
Random Walk with Restart over Dynamic Graphs
Weiren Yu♮,† and Julie McCann†

† Department of Computing, Imperial College London
♮ School of Engineering & Applied Science, Aston University
w.yu3@aston.ac.uk j.mccann@imperial.ac.uk

Abstract—Random Walk with Restart (RWR) is an appealing
measure of proximity between nodes based on graph structures.
Since real graphs are often large and subject to minor changes, it
is prohibitively expensive to recompute proximities from scratch.
Previous methods use LU decomposition and degree reordering
heuristics, entailing O(|V |3) time and O(|V |2) memory to com-
pute all (|V |2) pairs of node proximities in a static graph. In this
paper, a dynamic scheme to assess RWR proximities is proposed:

(1) For unit update, we characterize the changes to all-pairs
proximities as the outer product of two vectors. We notice that
the multiplication of an RWR matrix and its transition matri x,
unlike traditional matrix multiplications, is commutativ e. This
can greatly reduce the computation of all-pairs proximities from
O(|V |3) to O(|∆|) time for each update without loss of accuracy,
where |∆| (≪ |V |2) is the number of affected proximities.

(2) To avoid O(|V |2) memory for all pairs of outputs, we also
devise efficient partitioning techniques for our dynamic model,
which can compute all pairs of proximities segment-wisely within
O(l|V |) memory and O(⌈ |V |

l
⌉) I/O costs, where1 ≤ l ≤ |V | is a

user-controlled trade-off between memory and I/O costs.
(3) For bulk updates, we also devise aggregation and hashing

methods, which can discard many unnecessary updates further
and handle chunks of unit updates simultaneously.

Our experimental results on various datasets demonstrate that
our methods can be 1–2 orders of magnitude faster than other
competitors while securing scalability and exactness.

I. I NTRODUCTION

With the increasing scale of the Internet, many applications
are dealing with dynamically evolving graphs on a large scale.
For example, the World Wide Web today embraces more than
a trillion links, and 7%–18% of them are updated fortnightly.
A key task to manage graphs is link-based proximity search,
i.e., given a graphG = (V,E) with |V | nodes and|E| edges,
the retrieval of all proximities between every two nodes inG.

Recently, Random Walk with Restart (RWR) [11] has been
proposed as an attractive proximity measure. The success of
RWR is mainly ascribed to its intuitive concept that revolves
around random walks. Consider a random surfer starting from
a given nodex. The surfer has two options at every step —
either moving to one of its out-links, or restarting fromx with
a certain probability. After the stability is iteratively attained,
the RWR proximityof every nodev w.r.t. a given nodex is the
steady-state probability that the surfer will eventually arrive
at nodev. RWR has a wide spectrum of applications ine.g.,
nearest neighbor search [13], named entity disambiguation[6],
collaborative filtering [5], and automatic image labeling [11].

Compared with other measures [15]–[19], RWR has three
salient features: (1) It can recursively capture both direct and
indirect neighboring information of each node. (2) Unlike

a

b

e

f
c

d

m

g

h (C1)

(C2)

(C3)

(C3)

G ∪∆G

l

(C2)

(C2)

a

b

e

f
c

d
G

Figure 1:A Website Updated by Three Types of Edge Insertions

SimRank [4] which is a symmetric measure to quantify the
structural equivalence between two nodes, RWR is an asym-
metric measure in a digraph, with the focus on reachability
from one node to another. (3) RWR is a stable measure that
is resilient to noise in a graph. With these advantages, RWR
is very popular in fertile communities [5], [6], [9]–[13].

However, the practicability of RWR is hindered by its high
computational cost. The best-known methods [3], [8] exploit
LU decomposition with degree reordering heuristics, which
requiresO(|V |3) time andO(|V |2) memory in the worst case
to evaluate all (|V |2) pairs of proximities over a static graph.
Due to the dynamics and growing size of the Internet, it is too
expensive to recompute all pairs of proximities from scratch
when a graph is frequently updated with small changes.

Motivated by this, we consider efficient dynamic computa-
tion of all pairs of RWR proximities on large evolving graphs.
Given all-pairs proximities in old graphG, and updates∆G
to G (i.e., a collection of new edge insertions or deletions),
our goal is to evaluate only the changes to all pairs of RWR
proximities efficiently without loss of exactness. Particularly,
we are interested in the situation: When all-pairs proximities
cannot fit into memory, can our dynamic RWR model compute
such changes over each segment independently while securing
high efficiency? Let us take the following example.

Example 1. Figure 1 is a part of the school websiteG, where
each node is a web page, and each edge is a hyperlink.

In this semester, the website is updated by adding 4 new
pages and 6 new links (see the dashed edges, denoted as∆G).
To update all-pairs proximities inG ∪ ∆G, instead of using
a batch method to reassess all new proximities from scratch,
one can incrementally retrieve only the changes to the old
proximities in response to graph updates∆G to G, by reusing
the information of the old proximity matrix inG.

However, due to memory limitations, the entire old proximity
matrix may not fit in memory. Thus, it is highly desirable that,
in our dynamical RWR model, each segment of the old prox-
imity matrix can be updated independently (in parallel).

Algorithm Time (All Pairs) Memory I/Os Error

Inc-R O(|Imax||∆|) O(l|V |) O(|Imax|⌈
|V |
l
⌉) 0

Inc-uR O(|∆G||∆|) O(l|V |) O(|∆G|⌈
|V |
l
⌉) 0

Bear [8] O(|∆G||E||V |) O(|V |2) 0 0
k-dash [3] O(|∆G||V |3) O(|V |2) 0 0

MC [2] O(
log(|∆G|)

(1−γ)2
|V |2) O(|V |2) 0 Prob.

DAP [10] O(K|∆G||E||V |) O(|V |2) 0 γK+1

B-LIN [11] O(1
τ2 |∆G||V |3) O(|V |2 + ν|V |) 0 ǫrank-ν

Table I: CompareInc-R with others for|∆G| edge updates,
where|Imax| ≪ |∆G|, |∆| ≪ |V |2, τ is the partition number,
K is the number of iterations,ν is the target rank of SVD,
and l is a user-controlled tradeoff between memory and I/Os

Due to the recursive nature of RWR definition, there are two
grand challenges to dynamic RWR computation: (1) It seems
difficult to exploit the relationship among proximity changes,
old proximities inG, and∆G. (2) It is hard to avoidO(|V |2)
memory to update all (|V |2) pairs of proximities.
Contributions. To address the above challenges, we propose
a novel dynamic scheme,Inc-R, with three main ingredients:

(1) For unit update, we devise an efficient dynamic model
that can characterize the changes to all-pairs RWR as the outer
product of two vectors. Moreover, we notice that the multipli-
cation of an RWR proximity matrix and its transition matrix,
unlike traditional matrix multiplication, is commutative. These
can substantially reduce the time to compute all (|V |2) pairs
of proximities fromO(|V |3) to O(|V |2) in the worst case for
each update without loss of accuracy. In general, theO(|V |2)
time can be reduced toO(|∆|) further, where|∆| (≤ |V |2) is
the number of affected RWR elements. (Section III)

(2) To reduce its memory further, we also propose efficient
partitioning techniques, in which all (|V |2) pairs proximities
can be updated segment-wisely in justO(l|V |) memory with
O(⌈ |V |

l ⌉) I/O costs, where1 ≤ l ≤ |V | is a user-controlled
trade-off between memory and I/O costs. (Section IV)

(3) For bulk updates, we propose aggregation and hashing
techniques for pure updates (i.e., either insertions or deletions
are allowable) and mixture updates. These can minimize many
unnecessary updates further and handle chunks of unit updates
simultaneously. (Section V)
Related Work. In Table I, we summarize the complexity of
the state-of-the-art methods for all-pairs RWR computation.

Tong et al. [11] provided a pioneering SVD-based method,
B-LIN. It first splits a graph intoτ dense blocks and a sparse
block, and then performs matrix inverse for each dense block
and a rank-ν SVD approximation for the sparse block.

Recently, Fujiwaraet al. [3] devised an LU decomposition
method,k-dash, for top-K RWR searchw.r.t. a given query.
k-dash entailsO(|V |

2
) time andO(|V |

2
) memory to retrieve

only the top-K proximities in one column of an RWR matrix.
Thus, it yieldsO(|V |3) time for top-K all-pairs RWR search.
In contrast, our incremental approach can compute all pairsof
proximities accurately inO(|V |

2
) worst-case time.

The existing work [2], [7] provided probabilistic methods
to estimate proximities. Sarkaret al. [7] integrated a sampling
approach with branch and bound pruning. Bahmaniet al. [2]
used Monte Carlo to incrementally estimate proximities.

Zhu et al. [20] used a hub length-based scheduling scheme
to prioritize random walks for RWR approximation. It differs

from our work in that our method is exact and needs only two
“pivot proximity vectors” to describe affected regions.

The recent work of [14] proposed an incremental method to
compute RWR. However, this method would fail when either
end node of an inserted edge is a new one. In contrast, our
techniques can overcome this limitation.

Recently, Shinet al. [8] have given a fresh impetus to fast
RWR computation on static graphs. Their scheme,Bear, com-
bines a block elimination approach with a Schur complement
of submatrix derived from the LU decomposition.

II. PRELIMINARIES

In this section, we briefly overview the background of RWR.
For graphG = (V,E), let O(j) be the out-degree of nodej.
Let A be the backward transition matrix defined as

Ai,j = 1/O(j) if ∃(j, i) ∈ E, andAi,j = 0 otherwise.

Then, RWR proximity matrixP ∈ R
|V |×|V | is defined by

P = γAP+ (1 − γ)I (1)

whereI ∈ R
|V |×|V | is an identity matrix, and(1−γ) ∈ (0, 1)

is restarting probabilitythat is often set to 0.1 (γ = 0.9) [11].
In vector forms, Eq.(1) can also be rewritten as

P⋆,x = γAP⋆,x + (1− γ)ex (∀x ∈ V) (2)

whereP⋆,x is thex-th column ofP, denoting the proximities
of all nodesw.r.t. nodex; andex is thex-th column ofI.

III. U NIT UPDATE

We mainly focus onunit insertion (Sections III-A–III-E).
Similar techniques also apply tounit deletion(Section III-F).

Note that all methods in this section arein-memorybased,
i.e.,all-pairs old and new proximities need fit in main memory.
In Section IV, we will extend our methods to handle the cases
when all-pairs proximities cannot fit in main memory.

Given graphG = (V,E), for edge(i, j) to be added toG,
we consider four cases in each subsection, respectively:

(C1) i /∈ V andj ∈ V ; (C2) i ∈ V andj /∈ V ;
(C3) i ∈ V andj ∈ V ; (C4) i /∈ V andj /∈ V .

Example 2. Figure 1 depicts an old digraphG (in solid lines)
with a set of edge insertions∆G (dash lines) intoG. In ∆G,
the insertion(h, b) belongs to case (C1);(e, g), (e, l), (e,m)
to case (C2);(a, e), (e, f) to case (C3).

A. Inserting Edge(i, j) with i /∈ V and j ∈ V

We first consider the case (C1): the insertion of edge(i, j)
with i /∈ V andj ∈ V . After insertion,Ã becomes

Ã =

[]
|V | cols
︷︸︸︷

A

col i
︷︸︸︷

ej
}
|V | rows

0 0 ← row i
(3)

Note that in Eq.(3), though the last row of̃A is 0, we need
not replace0 by 1

|V |+11
T (where1T is a row vector of all 1s).

This is because, unlike the existence of PageRank vector that
requiresÃ irreduciblity, the existence of RWR is ensured by
(I−γÃ) invertibility. Since(I−γÃ) is diagonally dominant,
it is invertible, and thereby its RWR matrix̃P exists.

To derive newP̃ from old P, we have the following result.

Theorem 1. Given a graphG = (V,E) and an old proximity
matrix P, after edge(i, j) with i /∈ V and j ∈ V is inserted,
the new proximity matrix̃P can be computed as

P̃ =

[]
P γP⋆,j

}
|V | rows

0 1− γ ← row i

Theorem 1 provides an efficient way to dynamically obtain
new P̃ from old P for insertion case (C1). Specifically, new
P̃ is a(|V |+1)×(|V |+1) matrix formed by bordering oldP
by 3 parts: (a) column vectorγP⋆,j, (b) row vector0, and (c)
scalar(1− γ). Thus, it requiresO(|V |) time to incrementally
computeP̃, which is dominated by the complexity ofγP⋆,j .

Notice that the upper-right blockγP⋆,j is a scalar multiple
of P⋆,j . This is because, after edge(i, j)i/∈V,j∈V is inserted,
the random walks fromi to nodex ∈ V are a concatenation
of the edgei→ j and the old random walks fromj to x:

new edge
︷︸︸︷

i⇒ j

old walks fromj to x tallied byPx,j
︷ ︸︸ ︷

→ ◦ → · · · → · · · → · · · ◦ → x
︸ ︷︷ ︸

new walks fromi to x tallied by P̃x,i

Since the out-degree of nodei is 1, the old walks fromj to
x (tallied by Px,j) can be reused with just a multiple factor
to evaluate the new walks fromi to x (tallied by P̃x,i).

Example 3. Recall the old graphG in Figure 1 (left). Given
γ = 0.9 and old proximity matrixP for G, when edge(h, b)
is inserted, new̃P can be updated via Theorem 1 as

P̃ =














a b c d e f h

a 0.100 0 0 0 0 0 0

b 0.030 0.100 0 0 0 0 0.090

c 0.030 0 0.100 0 0 0 0

d 0.042 0.041 0 0.100 0.090 0 0.037

e 0.014 0.045 0 0 0.100 0 0.041

f 0.014 0.045 0 0 0 0.100 0.041

h 0 0 0 0 0 0 0.100














old proximity matrix P

1− γ

γP⋆,b

zero row vector 0

×γ

B. Inserting Edge(i, j) with i ∈ V and j /∈ V

We next consider the case (C2): the insertion of edge(i, j)
with i ∈ V and j /∈ V . This case is more difficult than (C1)
since this type of insertion will change not only the dimension
of old transition matrixA, but also a number of entries ofA.

Lemma 1. Given old graphG = (V,E) and its old transition
matrix A. After edge(i, j) with i ∈ V and j /∈ V is inserted,
the new transition matrix̃A becomes

Ã =

[]
|V | cols
︷︸︸︷

A

col j
︷︸︸︷

0
}
|V | rows

eTi 0 ← row j
if O(i) = 0; (4)

Ã =

[]

|V | cols
︷ ︸︸ ︷

A+ veTi

col j
︷︸︸︷

0
}
|V | rows

1
O(i)+1e

T
i 0 ← row j

if O(i) 6= 0, (5)

where v = − 1
O(i)+1A⋆,i ∈ R

|V |×1, and O(i) denotes the
out-degree of nodei in old graphG.

Utilizing the structure ofÃ, we next propose an efficient
technique that can incrementally update newP̃ from old P.
Our main idea is to convert the computation ofP̃ into solving
(I− γÃ)−1 in terms of oldP. When we combine Lemma 1
with the block matrix inverse formula, new̃P will become

P̃ = (1 − γ)

[](
I− γA+A⋆,iy

T
)−1

0
}
|V | rows

yT
(
I− γA+A⋆,iy

T
)−1

1 ← row j

This structure suggests that, oncey is determined, solving̃P
can boil down to solving(I− γA+A⋆,iy

T)
−1

in terms ofP.
Fortunately, it is unnecessary to obtain(I− γA+A⋆,iy

T)
−1

from scratch because this inverse can be computed efficiently
from (I− γA)−1 perturbed by the rank-one updateA⋆,iy

T .
However, as(I− γA)−1 can be expressed as scaling ofP, the
challenge is that:Can we describe the changes to(I− γA)−1

in response to rank-one updateA⋆,iy
T in terms of oldP?

To address this issue, we show a commutative law ofP.

Lemma 2. For any transition matrixA and its corresponding
proximity matrixP, the following property holds:

PA = AP.

In general, multiplication of matrices is not commutative.
However, the commutative property of RWR in Lemma 2
allows us to efficiently compute the changes to(I− γA)

−1.
Precisely, the changes to(I− γA)

−1, as Theorem 2 will
show, involve the computation ofPA that is amatrix-matrix
multiplication, entailingO(|V |

3
) time if carried out naively.

In contrast, by Lemma 2, computingPA can be reduced to
O(|V |

2
) time, requiring onlymatrix scaling and subtraction.

This is because Lemma 2 enablesPA to be computed as

PA = AP = 1
γ (P− (1− γ)I) (6)

where the last equality holds by rearranging terms in Eq.(1).
Leveraging Lemmas 1 and 2, we can characterize newP̃.

Theorem 2. Given old graphG = (V,E) and its old proximity
matrix P, after edge(i, j) with i ∈ V and j /∈ V is inserted,
the new proximity matrix̃P can be updated as

P̃ =

[]

|V | cols
︷︸︸︷

P

col j
︷︸︸︷

0
}
|V | rows

γPi,⋆ 1− γ ← row j
if O(i) = 0; (7)

P̃ =

[]

|V | cols
︷ ︸︸ ︷

P+
z·Pi,⋆

1−zi

col j
︷︸︸︷

0
}
|V | rows

γ
O(i)+1

(
Pi,⋆

1−zi

)

1− γ ← row j
if O(i) 6= 0. (8)

where auxiliary vectorz = 1
O(i)+1

(
ei −

1
1−γP⋆,i

)
∈ R

|V |×1,
zi is the i-th entry ofz, andPi,⋆ is the i-th row ofP.

Theorem 2 gives an efficient way to incrementally compute
new proximity matrixP̃ when edge(i, j)i∈V,j /∈V is inserted.
WhenO(i) = 0, it requiresO(|V |) time to compute Eq.(7).
WhenO(i) 6= 0, it requiresO(|V |2) time to compute Eq.(8),
including: (a)O(|V |) time for vectorz; (b) O(|V |2) time for
(z ·Pi,⋆); (c) O(|V |) time to scale row vectorPi,⋆.

Example 4. Recall old graphG in Figure 1 (left) and its old
proximity matrixP (see Example 3). Givenγ = 0.9, after
edge(e, g) is added toG, newP̃ is updated as follows:

SinceO(e) = 1 > 0, we first computez by Theorem 2:

z = 1
1+1

(
ee −

1
1−0.9P⋆,e

)
=

[
a b c d e f

0 0 0 −0.45 0 0
]
T .

Then, notingze = 0, we can obtain new̃P from Eq.(8):

P̃ =














a b c d e f g

a 0.100 0 0 0 0 0 0

b 0.030 0.100 0 0 0 0 0

c 0.030 0 0.100 0 0 0 0

d 0.036 0.020 0 0.100 0.045 0 0

e 0.014 0.045 0 0 0.100 0 0

f 0.014 0.045 0 0 0 0.100 0

g 0.006 0.020 0 0 0.045 0 0.100














P+ 1
1−ze

z ·Pe,⋆ (rank-one update of P)

1− γγ
(O(e)+1)(1−ze)

Pe,⋆

× γ
(O(e)+1)(1−ze)












a b c d e f

a 0.100 0 0 0 0 0

b 0.030 0.100 0 0 0 0

c 0.030 0 0.100 0 0 0

d 0.042 0.041 0 0.100 0.090 0

e 0.014 0.045 0 0 0.100 0

f 0.014 0.045 0 0 0 0.100












+ 1
1−0












a 0

b 0

c 0

d −0.45

e 0

f 0












[
a b c d e f

0.014 0.045 0 0 0.1 0
]

zero
colu

m
n
vector

0

old proximity matrix P

old row vector Pe,⋆

auxiliary vector z

It is worth noting that theO(|V |2) time of computingP̃ by
Eq.(8) is theworst-casecomplexity, dominated by(z · Pi,⋆).
Generally, suchO(|V |

2
) time can be reduced toO(|z||Pi,⋆ |)

1

by updating only a nonzero subset ofV × V elements ofP:

{x ∈ V : [z]x 6= 0} × {y ∈ V : [Pi,⋆]y 6= 0} ⊆ V × V.

For instance, to obtain the upper-left block ofP̃ in Example 4,
we actually need update only|z| × |Pe,⋆| = 1× 3 = 3 entries
(underlined) instead of all|V |2 = 36 entries inP.

C. Inserting Edge(i, j) with i ∈ V and j ∈ V

We next investigate case (C3): the insertion of edge(i, j)
with i ∈ V and j ∈ V . As newÃ and oldA are of the same
size, it makes sense to denote their change as∆A := Ã−A.2

To characterize∆A, we have the following lemma.

Lemma 3. Given old graphG = (V,E) and its old transition
matrix A, after edge(i, j) with i ∈ V and j ∈ V is inserted,
the changes∆A can be expressed as

∆A = ueTi with u :=

{
ej if O(i) = 0;

1
O(i)+1 (ej −A⋆,i) if O(i) 6= 0.

(9)

Lemma 3 implies that all the nonzeros of∆A appear only
in the i-th column of ∆A that can be represented as the
scaling of oldA⋆,i except thej-th entry ofA⋆,i.

Example 5. When edge(a, e) is added toG in Figure 1, it
follows fromO(a) = 3 andA⋆,a = [0 1

3
1
3

1
3 0 0]T that

∆A = ueTa with u = 1
3+1 (ee −A⋆,a) =

[
a b c d e f

0 − 1
12 −

1
12 −

1
12

1
4 0

]
T .

1|x| is the number of nonzeros inx; [x]y is y-th entry ofx.
2Note that in cases (C1), (C2), (C4),̃A−A makes no sense.

The rank-one factorization of∆A in Lemma 3 is exploited
to characterize the corresponding proximity changes∆P.

Lemma 4. When edge(i, j)i∈V,j∈V is added toG = (V,E),
proximity changes∆P (= new P̃−old P) are expressible as

∆P = PuvT with vT =
(

γ
1−γ−γPi,⋆u

)
Pi,⋆ (10)

where vectoru is defined by Lemma 3.

Lemma 4 suggests that, for case (C3),∆P is a rank-one
matrix, i.e., the product of vector(Pu) and row vectorvT ,
whereu can be obtained by Eq.(9), andvT by scalingPi,⋆.
Thus, it requiresO(|V |2) total time to compute∆P, including
(a) O(|V |) time for u andvT ; (b) O(|V |2) time for (Pu);
and (c)O(|V |

2
) time for the product of(Pu) andvT .

To speed up the computation of∆P in Lemma 4 further,
there are two methods: (a) Once(Pu) is computed,(Pi,⋆u)
in Eq.(10) can be obtained directly from thei-th row of the
resulting(Pu). (b) TheO(|V |

2
) time to compute(Pu) can

be significantly reduced toO(|V |) since we observe that(Pu)
can be described as a linear combination of only two old “pivot
proximity vectors”P⋆,i andP⋆,j :

Pu = � ·P⋆,i +♦ ·P⋆,j .

To determine scalars� and♦, we use the method below.

Theorem 3. Given old graphG = (V,E), after edge(i, j)
with i ∈ V and j ∈ V is inserted, proximity changes∆P can
be computed as a rank-one matrix:

∆P =
(

1
1−γ−yi

)
yPi,⋆ with (11)

y =

{
γP⋆,j if O(i) = 0;

1
O(i)+1

(γP⋆,j −P⋆,i + (1− γ)ei) if O(i) 6= 0.

Theorem 3 is an optimized version of Lemma 4. It reduces
the computation of(Pu) in Lemma 4 fromO(|V |

2
) toO(|V |).

Furthermore, the rank-one structure of∆P in Eq.(11) can
reduce the computation of∆P to O(|y||Pi,⋆ |) time further,
by evaluating only a nonzero subset ofV ×V entries of∆P:

{x ∈ V : [y]x 6= 0} × {y ∈ V : [Pi,⋆]y 6= 0} ⊆ V × V.

Example 6. Recall old graphG in Figure 1 (left) and its old
proximity matrixP (see below). Givenγ = 0.9, after edge
(a, e) is inserted toG, newP̃ can be updated as follows:

AsO(a) = 3, we first obtainy and then∆P by Eq.(11):

=












a b c d e f

a 0.100 0 0 0 0 0

b 0.023 0.100 0 0 0 0

c 0.023 0 0.1 0 0 0

d 0.052 0.041 0 0.1 0.09 0

e 0.033 0.045 0 0 0.10 0

f 0.010 0.045 0 0 0 0.1












P⋆,a

P̃ =












a b c d e f

a 0.100 0 0 0 0 0

b 0.030 0.100 0 0 0 0

c 0.030 0 0.1 0 0 0

d 0.042 0.041 0 0.1 0.09 0

e 0.014 0.045 0 0 0.10 0

f 0.014 0.045 0 0 0 0.1












+ 1
1−0.9−0












a 0

b −0.0075

c −0.0075

d 0.0097

e 0.0191

f −0.0034












[
a b c d e f

0.1 0 0 0 0 0
]

old proximity matrix P

old row vector Pa,⋆

auxiliary vector y

1
3+1















−











a 0.100
b 0.030
c 0.030
d 0.042
e 0.014
f 0.014











+ 0.9











a 0
b 0
c 0
d 0.09
e 0.10
f 0











+ (1− 0.9)











a 1
b 0
c 0
d 0
e 0
f 0

























new proximity matrix P̃

P⋆,e ea

proximity change matrix ∆P

Algorithm 1: Unit Insertion
Input : old graphG = (V,E), edge(i, j) to be inserted,

old proximity matrixP in G, and decay factorγ.
Output: new proximity matrixP̃ in G ∪ {(i, j)}.

1 if i /∈ V and j ∈ V then // Case (C1)

2 updateP̃ :=

[]
|V | cols
︷︸︸︷

P

col i
︷ ︸︸ ︷

γP⋆,j

}
|V | rows

0 1− γ ← row i

3 else if i ∈ V and j /∈ V then // Case (C2)
4 if O(i) 6= 0 then
5 setz := 1

O(i)+1
(ei −

1
1−γ

P⋆,i)

6 updateP̃ :=

[]

|V | cols
︷ ︸︸ ︷

P+
z·Pi,⋆

1−zi

col j
︷︸︸︷

0
}
|V | rows

γ
O(i)+1

(
Pi,⋆

1−zi

)

1− γ ← row j

7 else

8 updateP̃ :=

[]
|V | cols
︷︸︸︷

P

col j
︷︸︸︷

0
}
|V | rows

γPi,⋆ 1− γ ← row j

9 else if i ∈ V and j ∈ V then // Case (C3)
10 if O(i) = 0 then sety := γP⋆,j

11 elsesety := 1
O(i)+1

(γP⋆,j −P⋆,i + (1− γ)ei)

12 updateP̃ := P+
(

1
1−γ−yi

)
yPi,⋆

13 else if i /∈ V and j /∈ V then // Case (C4)

14 updateP̃ :=

[]

|V | cols
︷︸︸︷

P

col i
︷︸︸︷

0

col j
︷︸︸︷

0
}
|V | rows

0 1− γ 0 ← row i

0 (1− γ)γ 1− γ ← row j

It is worth noticing that, to efficiently computẽP, we need
update only|y| × |Pa,⋆| = 5 × 1 = 5 entries (underlined)
instead of all|V |2 = 62 = 36 entries inP.

D. Inserting Edge(i, j) with i /∈ V and j /∈ V

We next handle case (C4): inserting edge(i, j) with i /∈ V
andj /∈ V . After insertion, new transition matrix̃A is

Ã =

[]

|V | cols
︷︸︸︷

A

col i
︷︸︸︷

0

col j
︷︸︸︷

0
}
|V | rows

0 0 0 ← row i

0 1 0 ← row j

(12)

Based on the block diagonal structure ofÃ, new P̃ can be
expressed in a block diagonal form as well, as shown below.

Theorem 4. Given graphG = (V,E) and its old proximity
matrix P, after edge(i, j) with i /∈ V and j /∈ V is inserted,
new proximity matrixP̃ can be computed as

P̃ =

[]

|V | cols
︷︸︸︷

P

col i
︷︸︸︷

0

col j
︷︸︸︷

0
}
|V | rows

0 1− γ 0 ← row i

0 (1− γ)γ 1− γ ← row j

Theorem 4 implies that, the insertion of edge(i, j)i/∈V,j /∈V
for case (C4) will form another new component in the graph.
After edge insertion, the upper-left block of new̃P remains
unchanged as there are no edges across the two components.
Likewise, the upper-right and lower-left blocks ofP̃ are 0s.

Algorithm 2: Unit Deletion
Input : old graphG = (V,E), edge(i, j) to be deleted,

old proximity matrixP in G, and decay factorγ.
Output: new proximity matrixP̃ in G− {(i, j)}.

1 if O(i) = 1 then sety := −γP⋆,j

2 else sety := 1
O(i)−1

(P⋆,i − γP⋆,j − (1− γ)ei)

3 updateP̃ := P+ 1
(1−γ−yi)

yPi,⋆

4 if i or j is an isolated node after deletionthen deletei or j

E. Incremental Algorithm for Unit Insertion

To summarize the cases (C1)–(C4) in Sections III-A–III-D,
Algorithm 1 gives a complete scheme which can incrementally
compute all pairs of RWR proximities for unit insertion.

The correctness of Algorithm 1 is shown by Theorems 1–4,
corresponding to 4 cases: (C1) (Lines 1–2), (C2) (Lines 3–8),
(C3) (Lines 9–12), and (C4) (Lines 13–14), respectively.

For computational cost, we have the following result.

Theorem 5. For any edge inserted to graphG = (V,E),
it requiresO(|V |2) worst-case time andO(|V |2) memory to
incrementally compute all pairs of proximities accurately.

TheO(|V |2) worst-case time, in general, can be reduced to
O(max{|V |, |z||Pi,⋆|, |y||Pi,⋆|}) time if we skip all 0 entries
of z,y,Pi,⋆ to computezPi,⋆ andyPi,⋆ (see Example 6).

F. Decremental Algorithm for Unit Deletion

Unlike edge insertion that is divided into cases (C1)–(C4),
we focus only on one case for edge deletion: Given old graph
G = (V,E), the removal of edge(i, j) with i ∈ V andj ∈ V ,
since we can first assume that the deletion of edge(i, j) would
not remove its end nodesi andj. If i or j becomes an isolated
node (whose in- and out-degrees are all 0s) after edge deletion,
then we can removei or j later.

Algorithm 2 provides a decremental way to update all-pairs
proximities for unit deletion. The proofs of its correctness and
complexity are similar to those of Theorem 3.

IV. AVOID MEMOIZING ALL -PAIRS RWR

In the previous section, theO(|V |2) memory is dominated
by storing all pairs of new/old proximities. To avoidO(|V |2)
memory, we next propose our partitioning techniques that can
update each segment ofP independently.

Due to space limitations, we focus only on our partitioning
methods to updateP in case (C2) forO(i) 6= 0, i.e., Eq.(8),
as this is the most complicated case among (C1)–(C4).

Our central idea of avoidingO(|V |
2
) memory is to partition

P ∈ R
|V |×|V | andz ∈ R

|V |×1 into ⌈ |V |
l ⌉ segments of sizel×

|V | andl×1, respectively (except for the last segment that may
be smaller), where1 ≤ l ≤ |V | is a user-controlled integer
that makes each segment small enough to fit in memory. After
partitioning,P andz becomes

P =










|V | cols
︷︸︸︷

[P]1

[P]2
...

[P]N










}
l rows

}
l rows

...
}

(|V | − (N − 1)l) rows

z =










|V | cols
︷︸︸︷

[z]1

[z]2
...

[z]N










}
l rows

}
l rows

...
}

(|V | − (N − 1)l) rows

with N =
⌈
|V |
l

⌉

= +

= +

= +

= +

PP̃

[P]1

[P]2

[P]3

[P̃]1

[P̃]2

[P̃]3

λz

λ[z]1

λ[z]2

λ[z]3

Pi,⋆

Pi,⋆

Pi,⋆

Pi,⋆

0

0

0

0

1− γ

1− γ
λγ

O(i)+1
Pi,⋆

λγ
O(i)+1Pi,⋆

Before
Partition

After
Partition

Figure 2:ComputeP̃ in Eq.(8) Segment-wisely by Eqs.(13)–(14)

where[P]x is thex-th segment(l×|V |) of P (1 ≤ x ≤ N−1),
and [z]x is thex-th segment(l × 1) of z.

As the upper-left block(P+
z·Pi,⋆

1−zi
) of newP̃ is a rank-one

update of oldP, it can be computed segment-wisely as

P+ λz ·Pi,⋆ =










|V | cols
︷ ︸︸ ︷

[P]1 + λ[z]1 ·Pi,⋆

[P]2 + λ[z]2 ·Pi,⋆

...

[P]N + λ[z]N ·Pi,⋆










}
l rows

}
l rows

...
}

(|V | − (N − 1)l) rows

with λ = 1
1−zi

.

This suggests that, to incrementally evaluate newP̃, we just
need loadPi,⋆ and one segment ofP, say[P]x, into memory
at one time; and each new segment[P̃]x can be updated from
old segment[P]x independently as follows:

[P̃]x =
[

|V | cols
︷ ︸︸ ︷

[P]x + λ[z]x ·Pi,⋆

col j
︷︸︸︷

0
] }

l rows (∀x = 1, · · · , N)

with λ = 1

1−
1

O(i)+1 (1−
1

1−γPi,i)
and [z]x = 1

O(i)+1 ([ei]x −
1

1−γ [P⋆,i]x).
(13)

except for the last segment being

[P̃]N =









|V | cols
︷ ︸︸ ︷

[P]N + λ[z]N ·Pi,⋆

col j
︷︸︸︷

0
}

(
|V | − (N − 1)l − 1

)
rows

λγ
O(i)+1Pi,⋆ 1− γ ← row j

(14)

The advantage of our partitioning method Eqs.(13)–(14) is
that it requires onlyO(l|V |) memory andO(⌈ |V |

l ⌉) I/O costs
to incrementally updateP, with no need ofO(|V |

2
) memory

to load the entireP. Moreover, each segment ofP is updated
independently. Figure 2 depicts how our partitioning method
Eqs.(13)–(14) segment-wisely updatesP.

The integer1 ≤ l ≤ |V | is a user-controlled parameter that
is a trade-off balancing memory and I/O costs. For instance,
when l = 1, P can be row-by-row loaded and updated in
just O(|V |) memory, but requiresO(|V |) I/O costs in total
for |V | rows update; whenl = |V |, it requires onlyO(1) I/O
cost in total for all pairs of inputs/outputs, but entailsO(|V |

2
)

memory to load the entireP — this reduces to thein-memory
algorithms that we discussed in Section III.

The CPU time for updating each segment ofP in Eqs.(13)–
(14) is O(l|V |) in the worst case, which in practice can be
reduced toO(|[z]x||Pi,⋆|) further if zero entries in vectors[z]x
andPi,⋆ are skipped. In total, since there are⌈ |V |

l ⌉ segments,
the CPU time to update all (|V |2) pairs ofP retainsO(|V |2)

= +[P]1[P̃]1
λz

[Pi,⋆]1

Vertical Partition

= +[P]1,1[P̃]1,1 λ[z]1

[Pi,⋆]1

= +[P]1,2[P̃]1,2 λ[z]1

[Pi,⋆]2

= +[P]2,1[P̃]2,1 λ[z]2

[Pi,⋆]1

= +[P]2,2[P̃]2,2 λ[z]2

[Pi,⋆]2

= +[P]3,1[P̃]3,1 λ[z]3

[Pi,⋆]1

λγ
O(i)+1

[Pi,⋆]1

= +[P]3,2[P̃]3,2 λ[z]3

[Pi,⋆]2

λγ
O(i)+1

[Pi,⋆]2

= +[P]3,3[P̃]3,3 λ[z]3

[Pi,⋆]3

λγ
O(i)+1

[Pi,⋆]3

0

1− γ

= +[P]1,3[P̃]1,3 λ[z]1

[Pi,⋆]3

= +[P]2,3[P̃]2,3 λ[z]2

[Pi,⋆]3

= +[P]2[P̃]2 = +[P]3[P̃]3

0

0

0

1− γλγ
O(i)+1

[Pi,⋆]1
λγ

O(i)+1
[Pi,⋆]2

λγ
O(i)+1

[Pi,⋆]3

[Pi,⋆]2 [Pi,⋆]3

λz λz

Block Partition

Figure 3: ComputẽP in Eq.(8) via Vertical Partitioning into
3 Segments or via Block Partitioning into3× 3 Segments

in the worst case, andO(
∑N

x=1 |[z]x||Pi,⋆|) = O(|z||Pi,⋆|) in
practice, which is the same as Algorithm 1.

In addition to the horizontal partitioning in Eqs.(13)–(14),
we can similarly devise vertical partitioning and block parti-
tioning techniques to incrementally evaluateP, as picturized in
Figure 3. Their performance will be compared in Section VI.

V. BULK UPDATES

We consider two types of bulk updates: a)pure bulk updates:
only one type of updates, insertions or deletions, is allowed;
b) mixed bulk updates: a mixture of insertions & deletions.
Pure Bulk Insertions. Given a set of edges to be inserted to
old G = (V,E), i.e., ∆G := {(i1, j1), (i2, j2), · · · , (iδ, jδ)},
where ik and jk (1 ≤ k ≤ δ) can be new/old nodes inV ,
the traditional method to compute new̃P in G∪∆G requires
repeated execution of unit insertion (Algorithm 1) forδ times,
and may produce many unnecessary intermediate updates.

However, we observe that, for pure bulk updates, the order
of edge insertions in∆G is irrelevant to newP̃ in G ∪∆G;
and, in general, there are often many repeated nodes in∆G.
This gives us a chance to handle multiple edges in bulk.

Our main idea is to sort all edges{(ik, jk)} in ∆G by its
head nodeik into several groups{∆Gik}. Then, all edges in
each group∆Gik are divided into at most 2 subgroups:∆G1

ik
and∆G2

ik
, according to whether its tail nodejk ∈ V .

Example 7. ∆G = {(a, e), (e, g), (e, l), (e, f), (h, b), (e,m)}
in Figure 1 can be divided into three groups:∆Ga = {(a, e)},
∆Ge = {(e, g), (e, f), (e,m), (e, l)} and ∆Gh = {(h, b)},
where∆Ge can be partitioned into two subgroups further:
∆G1

e = {(e, f)} and∆G2
e = {(e, g), (e,m), (e, l)}.

The main advantage of dividing∆G is that, after division,
all the insertions in each group can be handledsimultaneously.
To elaborate on this, let us focus on one group∆Gi:

∆Gi := {(i, x)}∀x∈J with J := {j1, · · · , jδ}.

Analogous to unit insertion in Section III, for every group,
we classify new insertions∆Gi to G = (V,E) into 4 cases:

(C1) i /∈ V, j1 ∈ V, · · · , jδ ∈ V ; (C2) i ∈ V, j1 /∈ V, · · · , jδ /∈ V ;

Algorithm 3: Pure Bulk Insertions
Input : old graphG = (V,E), decay factorγ,

a set of edges∆G := {(ik, jk)} to be inserted,
old proximity matrixP in G.

Output: new proximity matrixP̃ in G ∪∆G.
repeat

1 sort all edges{(ik, jk)} of ∆G into |I | groups{∆Gi}
first by ik and then by whetherjk is an old node inG.

2 set∆Gimax := one of the groups with the maximum
number of edges in{∆Gi}.

3 setJ := {nodej : (i, j) ∈ ∆Gimax} andδ := |J |.
4 update newP̃ in G ∪∆Gimax from old P in G, according

to the last column of Table II.
5 update∆G := ∆G−∆Gimax andG := G ∪∆Gimax

until ∆G := ∅

Case New Transition MatrixÃ New Proximity Matrix P̃

(C1):
i /∈ V
j1 ∈ V
· · ·
jδ ∈ V

[]
|V | cols
︷︸︸︷

A

col i
︷ ︸︸ ︷

(1/δ)eJ
}
|V | rows

0 0 ← row i

with (eJ)x :=

{
1, x ∈ J
0, x /∈ J

[]

|V | cols
︷︸︸︷

P

col i
︷ ︸︸ ︷
γ
δ

∑

j∈J P⋆,j

}
|V | rows

0 1− γ ← row i

(C2):
i ∈ V
j1 /∈ V
· · ·
jδ /∈ V

① if O(i) = 0, thenÃ :=

[]

|V | cols
︷ ︸︸ ︷

A

δ cols
︷︸︸︷

0
}
|V | rows

(1/δ)1δe
T
i 0

}
δ rows

with 1δ := [1, 1, · · · , 1]
︸ ︷︷ ︸

δ

T

② if O(i) 6= 0, thenÃ :=

[]

|V | cols
︷ ︸︸ ︷

A+ veTi

δ cols
︷︸︸︷

0
}
|V | rows

1
O(i)+δ

1δe
T
i 0

}
δ rows

with v := − δ
O(i)+δ

A⋆,i

① if O(i) = 0, then P̃ :=

[]

|V | cols
︷ ︸︸ ︷

P

δ cols
︷ ︸︸ ︷

0
}
|V | rows

γ
δ
1δPi,⋆ (1− γ)I

}
δ rows

② if O(i) 6= 0, then P̃ :=









|V | cols
︷ ︸︸ ︷

P+
zPi,⋆

1−zi

δ cols
︷ ︸︸ ︷

0
}
|V | rows

γ1δPi,⋆

(O(i)+δ)(1−zi)
(1− γ)I

}
δ rows

with z := δ
O(i)+δ

(
ei −

1
1−γ

P⋆,i

)

(C3):
i ∈ V
j1 ∈ V
· · ·
jδ ∈ V

Ã := A+ ueTi with

① if O(i) = 0, then
u := (1/δ)eJ

② if O(i) 6= 0, then
u := δ

O(i)+δ
(1
δ
eJ −A⋆,i)

P̃ := P+ 1
1−γ−yi

yPi,⋆ with

① if O(i) = 0, then
y := γ

δ

∑

j∈J P⋆,j

② if O(i) 6= 0, then
y := 1

O(i)+δ
(γ

∑

j∈J P⋆,j − δP⋆,i

+δ(1 − γ)ei)
(C4):
i /∈ V
j1 /∈ V
· · ·
jδ /∈ V

[]

|V | cols
︷︸︸︷

A

col i
︷︸︸︷

0

δ cols
︷︸︸︷

0
}
|V | rows

0 0 0 ← row i

0 1
δ
1δ 0

}
δ rows









|V | cols
︷︸︸︷

P

col i
︷︸︸︷

0

δ cols
︷︸︸︷

0
}
|V | rows

0 1− γ 0 ← row i

0
(1−γ)γ

δ
1δ (1− γ)I

}
δ rows

Table II: NewÃ and P̃ for Four Cases of Bulk Insertions

(C3) i ∈ V, j1 ∈ V, · · · , jδ ∈ V ; (C4) i /∈ V, j1 /∈ V, · · · , jδ /∈ V.

Similar to unit insertion, for each case of bulk insertions,
we can obtain new̃A andP̃ in response to∆Gi, by extending
Theorems 1–4 to bulk insertions. As shown in Table II, both
new Ã and P̃ in response to∆Gi = {(i, x)}∀x∈J also bear
rank-one update structures.

Table II implies an incremental algorithm to computeP̃ for
pure bulk insertions, as shown in Algorithm 3. Theworst-case
complexity of Algorithm 3 are analyzed below.

Theorem 6. Let |Ṽ | be the total number of nodes in new
graphG∪∆G, |∆G| be the number of inserted edges in∆G,
and |I| be the total number of groups in∆G (Lines 1–2). In
the worst case, Algorithm 3 entailsO(|I||Ṽ |2+|∆G||Ṽ |) time
andO(|Ṽ |2) memory for∆G bulk insertions.

The actual running time of Algorithm 3 is even faster than
its worst-case time in Theorem 6, due to two reasons: (a) The
type of edge insertions, in practice, may notalwaysmeet the
most time-consuming cases (C2) and (C3); (b) For each edge
update(i, j), theO(|Ṽ |2) worst-case time in cases (C2) and

Algorithm 4: Pure Bulk Deletions
Input : the same as Algorithm 3 except for

“a set of edges∆G := {(ik, jk)} to be deleted”
Output: new proximity matrixP̃ in G−∆G.

1 sort all edges{(ik, jk)} of ∆G by ik into |I | groups:{∆Gi}.
2 foreach group ∆Gi in ∆G do
3 setJ := {nodej : (i, j) ∈ ∆Gi} andδ := |J |.
4 if O(i) = 1 then y := − γ

δ

∑

j∈J P⋆,j

5 else y := 1
O(i)−δ

(δP⋆,i − γ
∑

j∈J P⋆,j − δ(1− γ)ei)

6 updateP̃ := P+ 1
(1−γ−yi)

yPi,⋆.
7 if i or j1 or · · · or jδ is an isolated nodethen

delete nodei or j1 or · · · or jδ.

Algorithm 5: Mixed Bulk Updates
Input : the same as Algorithm 3 except for

“a set of edges∆G := {(ik, jk,±)} to be updated”
Output: new proximity matrixP̃ in G⊕∆G.

1 obtain a set of net updates∆Gmin from ∆G via hashing
2 divide ∆Gmin by update type into∆G−

min and∆G+
min

3 call Pure Bulk Deletions (Alg. 4) to updateP̃ w.r.t. ∆G−
min

4 call Pure Bulk Insertions (Alg. 3) to updateP̃ w.r.t. ∆G+
min

(C3) is dominated by the vector productszPi,⋆ and yPi,⋆,
which, in practice, can be reduced toO(max{|z|, |y|}|Pi,⋆|)
time further, by eliminating 0 entries in vectorsy, z, Pi,⋆.
Pure Bulk Deletions. For bulk deletions, we first sort all
edges{(ik, jk)} in ∆G by its head nodeik into |I| groups
{∆Gi}. To get newP̃, unlike bulk insertions that split edge
types into 4 cases, we just need consider one case: the deletion
of ∆Gi := {(i, j1), · · · , (i, jδ)} with i ∈ V, j1 ∈ V, · · · , jδ ∈
V from old graphG = (V,E) because, ifi or j1 or · · · or
jk is an isolated node after deletions, we can remove it later.
Algorithm 4 shows our method for bulk deletions. Its cost is
the same as Algorithm 3 (replace|Ṽ | by |V |).
Mixed Bulk Insertions & Deletions. We eliminate from∆G
many unnecessary updates that may “cancel” each other. Our
main idea is to get anet update set∆Gmin via a hash table
to count occurrences of updates in∆G. Precisely, for each
edge update (hash key) in∆G, we first initialize its count
(hash value) with 0, and then increase (resp.decrease) its count
by 1 when an insertion (resp.deletion) is in∆G. Lastly, all
hash keys with nonzero counts in∆G make∆Gmin such that
G⊕∆Gmin = G⊕∆G yet |∆Gmin| ≪ |∆G|.

Algorithm 5 provides an efficient algorithm for mixed bulk
updates. It requiresO(|Imax||Ṽ |

2 + |∆Gmin||Ṽ |) time, where
|Imax| is the maximum number|I| of groups for pure bulk
updates∆G−

min and∆G+
min, and |Ṽ | is number of nodes in

G ∪∆G+
min. The memory isO(l|Ṽ |) with O(⌈ |Ṽ |

l ⌉) I/Os.

VI. EXPERIMENTS

A. Experimental Settings

1) Real-life Datasets.We use 4 real datasets, including 2
temporal graphs (DBLP3, HepPh), and 2 static graphs (Wiki,
Email)4 with synthetic updates simulating real evolutions:

3http://dblp.uni-trier.de/xml/
4http://snap.stanford.edu/data/index.html

90K 94K 98K 102K

102

103

104

|E|+ |∆E|

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R+ Bear
MC k-dash
DAP B-LIN

(a) Insertion onDBLP

103K 99K 95K 91K

102

103

104

|E| − |∆E|
E
la
p
se
d
T
im

e
(s
ec
)

Inc-R− Bear
MC k-dash
DAP B-LIN

(b) Deletion onDBLP

Wiki HepPh Email
101

102

103

104

105

|∆G| = 1000

××E
la
p
se
d
T
im

e
(s
ec
)

Inc-R
Bear
MC
k-dash
DAP
B-LIN

(c) Mixed Update on Real Data

Wiki HepPh Email Syn
101

102

103

104 |∆G| = 1000

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R
IRWR

(d) Time for Inc-R vs. IRWR

Wiki HepPh Email
101

102

103

104

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R+(10)
Inc-R+(50)
Inc-R+(100)

(e) Timew.r.t. # Partitions

Horizontal Vertical

10 50 100
200

300

400

500

PartitionsE
la
p
se
d
T
im

e
(s
ec
)

HepPh

10 50 100
2,000

2,500

3,000

3,500

4,000

Partitions

Email

(f) Vertical/Horizontal Partition

102 103 104 105
.001

0.1

101

103

105

|∆G| = 1000

|V |

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R
Inc-uR+/−

(g) Varying |V | on Syn

101 102 103 104
0.1

1

101

102

103

|V | = 104

|∆G|

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R
Inc-uR+/−

(h) Varying |∆G| on Syn

Figure 4: Computational Speedup on Real and Synthetic Datasets

DBLP is a co-authorship graph. Based on the collaboration
time, we extracted 5 snapshots. The dataset has 391,446,225
pairs of authors (nodes) and 103,791 papers (edges).

HepPh is a citation digraph from the e-print arXiv and
covers all the citations within a dataset of 1,193,426,116 pairs
of papers (nodes) and 421,578 citations (edges).

Wiki contains voting data from the inception of Wikipedia,
where an edge is a vote from a user to another. The dataset has
68,840,209 pairs of users (nodes) and 103,689 votes (edges).

Email is an Email network of a EU research institution,
where a node is an email address, and an edgei → j is
a message fromi to j. The dataset contains 70,338,465,796
pairs of email addresses and 420,045 messages (edges).
2) Synthetic Datasets.RTG (Random Typing Generator) [1]
is used to generate dynamic graphs and updates (a set of
insertions/deletions). Graphs are controlled by a) the number
of nodes|V |, and b) the number of edges|E|, which follows
the densification power law and linkage generation models.
Updates are controlled by a) update type (insertion or dele-
tion), and b) the size of updates|∆G|.
3) Algorithms. We implement all the methods in VC 2015.

Algorithm Description
Inc-R+, Inc-R−, Inc-R our bulk updates in Algorithms 3, 4, 5
Inc-uR+, Inc-uR− our unit update in Algorithms 1, 2
Bear [8] LU decomposition + block elimination
k-dash [3] LU decomposition + tree estimation
MC [2] Monte Carlo-based incremental RWR
B-LIN [11] graph partitioning + low-rank SVD
IRWR [14] incremental RWR (disallowA size change)
DAP [10] direction-aware RWR (for all queries)

4) Parameters.We take the following parameters by default,
as previously adopted by [10], [11]: a) the decay factorγ =
0.9, b) the number of partitions forB-LIN, τ = 100, and c)
the total number of iterations forDAP, K = 80.
5) Accuracy Metrics. Two measures of accuracy are used:
average difference (AD) andF-score. AD is defined asAD :=

1
|V |2 (

∑

i,j |Pi,j − P̂i,j |
2)1/2. It can assess the average error of

proximities over all pairs by deterministic algorithms.
F-score is defined asF-score := 2× Precision×Recall

Precision+Recall .
Since [3] has theoretically proved the exactness ofk-dash,

we can choose its proximity scores as the ideal baseline.
All experiments are run on an Intel Core(TM) i7-4700MQ

CPU @ 2.40GHz CPU and 32GB RAM, using Windows 7.
The running time includes both CPU time and I/O costs.

B. Experimental Results

Exp 1) Speedup. We first evaluate the running time of
Inc-R+ and Inc-R− on DBLP. The results are shown in
Figures 4a–4b. We discern that (a) as|E| increases from
90K to 102K (resp. decreases from 103K to 91K),Inc-R+

(resp. Inc-R−) consistently outperforms other methods,e.g.,
as |E| = 102K, Inc-R− is ∼54.3x faster thanB-LIN, ∼20x
faster thanDAP andk-dash, and∼13x faster thanBear. This
is becauseInc-R+ andInc-R− can incrementally update only
the changes to all pairs of proximities that can be obtained by
the outer product of two vectors, without the need to perform
any matrix decomposition (e.g.,LU, SVD) and matrix-matrix
multiplications. (b) When|E| decreases, all algorithms require
less running time exceptInc-R− and MC. The reason is
that Inc-R− and MC update proximities by reusing previous
results, whose time relies on the number of updated edges.

We next test the running time ofInc-R on real datasets,
by using synthetic insertions/deletions mixed together. Due
to similar trend, Figure 4c only reports|∆G| = 1000. We
see that (a) on each dataset,Inc-R always performs the best,
e.g.,on Wiki, Inc-R is 25.8x faster thanB-LIN, 11.3x faster
thank-dash, 9.2x faster thanDAP, and 6.5x faster thanBear.
This high efficiency is due to 1) the representation of all
proximity changes as the outer product of two vectors, and
2) our aggregation and hashing strategies for bulk updates.(b)
When the size of dataset is larger, the speedup ofInc-R relative

90K 94K 98K 102K
101

102

103

104

Inc-R+(10)

Inc-R+(50)

Inc-R+(100)
Bear

MC
k-dash

DAP
B-LIN

|E|+ |∆E|

M
em

o
ry

(M
B
)

(a) Pure Update (DBLP)

Wiki HepPh Email
1

101

102

103

104

Inc-R(10)
Inc-R(50)
Inc-R(100)

Bear
k-dash
MC
DAP
B-LIN

××
M
em

o
ry

(M
B
)

(b) Mixed Update (Real Data)

Figure 5: Memory Efficiency on Real and Synthetic Datasets

to MC is more pronounced,e.g.,onHepPh (resp.Email), Inc-
R is∼7.5x (resp.∼14.3x) faster thanMC. This is becauseMC
is ineffective for all-pairs computation as there are redundant
sampling among RWR vectorsw.r.t. different query.

To favor IRWR that disallows new nodes created for edge
updates, we rebuild all updates of case (C3) on real data, and
compareIRWR with Inc-R. Figure 4d depicts the results. It
can be seen thatInc-R runs consistently faster thanIRWR,
since Inc-R optimizes bulk updates via merging and hashing
methods, whereasIRWR handles these updates one by one.

Figure 4e evaluates the effect of the number of partitions
on the running time ofInc-R on real datasets. By increasing
the number of partitions from 10 to 100 on each dataset, we
can see thatInc-R grows slightly. This is because the growing
number of partitions may lead to more I/O costs to load all-
pairs proximities segment-wisely, thereby increasing thetotal
running time. However, due to the rank-one update structure
of proximity changes, afterPi,⋆ is memoized, our partitioning
methods do not require communication costs across segments.

Figure 4f tests the impact of different partitioning methods
(e.g.,horizontal and vertical partitioning) on the running time
of Inc-R over HepPh and Email. For each dataset, we vary
the number of partitions from 10 to 100, and apply horizontal
and vertical partitioning, respectively, for a fixed partition size.
The result shows that, given the partition size, on every dataset,
the running time ofInc-R is almost the same regardless of the
partitioning methods we used. This is due to the similar block
structure ofP andPT . Hence, the performance of the vertical
partitioning is similar to that of the horizontal partitioning.

On synthetic data, we compare the running time ofInc-R
for mixed bulk updates with that of multiple executions of
unit updateInc-uR+/−. In Figure 4g, we fix|∆G| = 1000
and vary|V | from 102 to 105; in Figure 4h, we fix|V | = 104

and vary|∆G| from 101 to 104. We notice that (a)Inc-R is
2.4x–7.6x faster thanInc-uR+/−, showing the effectiveness of
our aggregation approaches to minimize∆Gmin. (b) When|V |
(resp.|∆G|) grows, the times of both methods increase, but the
speedup ofInc-R is more apparent for large|V | (resp.|∆G|).
This is because large|∆G| and |V | increase the occurrence
of edge updates with a repeated end, thus enabling a huge
reduction in|∆G| after edges are sorted.
Exp 2) Memory Efficiency. Figure 5a compares the memory
of all methods for pure bulk updates onDBLP. When |∆E|
increases from 90K to 102K, we notice that (a) the memory
for Bear, MC, DAP, k-dash, andB-LIN stabilizes at∼2.1G.
This is because these methods need store all-pairs proximities

Wiki HepPh Email

Inc-R 0 0 0

Bear 0 0 0

k-dash 0 0 0

DAP 0.0008 0.0006 —

B-LIN 0.0087 0.0048 —

IRWR 0.76 0.82 0.68

(a) Average Difference

Wiki HepPh Email
0

0.2

0.4

0.6

0.8

1

F
S
co
re

Inc-R
MC
IRWR

(b) F-Score

Figure 6: Accuracy and Exactness

for output. In contrast,Inc-R+ can incrementally update each
partition with no need to load all-pairs proximities to memory.
(b) When the number of partitions grows, the size of each
partition forP becomes smaller. Thus, the memory ofInc-R+

decreases, which is consistent with our analysis in SectionIV.
Figure 5b shows the memory ofInc-R for the mixed bulk

updates onWiki, HepPh, andEmail. Due to similar tendency,
we only report the results on|∆G| = 1000. (a) On each graph,
given the partition number{10,50,100}, the memory ofInc-R
is less than those of other methods by 1–2 orders of magnitude.
This is because, after partition,Inc-R updates each segment
independently, with no need to memoize all-pairs proximities.
(b) When the number of partitions increases, the memory of
Inc-R decreases. (c) On largeEmail, B-LIN andDAP fail to
allocate sufficient memory for all-pairs outputs.
Exp 3) Exactness. Figure 6 assesses the accuracy ofInc-R
on Wiki, HepPh, Email by average difference and F-score.
For each dataset,k-dash is selected as the baseline due to its
exactness. We can see that (a) the average difference ofDAP is
∼ 10−3 due to the iterative error. (b) The average difference of
B-LIN is ∼ 10−2 due to its low-rank SVD approximation. (c)
In all cases, the average difference ofInc-R is 0, showing the
exactness of our method. (d) ForIRWR, its average difference
is large and F-score is small, due to the technical bugs of [14];
and Inc-R gives a full treatment. (e) The F-score ofMC with
0.95 confidence is∼0.8 due to its probabilistic nature.

VII. C ONCLUSIONS

In this paper, we consider the efficient computation of all
pairs of RWR proximities on large dynamic graphs. Firstly,
for unit update, we characterize the proximity changes as the
outer product of two vectors, and observe the commutative
property for RWR:PA = AP. These can substantially speed
up the computation of all pairs of proximities fromO(|V |3)
to O(|V |2) time in the worst case, with no loss of accuracy.
Then, to avoidO(|V |2) memory for all-pairs outputs, we also
propose efficient partitioning methods, such that all pairsof
proximities can be computed segment-wisely in onlyO(l|V |)

memory withO(⌈ |V |
l ⌉) I/O costs, where1 ≤ l ≤ |V | is a user-

controlled trade-off between memory and I/O costs. Besides,
for bulk updates, we devise aggregation and hashing methods
to eliminate unnecessary updates further and handle chunks
of unit updates simultaneously. Our experiments show that our
method can be 10–100x faster than the best-known competitors
on large graphs while securing exactness and scalability.

Acknowledgment.The work is supported by NEC Japan and
the European Commission FP7 Grant (No. 619795).

REFERENCES

[1] L. Akoglu and C. Faloutsos. RTG: A recursive realistic graph generator
using random typing. InPKDD, 2009.

[2] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental and
Personalized PageRank.PVLDB, 4(3):173–184, 2010.

[3] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa. Fast and
exact top-k search for random walk with restart.PVLDB, 5(5), 2012.

[4] G. Jeh and J. Widom. SimRank: A measure of structural-context
similarity. In KDD, pages 538–543, 2002.

[5] I. Konstas, V. Stathopoulos, and J. M. Jose. On social networks and
collaborative recommendation. InSIGIR, pages 195–202, 2009.

[6] N. Lao and W. W. Cohen. Relational retrieval using a combination of
path-constrained random walks.Machine Learning, 81(1):53–67, 2010.

[7] P. Sarkar, A. W. Moore, and A. Prakash. Fast incremental proximity
search in large graphs. InICML, 2008.

[8] K. Shin, J. Jung, L. Sael, and U. Kang. BEAR: Block elimination
approach for random walk with restart on large graphs. InSIGMOD,
pages 1571–1585, 2015.

[9] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood
formation and anomaly detection in bipartite graphs. InICDM, 2005.

[10] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware proximity for
graph mining. InKDD, pages 747–756, 2007.

[11] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with restart and
its applications. InICDM, pages 613–622, 2006.

[12] G. Weikum and M. Theobald. From information to knowledge: Har-
vesting entities and relationships from web sources. InPODS, 2010.

[13] A. W. Yu, N. Mamoulis, and H. Su. Reverse top-k search using random
walk with restart.PVLDB, 7(5):401–412, 2014.

[14] W. Yu and X. Lin. IRWR: Incremental random walk with restart. In
SIGIR (poster version), pages 1017–1020, 2013.

[15] W. Yu, X. Lin, W. Zhang, and J. A. McCann. Fast all-pairs simrank
assessment on large graphs and bipartite domains.IEEE Trans. Knowl.
Data Eng., 27(7):1810–1823, 2015.

[16] W. Yu and J. A. McCann. Sig-SR: SimRank search over singular graphs.
In ACM SIGIR, pages 859–862, 2014.

[17] W. Yu and J. A. McCann. Co-Simmate: Quick retrieving allpairwise
Co-Simrank scores. InACL, pages 327–333, 2015.

[18] W. Yu and J. A. McCann. Gauging correct relative rankings for similarity
search. InACM CIKM, pages 1791–1794, 2015.

[19] W. Yu and J. A. McCann. High quality graph-based similarity search.
In ACM SIGIR, pages 83–92, 2015.

[20] F. Zhu, Y. Fang, K. C. Chang, and J. Ying. Incremental and
accuracy-aware personalized PageRank through scheduled approxima-
tion. PVLDB, 6(6):481–492, 2013.

APPENDIX

Proof of Theorem 1. By RWR definition (1), we have

P̃= (1− γ)(I− γÃ)
−1

(plugging Eq.(3) intoÃ)

= (1− γ)

[
I− γA−γej

0 1

]−1

(using block matrix inverse)

= (1− γ)

[
(I− γA)−1 γ(I− γA)−1

ej
0 1

]

=

[
P γP⋆,j

0 1− γ

]

Proof of Lemma 2. Eq.(1) impliesP = (1−γ)(I− γA)
−1.

Since‖A‖∞ ≤ 1 and0 < γ < 1, we have

(I− γA)
−1

= I+ γA+ γ2A2 + · · ·

Substituting this back intoPA yields

PA = (1− γ) (I− γA)
−1

A = (1− γ)
(
A+ γA2 + · · ·

)

= A (1− γ) (I− γA)
−1

= AP

Proof of Theorem 2. We split the proof into two cases:
(1) WhenO(i) = 0, the proof is similar to Theorem 1.

(2) WhenO(i) 6= 0, by substituting Eq.(5) into the RWR
definition P̃ = (1− γ)(I− γÃ)

−1
, we have

P̃ = (1 − γ)

[

M 0

−yT 1

]−1

= (1− γ)

[

M−1 0

yTM−1 1

]

, (15)

whereM := I− γA+A⋆,iy
T and y := γ

O(i)+1ei.
Using Sherman-Morrison inverse formula toM−1 yields

M−1 = (I− γA)
−1
−

(I−γA)−1A⋆,iy
T (I−γA)−1

1+yT (I−γA)−1A⋆,i

= 1
1−γ

(

P−
PA⋆,iy

TP

1−γ+yTPA⋆,i

)

. (16)

Using Lemma 2 and Eq.(2), we havePA⋆,i = AP⋆,i =
1
γ (P⋆,i − (1 − γ)ei). Substitute this andy = γ

O(i)+1ei into
(− 1

1−γPA⋆,iy
TP) in Eq.(16), which yields

− 1
1−γPA⋆,iy

TP = − 1
1−γ

(
1
γ (P⋆,i − (1− γ)ei)

)
yTP = z ·Pi,⋆

with z := 1
(O(i)+1)(1−γ) ((1 − γ)ei −P⋆,i) .

Substituting the above equation back to Eq.(16) produces

(1− γ)M−1 = P+
z·Pi,⋆

1−zi
and (1− γ)yTM−1 = γ

O(i)+1

(
Pi,⋆

1−zi

)

.

Plugging these two equations into Eq.(15) yields Eq.(8).

Proof of Lemma 3. ForO(i) = 0, ∆A = eje
T
i .

For O(i) 6= 0, after insertion, there are 2 changes inÃ⋆,i:
(1) all the nonzeros ofA⋆,i are updated from 1

O(i) to 1
O(i)+1 ;

(2) thej-th entry ofA⋆,i is changed from 0 to 1
O(i)+1 . Thus,

Ã⋆,i =
O(i)

O(i)+1A⋆,i +
1

O(i)+1ej = A⋆,i + u,

whereu := 1
O(i)+1 (ej −A⋆,i). Hence, Eq.(9) holds.

Proof of Lemma 4. Eq.(1) implies 1
1−γ (I−γÃ)P̃ = I. By

Lemma 3, we plug̃A := A+ ueTi into the above equation:

1
1−γ (I− γA)P̃− uvT = I with vT = γ

1−γ P̃i,⋆.

In block matrix forms, these equations can be rewritten as
[

1
1−γ (I− γA) −u

γ
1−γ e

T
i −1

][

P̃

vT

]

=

[

I

0

]

.

By left-multiplying both sides by
[

I 0

−
γ

1−γPi,⋆ I

]

, we have
[

1
1−γ

(I− γA) −u

0 γ
1−γ

Pi,⋆u− 1

][
P̃

vT

]

=

[

I

− γ
1−γ

Pi,⋆

]

.

Applying (I− γA)−1 = 1
1−γP to the above equations yields

P̃ = PuvT +P with vT =
(γPi,q

1−γ−γPi,⋆u

)
Pi,⋆

Proof of Theorem 3. By Lemmas 3 and 4, we have
(1) If O(i) = 0, thenu = ej . We havePu = P⋆,j.
(2) If O(i) 6= 0, thenu = 1

O(i)+1 (ej −A⋆,i). We have

Pu = 1
O(i)+1 (P⋆,j−PA⋆,i) =

1
O(i)+1 (P⋆,j−

1
γP⋆,i−(1−

1
γ)ei).

The last “=” is due to Eq.(6):PA⋆,i =
1
γ (P⋆,i − (1 − γ)ei).

Combining Eq.(10) with the resultingPu yields Eq.(11).

