|V| andi x 1, respectively (except for the last segment that may
be smaller), wherd < [< |V| is a user-controlled integer
that makes each segment small enough to fit in memory. After
partitioning, P andz becomes

|V| cols |V cols
_ AN AN

P], } 1 rows [z], } 1 rows

P 1 rows 4 1 rows

[.]2 } z = [_]2 } with N = {%W
[Pl | Y avi-ov=nnrows | [2]y | } (VI—(V=1)) rows

Vertical Partition

- == == ==
Bef = P Pis L0 ~ [Pisy [Pi., [Pi.J4
Pdr:lsll:n P - + Az [Pl | —| | [Pl | \z [Ply [—| | [Py | + Az —| [Pl + Az 0
= M _p AL T elPu gtk =N
O)F1" i I—n
- - Block Partition
| [P], | = | [P], | + HA[Z]1 Pi. H——O 5 — == B =i 0
ol D [Y o | [e | [(B] (e - ol
Partition Pz | = | [Pl]+ fapg], P[] i (2 2
B | =[P B O (2 |] o, | [[[Rd e | [|] < fpan o
[S §] P, P, P,
O(?))JrlPi.* - i :{m +E\|_A\[_ZT;T [13]3.2 :{ [P]M +E\|_)\\T_]"w [f"]:;,.x :{ [P]S’ +E\|:[_\z_];HTU
. - . s e e, 9
Figure 2:ComputeP in Eq.(8) Segment-wisely by Eqgs.(13)—(14) ot il o Pisl ot Pisls 1 -7

where[P], is thex-th segmen(ix|V|) of P (1 <2 < N—1), Figure 3: Computd in Eq.(8) via Vertical Partitioning into
and(z], is thez-th segmenti x 1) of z. 3 Segments or via Block Partitioning infox 3 Segments
As the upper-left blockP + zPis) of newP is a rank-one

update of oldP, it can be computed segment-wisely as N the worst case, and (>, |[z],|Pi«]) = O(|2|[Pi]) in
V] cols practice, which is the same as Algorithm 1.
_m- 1 Lrows In addiFio_n to the horizontlal partiti.o_nin_g in Eqs.(l3)—}14
Pl .P" we can similarly devise vertical partitioning and block tpar
P+)z-Pi— [Pl +Alely Pix |} trows with A= 1. tioning techniques to incrementally evalu&eas picturized in

Figure 3. Their performance will be compared in Section VI.

[P}N + Az - Pi‘* } (V] — (N = 1)) rows
This suggests that, to incrementally evaluate fRewve just)
need loadP; . and one segment @, say|[P]_, into memory We consider two types of bulk updatespaire bulk updates

at one time; and each new segm@pt, can be updated from only one type of updates, insertions or deletions, is althwe
old segmen{P], independently as follows: b) mixed bulk updatesa mixture of insertions & deletions.

V| cols ol Pure Bulk Insertions. Given a set of edges to be inserted to
[15]1:{ [P]er)‘[z]a-'Pi-,* 0 } }“"WS (Yz=1,---,N) old G = (V,E), Ie’AG = {(il,j1>;(7;27j2>;"' 7(i5aj5)}7
(13) wherei, andji (1 < k < §) can be new/old nodes i,

V. BULK UPDATES

ith \ = ———L——— and(z], = g7z ([eil, — 25 [Puil,): " ~ . .
" ommo- e 4 = owr (el ~ 5P) the traditional method to compute ndin G U AG requires
except for the last segment being repeated execution of unit insertion (Al_gorithm 1) fotimes,
V| cols col j and may produce many unnecessary intermediate updates.
[Py P /0\] b V1= 09— 011 o However, we observe that, for pure bulk updates, the order
Ply = - ’ (14) of edge insertions iM\G is irrelevant to newP in G U AG;
L owiPix ‘ 1*7J rowj and, in general, there are often many repeated nodésdn

The advantage of our partitioning method Egs.(13)-(14) 1d1is gives us a chance to handle mqltiple edges in bulk.
that it requires onlyO(1|V|) memory andO([L¥1]) /0 costs ~ Our main idea is to sort all edgdgix, ji)} in AG by its
to incrementally updat®, with no need ofO(|V|*) memory head nod, into seve_ra_l gro_up$AGik}. Then, all edge? n
to load the entireP. Moreover, each segment Bfis updated €2ch gr(Q)upﬁGik are divided into at most 2 subgroupsG,
independently. Figure 2 depicts how our partitioning meth@"dAG3, according to whether its tail nodg € V.
Eqs.(13)~(14) segment-wisely updal@s Example 7. AG = {(a,¢), (€,9), (e,1), (e, f), (h,b), (e,m)}
~ The integerl <1 < [V]is a user-controlled parameter thain Figure 1 can be divided into three group&G, = {(a,e)},
is a trade-off balancing memory and 1/O costs. For INStanc&G. = {(e,g), (¢, f), (e,m), (e,1)} and AG, = {(h,b)},
when/ = 1, P can be row-by-row loaded and updated ifvhere AG. can be partitioned into two subgroups further:
just O(|V]) memory, but reqU|rex§_)(|V|) _I/O costs in total AGL = {(e, f)} and AG? = {(e,), (e,m), (e,1)}. O
for |V| rows update; wheh = |V, it requires onlyO(1) 1/O
cost in total for all pairs of inputs/outputs, but entail§|V|*)
memory to load the entirP — this reduces to then-memory
algorithms that we discussed in Section lll.

Thg CPU timg for updating each segme.nRan Egs.(13)— AG; == {(i,2)}ype, With J:={j1,---,js}.

(14) is O(I|V]) in the worst case, which in practice can be ’

reduced taD(|[z], || P .|) further if zero entries in vectorg], Analogous to unit insertion in Section lll, for every group,
andP, , are skipped. In total, since there gr&] segments, We classify new insertiondG; to G = (V, E) into 4 cases:
the CPU time to update all¥(|*) pairs of P retainsO(|V|*) (Cl)i ¢V, 1€V, js €V; (CQieV, 1 ¢V, - ,js & V;

The main advantage of dividind G is that, after division,
all the insertions in each group can be handiiedultaneously
To elaborate on this, let us focus on one grahg@;:

Algorithm 3: Pure Bulk Insertions Algorithm 4: Pure Bulk Deletions

Input : old graphG = (V, E), decay factory, Input : the same as Algorithm 3 except for
a set of edges\G := {(ix, jx)} to be inserted, “a set of edgesAG := {(ix, jx)} to be deleted”
old proximity matrixP _in G. Output: new proximity matrixP in G — AG.
Output: new proximity matrixP in G U AG. 1 sort all edges{ (i, jx)} of AG by ik into |I| groups:{AG;}.
repeat 2 foreach group AG; in AG do
1 sort all edges{(ix, jr)} of AG into |I]| groups{AG;} 3 setJ := {nodej : (i,5) € AG;} andd := |J|.

first by i, and then by whethej;, is an old node inG.

2 setAG;,,.. := one of the groups with the maximum
number of edges IfAG;}.

3 setJ := {nodej : (i,7) € AG;,,..} andd := |J|.

4 | update newP in G U AG,,,., from old P in G, according
to the last column of Table II.

5 updateAG := AG — AG andG := GU AG

if O(i) =1then y:= -3, P.;
else y = m(éP*,i =72 jes Pri —0(1—7)e:)
updateP =P+ uTl_yL)yPu*
if 4 0or j1 or --- or js is an isolated nod¢hen
| delete node or ji or --- or js.

~N o g b

tmax tmax

until AG := o
Algorithm 5: Mixed Bulk Updates
Case | New Transition MatrixA New Proximity Matrix P Input : the same as Algorithm 3 except for
(). IV]gols —_cdli IV cols cols “a set of edgesAG := {(ix, jr, £)} to be updated”
gV A | (1/0)es] }1Virous P | Ty P] i Output: new proximity matrixP in G @ AG.
j1 €V 0 0 — row i p p Yy . .
" (1, wed 0 1=v - rows 1 obtain a set of net updateSGnin from AG via hashing
sev DW'_ () = {01 zgJ] 2 divide AGmin by update type intd\G,;, and AG;, .
To) =0, then A := 0 if o) = 0, thenP - 3 call Pure Bulk Deletions (Alg. 4) to updateP w.r.t. AG=.
|V cols § cols g p - min

A 0] }virows 3 o } V] o 4 call Pure Bulk Insertions (Alg. 3) to updateP w.rt. AG,
2 (1/6)15el 0 } 5 rows I1,P., | (1-1 } 5 rows
e Wi s :le,JT O # 0 # 0, thenB i= (C3) is dominated by the vector product®;, andyP; ,,
J1 ’) . . .
ey O if o) # 0. thenA = Vo 5 cols WhICh, in practice, can pe reduce_d (ﬂ_imax{|z|, [y HP:i)
7 —— P+t | 0 ymioes— time further, by eliminating O entries in vectoys z, P; ..

A +ve! 0 } v rows 1sP.. . . . X
orsleel | 0] Yoo Lo | -] }sw= pure Bulk Deletions. For bulk deletions, we first sort all
with v i= — 52 AL with 2 := giyrs (0 — 725 Pi) edges{(ix,jr)} In AG by its head node; into] groups

cay | A= Auel win PP+ —L_yP.. win {AG;}. To get newP, _unhke bulk insertions that split edge _
icv | O if 0@ =0 then 0 it Qg%: 0. then types into 4 cases, we just need consider one case: theoteleti
; = e v =32 e Py, ol s

nev a {1/d)es O (;@ fofme; of AG; :={(i,j1), -+ ,(i,4s)} withi € V,j; € V,--+ [j5 €
jsev u'.LOg()é)i“(‘;;ej”,A) V= o (1S s Pr — 0P V from old graphG = (V, E) because, ifi or j; or --- or

= o5 (] T ; . .

; TTeoE oot Ve L= 7ed) jx is an isolated node after deletions, we can remove it later.
(cay P S P PES . , ;
eV A 00 "0 jwiew | [P | o O } viows - Algorithm 4 shows our method for bulk deletions. Its cost is
e A VR Iy 0=y, - }ime the same as Algorithm 3 (repla¢g| by [V]).
gV Mixed Bulk Insertions & Deletions. We eliminate fromAG

Table II: New A andP for Four Cases of Bulk Insertions many unnecessary updates that may “cancel” each other. Our
main idea is to get aet update setAG,,;, via a hash table
C3icV, eV jseVy CHigV. i ¢V, js ¢V 1o count occurrences of updates XG. Precisely, for each
Similar to unit insertion, for each case of bulk insertionsdge update (hash key) IAG, we first initialize its count
we can obtain nevA andP in response t\G;, by extending (hash value) with 0, and then increasesp.decrease) its count
Theorems 1-4 to bulk insertions. As shown in Table I, bothy 1 when an insertionr¢sp. deletion) is inAG. Lastly, all
new A andP in response tAAG; = {(i,z)}vzes also bear hash keys with nonzero counts MG make AG;, such that
rank-one update structures. G ® AGpin = G & AG yet |AGnn| < |AG.
Table Il implies an incremental algorithm to compiRefor Algorithm 5 provides an efficient algorithm for mixed bulk
pure bulk insertions, as shown in Algorithm 3. Therst-case updates. It require®(|Iyax ||V |> + |AGmin||V|) time, where
complexity of Algorithm 3 are analyzed below. |Imax| is the maximum numbefl| of groups for pure bulk

~ : " AGT. V| i f [
Theorem 6. Let |V| be the total number of nodes in newupdatesAGmm and AG,,, and |V is number of nodes in

graph GUAG, |AG| be the number of inserted edgesay, &V AGH,. The memory isO(|V]) with O(T 1) 1/0s.
and |I| be the total number of groups IAG (Lines 1-2). In VI. EXPERIMENTS

the worst case, Algorithm 3 entaif3(|7||V'|>+|AG||V]|) time ,)
and O(|V|2) memory forAG bulk insertions. A. Experimental Settings

1) Real-life Datasets.We use 4 real datasets, including 2

The actualrunning time of Algorithm 3 is even faster tha”Emporal graphsBLP?, HepPh), and 2 static graphai(iki
Its worst-case time In Th_eorem 6, due to two reasons: (a) T, fhail)* with synthetic updates simulating real evolutions:
type of edge insertions, in practice, may m@bvaysmeet the

most time-consuming cases (C2) and (C3); (b) For each edgenttp://dblp.uni-trier.de/xml/
update(i, j), the O(|V'|?) worst-case time in cases (C2) and “http://snap.stanford.edu/data/index.html

)

—
o
g

T T
F|AG| = 1000

H B s g 1 gt
2 TR ARE S - M 9 104 I 1o .f
= 210 - 10 1 E103
2 £ _ el 1 i
102 g k- Tt i e I | 1071
& 10%E 7. DAP —A— B-LIN = X-DAP AL BN =10 = F
90K 94K 98K 102K 103K 99K 95K 91K j 10! 1L : : S 10t I B .
|E| + |AE] E| - |AE| W|k| HepPh Emall Wiki HepPh Email Syn
p P y
(a) Insertion orDBLP (b) Deletion onDBLP (c) Mixed Update on Real Data (d) Time for Inc-R vs. IRWR
—10% — ‘ _ /3105 \ \ \ T ’g 10° F ‘ ‘ =
g "N Inc-R* (10) 1 mmm Horizontal Vertical 2 |AG| = 1000 Z o2l V=10t J
[75) . - 103 I~ — 10 E E|
o [ERIneRT(50) 12 HepPh Email & R]
H——lInc-R* (100 4 @& 5 4, i = r 1
§ 10 E- nc-R*(100) E % 500 ‘,000 =10t 2 10! L §
5 i T 1 8 100 3,500 I ,.8 v-g F X Bl
T102 L & | 3,000 201 2 1L B nc-R
% g 1 5 800 5 500 (. = B -Inc—uR+/’
g 0 18 | Lo L E Foo1 B g el B
€3 101 N N < 200 10 50 100 ’ 10 50 100 102 103 104 105 10 10 10 10
Wlkl HepPh Email ~ # Partitions # Partitions V] |AG]|
(e) Timew.r.t. # Partitions (f) Vertical/Horizontal Partition (9) Varying |V'| on Syn (h) Varying |AG| on Syn

Figure 4: Computational Speedup on Real and Synthetic Biatas

DBLP is a co-authorship graph. Based on the collaboratim((zm |P;; — P;;|?)'/2. It can assess the average error of
time, we extracted 5 snapshots. The dataset has 391,446, imities over all pairs by deterministic algorithms.
pairs of authors (nodes) and 103,791 papers (edges). F-score is defined ag--score := 2 x Eﬁi%iﬁiﬁiil
HepPh is a citation digraph from the e-print arXiv and Since [3] has theoretically proved the exactness-dish,
covers all the citations within a dataset of 1,193,426,1di6sp we can choose its proximity scores as the ideal baseline.
of papers (nodes) and 421,578 citations (edges). All experiments are run on an Intel Core(TM) i7-4700MQ
Wiki contains voting data from the inception of WikipediaCPU @ 2.40GHz CPU and 32GB RAM, using Windows 7.
where an edge is a vote from a user to another. The dataset hashe running time includes both CPU time and 1/O costs.
68,840,209 pairs of users (nodes) and 103,689 votes (edges)
Email is an Email network of a EU research mstltutlon
where a node is an email address, and an edge j is Exp 1) Speedup. We first evaluate the running time of
a message from to j. The dataset contains 70,338,465,79%ic-R™ and Inc-R~ on DBLP. The results are shown in
pairs of email addresses and 420,045 messages (edges). Figures 4a—4b. We discern that (a) S| increases from
2) Synthetic DatasetsRTG (Random Typing Generator) [1]90K to 102K ¢esp. decreases from 103K to 91K)pc-R*
is used to generate dynamic graphs and updates (a sefresp.Inc-R™) consistently outperforms other methodsg.,
insertions/deletions). Graphs are controlled by a) thebem as |E| = 102K, Inc-R™ is ~54.3x faster tharB-LIN, ~20x
of nodes|V|, and b) the number of edgég|, which follows faster tharDAP andk-dash, and~13x faster tharBear. This
the densification power law and linkage generation modeis.becausénc-R* andinc-R~ can incrementally update only
Updates are controlled by a) update type (insertion or dele changes to all pairs of proximities that can be obtained b

Experimental Results

tion), and b) the size of updateAG]|. the outer product of two vectors, without the need to perform

3) Algorithms. We implement all the methods in VC 2015. any matrix decompositiore(g.,LU, SVD) and matrix-matrix
Algorithm Description multiplications. (b) WhenE| decreases, all algorithms require
Inc-RT, Inc-R~, Inc-R | our bulk updates in Algorithms 3, 4,5 less running time excepinc-R~ and MC. The reason is
Inc-uR™, Inc-uR"™ our unit update in Algorithms 1, 2 _ that Inc-R~ and MC update proximities by reusing previous
Bear [8] LU decomposition + block elimination results, whose time relies on the number of updated edges.
k-dash [3] LU decomposition + tree estimation K .
MC [2] Monte Carlo-based incremental RWR We next test the running time dhc-R on real datasets,
B-LIN[11] graph partitioning + low-rank SVD by using synthetic insertions/deletions mixed togethere D
IRWR [14] incremental RWR (disallow size change) to similar trend, Figure 4c only reporf\G| = 1000. We
DAP [10] direction-aware RWR (for all queries) see that (a) on each dataskic-R always performs the best,

4) Parameters.We take the following parameters by defaulte.g.,on Wiki, Inc-R is 25.8x faster tham-LIN, 11.3x faster

as previously adopted by [10], [11]: a) the decay facto= thank-dash, 9.2x faster thaDAP, and 6.5x faster thaBear.

0.9, b) the number of partitions foB-LIN, 7 = 100, and ¢) This high efficiency is due to 1) the representation of all
the total number of iterations fdDAP, K = 80. proximity changes as the outer product of two vectors, and
5) Accuracy Metrics. Two measures of accuracy are used) our aggregation and hashing strategies for bulk updéigs.
average differenceAD) andF-score. AD is defined a\D := When the size of dataset is larger, the speedup®R relative

10° 1 Wiki HepPh Email 1
g T S E 0 0 0 08
2 103 F—©—Inc-R*(10) —y—MC B o i
> §+Inc—R+(50) wJ--k-dash E Bear 0 0 0 g 0.6 - m—nc-R
= 102‘;’T—|neR+(100) -x-oap 7 4 k-dash 0 0 02yl f EZmMC
S et - o=y DAP | 00008 00006 — H{ IRWR
¥ Inc-R 503 0.2 B R
10! ‘ | 25 incr(100) B-LIN |0.0087 00048 — B
90K 94K 98K 102K W : o LBELL RE 8
|E| + |AE| Wiki HepPh Email IRWR | 076 082 0.8 Wiki HepPh Email
(a) Pure UpdatedBLP) (b) Mixed Update (Real Data) (a) Average Difference (b) F-Score
Figure 5: Memory Efficiency on Real and Synthetic Datasets Figure 6: Accuracy and Exactness

to MC is more pronouncee,g.,on HepPh (resp.Email), Inc- for output. In contrastinc-R* can incrementally update each
R is ~7.5x (resp.~14.3x) faster thaMC. This is becausMC partition with no need to load all-pairs proximities to mamo

is ineffective for all-pairs computation as there are rathm (b) When the number of partitions grows, the size of each
sampling among RWR vectors.r.t. different query. partition forP becomes smaller. Thus, the memorylmé-R*

To favor IRWR that disallows new nodes created for edgdecreases, which is consistent with our analysis in Settion
updates, we rebuild all updates of case (C3) on real data, angfigure 5b shows the memory tric-R for the mixed bulk
comparelRWR with Inc-R. Figure 4d depicts the results. ltupdates owiki, HepPh, andEmail. Due to similar tendency,
can be seen thdhc-R runs consistently faster thadRWR, we only report the results ol\G| = 1000. (a) On each graph,
sincelnc-R optimizes bulk updates via merging and hashingiven the partition numbef10,50,10@Q, the memory ofnc-R
methods, wherealRWR handles these updates one by onejs less than those of other methods by 1-2 orders of magnitude

Figure 4e evaluates the effect of the number of partitiofhis is because, after partitiomc-R updates each segment
on the running time ofnc-R on real datasets. By increasingndependently, with no need to memoize all-pairs proxiesiti
the number of partitions from 10 to 100 on each dataset, Wi§) When the number of partitions increases, the memory of
can see thainc-R grows slightly. This is because the growingnc-R decreases. (¢) On largémail, B-LIN and DAP fail to
number of partitions may lead to more I/O costs to load alillocate sufficient memory for all-pairs outputs.
pairs proximities segment-wisely, thereby increasingttital Exp 3) Exactness. Figure 6 assesses the accuracyiraf-R
running time. However, due to the rank-one update structusa Wiki, HepPh, Email by average difference and F-score.
of proximity changes, aftelP; , is memoized, our partitioning For each datasek-dash is selected as the baseline due to its
methods do not require communication costs across segmeg@ctness. We can see that (a) the average differeridapis

Figure 4f tests the impact of different partitioning method~ 10~ due to the iterative error. (b) The average difference of
(e.g.,horizontal and vertical partitioning) on the running times-LIN is ~ 10~2 due to its low-rank SVD approximation. (c)
of Inc-R over HepPh and Email. For each dataset, we varyin all cases, the average differencelné-R is 0, showing the
the number of partitions from 10 to 100, and apply horizontakactness of our method. (d) ARWR, its average difference
and vertical partitioning, respectively, for a fixed paotitsize. is large and F-score is small, due to the technical bugs df [14
The result shows that, given the partition size, on evergsidt andinc-R gives a full treatment. (e) The F-score M{C with
the running time ofnc-R is almost the same regardless of the.95 confidence is-0.8 due to its probabilistic nature.
partitioning methods we used. This is due to the similar bloc

structure ofP andP”". Hence, the performance of the vertical VIl. CONCLUSIONS
partitioning is similar to that of the horizontal partitiog.
On synthetic data, we compare the running timdmf-R In this paper, we consider the efficient computation of all

for mixed bulk updates with that of multiple executions opairs of RWR proximities on large dynamic graphs. Firstly,
unit updatelnc-uR*/~. In Figure 4g, we fix]AG| = 1000 for unit update, we characterize the proximity changes as th
and vary|V| from 102 to 10°; in Figure 4h, we fixV| = 10* outer product of two vectors, and observe the commutative
and vary|AG| from 10' to 10*. We notice that (a)nc-R is property for RWR:PA = AP. These can substantially speed
2.4x—7.6x faster thamc-uR*/—, showing the effectiveness ofup the computation of all pairs of proximities fro®(|V|?)

our aggregation approaches to minimixX€',,,;,. (b) When|V’| to O(|V|?) time in the worst case, with no loss of accuracy.
(resp.|AG|) grows, the times of both methods increase, but tihen, to avoidO(|V |?) memory for all-pairs outputs, we also
speedup ofnc-R is more apparent for largéd’| (resp.|AG|). propose efficient partitioning methods, such that all pairs
This is because largeAG| and |V| increase the occurrenceproximities can be computed segment-wisely in 0@y |V|)

of edge updates with a repeated end, thus enabling a hugemory withO([‘lﬂ]) I/O costs, wheré < < |V]is a user-
reduction in|AG| after edges are sorted. controlled trade-off between memory and 1/O costs. Besides
Exp 2) Memory Efficiency. Figure 5a compares the memoryfor bulk updates, we devise aggregation and hashing methods
of all methods for pure bulk updates @BLP. When|AE| to eliminate unnecessary updates further and handle chunks
increases from 90K to 102K, we notice that (a) the memonf unit updates simultaneously. Our experiments show that o
for Bear, MC, DAP, k-dash, andB-LIN stabilizes at~2.1G. method can be 10-100x faster than the best-known compgetitor
This is because these methods need store all-pairs preesmibn large graphs while securing exactness and scalability.

Acknowledgment. The work is supported by NEC Japan and (2) WhenO(i) # 0, by substituting Eq.(5) into the RWR

the European Commission FP7 Grant (No. 619795).
REFERENCES
1]
[2
(3]
[
(5]
(6]
(7]
(8]

using random typing. IiPKDD, 2009.

B. Bahmani, A. Chowdhury, and A. Goel.
Personalized PageRanRVLDB, 4(3):173-184, 2010.

Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. KitsuregawFast and
exact topk search for random walk with restaf®VLDB, 5(5), 2012.
G. Jeh and J. Widom. SimRank: A measure of structuratexdn
similarity. In KDD, pages 538-543, 2002.

I. Konstas, V. Stathopoulos, and J. M. Jose. On sociavords and
collaborative recommendation. BIGIR pages 195-202, 2009.

N. Lao and W. W. Cohen. Relational retrieval using a camaktion of

path-constrained random walkilachine Learning81(1):53-67, 2010.

P. Sarkar, A. W. Moore, and A. Prakash. Fast incrementekimity
search in large graphs. I€ML, 2008.

K. Shin, J. Jung, L. Sael, and U. Kang. BEAR: Block elintinoa
approach for random walk with restart on large graphs.SIBMOD,
pages 1571-1585, 2015.

J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbaod
formation and anomaly detection in bipartite graphsIGDM, 2005.
H. Tong, C. Faloutsos, and Y. Koren. Fast direction+ayaroximity for
graph mining. InKDD, pages 747-756, 2007.

H. Tong, C. Faloutsos, and J. Pan. Fast random walk veititart and
its applications. INCDM, pages 613-622, 2006.

G. Weikum and M. Theobald. From information to knowleddiar-
vesting entities and relationships from web sourcesP@DS 2010.

El
[10]
(11]

(12]

[13] A. W. Yu, N. Mamoulis, and H. Su. Reverse tépsearch using random

walk with restart. PVLDB, 7(5):401-412, 2014.

[14] W. Yu and X. Lin. IRWR: Incremental random walk with rest In
SIGIR (poster version)ages 1017-1020, 2013.

[15] W. Yu, X. Lin, W. Zhang, and J. A. McCann. Fast all-paiisneank
assessment on large graphs and bipartite dom##SE Trans. Knowl.
Data Eng, 27(7):1810-1823, 2015.

[16] W. Yu and J. A. McCann. Sig-SR: SimRank search over dargyraphs.
In ACM SIGIR pages 859-862, 2014.

[17] W. Yu and J. A. McCann. Co-Simmate: Quick retrieving pdlirwise
Co-Simrank scores. IACL, pages 327-333, 2015.

[18] W. Yuand J. A. McCann. Gauging correct relative rankifigr similarity
search. INnACM CIKM, pages 1791-1794, 2015.

[19] W. Yu and J. A. McCann. High quality graph-based sinijasearch.
In ACM SIGIR pages 83-92, 2015.

[20] F. Zhu, Y. Fang, K. C. Chang, and J. Ying.
accuracy-aware personalized PageRank through schedpfrdxama-
tion. PVLDB, 6(6):481-492, 2013.

APPENDIX
Proof of Theorem 1 By RWR definition (1), we have

—1)(I-~A)"" (plugging Eq.(3) intoA)

-1
=(1-7) {I 707A Jieﬂ} (using block matrix inverse)

= (AR plopl el - [RPe] o

P=(1

1 01—~

Proof of Lemma 2. Eq.(1) impliesP = (1—~)(I — FA)T!

Since||A[<1 and0 <~ < 1, we have
(I—~7A) ' =T+ ~yA ++2A% +
Substituting this back int@®A yields
PA=(1-7)I-~7A)""A=(1-7)(A+yA%+--)
—A(l—7)(I-~7A)"'=AP O

Proof of Theorem 2 We split the proof into two cases:
(1) WhenO(i) = 0, the proof is similar to Theorem 1.

L. Akoglu and C. Faloutsos. RTG: A recursive realisti@gh generator

Fast incrementad a

Incremental and

definitionP = (1 — 4)(I—~vA) ', we have
-1
_ M |0 M~ |0
P=(1-7)|—t| =0-7 |5 @5
-y |1 y M1
whereM :=1—-yA + A, ;y" and y := 0(z)+1

Using Sherman-Morrison inverse formulahkd—! ylelds

_ (A—A) AL iy T I—A) !

-1 _ —
M= (1-5A)" LryT(I—~A) A,

1 PA, .y'P

=1 (P - ﬁ) : (16)

Using Lemma 2 and Eq.(2), we halRA, ; = AP“ =
= (Py; — (1 —7)e;). Substitute this ang = e; into
(—livPA*ﬂ-yTP) in Eq.(16), which yields
wi— (11— W)ei))yTP =z-P;,
P..).
Substituting the above equation back to Eq.(16) produces

z-P; 4 T 1_ P
= P+1_—m and (1 —~)y' M~ o($+1 (1—zm)'

)+1

—LPALY'P = — L (1P

1-yM!

Plugging these two equations into Eq.(15) yields Eq.(8)!
Proof of Lemma 3. For O(i) = 0, AA =eje].
For O(i) # 0, after insertion, there are 2 changesAr; i

(1) all the nonzeros oA, ; are updated fronb— to 0(1 ESE

(2) the j-th entry of A, ; is changed from O t%z— Thus,

A= (()ll A, i+ ﬁeg‘ =A,;+u,
whereu := m(ej — A, ;). Hence, Eq.(9) holds. O

Proof of Lemma 4. Eq.(1) impliesL (I—yA)P =1. By
Lemma 3, we plugA := A + ue! into the above equation:
E(I — AP —uv’ =1 with v¥ = ﬁf)z*

In block matrix forms, these equations can be rewritten as

(1 7A)|-u [T
-1

-1

By left-multiplying both sides by{‘_‘T"} we have

e - [
VT o *1__’77132',* '

0
Y

P

VT

%e:T

—u

| =P u—1

Applying (I —~vA)™ " =

P =Puv’ +P with vI = (1Piq

1-y—vP; u

)P O

Proof of Theorem 3 By Lemmas 3 and 4, we have
(1) If O(i) =0, thenu = e;. We havePu =P, ;.
(2) If O(i) # 0, thenu = 5 (e; — A,i). We have

Pu= w(P*Ji:PA*ﬂ) = ﬁ(P*,J*%P*,i*(]-*%)eiy
The last “=" is due to Eq.(6)PA.; = = (P.; — (1 —7)e;).

Combining Eq.(10) with the resultinBu yields Eq.(11). O

