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Abstract

The principled statistical application of Gaussian random field

models used in geostatistics has historically been limited to datasets

of a small size. This limitation is imposed by the requirement to

store and invert the covariance matrix of all the samples to obtain

a predictive distribution at unsampled locations, or to use likeli-

hood based covariance estimation. Various ad-hoc approaches to

solve this problem have been adopted, such as selecting a neigh-

bourhood region and / or a small number of observations to use

in the kriging process, but these have no sound theoretical basis

and it is unclear what information is being lost. In this paper, we

present a Bayesian method for estimating the posterior mean and

covariance structures of a Gaussian random field using a sequen-

tial estimation algorithm. By imposing sparsity in a well-defined

framework, the algorithm retains a subset of ‘basis vectors’ which
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best represent the ‘true’ posterior Gaussian random field model

in the relative entropy sense. This allows a principled treatment

of Gaussian random field models on very large data sets. The

method is particularly appropriate when the Gaussian random

field model is regarded as a latent variable model, which may be

non-linearly related to the observations. We show the application

of the sequential, sparse Bayesian estimation in Gaussian random

field models and discuss its merits and draw-backs.

1 Introduction

This paper introduces a new method for estimation in Gaussian processes

(or Gaussian random field models) which has application to the process-

ing of large data sets using a Bayesian geostatistical framework [Handcock

and Stein 1993]. In also permits the use of Bayesian geostatistics when the

Gaussian process is regarded as a latent variable model, not directly ob-

served, without requiring computationally expensive high dimensional sam-

pling methods [Diggle, Tawn, and Moyeed 1998]. In particular it might be

useful for applying geostatistical methods to situations with large numbers

of indirect observations which may have non-Gaussian noise distributions,

such as are commonly found in remote sensing applications.

Geostatistics is a well studied and frequently used branch of statistics. It is

based around an assumption that any finite collection of random variables,

typically indexed by spatial location, is jointly Gaussian – that is the variable

of interest is defined to be a Gaussian process. Location is represented by

the vector x, and the variable of interest, referred to as the state variable,

is represented by the vector s = s(x) = {s(x1), . . . , s(xn)} which may be
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a univariate or multivariate process observed directly or indirectly at n lo-

cations. We will use bold type to denote vectors and upper case letters to

denote matrices, and occasionally remove the explicit dependence of s on x

for clarity. A Gaussian process is defined as:

p(s | θ) =
1

(2π)d/2|K(θ)|1/2
exp

(

−0.5(s− µ)′K(θ)−1(s− µ)
)

, (1)

where µ is the mean function of the process, K(θ) is the covariance and d is

the dimension of s(xi), typically one. The parameters of the model, which

we will refer to as hyper-parameters, are denoted by θ, and are regarded as

parameterising the covariance function. If the mean were non-zero then θ

would include the parameters of the mean function (c.f. universal kriging).

The covariance function is chosen from some parametric family, such as an

exponential, squared exponential (Gaussian), Matérn or spherical covariance

model [Cressie 1993]. The form of the covariance function can often be de-

cided on the basis of physical arguments about the data generating processes.

Geostatistics can be broken down into two main activities:

• determining the form of the covariance matrix (e.g. variogram estima-

tion),

• and performing prediction (e.g. simple kriging) or simulation.

These do not cover the full range of geostatistical methodologies, which in-

clude sampling design amongst others [Cressie 1993], but are often key parts

of a geostatistical investigation. In this research a general framework is as-

sumed where observations of the process, y = {y1, . . . ,yn}, are not neces-

sarily directly of the state, s(x), rather they may be indirect observations

related to state by

yi = y(xi) = H (s(xi)) + εi , (2)
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where H defines the known observation operator, and εi defines the error on

the i’th observation, which is not necessarily Gaussian, but is assumed inde-

pendent across the observations. [2] defines the data likelihood p(y | s,H )

which is assumed to factorise as
∏n

i=1 p(yi | s(xi),H ). Writing the model is

this way is very similar to model based geostatistics as described in Diggle,

Tawn, and Moyeed [1998], although in this work we minimise the computa-

tionally intensive sampling, indeed in many cases we can avoid this entirely.

Observation operators, H , sometimes called ‘forward models’, map the state

variable to the observations, and are particularly useful where the observa-

tion of the state is indirect, such as commonly occurs in remote sensing.

Where we can directly observe the state the observation operator is simply

the identity function.

A Bayesian interpretation [Cressie 1993; Diggle, Tawn, and Moyeed 1998] is

adopted, where the aim is to infer the posterior distribution of the state, s,

given all the observations, y:

p(s | y,θ,H ) =
p(y | s,H )p(s | θ)

∫

p(y | s,H )p(s | θ)ds
. (3)

This has the standard form of posterior = likelihood × prior ÷ evidence (or

normalising constant). [3] is not a fully Bayesian model, since this would

also treat the hyper-parameters, θ, as unknowns [Handcock and Stein 1993;

Diggle, Tawn, and Moyeed 1998], which must also be integrated over for

marginal inference on the state, but this adds an additional complexity, which

necessitates sampling and is not pursued herein. Our approach might be

described as an empirical Bayesian implementation, in the context of Wikle

and Cressie [1999].

The Bayesian framework for thinking about Gaussian processes can be very

useful: the Gaussian process is seen as specifying a prior distribution over
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s (as a continuous function of x), which is then updated into the posterior

given the observations y. These process based ideas can help get away from

some of the arbitrariness of the choices that must be made during a geo-

statistical analysis of data. For Gaussian noise and linear observations this

posterior can be determined analytically, since the integral in the denomi-

nator is Gaussian. However, numerically the evaluation of [3] requires the

inversion of a covariance matrix of dimension n× n, where n is the number

of observations and we assume d = 1. Matrix inversion is very computation-

ally expensive, the time complexity growing cubicly in n, and prohibits the

treatment of large data sets with e.g. n > 1000.

Several approaches exist to mediate the numerical problems that arise in

geostatistical analysis of large data sets. The most common technique uses

moment based methods (e.g. empirical sample covariances) to estimate the

covariance function [Cressie 1993; Wikle and Cressie 1999], then using local

neighbourhoods to solve the prediction equations. This has the problem of

generating artificial boundary effects as samples are included and excluded

by the neighbourhood, which is chosen on an arbitrary basis.

The method we present, sequentially constructs an approximation to the

posterior distribution of the state, processing the observations one by one in

an arbitrary order. This procedure is similar to the well known partitioning

matrix inversion formula [Press, Teukolsky, Vettering, and Flannery 1992]

when the observations are linearly related to the variables of interest, and

the noise on the observations is Gaussian. It is also somewhat reminiscent of

the Kalman filter, in that a Gaussian approximation to the posterior distri-

bution is propagated, but it is not a Kalman filter. The propagation refers

to updating the posterior as we process the observations and in no way im-

plies a spatio-temporal process, although we could also apply our method
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to spatio-temporal models. By applying sequential updates we have effec-

tively replaced the high dimensional integrals required in standard Bayesian

approaches [Diggle, Tawn, and Moyeed 1998] with a sequence of low dimen-

sional integrals. The full benefit of this is only realised once we introduce

the concept of our sparse approximation. This allows us to retain a small

number of basis vectors which represent the approximate posterior process,

yet which approximately preserve the information from all the observations.

The algorithm in the sparse form is approximate but has the benefit that the

computational burden grows linearly in the number of observations. This

makes the method applicable to very large data sets, something which has

not been possible with traditional geostatistics applied in a Bayesian or max-

imum likelihood framework. To address issues of the approximate nature of

the algorithm and the arbitrary order of the processing of observations, we

have extended the expectation-propagation framework [Minka 2000] to allow

recycling of the data so that our approximate algorithm converges to a fixed

point in the estimation dynamics.

Our method can also be contrasted with other approaches to working with

large data sets under a Gaussian process model. Unlike the Gaussian Markov

random field approach developed in Rue and Tjelmeland [2002] we do not

approximate the Gaussian process prior with a more computationally effi-

cient Gaussian Markov random field and then carry out exact inference on

the approximate Gaussian Markov random field, rather we build an approxi-

mation to the posterior Gaussian process. Our method shares some features

with the method described in Rue and Tjelmeland [2002] for matching the

Gaussian Markov random field parameters to the Gaussian process covari-

ance function, in that we also use the KL-distance metric to optimise our

Gaussian process posterior approximation, although in our method there is
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no requirement to select window sizes or weighting schemes, since we re-

main in the same class of models. An alternative method for dealing with

large data sets presented in Wikle and Cressie [1999], which really addresses

spatio-temporal modelling, is to implement a dimension reduction based on

a projection of the space-time component onto some truncated orthonormal

basis functions (e.g. empirical orthogonal functions) as in Mardia, Goodall,

Redfern, and Alonso [1998] but with an additional spatially correlated error

component at each time step. While Wikle and Cressie [1999] do address the

size of the estimation problem in time, there is still a requirement to imple-

ment what is effectively a simple kriging predictor at each time step, with all

attendant problems of the inversion of large matrices. The use of alternative

bases utilising, for instance, eigen-decomposition of the covariance matrix is

interesting, but the eigen-decomposition remains numerically expensive.

The sequential nature of the algorithm also makes it possible to deal with ob-

servations which are non-linearly related to the variables of interest, or which

have non-Gaussian noise models, without the need to sample from very high

dimensional spaces, as is typical in Bayesian approaches to model based geo-

statistics [Diggle, Tawn, and Moyeed 1998]. When H is non-linear, or the

observation noise is non-Gaussian the solution to [3] is no longer analytic

and non-linear optimisation methods must be used to provide maximum a

posteriori probability estimates, or sampling can be used to provide a non-

parametric estimate of the posterior distribution. Sampling based methods

are very numerically intensive and suffer from issues of convergence detection

[Cowles and Carlin 1996; Gilks, Richardson, and Spiegelhalter 1996]. Opti-

misation methods are feasible, but only produce a single estimate of the state,

without any uncertainty measure, although in principle such measures could

be approximated by determining the Hessian matrix of [3] at the maximum
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a posteriori probability value. This would also be rather expensive; using

the Hessian, which is a local measure, might be rather sensitive to multiple

minima in [3] or slow convergence of the optimiser.

The paper is organised as follows. Section 2 gives a brief review of simple

kriging, in order to provide the context of this work. The parameterisation

of the Gaussian process we adopt is discussed in Section 2.3 and this is used

in the novel estimation algorithm that is described in Section 3. The concept

of sparsity is introduced in Section 3.3, while Section 3.4 shows how it is

possible to estimate hyper-parameters of the covariance model within the

framework developed herein. We illustrate the application of the methods

in Section 4 and discuss the limitations and potential of the algorithms in

Section 5.

2 Classical geostatistics

In the classical geostatistical framework [Journel and Huijbregts 1978; Cressie

1993; Wackernagel 1995] standard practice is to model the covariance struc-

ture first, often using a variogram based estimator, and then perform the

actual prediction using the inferred covariance or variogram model.

2.1 Covariance estimation

The most common approach to covariance estimation is to assume (and

check) strict or second order stationarity [Cressie 1993], and then use this

assumption to allow inference of a covariance function or variogram using an

ergodic assumption.

In method of moments approaches, a non-parametric estimator is used to
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construct a sample covariance function by computing binned estimates of

the sample covariance as a function of separation distance. To make this

model continuous it is then common practice to fit a covariance function to

this non-parametric estimator. Often the form of the covariance function

can be chosen on the basis of arguments about the physical processes which

generated the data, or more data driven methods such as cross validation

can be used. It can be very difficult to estimate properties of the process,

such as differentiability using observations unless the observations sample the

process very densely, so physical knowledge provides a very useful guide at

this stage.

Alternatively, and with more statistical rigour, it is possible to estimate the

covariance function using a maximum likelihood method. Given the model

[1] and the observation equation [2], the likelihood of the observations is

dependent on the hyper-parameters, θ. These hyper-parameters are typi-

cally length scales and variance scales, although some covariance functions

also possess smoothness parameters, such as the Matérn covariance function

[Handcock and Stein 1993]. Standard practice is to minimise the negative

log likelihood with respect to θ. The likelihood will be a non-linear function

of the θ even under the linear Gaussian model, thus optimisation algorithms

must be used. Each step in the optimisation requires computation of the

inverse covariance matrix for the whole data set, something which is compu-

tationally very expensive for large data sets.

In principle, where prior knowledge is available the hyper-parameters, θ,

should be given prior distributions and estimation should compute the max-

imum a posteriori probability values of these parameters. The optimal

Bayesian solution would be to compute the joint posterior over the state

and hyper-parameters and then integrate over the hyper-parameters to com-
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pute the marginal distribution of the state as in Handcock and Stein [1993].

This is not numerically practical if estimates are desired in real time, so a

maximum a posteriori probability estimate is often sought leading to empir-

ical Bayesian methods. For very large data sets it is reasonable to expect

(if the stationarity assumption is valid) that the posterior distribution of the

hyper-parameters is strongly peaked, and thus the impact of a maximum a

posteriori probability assumption will be relatively small.

2.2 Prediction

Once the hyper-parameters of the model have been estimated, it is then possi-

ble to make predictions at any location, using the fitted stationary covariance

function to estimate the covariances between locations. This activity is gen-

erally referred to as kriging, and is the best linear unbiased predictor, given

the assumptions made. As well as a prediction of the mean, a prediction of

the covariance is also provided, which is important because this predictive

distribution is necessary to make optimal use of the data in decisions and

further processing. In the simple kriging case the prediction equation for the

mean is

sp(x̃) = K(x̃,x)′K−1y , (4)

where K(x̃,x) is the covariance between the prediction location x̃ and the

points x that are the observation locations, K is the covariance between all

observations, y, and we assume H = 1. The prediction variance is

Kp(x̃) = K(0, 0)−K(x̃,x)′K−1K(x̃,x) . (5)

Both equations require the computation of the inverse of the covariance of

all the observations, although as noted earlier, in practice these equations

are often solved over neighbourhoods by using a small subset of local points.
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2.3 Parameterisation

In order to enable the general model defined in [1], [2] and [3] to be treated

numerically a universal parameterisation of the posterior of a Gaussian pro-

cesses is developed which is analogous to the dual form of the kriging equa-

tions [Cressie 1993].

A natural representation of the posterior Gaussian process, [3], related to

the representer theorem often used with spline models [Wahba 1991], can be

derived. The Gaussian process posterior mean is parameterised as

µpost(x) = µ(x) +
n
∑

k=1

qkK(x,xk) , (6)

where µ is the mean function in the prior, and K(x,xk) is the prior covari-

ance between the point x and the points xk used in the approximation. The

covariance function, parameterised by θ, is assumed known from the prior,

although the hyper-parameters can be re-estimated, as is shown later in Sec-

tion 3.4. The scalar qk’s define the mean function of the posterior process,

and are stored at points xk which can be the observation locations, a grid or

an arbitrary set of points, . The covariance of the Gaussian process posterior

is parameterised as

Kpost(x, x̃) = K(x, x̃) +
n
∑

k,l=1

K(x,xk)Rk,lK(xl, x̃) , (7)

where K(x, x̃) is the covariance of the prior Gaussian process between loca-

tions x and x̃ and Rk,l is a matrix that contains the information about the

posterior covariance. This is an alternative representation of the posterior

distribution [3] in terms of a finite set of parameters, q and R. For notational

convenience we will write α = {qk, Rk,l,∀k, l = 1 . . . n} and use s(x;α) to

represent the parameterised posterior process.
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The parameterisation using α is exact in the linear, Gaussian case. In the

non-linear and / or non-Gaussian case the posterior in [3] is no longer Gaus-

sian; methods to cope with this are given in the next section. It is also

possible to retain the same form of parameterisation but only store the α’s

at a small number of locations, which we refer to as basis vectors. This makes

it possible to control the growth in the number of parameters retained in the

parameterised posterior, as discussed in Section 3.3.

3 Sequential Bayesian estimation framework

The aim is to produce a framework for estimating the parameters, α, of the

representation [6] and [7] using the Bayesian formulation from [3]. In the case

of H linear and ε Gaussian, this posterior can be computed exactly (solving

a Gaussian integral) and an algorithm which allows sequential processing of

the data can be developed to update the posterior Gaussian process, by an

update to α. This is similar in spirit to the Kalman filter, and the result is

exact, so it is possible to process the data in arbitrary order. The algorithm

still scales computationally as O(n3), so it is equivalent to the process of

inverting the matrix in [4] and [5].

When the observations are non-linearly related to the state, or the noise is

non-Gaussian, then in general the posterior [3] will no longer be Gaussian.

This presents a problem, since the parameterisation proposed above can only

represent Gaussian posteriors. There are two choices:

• accept the non-Gaussian posterior and attempt to sample from this

very high dimensional distribution;

• accept that although the exact posterior is not Gaussian, a Gaussian
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process approximation to this posterior is the only feasible solution

available in reasonable computational time.

The approach of sampling is prohibitively expensive for even moderately

large data sets, and is completely unsuitable for real time applications.

The approach adopted to estimating the parameters, α, is a variational one

[Opper and Saad 2001]. This involves defining an approximating parame-

terised distribution q(s(x;α) | y,θ,H ) to the true posterior given by [3].

The aim in variational estimation is to determine the q(s(x;α) | y,θ,H )

which best fits the true distribution p(s | y,θ,H ). Best is defined here to

mean the Gaussian distribution which has minimal Kullback-Leibler (KL)

distance to the true (potentially non-Gaussian) posterior.

The KL-distance, which is sometimes referred to as the relative entropy, mea-

sures the distance between two probability distributions. It is non-symmetric;

the KL-distance between p(s) = p(s |y,θ,H ) and q(s) = q(s(x;α) |y,θ,H )

is given by:

KL(p(s), q(s)) =

∫

ln

[

p(s)

q(s)

]

p(s)ds (8)

=

∫

ln [p(s)] p(s)ds−

∫

ln [q(s)] p(s)ds . (9)

where we have dropped the conditioning of the posteriors for clarity. The

first term in [9] is the entropy of the true posterior which is an (unknown)

constant, thus only the second term need be considered when minimising

[9] with respect to the parameters, α. This order of the distributions in

the KL-distance is appropriate because the average is over the true poste-

rior; minimising this is equivalent to matching moments when q(s) is Gaus-

sian. The optimal approximation (in the sense described above) is thus

the q(s(x;α) | y,θ,H ) which matches the moments of the true posterior
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p(s | y,θ,H ). These moments are simple to compute in the linear Gaussian

case, but are far from simple in the non-Gaussian or non-linear H case.

3.1 Sequential variational Bayes

[Figure 1 about here.]

It can be helpful to think of the minimisation of the KL distance as a projec-

tion of the (non-Gaussian) posterior from [3] to the Gaussian approximation

which is closest as measured by the KL-distance metric. This projection step

is key to the algorithm, and is carried out at each observation sequentially.

Computational details are given in Csató and Opper [2002]. The projection

step can also be viewed in another, equivalent manner. As each observation

is processed the true likelihood function is used, the resulting non-Gaussian

posterior being projected onto the best approximating Gaussian. This pro-

jection can also be seen as defining a local quadratic approximation to the

likelihood.

The algorithm utilises the observations sequentially, that is the approxima-

tion is built up by cycling through the data. If we denote by Y i the observa-

tions seen in an arbitrary order to the i’th observation, Y i = {y1, ...,yi} and

Y 0 denotes the empty set of observations, then the algorithm is summarised

as:

1. Specify the prior Gaussian process distribution p(s|θ) = p(s(x;α)|Y 0,θ),

and fix θ to appropriate first guess values (e.g. from sample variogram);

2. FOR each observation i = 1..n {

(a) Update the current prior p(s | Y i−1,θ,H ) using Bayes rule ([3])

and the yi’th observation to give p̃(s | Y i,θ,H );
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(b) Minimise the KL-distance between p̃(s|Y i,θ,H ) and q(s(x;α)|Y i,θ,H )

by adjusting all parameters α, and increasing the size of α if nec-

essary.

(c) q(s(x;α) |Y i,θ,H ) becomes the prior p(s |Y i,θ,H ) in the next

iteration;

}

3. If necessary recycle the data – repeat to step 2;

4. If desired re-estimate the hyper-parameters, θ, of the prior – repeat to

step 2;

Many of the steps involved in this algorithm are non-trivial to implement,

however we have developed a Matlab toolbox which is freely available from:

http://www.ncrg.aston.ac.uk/Projects/SSGP/

This toolbox includes a number of demonstrations, but has been designed

with a quite functional user interface, which could certainly be improved for

applying these methods to practical problems.

In practice steps 2a and 2b are combined, thus p̃(s |Y i,θ,H ) is never explic-

itly computed, rather the update of the approximating posterior requires the

computation of the first two moments of p̃(s | Y i,θ,H ). For some models

the necessary integrals can be solved analytically, such as when H is linear

and the noise, ε, is positive exponential or where the likelihood is given by

a Gaussian mixture model [Cornford, Csató, Evans, and Opper 2004]. For

general forward models, however, it is necessary to either linearise or use effi-

cient sampling based methods for the low, typically 1D, integrals [Cornford,

Csató, Evans, and Opper 2004].
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Figure 1 shows the application of the algorithm to a toy data set with ar-

bitrary units generated from the sinc function. The 50 observations have

positive exponential noise added. This one-sided noise distribution is highly

non-Gaussian, yet the method is able to account for this in learning the pos-

terior Gaussian process. The figure illustrates the loop over the data set in

the learning algorithm (steps 2a, 2b ,2c). The posterior distribution is plot-

ted after the algorithm has seen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 35 and

50 observations. In each figure only the observations seen so far are plotted.

This illustrates how the approximation, which is defined using a maximum

of 15 basis vectors, is built sequentially from the observations. In this case a

good estimate of the covariance function hyper-parameters is supplied to the

algorithm, so there is no need to re-estimate these and recycle the data since

a good estimate is obtained after a single pass through the data. While the

example is a little contrived, it serves to illustrate our approach.

The method is approximate for non-Gaussian noise and non-linear observa-

tion operators and thus the order of processing the observations may become

important. This can be understood by noting that with non-linear obser-

vation operators the log posterior is no longer a quadratic form (Gaussian),

rather it may have several local optima, and an unlucky choice of the order-

ing of the data may result in the algorithm finding such a local minimum.

This algorithm is, however, far less sensitive to these type of effects com-

pared to optimisation approaches because the likelihood is integrated (i.e.

smoothed) over the prior (see the second term in [9]) and then extremised.

To reduce the impact of data ordering on the approximation a data recycling

method is introduced that helps minimise the problems of local optima, or

poor convergence.
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3.2 Data recycling

Inference in the online approximation in Csató and Opper [2002] is based on

a single sweep through the data, but as noted above this might produce a

suboptimal approximation to the true posterior. Unfortunately, using fur-

ther sweeps through the data with the same sequential algorithm in order to

achieve a refinement of the approximation would violate the inherent assump-

tion of data independence and would lead to an unprincipled approximation,

that is an approximation with no rigorous mathematical justification.

The problem of data recycling is overcome using the recently developed ex-

pectation propagation framework [Minka 2000]. A principled improvement of

the sequential approximation is achieved by altering the Gaussian process

posterior, [3], in a way that, although having seen the data once, second and

subsequent online inclusions are possible. Intuitively, the effect of the data to

be processed is first approximately ‘deleted’ from the solution and only then

is included for a second time. When undertaking this deletion it is useful to

recall that the projection to the approximating Gaussian process defines a

local quadratic approximation to the likelihood for each observation, whose

effect is thus easily accounted for and removed. Details of this method can

be found in Csató [2002], with a more statistical interpretation being given

in Cornford, Csató, Evans, and Opper [2004].

3.3 Sparsity

The computational complexity of the algorithm remains O(n3) if the size of

α grows as each observation is sequentially processed. However, the compu-

tational cost can be reduced while retaining important information from the

data. The parameterisation used for the Gaussian process, q(s(x;α)|Y i,θ,H ),
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enables the posterior to be written, not in terms of the data, as in the stan-

dard geostatistical approaches [4] and [5], but rather in terms of a set of

parameters, α, as in the dual kriging equations. These retained α’s are

stored at a set of points that we call basis vectors, which can be a subset of

the observation locations, but could also be a grid, or the locations at which

we want to make predictions. This can be seen in Figure 1) where only a

small subset of the observations are used as basis vectors. Estimation of the

parameters, α, proceeds sequentially. As each observation is processed (steps

2a, 2b) it is possible to decide at each step whether it is ‘useful’ to increase

the number of basis vectors and thus increase the size of α and update these

to take account of the observation, as shown in the first two rows of figures in

Figure 1). Alternatively, if the new observation does not require a new basis

vector the size of α can be left unchanged as in the bottom row of figures in

Figure 1). However, it is important to note that the effect of the observation

is taken into account through changes to all elements of α. In this way it is

possible to restrict the complexity of the algorithm to O(nm2), where m is

the number of basis vectors retained, and n is the number of observations as

before. Alternatively it is possible to specify the minimal loss of information

(in the KL-distance sense) that is acceptable, and only add basis vectors

where this is exceeded. When approached in this way sparsity ensures a

compact representation appropriate to the complexity of the data. Technical

details can be found in Csató [2002] with a more statistical interpretation in

Cornford, Csató, Evans, and Opper [2004].

3.4 Hyper-parameter estimation

[Figure 2 about here.]
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Using the sparse Gaussian process framework, it is also possible to perform

an approximate estimation of any hyper-parameters in the likelihood or in

the Gaussian process covariance functions. The total probability or evidence

of the data (the denominator in [3]) given by

p(y | H ,θ) =

∫

p(y | s,H )p(s | θ)ds , (10)

is maximised with respect to the collection of hyper-parameters. An ‘expec-

tation maximisation’ algorithm for an iterative minimisation of the evidence

can be applied. The non-trivial ‘E-Step’ of this algorithm requires the com-

putation of posterior expectations which are approximated consistently using

the sparse Gaussian process posterior, q(s(x;α) |Y i,θ,H ), provided by our

method Csató [2002]. Experiments on highly non-smooth data models such

as regression with one sided exponential noise show a rather robust estima-

tion of hyper-parameters with this approach, as exemplified in Figure 2.

In Figure 2(a) we have fixed the hyper-parameters to reasonable (but still

inappropriate) values and then estimated the posterior with these fixed val-

ues, while in (b) the hyper-parameter values are estimated by maximising

the evidence after each sweep through the data, resulting in a very good es-

timate, even though the observations include positive exponential noise. In

Figure 2(c) we show that it is possible to learn the hyper-parameters even

when the noise model in the likelihood term is not correctly specified. In

this case, however the estimate of the posterior distribution of the state is

strongly biased, as might be expected.

Combining all these steps produces an algorithm that can apply geostatistical

modelling methods to problems with very large numbers of observations or

non-Gaussian noise models.
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4 Example application

The sparse Bayesian estimation method is applied to an example one di-

mensional data set of wave heights. This data set was chosen because the

visualisation of the results is easier in the one dimensional setting, and the

dataset itself is rather large, with 4096 samples. The example we present

is not meant to be an authoritative case study, rather to illustrate the key

points of the our sparse, sequential approximation. The data is assumed to

have additive Gaussian noise, with a noise variance of 0.04 units2 - the units

are actually meters, but this is not important. The initial length scale in the

covariance function in the prior is set to 200 units, and the process variance

to 0.16 units2. The mean in the prior is set to zero.

[Figure 3 about here.]

Figure 3 shows an example of applying the sparse sequential algorithm where

2000 samples were used in the estimation, but only 25 basis vectors were re-

tained in the approximation. The data was recycled once through the algo-

rithm prior to hyper-parameters being re-estimated. The hyper-parameters

were re-estimated in an outer loop which was performed three times, and a

squared exponential covariance functional form was used. The results show

that although the use of 25 basis vectors does not allow good fitting of the

underlying data, the estimation of the hyper-parameters takes this into ac-

count and allows for a larger length scale and process variance which gives

a good estimate of the posterior probability distribution, assigning greater

uncertainty where the model does not fit the data well.

[Figure 4 about here.]
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In Figure 4 the method is applied, this time allowing up to 50 basis vectors in

the solution, all of which are used. The solution the 50 basis vectors fits the

data better than using 25 basis vectors, and the covariance function hyper-

parameters have been adjusted to reflect this. However, from Figure 4 that

more basis vectors would give a better fit to the data.

[Figure 5 about here.]

Figure 5 illustrates the learning algorithm used with up to 200 basis vectors,

although only 115 basis vectors are retained in the approximation. This

example illustrates the potential of the method, but is not the focus of the

paper. An application of the sparse, sequential Bayesian method to inference

of a two dimensional, vector posterior Gaussian process, using a variety of

non-linear observation operators can be seen in Cornford, Csató, Evans, and

Opper [2004].

5 Conclusions

This paper shows how a principled, Bayesian approach to geostatistics can

be adopted without the need to restrict the application to small problems, or

require very long computing times. The algorithm shows that it is possible

to develop a Kalman filter like algorithm for simple kriging. The method

presented incorporates sparsity and hyper-parameter estimation (variogram

modelling) in the same consistent framework. Use of the KL-distance to min-

imise the discrepancy between the approximating and true posterior provides

a principled framework for sparsity and dealing with non-linear H and non-

Gaussian errors. This allows us to undertake probabilistic inference without

21



having to resort to computationally expensive sampling based methods or

applying ad-hoc approximations.

As shown in Csató [2002] the method can be applied efficiently to binary

classification problems through the use of a probit model [Neal 1997], thus

could be used within an indicator kriging framework [Cressie 1993].

The method, as implemented, exploits the fact that where we have more

observations than are required to fully define the posterior process, the sparse

representation in terms of basis vectors is beneficial. This is the case where

the sampling density is high with respect to the length scales of the process.

Of course the method suffers from several problems, including:

• it remains necessary to assume (check) stationarity;

• convergence of the algorithm to the global maximum can only be guar-

anteed in the linear H case – in the non-linear case we can only prove

convergence to a fixed point in the learning dynamics. Further empir-

ical work is needed to assess convergence across a range of problems;

• interpreting the KL-distances in not trivial – this is not a very intuitive

measure for many people;

• implementing the method for general observation models, H , requires

sampling (low dimensional, but still relatively slow, but no extra cod-

ing) or a linearised version of H (generally faster, but may give a worse

approximation and requires coding);

• at present hyper-parameter estimation is likelihood based, however an

extension allowing priors over the hyper-parameters is possible within

a maximum a posteriori probability framework;
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• if the true posterior in [3] is very non-Gaussian, then the Gaussian

approximation may be rather poor and thus not particularly useful –

this must be judged by the context;

• the algorithm involves some quite complex manipulations of the pa-

rameters α, and this, together with the use of the expectation prop-

agation method means that it can be rather unstable in cases where

the likelihood is very peaked corresponding to a small nugget effect in

geostatistics.

Most of these drawbacks are either innate to any geostatistical method or

are to do with the way the algorithm is implemented. The most serious

weakness of the algorithm is that although we can cope with non-linear H ,

in these circumstances the Gaussian posterior approximation may not be

appropriate. This will depend on the problem; if the aim is to infer a non-

Gaussian posterior then other methods will be required, however is seems that

it might well be computationally very efficient to use our approximation as a

starting point for efficient population Monte Carlo methods [Cappé, Guillin,

Marin, and Robert ], which could be used to estimate the full non-Gaussian

posterior.

There is another possibility for sparsity in contrast to the sparsity we exploit.

The posterior covariance matrix might itself be sparse, as would arise with

covariance models which are space limited, that is have compact support.

In this case it would be possible to extend the basis vector sparsity to a

sparse representation of the covariance matrix, for instance using an eigen-

decomposition as in Mardia, Goodall, Redfern, and Alonso [1998, Wikle and

Cressie [1999]. This is something we hope to investigate further. We hope

to also demonstrate the algorithm on a range of problems and data sets,
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to assess issues such as hyper-parameter estimation, convergence and data

recycling.

In future work we hope to look at estimation in Gaussian process mixture

models, which will provide a more flexible posterior. It is possible to see

the mixture modelling method as being an intermediate complexity solution,

where the non-parametric sampling based methods are too slow for practical

application. We also plan to extend the model to space-time phenomena

with application to data assimilation in numerical weather prediction, but

this requires the development of the methodology within a rigorous space-

time framework for stochastic dynamic systems.
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Figure 1: An example showing how the method is able to sequentially esti-
mate the posterior distribution of the state (mean given by the solid black
line, +/- one standard deviation given by the grey lines line, plotted in state
space, not observation space), given observations (grey dots) with very non-
Gaussian (single sided exponential) noise. The true generating process is
given by the solid thick grey line, and the basis vectors are given by the
circled crosses. The top left figure shows the posterior distribution after one
observation has been seen. The subsequent figures (right, then down) show
the posterior distribution after 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 35 and 50
observations have been seen.
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(a) (b) (c)

Figure 2: The same example set up as in Figure 1 with one sided exponential
noise. In (a) the hyper-parameters are fixed, while in (b) they are estimated
from the data using our algorithm. In (c) the effect of using an incorrect
noise model in the likelihood is shown.
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Figure 3: An example of the estimation of the posterior processes on a data
set consisting of a series of wave height measurements permitting a maximum
of 25 basis vectors. The plot shows the training points (light grey dots),
the basis vectors (black circled crosses), the posterior mean of the Gaussian
process (dark solid line) and the posterior variance (plotted at plus / minus
one standard deviation, the grey lines).
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Figure 4: Similar plot to Figure 3 with 50 basis vectors in the solution.
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Figure 5: Similar plot to Figure 3, but permitting up to 200 basis vectors in
the solution.
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