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Characterization of the hairpin vortex solution in plane Couette flow
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Quantitative evidence that establishes the existence of the hairpin vortex state (HVS) [T. Itano and S. C.
Generalis, Phys. Rev. Lett. 102, 114501 (2009)] in plane Couette flow (PCF) is provided in this work. The
evidence presented in this paper shows that the HVS can be obtained via homotopy from a flow with a simple
geometrical configuration, namely, the laterally heated flow (LHF). Although the early stages of bifurcations of
LHF have been previously investigated, our linear stability analysis reveals that the root in the LHF yields
multiple branches via symmetry breaking. These branches connect to the PCF manifold as steady nonlinear
amplitude solutions. Moreover, we show that the HVS has a direct bifurcation route to the Rayleigh-Bénard

convection.
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I. INTRODUCTION

In a turbulent boundary layer, the cascade of kinetic en-
ergy from the streamwise flow into turbulent internal energy
is determined mainly by the intermittent behavior of coher-
ent structures in the shear layer. Moreover, coherent struc-
tures are thought to form an integral part of the mechanism
that sustains the turbulent states, as well as to contribute to
the energy cascade to near-wall turbulence. The influence of
the coherent structures on the fully developed turbulent state
has, however, never been properly evaluated, partly because
of the absence of an exact definition of the notion of coherent
structure. Quantitative identification of the coherent struc-
tures could be possible via comparison(s) with steady non-
linear amplitude solutions for a wide range of the flow field
parameter region.

Theodorsen’s proposed hairpin (horseshoe)-shaped vortex
[1] as a model of a coherent structure in boundary-layer tur-
bulence has attracted the attention of investigators of turbu-
lent eddy structures. In the absence of dampening effects,
hairpin vortex states will generate omega-shaped vortices [2]
(see also Ref. [3]) that would gradually dissipate or generate
secondary hairpins upstream as well as downstream, depend-
ing on the initial energy supplied from the streamwise flow.
This process is continual and activates the transportation of
momentum in the turbulent boundary, accounting therefore
for the observed turbulent Reynolds stresses [4]. It is there-
fore of great significance to identify the coherent structure,
specifically the hairpin-shaped vortex that is prevalent in tur-
bulent shear flow, as a steady nonlinear amplitude solution
for a wide range of parameters. The postulate of Ref. [1] will
therefore gain support both from laboratory observations and
numerical simulations.

A promising candidate of steady nonlinear amplitude so-
lutions corresponding to the hairpin-shaped vortex in plane
Couette flow (PCF) was recently presented as hairpin vortex
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state (HVS) by the authors [5]. In the present paper, we will
exhibit quantitative evidence that establishes the existence of
the HVS in PCF, qualitative evidence of which was recently
elucidated in Ref. [5]. A homotopy continuation from later-
ally heated flow (LHF) shows that the HVS in PCF has a
root in LHF. The early stages of bifurcation of LHF have
been investigated previously [6]; but, in the present work,
our numerical linear stability analysis reveals that the root in
the LHF yields multiple branches via breaking of symme-
tries. One of the emerging branches corresponds to the HVS
in PCF.

We organize the present work as follows. In the following
section, Sec. II, we introduce the mathematical formulation
in order to obtain the HVS solution in PCF. Here, we intro-
duce a homotopy parameter €, which is not inherent to Cou-
ette Flow, but hitherto present at the initial stages of our
calculations. In Sec. III we expose step by step the evidence
of the bifurcation sequence of branches that evolve from the
basic flow in LHF and that lay the foundation of our exami-
nation of their connection with PCF. Finally, we present re-
sults that show the direct connection of HVS with the
Rayleigh-Bénard convection, as well as our concluding re-
marks in the last section of this paper.

II. FORMULATION
We suppose that the incompressible Newtonian fluid with
thermal diffusivity k and kinematic viscosity v is confined

between two infinite parallel vertical plates, a distance 2h
apart, which are laterally heated at different temperatures,
T+ AT, moving in the opposite directions with velocities
+AU (see Fig. 1). Assuming that the fluid is under the in-
fluence of a uniform vertical gravitational field (g is the ac-
celeration due to gravity), the fluid motion is modeled by the
following equations:

V.-a=0,
plodt + (i@ - Vi) = -V + GV - pge,,
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FIG. 1. Geometrical configuration of the fluid flow in a vertical
slot between laterally heated boundaries moving in the opposite
directions.

T + (it - V)T = kV*T,

where (-) indicates a dimensional variable. Here, we restrict
ourselves to the state of pure conduction. In this limit the
energy equation decouples from the momentum equations
and the temperature gradient becomes constant. Taking addi-
tionally into account the Boussinesq approximation and the
no-slip boundary conditions imposed on the velocity field,
the perturbation from the hydrostatic equilibrium is governed
by

V-u=0,

1 6e 1,
du+w-Viu=-——Vp+—ze.+ —Vu.
Po Re Re

Here, the Reynolds number Re and € are the two nondimen-
sional parameters defined by Re=(A+AU)h/7 and e=A/
(A+AU), where A=%gATh?/67 and 7=ji/,. The variables
v and p, are the thermal expansivity and the density, at the
reference temperature TO, respectively. The nonslip condition
on the rigid boundaries is satisfied if u(x,y,z=%*1)==(1
—€)e, and x,y,z are the streamwise, spanwise, and wall-
normal directions, respectively, of our coordinate system,
which is positioned in the midplane of the layer (see Fig. 1).
Assuming the laminar solution to be streamwise directional,
we have the basic state u(z)=(z—e€z)e,.

The parameter € plays an important role in our analysis.
Hereafter, we will explore the composite state of two distinct
flow states by varying € in the range 0 <e<1. The solution
obtained with €=0 is the exact state of “pure” PCF, which is
driven only by the shear force transferred from the walls
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moving in the opposite directions; equally, the solution with
e=1 is the exact state of pure LHF, which is sustained only
by the buoyancy force generated by the temperature differ-
ence of the wall boundaries.

We assume that the flow is steady, and that it can be
expanded in a double Fourier expansion in the x,y coordi-
nates and in a modified Chebyshev expansion in the z direc-
tion:

N, Ny N,
uj(x’yaz) = E E E ﬁj(n)wny’nz)

n,=-N, ny:—Ny n=0

X (1 _ ZZ)JU)Tn (Z)einxaxeinyﬁy’

where T, (z) is the n th-order Chebyshev polynomial and j
={x,y,z}. The function J(j) takes the value of 1 for j
={x,y} and takes the value of 2 for j=z. The nonslip bound-
ary condition for each component is automatically satisfied
by the factor (1-z?)’"). Taking into account the imposed
symmetries (detailed later) as well as the continuity equation,
a Galerkin-type projection yields quadratic equations for the
reduced (truncated) independent set of coefficients of the se-
ries. The iterative Newton-Raphson method enables us to
determine the solutions of the quadratic equation uniquely.

Moreover, a state for which we examine its stability will
be considered to be stable if all Re[ o] <0 and unstable if any
Re[o]>0, where o represents an eigenvalue of its spectral
linear stability analysis. Here, the growth rate ¢ for a infini-
tesimal disturbance,

5Mj(‘x’y’z’t) = eo’t E 5’2j(nxvn)"nz)

Nyl

X(l _ ZZ)J(j)Tn (y)einxaxeinyﬁy,

is calculated by the traditional linear stability theory, based
on modal analysis. In the analysis we present the eigenvalues
ordered according to their magnitude in the numerical spec-
tra.

II1. RESULTS
A. Bifurcation sequence in pure LHF

We begin our exposition by presenting in Fig. 2 the bifur-
cation sequence of our system in pure LHF (e=1). In this
figure, the mean shear rate at the boundary, 7, is adopted as
an order parameter to characterize the evolving solutions
manifold from our basic state. Interpolating between the ei-
genvalues of Table I, we calculated that the laminar state in
pure LHF becomes unstable against a two-dimensional in-
finitesimal perturbation with streamwise wave number a=2
for Re=297.9523. Note that although the primary bifurcation
is supercritical, the secondary state has many folds as it
evolves with increasing (or decreasing) strength of nonlin-
earity. This can be seen in Fig. 2, where it is shown explicitly
that the secondary state contains a few branches by turning
upon itself several times (the branches are depicted as S,
S2, and S3 in Fig. 2).

According to Ref. [6] we expected to observe the subhar-
monic tertiary state by increasing the value of Re. In our
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FIG. 2. Bifurcation sequence in pure LHF e=1. The various
higher-order states are depicted, as well as the laminar state. The
latter is depicted by the line 7=-2. Here, e=1 for the pure LHF
states and S, T, and Q stand for secondary, tertiary, and quaternary
respectively. The number following each letter indicates the branch
of each (bifurcating) state.

case, after the primary bifurcation, the secondary state with
a=2 looses its stability almost immediately, with the subhar-
monic instability setting in very quickly. The change of sign
for the critical (most dangerous) eigenvalue for two different
Re values, one below and one above the bifurcation point of
the tertiary state, is given in Table II. This table shows that
the secondary instability is indeed monotonic (as the imagi-
nary part of the top eigenvalue vanishes in this case). From
linear interpolation based on these eigenvalues, we have
identified the bifurcation point of the tertiary state as Re
=298.003. In our case the bifurcating tertiary state is sub-
critical (as opposed to the supercritical bifurcation of Ref.
[6]) and our subcritical tertiary state evolves with streamwise
and spanwise wave numbers (a, 8)=(1.0,2.0).

As the subcritical tertiary state continues its evolution, it
acquires a turning point at Re=175.64. Stability analysis tells
us that, up to this turning point, the lower branch of tertiary
state has several unstable eigenvalues. This implies that sev-
eral quaternary branches bifurcate from the tertiary state at
the Reynolds numbers where the sign of Re[o] changes.
However, of particular interest in the present analysis is the

TABLE I. Eigenvalues indicating bifurcation from the laminar
state of pure LHF (see also Fig. 2). The laminar state looses its
stability around Re=297.9528. Here, we present two sets of eigen-
values o, one for each of the two values of Re: one below and one
above the critical point of the laminar flow. The eigenvalue respon-
sible for the bifurcation presents itself with Re[a]>0.
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TABLE II. Eigenvalues indicating bifurcation from the super-
critical secondary state S1 in pure LHF (see also Fig. 2), with wave-
number values (a=2.0, B=0). The secondary state S1 looses its
stability at Re=298. Here, we present two sets of eigenvalues o for
each of the two values of Re: one below and one above the critical
point of the secondary state S1. The most dangerous eigenvalue
presents itself, as in the case of the laminar flow, with Re[a]>0.

Re=297.9833 Re=298.0167

Re[o] Im[ o] Re[o] Im[ o]
—1.6433x10° +8.0632X 10712 +1.1543 X 10° +6.6038 X 10712
—-6.9054 X 10° +5.4291 X 10710 -7.6040 % 10° -4.3561x 10710
-9.6752x10° -4.1537x10710 —8.9317x 10° +4.1320x 10710
-1.3601 X 10"  -2.5340x 10" -1.0721%x 10"  +2.7901 X 10!
—-1.3601 X 10" +2.5340x 10! —-1.0721 X 10" -2.7901 X 10!

quaternary state that bifurcates from the upper branch at
Re=180. We observe this particular supercritical bifurcation
in the change of eigenvalues as given in Table III. The set
given in Table III is part of a larger set with additional ei-
genvalues that are positive, indicating that the upper branch
is unstable. The top eigenvalue listed in Table III is respon-
sible for the bifurcation of the quaternary state Q1. Again, in
accordance with our previous practice, we provide eigenval-
ues prior and after the bifurcation point of Ql. Note that
there is a pair of complex conjugate eigenvalues included in
Table III which do not undergo a Hopf bifurcation until
higher Re values.

B. Homotopy between LHF and PCF

Several distinct states at Re=300 in LHF (e=1) have
been calculated. For the sake of convenience and reference
hereafter, we will denote each state as follows (see also Fig.
2): (B) the basic state; (S1) the lower branch, (S2) the middle
branch, and (S3) the upper branch of the secondary state;
(T1) the lower branch and (T2) the upper branch of the ter-
tiary state; (Q1) the upper branch and (Q2) the lower branch
of the quaternary state.

TABLE III. Eigenvalues indicating bifurcation from the upper
branch (T2) of the subcritical tertiary state in pure LHF («
=1.0, B=2.0) of Fig. 2. The tertiary vortex state looses its stability
at around Re=179.667. Here, we present two sets of eigenvalues o
for each of the two values of Re: one below and one above the
critical point for the tertiary flow in pure LHF (e=1). The most
dangerous eigenvalue presents itself, as before, with Re[a]>0.

a=2.0, Re=297.5916 a=2.0, Re=297.5928

Re=179.667 Re=179.833

Re[o] Im[o] Re[o] Im[o]

Re[o] Im[o] Re[o] Im[o]

-2.8400 % 107 —7.2881x 1073 +2.0180X 107 -9.2395 < 10712

-2.5352X 1073 +5.8246X 107* +1.1627 X 1073 -8.3378 x 10713
—-2.4033 X 1072 —4.3817X 107* -2.5465X 1073 +1.4992 x 10~"3

—2.5563X 10" +2.0670X 10> -2.5563X 10"  +2.0670 X 10>
—2.5563x 10"  —2.0670x 10> -2.5563x10' —2.0670X 10>
—6.7626X 10" +1.6691 X 10> -6.7626 X 10"  +1.6691 X 10>
-6.7626 X 10" —1.6691 X 10> —-6.7626x 10"  —1.6691 X 10>

—2.0261x10° =3.9307x10° —-2.0304x10° —3.9873 % 10°
—2.0261 X10°  +3.9307x10° =2.0304x10° +3.9873 % 10°
—2.6072x10° +4.5708 X 1071* -2.6083 x 10° +8.5950x 107!
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FIG. 3. Bifurcation diagram for Re=300. Several states obtained
in LHF show their connections to PCF via the homotopy parameter
€. Here, the various states are denoted in the same way as in Fig. 2.

These solutions can now be adopted as seeds to explore
previously unknown solutions in PCF via gradually limiting
the value of the homotopy parameter € to zero. The connec-
tion of these solutions via € is shown in Figs. 3 and 4. In
these plots, the basic solution is analytically represented as
7=1-3€ for any Re. The secondary states in LHF have turn-
ing points at €>0.9 in both figures. Although we calculated
the turning points of the secondary state in LHF at higher
Reynolds numbers, the secondary states were never able to
intersect the e=0 plane, a value of e which corresponds to
pure PCF. For example, the secondary state at Re=1800 has
a turning point at e=0.8.

By contrast, the tertiary and quaternary states in LHF can
connect with PCF (e=0), as can been seen in Figs. 3 and 4.
The tertiary state (with branches T1 and T2), which bifur-
cated from the secondary state of LHF (see Fig. 2), connects
directly with the pure PCF as depicted in Figs. 3 and 4. In
particular, it is interesting to note that T2 at PCF shows rela-
tively high value of 7, an attribute that will be discussed later
in conjunction with the existing literature. Concentrating on
Fig. 4 (where Re=350), the quaternary branches Q1 and Q2
emanate from the two distinct manifolds in the homotopy
space, e=0 (PCF) and e=1 (LHF), and show converging
tendencies. In fact the connection between LHF and PCF
states is achieved at high Re values at the quaternary level. It
should be emphasized that the continuous connection of the

N Basic —
Secondary — |

T2 Tertiary ——

Quaternary -----

FIG. 4. Bifurcation diagram obtained at Re=350. Here, the vari-
ous states are denoted in the same way as in Fig. 2.
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FIG. 5. The tertiary and quaternary states connected to PCF. The
value of 7 of tertiary state is calculated by two sets of truncation
levels, O: (N,,N,.N,)=(8,8,28) and X: (32, 16, 60), in order to
explicitly show the numerical convergence, necessary for the (ab-
solute) existence of the state.

quaternary states in LHF with the PCF manifold for Re
=350 is actually achieved with no symmetry change in the
states. We note here additionally that because T1 bifurcates
subcritically from S1 in LHF (e=1), the connection with
PCF (€=0), which is computationally continuous for all val-
ues of the homotopy parameter, is possible only via the upper
branch T2, which is the only tertiary branch that exists for
Re =300 (see Figs. 2 and 3).

The bridge, however, the bridge between PCF and LHF
that is made by the quaternary state that originates from
LHF, disappears for values of the homotopy parameter e,
such that the inequality 0.7 <<e<<0.8 is satisfied at lower Re
values (see Fig. 3). We confirmed that this separation be-
tween the two regions happens below Re=310. It is pre-
cisely for this reason that one would have failed in attempt-
ing to seek a new solution in PCF from known nontrivial
solutions of PCF via a homotopy transformation at relatively
lower Re values. In some sense therefore the intensity of the
inflection point, which increases with increasing Re values
(see Ref. [5]), would have been required to build the passage
to the new solutions in PCF. This separation may provide
also a possible explanation as to why the quaternary state in
PCF with Re,,;,=127.705 (see Ref. [7]) survives for lower
Re values than the tertiary state in PCF with Re;,=139
does, in spite of the fact that the latter is a more primitive
state than the former in the bifurcation sequence.

C. Bifurcation in PCF

In Ref. [5], the tertiary state connected to PCF was de-
noted as HVS associated to the shape of hairpin visualized
by its vortex lines. The shape of the vortex is attributed to the
spanwise reflection symmetry of this state.

In the present study, we have pursued the HVS for both
higher and lower Reynolds number values. The calculation
has been complied for the upper and lower branches inde-
pendently with truncation levels such that the numerical tol-
erance levels were within a preset criterion. The value of 7 of
the upper branch is captured by various truncation levels in a
consistent way, with the calculations depicted within the
1-2 % tolerance range (see Fig. 5). Although the calculation
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FIG. 6. The quaternary state Q1 at (e,Re)=(0,200). (a) Contour plot of u#(y,z), which varies from —0.59 to 0.59. Contour levels from
—0.6 (white) to 0.6 (black) by 0.1. (b) Contour plot of u,(x,y), which varies from 0 to 0.54. Contour levels from 0.0 (white) to 0.6 (black)

by 0.1.

of the upper branch proceeds in a consistent manner up to
Re=400 with the truncation levels employed, above Re
=400 there is a genuine difficulty in obtaining a convergence
in accordance with the tolerance criteria set. This necessi-
tates the introduction of higher truncation levels with in-
creasing Re values. The turning point of the HVS for
(a,B)=(1,2) is Rey,=173.79 for (N,,N,,N)=(8,8,28)
and Re,=173.98 for (N,,N,,N))=(16,16,28), where
(NX,Ny,NZ) constitutes the truncation level in the stream-
wise, spanwise, and wall-normal coordinates, respectively.
The upper branch, of the tertiary state that connects to PCF
for the same wave numbers, has Re.;,=163.5 for
(N,,Ny,N.)=(8,16,28), which is in accordance with Ref.
[8]. The turning point of the HVS can be optimized with
varying (a, ), where Re;,=139.2 is achieved for («,f)
=(0.757,1.366) in the present investigation with
(N,,Ny,N,)=(8,8,28).

On the other hand, the lower branch can be pursued at
relatively less truncation levels, because the streamwise de-
pendency of the lower branch is relatively small. This is
similar to the lower branch of the quaternary state, which
was the focus of Ref. [8].

IV. CONCLUSIONS AND DISCUSSION

We have exposed the method employed to identify an-
other family of solutions to the Navier-Stokes equations in
PCF. In Ref. [5], the solutions found were classified by sym-
metries into the HVS and a previously identified solution,
which was abbreviated as NBW (from Nagata, Clever &
Busse, Waleffe). Indeed, the HVS is intrinsically more com-
plicated than NBW, despite the fact that it satisfies richer
symmetries than it does. In the present study, we have also
explicitly shown that the latter bifurcates from the former.

A. Symmetry considerations

We review now the bifurcation sequence from the sym-
metries point of view. The following symmetries are satisfied
by the tertiary state [5]:

(A) Streamwise translational and spanwise reflectional
Symmetry’ [ux’ uy > “z]T(X,y > Z) =[ux’ _uy’ uz]T(x+Lx/2 >~y ’Z);

(B) Parity symmetry with respect to (x,y,z)
=(L,/4,L,/4,0), [ux,uy,uZ]T(x,y,z)=[—ux,—uy,—uz]T(Lx/2
-x,L,/2-y,~z); and

(C) Parity symmetry with respect to the origin,
[ux > uy > uz]T(x Y Z) = [_ux > _uy > _uz]T(_x >~V _Z)~

Denoting by 74, ,, the translational symmetry in the
streamwise and spanwise directions, [u,,u,, u ] (x,y,2)
=[u,,uy,u]"(x+Ax,y+Ay,z), we can deduce that the
present tertiary state obtained for («,8)=(1,2) is invariant
under an arbitrary combination of the noncommunicative op-
erations,

{1 ’ Anl’ an’ Cn37/]'21‘7‘7’()7 73,577}’

where n; is an arbitrary integer. We note here that the span-
wise reflection symmetry with respect to the y=L,/4 plane,
[ux,uy,uZ]T(x,Ly/4+y,z)=[ux,uy,uZ]T(x,Ly/4—y,z), can be
deduced from 7 ABC. In addition, we also note that A?
:7—277,0'

In the hierarchical bifurcation sequence, a quaternary state
bifurcates from a tertiary state by the breaking of a symme-
try, symmetry C in our case which leads to the breaking of
the spanwise reflection symmetry. It should be noted that this
symmetry breaking also triggers a significant difference at
PCF in vortex structure between HVS and NBW. As seen
from the contour plots of u#(y,z) in Figs. 6 and 7, two
streamwise-averaged (absolute value) vorticity peaks are lo-
cated at z<<0 and z>0 for the tertiary state T2, while only
one peak is located at z=0 for the quaternary state Q1. Thus,
in spite of the fact that these solutions are homotopically
equivalent to others in LHF, one is distinct from the other in
PCF, in the fact that their own identities are being rooted at a
symmetry breaking.

B. Available literature

A very recent compilation of solution space in PCF is by
Gibson et al. [9]. They employed an algorithm that is based
on the Chebyshev tau method, allowing therefore for correc-
tions due to the incompressibility and boundary conditions.
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FIG. 7. The tertiary state T2 at (e,Re)=(0,200). (a) Contour plot of i(y,z), which varies from —0.67 to +0.67. Contour levels from —0.7
(white) to 0.7 (black) by 0.1. (b) Contour plot of u_(x,y), which varies from 0 to 0.59. Contour levels from 0.0 (white) to 0.6 (black) by 0.1.

The spectral resolution employed was sufficient to indepen-
dently identify the HVS in PCF, despite the quoted low as-
pect ratio of their computational domain. Among the plethora
of states in PCF identified in Ref. [9], their EQ; and EQq
equilibria are the ones that correspond to the lower and upper
branches of the HVS identified in Ref. [5]. The 7, energy,
and energy dissipation values for the upper and lower
branches of the HVS and EQ;,EQg of Ref. [9] were com-
pared for a variety of values of Re (see Ref. [10]). The agree-
ment between the two sets of values reported in the above
references is excellent.

The work of Schmiegel [11] is also an investigation in the
steady and traveling-wave solutions in PCF. Due to the non-
dimensionalization employed in Ref. [11], where the stream-
wise and spanwise extent of the periodical computational
domain is exactly double of those used in Ref. [5], we should
have been able to make direct comparisons. Contour plots of
u(y,z) and u,(x,y) are made in order to identify the streak
structures of T2 (Fig. 7) and QI (Fig. 6) at (e,Re)
=(0,200), where

1 (&
ﬂ%0=—f u(x,y,z) — zdx,
L.J,

1
mww=f [u(x,y,2) = 2]O(u(x,y,z) - 2)dz,
-1

and O(s) is the Heaviside function. Comparing Fig. 6 and
Rein» We conjecture that Q1 is likely to be equivalent to the
“a branch” of Ref. [11], except for the difference in the
number of streaks. Search for the optimal wave number for
QI, where the state can exist for the lowest value of the
Reynolds number, gives us a good accordance in the value of
Re,i, of QI. On the other hand, by comparing Fig. 7 and
taking into account the symmetries satisfied (and the rela-
tively high value of 7 of T2), T1 or T2 appears to be similar
to the ¢ branch in Ref. [11], except for the quantitative sig-
nificant differences in Re_;, and 7. We find that the differ-
ence between the two studies is large even at relatively lower
Reynolds number values. We believe that is probably caused
by the low truncation levels of Ref. [11], despite the fact that

Legendre and not Chebyshev polynomials are employed
there. We are thus unable to make a fully convincing com-
parison with Ref. [11].

C. Connection of HVS to Rayleigh-Bénard convection

Clever and Busse [12,13] introduced PCF between hori-
zontal boundaries at different temperatures (conventional
Rayleigh-Bénard convection: RBC) to reproduce the NBW.
This NBW was identified as a tertiary branch in Ref. [12],
because this branch bifurcates directly from the two-
dimensional solution. In order to examine the bifurcation
diagram of HVS in the homotopy space between PCF and
RBC, we carried out extra calculations.

At first, we summarize here their result very briefly (bas-
ing our analysis on Fig. 1 of Ref. [13]). At the critical Ray-
leigh number Ra=1708/16=106.7, where the basic flow
loses its stability, the two-dimensional flow (longitudinal roll
cell in RBC) emerges from the basic flow. Note that each roll
cell in this secondary flow occupies the whole channel width.
Then the wavy instability of the roll cell leads to a three-
dimensional flow (the tertiary branch in their sense), which
can be realized even in the vanishing limit of Ra, corre-
sponding to NBW in pure PCF. Despite the fact that there are
two control parameters only one of them was used here, Ra,
that provides the degeneracy prevailing in the horizontal
configuration, when AU — 0. This arbitrariness in the direc-
tion of axes of the roll cells on the horizontal plane in pure
RBC due to isotropy invariance, aided by the vanishing of
AU, allows even for square and hexagonal patterns to be
realized with a subtle modification of the flow pattern, which
would be very important for other possible extension of bi-
furcations.

In Fig. 8 we show the bifurcation diagram of HVS in
homotopy between HVS and RBC. For this figure,

N, N

N
y z
A A *
LZ: 2 E Z [uj(nmny’nz)uj(nxsnwnz) ]»
n=—N, ny=—N),. n=0
where * in this expression refers to the complex conjugate.

In RBC the main results available in the literature are deriv-
able from the bifurcation sequence of the even mode, as the
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FIG. 8. Bifurcation in thermally stratified PCF. The vertical axis
denotes the L, norm of the vertical component of the velocity field.
The bifurcation diagram is obtained in thermally stratified PCF. The
secondary flow corresponds to longitudinal roll cells. Here, the Re
and Prandtl numbers are kept fixed at 210 and 7, respectively. The
Rayleigh number value Ra= 1403 is the critical value in RBC for
the odd mode.

odd mode has a higher critical Rayleigh number. When ther-
mal effects are introduced in the PCF, the nonlinear odd
mode bifurcates at Ra= 1403 for the wave-number value «

PHYSICAL REVIEW E 82, 066308 (2010)

=4, precisely as predicted from the corresponding linear
analysis. As the nonlinear states are followed in the nonlinear
space a subharmonic subcritical bifurcation occurs at Ra
~4991, creating the predecessor of the HVS in PCF, with
the wave-number values presented in this work.

As can be seen from Fig. 8, when the thermal effects are
then gradually removed we reach the case of PCF and the
previously identified HVS is obtained again. By eliminating
therefore RBC we are able to obtain the HVS in PCF via
another route. The consideration of the bifurcation sequence
of the odd mode in RBC provides therefore another connec-
tion to the HVS manifold of solutions. Thus, the attempts of
Ref. [13] could not connect to HVS, because their hierarchi-
cal bifurcations originated from a different mode, the even
one.
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