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Abstract

This paper proposes an approach to compute and decompose cost efficiency

in contexts where units can adjust input quantities and seek input prices so

that through the joint determination of quantities and prices they can min-

imise the aggregate cost of the outputs they secure. The models developed

are based on the data envelopment analysis framework and can accommodate

situations where the degree of influence over prices is minimal, and situations

where there is a large influence over prices. When units cannot influence in-

put prices the models proposed reduce to the standard cost efficiency, where

prices are taken as exogenous. In addition to the cost model, we introduce

a novel decomposition of cost efficiency into a quantity and a price compo-

nent, based on Bennet indicators. The components are expressed in terms

of percentage cost savings that can be attained through changing prices and

changing quantities towards the overall optimum cost target.

Keywords: Cost efficiency; price efficiency, Bennet Indicators, Data Envelop-

ment Analysis

1 Introduction

Traditional models for computing cost and revenue efficiency date back to Farrell

(1957) and will be called Farrell cost or revenue efficiency models. Since the appear-

ance of Data Envelopment Analysis (DEA) in 1978 (see Charnes et al. (1978)) cost

efficiency and revenue efficiency have been computed through linear programming

1Correspondence: Maria Conceição A. Silva Portela , Faculdade de Economia e Gestão
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models, when an option for the use of non-parametric models is taken. The alter-

native is to compute cost or revenue efficiency based on the definition of parametric

revenue functions or cost functions like the Cobb Douglas function or the translog

function (see e.g. Greene (2008)). In both cases, the underlying economic model of

the firm typically assumes that it operates in a competitive market, where prices of

inputs and outputs are exogenously given, often taken at the level of actual prices

observed at the operating decision making unit (DMU). As a result, cost efficiency

and revenue efficiency reflect cost savings or revenue gains that can accrue from

changes in input or output quantities given their (fixed) prices. Units where input

or output prices are exogenously fixed are said to be price takers.

In this paper we depart from the notion of production units being price takers

and consider the case where the units to be assessed for cost or revenue efficiency

either can influence to some extent the input or output prices they secure and/or

could secure prices other than those they actually did even if they do not influence

their levels directly themselves. This in turn means that such production units can

improve their cost or revenue efficiency by inter alia securing better prices for their

inputs and/or outputs. We focus on cost efficiency in this paper, but the extension

of the proposed approach to revenue efficiency is straightforward.

Modelling economic efficiency in situations where units are not price takers has

been addressed before, but mainly in a context of endogenous prices (i.e. the

level of outputs of a DMU are assumed to impact the price per unit of

output, so that maximum output levels may not necessarily be compatible

with maximum revenue). In such contexts prices are said to be endogenous to

the unit. For example, Cherchye et al. (2002) considered a situation of endogenous

and uncertain prices, while Johnson and Ruggiero (2011) considered the situation of

endogenous prices. On the other hand, Kuosmanen and Post (2002) considered just

the situation of price uncertainty. Price endogeneity as modelled hitherto has relied

on some explicit functional form e.g. between output quantities and corresponding

output prices. We depart in this paper from this modelling paradigm for two reasons.

Firstly, to deal with situations where markets are not competitive and demand

functions are not known, and secondly even if the markets are perfectly competitive

the units concerned may not be able to access the fully competitive prices which in

any case may not necessarily be explicitly known.
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We would argue that prices manifested at unit level apart from endogeneity or

exogeneity as the case may be, also incorporate an element of managerial efficiency

and local factors, which can make the task of predicting prices attainable at unit

level very difficult. That is, whether prices are endogenous or exogenous the ability

of a unit to secure optimal prices reflects, to an extent, also the unit’s ability to

assess the pricing context in which it is operating and take appropriate action to

optimise the prices it secures. In this context we take the prices manifested across

the DMUs as the best available evidence of prices that can be secured, and we

replicate in the context of input prices what is done for input-output levels in a

non parametric context of efficiency measurement. In traditional DEA models no

assumption is made of the functional relationship between input and output levels.

The production possibility set is built with reference to observed input-output level

correspondences using certain assumptions (eg. Thanassoulis et al. (2008, p.255)).

In the same manner in this paper we use observed input prices to derive input prices

that are in principle attainable by DMUs. The larger the number of DMUs within

a ’pricing environment’ the better the prices attainable by DMUs will be revealed.

To see how manifested input prices can incorporate some component of ineffi-

ciency, even in competitive markets, consider the case of a number of hypothetical

hospitals in a given large city each one looking to hire a doctor of the same skills at

the same point in time. It is by no means certain what the theoretically minimum

salary at which such a doctor can be hired is. The salary each hospital will end

up paying to each doctor recruited will to some extent depend on the negotiating

skills of the candidate and of the employer, on whether the post was over or under

specified relative to the skills actually needed and on externalities such as location

of the post relative to a candidate’s residence, perceived culture of the employer etc.

Similarly, in a banking context, where input prices can be interest paid on deposits,

the ability of management to devise financial products in terms of the interplay of

interest rate and withdrawal or other restrictions will affect the rate at which a bank

can secure funds, whether or not there is a free competitive banking market. Thus

different banks drawing funds from the same pool of savings can secure funds at

different rates in effect meaning securing inputs at different prices. In both these

examples the actual salaries for doctors paid or the interest rates secured by banks

offer us the best available empirical evidence of the prices that might have been
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attainable. As in the case of input levels that can secure given output levels, in

the case of prices too, the more the units in the comparative set the more likely we

are to observe the most favourable prices that could have been secured in a given

operating context.

Thus in this paper we address situations where units are not strictly input price

takers and prices secured reflect inter alia managerial effectiveness in securing op-

timal prices for their inputs. We argue that when the performance of such units is

assessed, managerial ability to arrive simultaneously at an optimal price and quan-

tity mix so as to minimise costs should be captured. We develop a cost model for

the simultaneous optimisation of input quantities and prices. Such a model requires

that data on prices and quantities are available, and assumes that DMUs have some

degree of influence both over prices and over quantities of inputs.

The paper is structured as follows. In the next section we review literature that is

more directly related with the work developed in this paper, and will further address

the motivations of the paper. In section 3 we propose a new model for computing

cost efficiency and show how to decompose this measure in section 4. In section 5 an

illustrative example is shown highlighting the differences between ours and existing

approaches for computing price efficiency. Section 6 concludes the paper.

2 Economic efficiency in non-competitive markets

Consider for each DMU j (j = 1, ..., n) a vector xj = (x1j,x2j, ...,xmj) reflectingm

inputs consumed for producing a vector of s outputs yj = (y1j,y2j, ...ysj). Consider

also, that observed prices of inputs at DMUj are known and given by a vector

pj = (p1j,p2j, ...,pmj). Observed aggregate cost of inputs for a given unit o is

Co =
∑m

i=1 pioxio. The Farrell cost efficiency model for DMUo is the solution of the

linear program in (1), where input quantities, xi, and the intensity variables, λj, are

taken as the decision variables and prices are considered exogenous (see e.g. Färe et

al. (1985)).

min
λj ,xi

{
C =

m∑
i=1

pio xi |
n∑
j=1

λjxij ≤ xi, i = 1, ...,m ,

n∑
j=1

λjyrj ≥ yro, r = 1, ..., s, λj, xi ≥ 0
}

(1)
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The optimal solution to model (1) yields the minimum cost (C∗), at which DMUo

can secure at least its output levels when input prices are taken as given. The model

in (1), also yields the optimal input quantities (x∗i ) which support the outputs of

DMUo at the minimum cost (C∗). Cost efficiency is defined as the ratio of the

minimum cost to the observed cost (C∗/Co ).

Traditionally reduction in costs is prescribed in two ways taken in sequence:

(i) reducing the quantities of inputs pro-rata to reach the minimum input levels

capable of supporting the outputs; (ii) changing the mix of inputs so that, given

the prevailing input prices, aggregate input costs are minimised. The technical

efficiency (computed using the standard DEA model of Charnes et al. (1978) ) of a

unit reflects its scope for savings through (i) and its allocative efficiency is reflected

through (ii).

Usually minimum cost models are computed under constant returns to scale

(CRS), as in (1), but both the cost and the technical efficiency measure can also

be computed under variable returns to scale VRS (see e.g. Färe et al. (1994) and

Athanassopoulos and Gounaris (2001)).

Tone (2002) noted that the Farrell cost model does not capture the full extent

of cost savings, as the cost efficiency (C∗/Co ) of two DMUs may be equal, even if

one faces double the input prices of the other (as long as both show the same levels

of inputs and outputs). In essence, if prices are truly exogenous this outcome is

acceptable, since both DMUs use the same mix of inputs for the prevailing input

prices, notwithstanding the fact that one of the DMUs has to pay twice as much

for its inputs as the other. In a reply to Tone (2002), Färe and Grosskopf (2006)

propose the use of a difference form of cost efficiency, rather than a ratio form,

to solve the problem. Such a difference form is based on the notion of directional

distance functions and implies the use of a common normalisation factor. In spite

of apparently solving the problem, the approach of Färe and Grosskopf (2006),

provides for two DMUs employing the same quantities of inputs to produce the same

quantities of outputs the same technical inefficiency, but an allocative inefficiency

that is for one DMU double that of the other, when input prices are also double.

However, this allocative inefficiency does not reflect what is traditionally reflected

by an allocative efficiency component (i.e. the extent to which the mix of inputs

needs to be changed given the prevailing input prices) since the mix changes in
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inputs are exactly the same for both DMUs. Such allocative inefficiency is in fact

reflecting price differences, which the units are assumed not to control, and therefore

this component should be ignored on the cost inefficiency measurement.

Clearly, if one assumes, as we argue, that production units have some degree of

influence over input prices either because of an uncompetitive market and/or because

they can fail to secure optimal prices that may have been available, then this should

be taken into account when measuring cost efficiency. Indeed it could be argued that

even if units have no control over prices they may still be interested in knowing the

extent to which they fail to reach minimum cost due to suboptimal prices as distinct

from technical inefficiency. In this case, such component of inefficiency should

not be called allocative inefficiency (as in Färe and Grosskopf (2006)), but

should be called price inefficiency. Tone and Tsutsui (2007), following Tone

(2002), proposed a decomposition of cost efficiency into technical, allocative and

price efficiency. The price efficiency component of Tone and Tsutsui (2007) reflects

the scope for savings through input price changes, whereas allocative efficiency is

defined as “the adjustment to the optimal cost mix, viz., the combination of the

optimal input amount and input price mixture” (Tone and Tsutsui (2007) , p. 95).

These two concepts in the Tone and Tsutsui (2007) model are mis-specified, as

allocative efficiency is unrelated to its traditional meaning and price efficiency does

not capture entirely the changes in prices as we will see later. (see also Sahoo and

Tone (2013) for a recent application).

Camanho and Dyson (2008) also addressed the situation of non-competitive mar-

kets where prices can be negotiated rather than imposed by a theoretical market

equilibrium. Their approach, starts by the computation of the traditional Farrell

cost efficiency measure and its decomposition into technical and allocative compo-

nents, and then identifies a third component called ‘market efficiency’. This com-

ponent is identified by solving the traditional cost efficiency model under different

price assumptions (one of which is the assumption that the minimum price observed

on each input can be attained by all DMUs, and another is that each DMU can

choose from the set of observed price vectors the one that minimises the aggregate

cost of inputs for their output bundle ). Ray et al. (2008) also proposed a related

method for modelling situations where firms can choose their location depending on

the input prices offered in each location. The main novelty in the Ray et al. (2008)
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model is that it considers the possibility of partially producing an output bundle

from an input bundle in different locations and at different prices.

A related strand of the literature is that dealing with price uncertainty or incom-

plete price information. Such literature generally makes use of the dual of technical

efficiency measures, since it is well known in economics that the Farrell technical ef-

ficiency can be interpreted as a cost minimisation model under the most favourable

shadow prices. To see this, consider the dual of model (1), shown in (2), where vi

are the input shadow prices and ur are the output shadow prices.

max
ur,vi

{ s∑
r=1

ur yro | −
m∑
i=1

vixij +
s∑
r=1

uryrj ≤ 0, j = 1, ..., n , vi ≤ pio, vi, ur ≥ 0
}

(2)

At the optimal solution of model (1) the variables xi are basic variables (as

xi ≥
∑n

j=1 λjxij) and therefore the corresponding constraints (vi ≤ pio) in the dual

(2) are binding, meaning that all input weights or shadow prices are equal to observed

input prices (vi = pio). If observed prices pio cannot be known, but some

information on prices is available (e.g. the price of input 1 is more than

the double of that of input 2) model (1) cannot be used, but its dual

(2) can be used by replacing constraints (vi ≤ pio) by other constraints

reflecting the price information available for inputs (e.g. v1 ≥ 2v2). Such

additional constraints will led to a solution that is an approximation to

the economic efficiency measure in (1). The dual of the Debreu-Farrell model

of technical efficiency is similar to (2), but the shadow price constraints (vi ≤ pio)

are replaced by a price normalisation constraint
∑m

i=1 vixio = 1. This constraint

is obviously less strict and allows a wide range of choice in optimal shadow prices,

rather than equating them to observed prices. Therefore, the technical efficiency

measure can be seen as an upper bound of cost efficiency (see e.g. Russell (1985) or

Leleu (2013)). Several authors have used this approach to model economic efficiency,

such as Camanho and Dyson (2005), Cherchye et al. (2002) or Kuosmanen et al.

(2010), where price uncertainty has been modelled through constraints imposed on

the shadow prices in model (2). (2) is specified in ’price space’ and shadow prices are

the decision variables to this model. Since we also use prices as decision variables,

this strand of the literature is related to ours. However, optimisation of shadow prices

differs from optimisation of observed prices, which is what we pursue in this paper
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(note that we assume that observed prices can be changed or optimised,

and therefore are not exogeneous). In fact shadow price optimization, should

be attempted when price information is incomplete or unavailable. When price

information is available, one can optimise over observed prices, if one assumes that

DMUs have some degree of influence over the input prices they face. Therefore based

on two assumptions: that data on observed input prices are available and that DMUs

can to some extent influence them, we depart from existing cost efficiency models

in two fundamental ways. Firstly we allow quantities of inputs and input prices

to vary simultaneously, and secondly we decompose cost efficiency so as to capture

separately the savings due to exploiting input quantity changes and those due to

exploiting input price flexibility. We argue this decomposition is more appropriate

when there is input price flexibility rather than the notion of allocative efficiency used

for example in Camanho and Dyson (2008). In fact traditional allocative efficiency

is not very meaningful when one assumes that there is an optimum level for prices,

and that units can make efforts to change prices accordingly to this optimum level.

3 A cost efficiency model when input quantities

and their prices can vary simultaneously

The new cost minimisation model proposed in this paper is in all respects similar

to the Farrell cost model in (1) except that it assumes each DMU is not a price taker,

but rather it could have in principle availed itself of input prices other than those it

actually paid. Under this scenario a modification of model (1) is needed to the form

depicted in (3).

In (3) decision variables reflect changes in observed levels of inputs (θi), changes

in observed levels of prices (γi), and the intensity variables associated to DMUj, as

in traditional DEA models. We also introduce the decision variables zij, the ijth

being associated with price i observed at DMUj. This set of additional intensity

variables, as will be explained shortly, makes it possible to arrive at a set of input

prices that might have been available to the DMU being assessed, by using the data

on input prices that have been observed across the set of DMUs. Thus the new set

of intensity variables zij play a similar role to that of the intensity variables λj albeit

in respect of input prices rather than input-output levels.
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min
γi,θi,λj ,zij

{
C =

m∑
i=1

γipio θixio |
n∑
j=1

λjxij ≤ θixio, i = 1, ...,m,
n∑
j=1

λjyrj ≥ yro, r = 1, ..., s,

n∑
j=1

zij pij ≤ γipio, i = 1, ...,m
n∑
j=1

zij = 1, i = 1, ...,m, zij, λj, θi, γi ≥ 0
}

(3)

The model in (3) is non-linear in the objective function in that the sum of the

product of input quantities and prices is minimised (note that θixio can be replaced

by a single variable xi and that γipio could be replaced by a variable pi). In this

manner input prices and quantities are optimised simultaneously. Model (3) has two

types of constraints: those defining feasible input-output correspondences and those

defining feasible input prices.

The feasible input-output correspondences in model (3) are the same as those

in model (1), defining the production possibility set in the traditional DEA model

under CRS, (though this can be readily modified for VRS technologies by adding

the convexity constraint
∑n

j=1 λj = 1).

The constraints on prices
∑n

j=1 zij pij ≤ γipio, i = 1, ...,m and
∑n

j=1 zij = 1, i =

1, ...,m state that the feasible in principle price for each input would be a convex

combination of observed prices for that input (pi ≥
∑n

j=1 zij pij). The rationale

behind the price constraints is that the best guide we have of input prices available

to DMUs are those that have been observed.

The optimal solution from model (3) renders input quantity targets (x∗i = θ∗i xio),

price targets (p∗i = γ∗i pio), benchmarks for input-output quantities (all units j whose

λj > 0), and benchmarks for each input price i, (all units j whose zij > 0). Note

that in this general formulation, we assume that referent DMUs for optimal input

prices do not need to be the same for all inputs nor do they need to be the same

as the benchmarks for technically efficient input-output levels. That is, there is no

reason to assume that a unit with scope for savings would need to emulate the same

peer units for input prices as for transforming inputs to outputs. Further, even if the

same benchmarks are found for both input to output transformations and for input

price emulation, the intensities with which they form the virtual comparator unit

need not be the same in both cases. In standard DEA a virtual unit is formed using

the same intensities (λj) for inputs and outputs, as there is a causal correspondence

between input and output quantities. Such causal correspondence is not assumed in
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model (3) between input prices and input or output quantities. However, in cases

of endogeneity (e.g. where input price advantages may be secured through volume

purchases) additional constraints can be placed in model (3) linking the volume

of input of the virtual comparator unit with the input prices feasible in principle.

Indeed other prior information about constraints on available prices for one or more

inputs can be included in model (3), if available. However, again for reasons of

simplicity we avoid at this stage refinements of this type to focus on the departure

from the traditional price taker modelling approach prevailing so far in the literature.

The optimal solution to model (3) is in fact a trivial one, as far as prices are

concerned. Optimum prices in (3) are the minimum observed prices for each input.

Thus in a sense the model in (3) is equivalent to the approach in Camanho and

Dyson (2008) where they directly opt to use the minimum observed price for each

input as the basis for computing the cost efficiency of each unit in the framework of

the traditional cost model (1). However, this is only so for the least restricted case

on input prices as depicted in model (3). Model (3) is to be seen as a generic one,

where the Farrell cost efficiency model and the approaches developed by Camanho

and Dyson (2008) are special cases. Our formulation in (3) can yield the same

results as the Farrell cost efficiency model (1) when we set γi = 1 for all i. In this

case the constraints on prices would become
∑n

j=1 zijpij ≤ pio, and this would be

redundant (as for the unit under assessment zio can be set to 1 without violating

any constraints). On the other hand, if we assume input prices are related across

inputs so that only convex combination of the vectors of observed prices rather

than of individual input prices are feasible, then model (3) can be modified by

using intensity variables zj, instead of zij. This modification will identify one of the

observed vectors of input prices as optimal as was the case in one of the approaches

recommended by Camanho and Dyson (2008).

Thus the model in (3) can be seen as the most general model in which optimal

input quantities and prices are to be determined ranging from the case where input

prices are fixed and only optimal quantities are to be determined, to the case where

there are in effect no restrictions on input prices other than they should be higher

than some convex combination of observed prices, in which case the lowest observed

price on each input is optimal. Restrictions on individual prices or combinations

of prices can be readily accommodated in (3) depending on context. We illustrate
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here one simple restriction which we would expect to be valid in many real life

cases. It would be reasonable to assume that a DMU has on going relationships

with suppliers. Thus, the convex combination of observed prices on an input within

model (3) should be further restricted so that DMUo could not be expected to secure

input prices too far removed from those it has secured in the past, at least not in

the short term. The scope for potential reductions in input prices would be decision

maker supplied or drawn from the experience of reductions in input prices other

DMUs may have secured. Model (3) can be readily modified to cope with this type

of restriction by adding the constraint γi ≥ αi where αi is a user-defined scalar

between 0 and 1 providing a lower bound for the level of the price of input i at

DMUo.

We conclude this section by noting that the above model is non-linear, requiring

the use of advanced non linear programming solvers for obtaining a solution that is

a global optimum. Developments in the field of non-linear programming have now

reached a certain level of maturity (see Pintér (2007)) which permits the solution

of models such as (3) to identify a global optimal solution. Traditional solvers that

could only guarantee local optimal solutions to non-linear models are being replaced

by more efficient solvers which perform global scope searches and can reach global or

very close to global optimal solutions. In Pintér (2007) the authors explain the use

of a Gams solver LGO to solve non-linear models and illustrate the performance of

this solver. Given the large availability of solver options in e.g. Gams indeed trying

more than one solver is the best option to guarantee obtaining, or being close to

the global optimal solution.

4 Decomposing the cost efficiency measure when

units are not input price takers

Through model (3) a cost efficiency measure can be computed as the ratio be-

tween minimum cost and observed cost. Such a ratio is traditionally decomposed into

technical and allocative efficiency measures, but such a decomposition lacks meaning

when both prices and quantities are decision variables. As noted earlier, the decom-

positions proposed in previous attempts to model non-competitive markets (such

as the Camanho and Dyson (2008) or the Tone and Tsutsui (2007) approaches),
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are in our view ill-defined in a context where both prices and quantities can vary

simultaneously to minimise costs. We propose instead to identify the components

of cost savings attributable to input price changes and those attributable to input

quantity changes making use of price and quantity indicators as defined in Balk, et

al. (2004) and Diewert (2005). Such indicators are usually defined in temporal anal-

yses, where cost or revenue change over time is decomposed into volume and price

change (see Diewert (2005)). We follow a similar procedure in our decomposition of

cost efficiency, but comparing observed versus optimal quantities and prices.

Model (3) yields the minimum cost value (C∗) and the corresponding optimal

quantity and price targets. The ratio between minimum cost and observed cost is

our measure of cost efficiency (CE):

CE =
C∗

Co
=

∑m
i=1 θ

∗
i γ

∗
i xiopio∑m

i=1 xiopio
(4)

This ratio cannot be readily disentangled into quantity and price contributions to

aggregate potential savings because these vary by input. We can compute, however,

a cost inefficiency measure (1- CE) reflecting the percentage of observed aggregate

input costs which can be saved through adopting the target input prices (p∗io = γ∗i pio)

and quantities (x∗io = θ∗i xio) for each unit o. This can be expressed as:

∑m
i=1 xiopio −

∑m
i=1 x

∗
iop

∗
io∑m

i=1 xiopio
= 1−

∑m
i=1 x

∗
iop

∗
io∑m

i=1 xiopio
= 1− CE (5)

This can be decomposed into:

∑m
i=1 xiopio −

∑m
i=1 x

∗
iop

∗
io∑m

i=1 xiopio
=

∑m
i=1 (xio − x∗io)p∗io∑m

i=1 xiopio
+

∑m
i=1 (pio − p∗io)xio∑m

i=1 xiopio
(6)

In (6) changes in quantities are weighted by optimal prices and changes in prices

are weighted by observed quantities. Clearly we could choose another set of weights

as shown below:

∑m
i=1 xiopio −

∑m
i=1 x

∗
iop

∗
io∑m

i=1 xiopio
=

∑m
i=1 (xio − x∗io)pio∑m

i=1 xiopio
+

∑m
i=1 (pio − p∗io)x∗io∑m

i=1 xiopio
(7)

Since the choice of weights is arbitrary we can sum both expressions and arrive

at the following equality:
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∑m
i=1 xiopio −

∑m
i=1 x

∗
i p

∗
io∑m

i=1 xiopio
=

∑m
i=1 (xio − x∗io)(

pio+p∗io
2

)∑m
i=1 xiopio

+

∑m
i=1 (pio − p∗io)(

xio+x∗i
2

)∑m
i=1 xiopio

(8)

The first component in the RHS of (8) represents the percentage of observed

costs that can be saved through changing input quantities. Similarly the second

component in (8) represents the percentage of observed costs that can be saved

through changing input prices. The decomposition presented above can be seen in

the literature in other contexts. In particular the decomposition in (8) is a Bennet

indicator where quantity differences are evaluated at average prices and

price differences are evaluated at average quantities (see e.g. Chambers

(2002) or Grifel-Tatjé and Lovell (2000, 1999) who used similar decompositions but

in a context of cost and profit change over time decomposed into a quantity effect

and a price effect). Though known, these indicators have never been used, to the

authors’ knowledge, in the context of decomposing economic measures of efficiency

as we do in this paper. The axiomatic theory on Bennet’s indicators was explored

by Diewert (2005) who showed that the Bennet price and quantity indicators satisfy

all of the 18 tests defined in his paper (continuity, identity, monotonicity in prices

and quantities, units invariance, linear homogeneity, to name but a few.)

Our approach, therefore requires solving just one cost minimisation problem for

each firm, where prices and quantities are assumed as decision variables, and then,

makes use of Bennet indicators to provide a decomposition of total cost savings

into those that can result from changes in prices and those that can result from

changes in quantities. Note that each one of the components in (8) can be further

decomposed into a radial and mix component in a manner which can make contact

with the traditional notions of radial technical and allocative efficiency in classical

cost decompositions. To proceed with this decomposition we first use the input price

and quantity targets obtained directly from (3) to compute radial components (x∗Rio

and p∗Rio ) representing respectively the feasible pro-rata change of input quantities

and prices. The remainder of the feasible changes in input quantities and prices

needed to attain the minimum aggregate cost are non-radial, reflecting mix changes

in input quantities and prices. The decomposition then obtained for input quantities

into a radial and a mix component of cost savings is shown in (9), and that obtained

for input prices is shown in (10).
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∑m
i=1 (xio − x∗io)(

pio+p∗io
2

)∑m
i=1 xiopio

=

∑m
i=1 (xio − x∗Rio )(

pio+p∗io
2

)∑m
i=1 xiopio

+

∑m
i=1 (x∗Rio − x∗io)(

pio+p∗io
2

)∑m
i=1 xiopio

(9)

∑m
i=1 (pio − p∗io)(

xio+x∗io
2

)∑m
i=1 xiopio

=

∑m
i=1 (pio − p∗Rio )(

xio+x∗io
2

)∑m
i=1 xiopio

+

∑m
i=1 (p∗Rio − p∗io)(

xio+x∗io
2

)∑m
i=1 xiopio

(10)

Where,

x∗Rio =


xio(maxi θ

∗
i ) if θ∗i ≤ 1 ∀i

xio(mini θ
∗
i ), if θ∗i ≥ 1 ∀i

xio all other cases

(11)

and

Where

p∗Rio =


pio(maxi γ

∗
i ) if γ∗i ≤ 1 ∀i

pio(mini γ
∗
i ), if γ∗i ≥ 1 ∀i

pio all other cases

(12)

That is, when all optimal θ∗i and γ∗i have values below 1 we obtain radial com-

ponents ( x∗Rio and p∗Rio ) directly from the solution of model (3) by multiplying each

observed input quantity or price by the maximum of the optimal θ∗i and γ∗i , respec-

tively. In the unlikely event (since costs are being minimised) that all optimal θ∗i or

γ∗i are above 1, then the radial components will be obtained using the lowest θ∗i and

γ∗i values. Finally, where optimal θ∗i and γ∗i values span the range below and above

1 we have a mix of contraction and expansion of input quantities and prices which

means we have no traditional radial component and all savings are due only to mix

of input quantity and price changes.

5 Illustrative example

In order to illustrate our approach and contrast it with existing approaches for

computing and decomposing cost efficiency when units are not input price takers,

we use the illustrative example in Table 1, also depicted in Figure 1.

14



Table 1: Ilustrative example
Unit X1 X2 Y P1 P2 C1 C2 Co = C1 + C2

A 3 2 1 2 3 6 6 12

B 3 2 1 4 0.5 12 1 13

C 2 1 1 2 4 4 4 8

D 6 4 1 1 2 6 8 14

E 1 2 1 2 3 2 6 8

Units E and C are technically efficient. Unit D has double the levels of inputs

of unit A to produce the same output and therefore is half as technically efficient as

A. Units A and B use the same input quantities, but buy them at different prices,

whereas units A and E use different input quantities but buy them at the same

prices. We therefore expect that units A and E are equally efficient in terms of

prices, when quantities are ignored, and that units A and B are equally efficient in

terms of quantities, when prices are ignored. In addition, unit C faces double input

prices compared to unit D and therefore should have half the price efficiency of D,

when quantities are ignored. As we shall see later, having the same prices or the

same quantities should result in the same optimal changes in quantities or prices,

but not necessarily in the same efficiency measures, when efficiency is expressed in

cost saving terms.

We argue in this paper that our proposed approach has mainly two advantages:

(i) it offers a clear decomposition of an overall scope for cost savings

into quantity and price gains, while existing approaches use concepts

of allocative efficiency that lack meaning in a context of non-exogenous

prices; and (ii) it can include explicit price relationships, in a mathemat-

ical model, providing price targets that are more realistic than those in

existing models. In what follows we will use the above example to illustrate both

these points.

5.1 A clear decomposition of overall cost savings

Figure 1 depicts the traditional representation of DMUs in the input-output

space, where DMUs E and C form the technical efficient frontier (they show the

minimum input quantities given outputs produced) and units A, B and D are tech-

nically inefficient. We also represent in this figure the isocost line of unit D, under

its observed input prices. The minimum cost for unit D, under its observed prices

15
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Figure 1: Isoquant and isocost for illustrative example.

is 4 and occurs at the input quantities and mix of unit C. Therefore the Farrell cost

efficiency of unit D (i.e. under its observed input prices) is given by 4/14 = 28.57%

and this measure can be decomposed into a technical efficiency measure (30%) and

an allocative efficiency measure (95.24%).

In Table 2 we show the results for the Farrell cost efficiency model (FM), the

Tone and Tsutsui (2007) model (TT), the Camanho and Dyson (2008) model(CD),

and our (PT) model, as resulting from (3) and decomposition in (8). Note that for

Camanho and Dyson (2008) we distinguish two approaches (i), where it is assumed

that the minimum price observed for each input across the units is actually available

to all units and so units are assessed in relation to this price vector which normally

would not have been observed at a single unit, and (ii) where it is assumed that only

observed combinations of prices are possible and each unit is assessed in relation

to all observed combinations of prices and the set giving it the lowest aggregate

input cost is chosen. Note also that efficiency values shown in Table 2 are not

directly comparable, since existing approaches decompose efficiency scores whereas

the PT approach developed in this paper decomposes cost savings (and therefore

inefficiency). Note however that efficiency scores can be read as potential for cost

savings since an efficiency score of 80% means that costs can be reduced to 80%
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of observed levels, meaning that costs can be reduced by 20%. We decided not to

convert values to a common basis because the multiplicative or additive nature of

decompositions would not be easily seen if we have done such a conversion.

Table 2: Results from various approaches
A B C D E

Observed Cost 12 13 8 14 8

FM Min Cost 7 5 8 4 7

Targets (x1, x2) (2, 1) (1, 2) (2, 1) (2, 1) (2, 1)

Technical eff 60% 60% 100% 30% 100%

Allocative eff 97.22% 64.10% 100% 95.24% 87.50%

Farrell Cost Eff 58.33% 38.46% 100% 28.57% 87.50%

Min Cost 4.2 4.2 4.2 4.2 4.2

TT Targets (C1, C2) (1.8, 2.4) (1.8, 2.4) (1.8, 2.4) (1.8, 2.4) (1.8, 2.4)

Technical eff 60% 60% 100% 30% 100%

Price eff 62.50% 100% 56.25% 100% 52.50%

Allocative eff 93.33% 53.85% 93.33% 100% 100%

Cost Eff 35% 32.31% 52.50% 30% 52.50%

Min Cost 2 2 2 2 2

Targets (x1, x2)* (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)

CD (i) Targets (p1, p2) (1, 0.5) (1, 0.5) (1, 0.5) (1, 0.5) (1, 0.5)

Farrell cost eff 58.33% 38.46% 100% 28.57% 87.5%

Price eff** 28.57% 40% 25% 50% 28.57%

Cost Eff 16.67% 15.38% 25% 14.29% 25%

Min Cost 4 4 4 4 4

CD(ii) Targets (x1, x2)* (2, 1) (2, 1) (2, 1) (2, 1) (2, 1)

Targets (p1, p2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)

Farrell cost eff 58.33% 38.46% 100% 28.57% 87.5%

Price eff** 57.14% 80% 50% 100% 57.14%

Cost Eff 33.33% 30.77% 50% 28.57% 50%

Min cost 2 2 2 2 2

PT Targets (x1, x2) (1,2) (1,2) (1,2) (1,2) (1,2)

θ1 0.333 0.333 0.5 0.167 1

θ2 1 1 2 0.5 1

Targets (p1, p2) (1, 0.5) (1, 0.5) (1, 0.5) (1, 0.5) (1, 0.5)

γ1 0.5 0.25 0.5 1 0.5

γ2 0.1667 1 0.125 0.25 0.1667

Potential savings due to quantity changes 25.00% 38.46% -9.38% 53.57% 0.00%

Potential savings due to price changes 58.33% 46.15% 84.38% 32.14% 75.00%

Total potential savings 83.33% 84.62% 75.00% 85.71% 75.00%

Cost efficiency 16.67% 15.38% 25.00% 14.29% 25.00%

* quantity targets in the CD approach are for the second stage models as the first stage targets are those from the

traditional cost efficiency approach (FM)

** We replaced Market efficiency by price efficiency in the CD approach for ease of comparison

Results in Table 2 show that under the Farrell cost efficiency model (FM) unit

C is overall cost efficient, and the remaining units have unit C as their benchmark
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for cost minimisation, except unit B (since the price of input 2 for unit B is 8 times

lower than the price of input 1, the cost minimising point for unit B is point E and

not point C). This approach assumes that prices are exogenous, and as a result the

fact that unit’s C prices are twice those of unit D is not reflected in the efficiency

score of this unit.

Approaches TT, CD and PT assume that prices can be to some extent influenced

through managerial actions. Under these approaches units C and E are the most cost

efficient units (they are shown equally efficient under TT, CD and PT approaches

in Table 2), even though no unit shows a cost efficiency of 100%. More generally,

these approaches rank in Table 2 the units in the same way in terms of overall cost

efficiency. However, the units are not ranked the same way on each component of

overall cost efficiency by all the approaches. For example, the TT approach identifies

unit E as the least price efficient (i.e. with largest scope for savings by adjusting

input prices), whereas under the CD approaches and our (PT) approach unit C is

the one showing lowest price efficiency or highest potential to reduce costs through

price changes (which is an intuitive result as unit C is the unit showing highest prices

of inputs). In addition, the TT model and our approach (PT) identify for unit E

that the only way to reduce costs is by changing prices, while the CD approaches

do identify cost savings due both to input mix and input price changes, even if

target quantities for unit E in the second model of the CD (i) approach are equal to

observed input quantities.

We shall use unit B to illustrate why our approach provides a clearer decompo-

sition of cost savings than the CD and TT approaches. Consider first the CD(ii)

approach, where for unit B, results in Table 2 show that savings of nearly 70% (down

to 30.77%) of observed aggregate cost of inputs can be achieved. These savings are

disaggregated into the following components:

• Reducing costs down to 38.46% of observed level and this is derived through the

Farrell cost efficiency model (1). These cost savings are achieved by changing

input quantities from (x1, x2)= (3, 2) to (1, 2), which is the optimal combina-

tion of inputs under the observed prices (4, 0.5) (see results of FM model in

Table 2) ;

• Reducing the Farrell cost value obtained from (1) further down to 80% of its
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value. This can be obtained by assuming that the input prices of unit D can

be adopted. Thus these savings are achieved if prices change from (4, 0.5) to

(1, 2). But the model solved for these prices identifies also optimal quantities,

which are (2,1).

These optimal quantities are, however, disregarded in the CD (ii) approach (as

well as in the CD (i)) as all cost changes from the Farrell minimum cost to the overall

minimum cost are interpreted as market efficiency. Therefore there is no component

of the cost efficiency measure of the CD approaches that encapsulates changes in

the quantity of inputs required to achieve minimum aggregate cost of inputs. This

approach, however, did identify a component of inefficiency for unit B associated

with input price changes which the TT approach failed to identify.

Indeed, the TT approach identifies for unit B only two sources of inefficiency

(technical and allocative) and considers it price efficient. Technical efficiency is

identified in the TT approach through a traditional technical efficiency model, and

its value is 60% (see Figure 1), meaning that the unit can save 40% of actual costs if

it reduces input quantities pro rata to 60% of observed levels. Price and allocative

efficiency are defined in a cost space (as defined in Figure 2), where inputs costs

(of technical efficient quantities) are represented on the axis. Units that are on the

’technical’ frontier of this cost space representation are deemed price efficient (and

such is the case of unit B). However, at the point where unit B is located costs are

not minimum and it would need to change the costs from (C1, C2)= (7.2, 0.6) to

(1.8, 2.4) to become efficient in terms of cost. These changes imply a change in

costs to 53.85% of technically efficient costs. The latter are achieved by changing

the mix of costs from point B to point D. Note, however, that movements from B

to D (which under the TT approach are called allocative efficiency) can be achieved

either by changing prices and/or changing input quantities or both (as we are in a

cost space cost savings can be achieved by savings in quantities and/or prices). Yet

these changes are not disentangled in the TT model. Clearly, if reduction in costs,

via changing the mix of technically efficient costs, is achieved through a change in

prices the allocative efficiency will indeed reflect price efficiency. Therefore the true

price efficiency is not entirely captured by the price efficiency component of the TT

approach.

Our proposed (PT) decomposition, while identifying the same minimum aggre-
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Figure 2: Cost production technology of Tone and Tsutsui (2007) for illustrative

example.

gate input cost as the CD(i) model, provides a decomposition that clearly disen-

tangles savings that accrue from changing quantities and savings that accrue from

changing prices. It suggests that to be overall cost minimizing unit B should change

its input quantities from (3, 2 ) to (1, 2) and its input prices from (4, 0.5) to (1,

0.5). Therefore overall cost savings of 84.62% of observed cost can be partitioned

into 38.46% obtained from changing input quantities and 46.15% from changing

input prices.

The example in Table 2 demonstrates how our approach can capture more clearly

both the scope for efficiency savings and its decomposition more accurately than

existing approaches. Under the PT approach cost savings can be negative, as it

happens for unit C, meaning that quantity targets in fact imply a rise in costs when

assessed at average prices. This rise is however compensated for by the cost gains

obtained from changing prices so that overall the unit can save 75% of its aggregate

costs by changing quantities and prices together.

We show in Table 3 the decomposition of the potential quantity gains and price

gains into a radial component and a mix component for the PT model, to illustrate

the advantages of pursuing such a decomposition.

In Table 3 it is clear that for units A, B, C, and E the potential savings due to

quantity changes can be obtained by changing the mix of inputs rather than changing
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Table 3: Price and quantity cost gains decomposed into radial and mix components
Total quantity radial quantity mix quantity Total price radial price mix price

A 25.00% 0.00% 25.00% 58.33% 41.67% 16.67%

B 38.46% 0.00% 38.46% 46.15% 0.00% 46.15%

C -9.38% 0.00% -9.38% 84.38% 56.25% 28.13%

D 53.57% 39.29% 14.29% 32.14% 0.00% 32.14%

E 0.00% 0.00% 0.00% 75.00% 50.00% 25.00%

them radially. On the contrary, savings for unit D can be obtained by changing both

the input quantities pro-rata and their mix. Unit C is the one showing the highest

impact on cost due to changes in the mix of input quantities (since its observed cost

increases by a percentage of 9.38%). Note that this unit has observed quantities of

(2,1) and targets under the PT approach are (1,2), which means a complete reversal

in the mix of quantities of inputs used to secure the output level of this unit.

Cost gains due to price changes, in Table 3 happen for units B and D only as a

result of mix changes, and for the remaining units as a result of both radial and mix

price changes. Unit B shows the highest cost gain accruing from a change in the

mix in prices, since observed prices for this unit are (4, 0.5) and optimum prices are

(1, 0.5). These mix changes reflect solely the need for this unit reducing the price

of input 1, while keeping the price at which input 2 is secured.

In summary, the above shows that the decomposition we propose is more appro-

priate than those found in existing approaches dealing with savings attributable to

input price and quantity changes when units are not price takers. The decompo-

sition proposed in this paper reflects the fact that when units are not price takers

price and quantity optimization are simultaneous. Therefore it does not make sense

to optimise quantities for observed prices as done in other approaches and thereby

deduce savings due to quantity changes and deduce residually ’allocative’ efficiency.

Optimal quantities at observed prices may not be optimal for optimal prices and

allocative efficiency as traditionally defined makes no sense when units are not price

takers. In addition, our decomposition still allows the differentiation between cost

gains that accrue from reducing quantities and prices in a radial way or in a way

that mainly implies a change in the mix of quantities and/or prices.
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5.2 Modelling price relationships

In the previous section we showed that our proposed model can provide a clear

decomposition of total scope for savings into those attributable to quantity and to

price changes. The model developed is however a general one, which put forth for

the first time the implicit mathematical modelling of price relationships of some

existing models (like those of Camanho and Dyson (2008)), opening the avenue for

further price modellization.

In this section, we show how our model can identify the scope for savings through

the introduction of additional constraints on prices that may avoid target prices

that are not reachable or which are unreasonable. For example, under the CD (ii)

approach some units need to raise some input prices to be price efficient (e.g. in

table 2 unit B should reduce the price of input 1 from 4 to 1, but increase the

price of input 2 from 0.5 to 2). This is clearly counter intuitive from a perspective

of cost minimisation. This situation arises because the CD(ii) approach considers

an intensity variable (zj) associated to each unit j rather than intensity variables

associated to each input i. This is equivalent to consider the existence of trade-offs

between input prices. In some circumstances this can indeed be the fact (e.g. if 2

inputs are bought from the same supplier, a reduction in the price of one of them may

imply an increase in the price of the other), but one cannot expect that substantial

increases in factor prices are reasonable in a context of cost minimisation. Even if

one accepts the existence of such trade-offs one may not accept price increases, and

therefore a suitable modification to model (3), when zij are replaced by zj, is to

impose further constraints on price targets to avoid them to increase (γi ≤ 1).

Additional restrictions on factor prices can also be generalized to situations where

price and quantities are linked in some way (as in the case of price discounts for large

quantities bought from a supplier). For example, assume that the price of a certain

input i cannot decrease below observed price (pio) unless the company orders a

quantity higher than Q, in which case a quantity discounts of k% will apply. In

order to model this situation in model (3) one could add the following constraints:

pi = pio− k%piobi, and xi ≥ Qbi, where bi is a binary variable (note that pi = γipio).

Such flexibility in capturing restrictions on input prices and linkages between prices

and quantities are not available in existing approaches addressing the issue of cost

efficiency under varying input prices.
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To illustrate how our model can cope with additional price constraints, we have

chosen to solve model (3) imposing convexity on factor prices (i.e. zij = zj for

all i) and simultaneously imposing limits on factor prices, which cannot increase

above observed levels and cannot decrease below 80% of observed levels (this level is

arbitrary, but is used here for illustrative purposes only). Such additional constraints

take the form: αi ≤ γi ≤ 1 in model (3). The results from this modified model are

shown in Table 4.

Table 4: Results from model (3) with α1 = α2 = =0.8 and zij = zj for all i
A B C D E

Obs cost 12 13 8 14 8

Min cost 5.6 5 6.4 4 5.6

Target (x1, x2) (2, 1) (1, 2) (2, 1) (2, 1) (2, 1)

θ1 0.667 0.333 1 0.333 2

θ2 0.5 1 1 0.25 0.5

Target (p1, p2) (1.6, 2.4) (4, 0.5) (1.6, 3.2) (1,2) (1.6, 2.4)

γ1 0.8 1 0.8 1 0.8

γ2 0.8 1 0.8 1 0.8

Potential savings due to input quantity changes 37.50% 61.54% 0.00% 71.43% 11.25%

Potential savings due to input price changes 15.83% 0.00% 20.00% 0.00% 18.75%

Total potential savings 53.33% 61.54% 20.00% 71.43% 30.00%

Cost efficiency 46.67% 38.46% 80.00% 28.57% 70.00%

With these additional constraints two units show a price efficiency of 100% (B

and D), while under the CD(ii) approach only unit D would be 100% price efficient.

The constraints imposing limits on price changes resulted in several units being

required to reduce their input prices down to 80% of observed levels (A, C, and

E), as seen in the optimal γ∗i factors. Note however, that this reduction does not

translate necessarily in a percentage cost gain of 20%, unless the unit is efficient in

quantity terms (see unit C).

The above example shows that our approach can identify total savings that are

more realistic than existing approaches, by limiting the variations that can indeed

happen on input prices. Results in Table 4 identify higher cost efficiency values for

all the units, based on a more reasonable assumption regarding factor price changes.
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6 Conclusion

In a considerable number of cases in real life, markets are not perfectly competi-

tive and DMUs may have some degree of control over prices.This paper has addressed

the issue of computing and decomposing cost efficiency when DMUs being assessed

are not strictly input price takers. It is assumed DMUs could gain by manipulating

simultaneously, to the degree possible, input prices and quantities. The approach

proposed puts forth for the first time a DEA model that optimizes prices and quan-

tities simultaneously. This reflects more appropriately than previous approaches the

fact that the units being assessed can have scope to decide and therefore perform

well or poorly both on the choice of input/output quantities and on exploiting such

flexibility as there may be on unit prices. Further, the model proposed is a general

model that can be modified to include different types of restrictions on prices, to

capture local conditions faced by a unit such as bounds on price changes or links

between individual input prices and quantities.

The paper offers a suitable decomposition of the potential cost reductions be-

tween those attributable to potential input quantity adjustments and those at-

tributable to input price adjustments. It is argued within this paper that when

prices are not fixed the traditional concept of allocative efficiency loses its mean-

ing. Therefore the decomposition to be made on total cost savings pertains to the

savings that can be achieved through quantity changes and the savings that can

be achieved through price changes. No existing approach in the literature isolates

these two components so clearly when both quantities and their prices can vary

simultaneously.
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