
1DESCRIPTION AND TRAINING OF NEURAL NETWORK DYNAMICSRichard RohwerCentre for Speech Technology ResearchEdinburgh University80, South BridgeEdinburgh EH1 1HNSCOTLANDrr@uk.ac.ed.cstrAbstractAttractor properties of a popular discrete-time neural networkmodel are illustrated through numerical simulations. The most com-plex dynamics is found to occur within particular ranges of param-eters controlling the symmetry and magnitude of the weight matrix.A small network model is observed to produce �xed points, limit cy-cles, mode-locking, the Ruelle-Takens route to chaos, and the period-doubling route to chaos.Training algorithms for tuning this dynamical behaviour are dis-cussed. Training can be an easy or di�cult task, depending whetherthe problem requires the use of temporal information distributed overlong time intervals. Such problems require training algorithms whichcan handle hidden nodes. The most prominent of these algorithms,back propagation through time, solves the temporal credit assignmentproblem in a way which can work only if the relevant information isdistributed locally in time. The Moving Targets algorithm works forthe more general case, but is computationally intensive, and prone tolocal minima.1 IntroductionIt would be di�cult to dispute that thought processes involve time in anessential manner. Therefore neural network models must be understood asdynamical systems if they are to serve as plausible models or practical devicesfor the physical underpinnings of mental processes in general.



2This paper treats some dynamical aspects of the commonly-used discrete-time model yit = f(Xj wijyj;t�1) (1)where yit is a real-valued output of node i at time t, wij is a real-valued weightfrom node j to node i, and f is the logistic functionf(x) = 1=(1 + e�x): (2)We begin by reviewing some results of Renals and Rohwer [18] on someproperties of the attractors of these systems. At the very least, these resultsshow that the weight matrix of this system parameterizes a rich variety oftemporal patterns. This encourages us to speculate that some of these pat-terns encode useful calculations. If so, then it is an engineering problem to�nd training algorithms which match a suitable weight matrix to a givenproblem.Actually there is no doubt that some of the temporal patterns generatedby the systems (1) represent useful calculations, because it is straightforwardto engineer a weight matrix which produces a neural network model func-tionally equivalent to a conventional computer. One has only to sketch asimple neural circuit for a NAND gate and one for a Flip-Flop to be con-vinced of this. Pollack [13] has carried this to a further extreme by showingthat an in�nite Turing tape can be embedded in the in�nite precision of thereal variable yit. We shall see that (1) produces complex and varied temporalbehaviour over broad regions of weight space, even in very small networks,so we are encouraged that there may often be more e�cient ways to pro-duce many calculations than the straightforward neural implementation of aTuring machine. And of course, network models lend themselves to learningfrom examples by continuous parameter tuning, whereas Turing machinesrequire explicit programming.Following the description of the attractors produced by (1), we turn to adiscussion of the Moving Targets training algorithm [20, 21, 22], including anupdate on the status of research in this area. This algorithm is not biolog-ically plausible and has serious practical disadvantages, but it o�ers a clearnotational framework for an ensuing discussion of training issues in discrete-time systems. This discussion will point out that some types of temporaltraining problems are qualitatively more di�cult than others, and that the
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Figure 1: In
uence of symmetry and magnitude of weights on complexityof motion. 20-node network. r is magnitude of weight matrix; a speci�esamount of symmetry. Totally antisymmetric weight matrix for a = �1;totally symmetric for a = 1. Linear network when r ! 0; hard thresholdswhen r!1.most di�cult class is also the most interesting. We shall also brie
y notethat the important issues concerning generalization which arise in feedfor-ward networks used for classi�cation problems become even more serious indynamical problems.2 Attractor propertiesA broad overview of the temporal patterns generated by systems (1) is in-dicated by �gure 1. This shows an entropy-like measure of the complexityof the power spectra of the attractors generated at 273(=21x13) points of a



42-parameter subspace of the otherwise random 225-parameter weight spaceof a 20-node network. The two parameters are r and a inwij = r�(a)Sij + (1� �(a))Aij; (3)where S is symmetric, A is antisymmetric, and �(a) varies from 0 to 1 as avaries from �1 to 1, changing most rapidly when a is near �1 or 1. Thus wis purely antisymmetric when a = �1, purely symmetric when a = 1, andrandom when a = 0. The steepness of the slope of (2) at 0 increases withthe other parameter, r. Means (represented by dark disks) and standarddeviations (represented by surrounding circles) of this complexity measurewere taken over 10 randomizations of the weight matrix at each of 10 initialstates of the nodes. Full details appear in [18].We see that the most complex behaviour is centered on slightly antisym-metric matrices in a particular range of r-values. The blank area at lowr (nearly linear networks) indicates �xed point behaviour. The blank ar-eas at a = 1 (symmetric matrices) correspond to �xed points and period-2oscillations (which are not detected by the measure used). A theorem ofFrumkin and Moses [4] proves that these are the only possible motions forpurely symmetric weights when r ! 1. The purely antisymmetric case(a = �1) shows �xed points and period-4 limit cycles, consistent with atheorem of Gutfreund, Reger, and Young [7] on the r ! 1 antisymmetriccase. Qualitatively similar results were obtained for networks with between4 and 25 nodes. The overall complexity increases with the number of nodes(very roughly linearly), with the region of maximum complexity remainingthe same. (To achieve this constancy, the magnitude of the random weightsis varied inversely as the square root of the number of nodes, thus keepingthe RMS expected input to each node constant for random states.)The relationship between the results for the discrete system and the dif-ferential system dyi(t)dt = �yi(t) + f(rXj wijyj) (4)were investigated by varying the parameter �t in the mappingyi(t+�t) = �(1 ��t)yi(t) + �tf(rXj wijyj(t)): (5)



5This mapping reduces to (1) when �t = 1 and to (4) when �t ! 0. Re-nals [16] reports that the maximum complexity gradually increases as �t isreduced, and that the region of maximum complexity moves toward higherr values and lower (more antisymmetric) a values. The region occupied by�xed points grows, presumably because of the growing in
uence of the term�(1��t)yi(t). This is consistent with the results of Simard, et. al. [26], whoreport �xed point behaviour at low r in the di�erential system (4), and thoseof Kurten and Clark [10] who found chaotic behaviour in a system similar to(4), but with a limited number of connections into each node (limited fan-in).These results were con�rmed in further simulations by Scheurich [24], whoalso studied the e�ects of restricted fan-in in the discrete-time system (1). Afurther survey in the region of large r and small �t (< 0:1) would be highlydesirable, because smooth variation of the complexity measure with decreas-ing �t has not yet been convincingly observed, and therefore we cannot yetbe certain that its continuum limit is meaningful.Renals [18, 17] also studied the structure of the attractors of some of themost complex systems found in the survey by using bifurcation diagrams,attractor sections, dimension calculations, and Lyapanov exponents.The bifurcation diagram in �gure 2 indicates how the attractor changesas r is varied. For each point on the r-axis, a random 8-node network wasiterated for 10000 time steps from the same initial state to run out transients.Then the output of a particular node was plotted in the y-direction after eachstep of a subsequent run of 10000 steps. Qualitatively similar results wereobtained whichever node was used. When r = 0, there is a �xed pointat y = 0:5. This can be trivially understood by inspection of equations(1) and (3). The location of this �xed point drifts continuously as r isincreased, until more complex motion sets in at r = 5:2822. Here the statefollows points along a topologically circular path at an irrational frequencyof about 0:26 revolutions per iteration of the mapping (1). An enlarged viewof the bifurcation diagram in this region is shown in �gure 3. A secondincomensurate frequency appears at r = 5:2840, soon after the bifurcation tooscillatory motion. These two frequencies drift continuously, mode-lockingto form limit cycles when their frequencies become comensurate with eachother and the period of the mapping. A third frequency appears along witha broad-band spectrum at about r = 6:9, the attractor section begins toshow backfolding, and more chaotic behaviour. This pattern is consistentwith the Ruelle-Takens-Newhouse route to chaos [12]. At r = 10:69 there is
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Figure 2: Bifurcation diagram for entire range of r studied.



7

5.00 5.50 6.00 6.50 7.00 7.50 8.00
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Bifurcation Diagram

r

y(3)

(a)
r

λ
a = 0.0

5.0 5.5 6.0 6.5 7.0 7.5 8.0
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

(b)Figure 3: (a) Expanded bifurcation diagram for range of r showing modelocking. (b) Corresponding Lyapunov exponents.



8a chaotic attractor of correlation dimension of approximately 2:2 [15]. Thelargest Lyapunov exponent is seen to be negative for �xed points and limitcycles, rising to zero when there is no modelocking.The period doubling route to chaos [3] can be clearly seen in the bifur-cation diagram around r = 12 �gure 4. The correct universal Feigenbaumconstants were computed from this diagram.Intermittent chaos was observed by Scheurich [24] in some regions of asimilar system.3 Dynamics and CognitionA science of neurodynamics should one day explain the cognitive or com-putational signi�cance (if any) of the temporal patterns produced by neuralnetwork models. Fixed point attractors serve as models of memories in theassociative memory models typi�ed by Hop�eld's model [8]. However biolo-gists such as Nelson and Bower [30], Baird [1], or Gray, et. al. [6], are moredisposed to using oscillatory or chaotic attractors for this purpose. Skardaand Freeman [27] suggest that chaos, especially of the intermittent variety,might model an \idle" state in which the mind is prepared to trigger anyof a wide variety of associative memories, which would correspond to thequasiperiodic parts of an intermittently chaotic attractor. Mode locking isrequired by Shastri's dynamical model of variable binding [25] in order totemporally correlate events on an ensemble of nodes.The techniques of nonlinear dynamics concentrate primarily on attrac-tors, but the cognitive role of attractors may be overshadowed by the role oftransients. A conventional computer program halts at the end of a compu-tation (if all goes well). Viewed as a dynamical system, all the computationoccurs on the transient, although the �nal result is encoded in the �xed pointattractor. If we associate \mental states" or \memories" with attractors in aneural network model, then an important part of the cognitive theory mustconcern how the network state moves from one attractor to another. If thiscan happen without external in
uence, then technically these \attractors"may not really be attractors after all. A point is on an attractor, looselyspeaking, if and only if a small neighborhood of the point is revisited anin�nite number of times as the state evolves forever under the dynamical
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10law. Therefore the technical issue is whether a memory which has been vis-ited once is eventually revisited according to a given model. In a theorysuch as this, the structure of the entire attractor would provide informationabout switching between mental states, and the states themselves would bedescribed by a theory of \sub-attractors". Alternatively it may be better tomodel memories as proper attractors in networks or subnetworks and invokeexternal perturbations (from the environment or other subnetworks) to movethe state between attractors. A formalism which takes a uni�ed view of thesetwo scenarios might be quite useful. The method of Crutch�eld [2] might bea step in this direction.4 TrainingNeural network models might be useful as practical engineering tools forapplications such as pattern recognition, qualitative reasoning, and motorcontrol. Abstractly, one would like a network to produce temporal patterns,perhaps in response to external temporal patterns, which have speci�ed prop-erties. It can be a di�cult matter to specify the desired properties formally.Connectionist systems o�er the possibility of avoiding this issue by usingtraining methods based on learning from examples. An example consists ofa partially speci�ed temporal pattern.4.1 Learning of Dynamics from examples{ notationLet us formalize the partial speci�cation of a set of temporal patterns. A setof sequences of fully-speci�ed network states can be given by numbers Yitp fornode i at time t in sequence p. (A weight matrix may or may not exist whichproduces a given pattern.) Let us call the combination of indices (itp) anevent. A sequence of events might be only partially speci�ed because of theabsence of data for Yitp at particular events. Let us call such events hidden,in analogy with the hidden layers of feedforward networks for which thereis no training data. At non-hidden (let us say, visible) events, Yitp mightrepresent a desired output of the dynamical system to be trained, or else aninput to be imposed by the environment. Let us refer to the former case asa target event and the latter as an input event. When environmental inputs



11are imposed on the network, the dynamical law (1) is replaced byyitp = f(Xj wijyj;t�1;p) i 62 Iyitp = Yitp i 2 I 9>=>; (6)where I is the set of input events.In general, a node can participate in di�erent types of events at di�erenttimes. Therefore a phrase such as \the set of target nodes" is meaningfulonly with reference to a given time and sequence, unless (as if often true)this set happens to be the same for all times and sequences.4.2 The importance of hidden eventsTraining problems which do not involve hidden events are relatively easyto solve, provided a solution exists. Because the training data completelyspeci�es the network state at every time step, the network needs only to learnhow to associate each state with its successor, ignoring the overall orderingof the states. This is precisely the form of problem normally presented toa feedforward network with one layer of weights. Therefore the problemreduces to that of training a feedforward network. Lapedes and Farber [11]exploit this fact in their work on emulating chaotic time-series using a neuralnetwork model.A training problem can be presented in such a way that hidden events areavoided entirely. It may be that a problem does not specify input or targetdata for every time step, but such a problem can be extended by supplyingtarget data ad hoc for such events. If the extended problem is solved, theoriginal problem is solved as well.Hidden nodes are therefore necessary only if it is impossible to train thefeedforward network problem for state transitions. There are two possiblecases of this necessity: The feedforward problem may be well-posed or ill-posed. In a well-posed problem, there are no two transitions for which thesame initial state is mapped into di�erent �nal states. If the feedforwardproblem cannot be solved with a network having one layer of weights, a so-lution can be found by adding one or more layers of hidden nodes to thefeedforward network [5]. If n layers of hidden nodes are added to the feed-forward network, then the the hidden nodes of the corresponding recurrentnetwork are updated at (n+ 1)-times the rate of the others.



12The di�cult (and more interesting) case is the ill-posed feedforward prob-lem. The overall problem may be well-posed, in the sense that there are notwo identical sequences of states which precede transitions into two di�erentstates; disambiguation requires information from further in history than theprevious time step. This information can only be carried by hidden eventsbecause the input and target events do not uniquely specify a successor state.If the overall problem is ill-posed, it can be converted to a well-posed problemby choosing di�erent initial hidden events for the ambiguous sequences.If information from the past few time steps su�ces to uniquely specifya transition, then the problem can be reduced to the feedforward case byextending the network to include time-delay lines:yit = f( TX�=0Xj w�ijyj;t�1) (7)Equivalently, T � 1 sets of nodes are added, each of which is dedicated tomaintaining a copy of past node activations up to the maximum delay timeT . However, if the information required for disambiguation lies in the distantpast, this method requires a correspondingly large T and therefore involvesa very large weight matrix.In the most di�cult problems, the training data from nearby time stepsdoes not carry enough information to uniquely specify the target data forsubsequent time steps. It is necessary for the network to learn to detectand remember information which is of no use in the present, but may beuseful in the distant future. Hidden nodes are absolutely necessary in thiscase, because no other nodes can express the required memories. With notraining data to apply directly, the training algorithm must decide whatshould happen at the hidden events. This is the temporal credit assignmentproblem, [28].Even if transitions can be unambiguously speci�ed by current or recenttraining data, it may be a good idea to use hidden nodes, and to encouragethe use of information from the distant past in order to achieve good gen-eralization performance. The information required for generalization maydistributed over a long time interval even though random noise serves tomake each state in the training data unique, given its predecessor.



135 Two gradient descent algorithms for solv-ing the credit assignment problemIn this section we compare two training algorithms which are closely relatedmathematically, but solve the temporal credit assignment problem in verydi�erent ways. Both algorithms use a gradient method to minimize a sum ofpositive de�nite measures of error. For simplicity, let us consider a quadraticerror measure: E = 12 X(itp)2Tfyitp � Yitpg2: (8)Here Yitp is the target data for event (itp) 2 T , and yitp is the correspondingoutput produced by the network.5.1 Backpropagation through timeThe two algorithms di�er in their de�nitions of the functional form of yitp,and the range of summation in (8). They produce the same values for yitpif E = 0. The �rst algorithm is back-propagation through time as de�nedby Rumelhart, Hinton and Williams [23]. In this case yitp is de�ned for(itp) 2 T simply by (6); ie., yitp is whatever will be produced by running thenetwork with the given training data for inputs. These are functions only ofthe weight matrix w, so E is a function only of w. The derivatives dE=dwijare computed and used in a gradient-based minimization algorithm such asgradient descent or the conjugate gradient method [14].These derivatives take the form given by the familiar delta rule:dEdwij =Xpt �itpyjtp (9)where �itp = 8><>: 0 (itp) 2 I(yitp � Yitp)yitp(1� yitp) (itp) 2 TPj �j;t+1;pwjiyitp(1 � yitp) (itp) 2 H 9>=>; : (10)There is no error measure de�ned directly on the hidden events, butthe �'s de�ned on these events govern the size of their contribution to thederivatives with respect to the weights leading into them. Therefore the



14�'s provide at least an approximate measure of how credit is assigned tothe various hidden events. Note that the �'s diminish multiplicitively witheach time step, going backwards in time. Thus the magnitude of the delta'stends to diminish exponentially with time. Therefore this credit assignmentmethod is unlikely to work in problems which can be solved only by usingdistant contextual information.The same derivatives dE=dwij can be computed from a feedforward it-eration rule given by Robinson [19], Kuhn [9] and Williams and Zipser [29].Being the same derivative, it su�ers from the same defect. The feedforwarditeration rule has a similar multiplicative property.5.2 Moving TargetsThe Moving Targets algorithm was introduced by Rohwer in [20] and dis-cussed further in [21] and [22]. In this algorithm errors are assigned directlyto hidden events by assigning to each hidden event a real variable which istreated as though it were target training data. These variables are the mov-ing targets. (Perhaps \variable" would be a better word than \moving".)targets. Thus, the total error measure is like (8), except that the sum isextended to include hidden events,E = 12 X(itp)2T[Hfyitp � Yitpg2: (11)and the de�nition of yitp is changed toyitp = f(Pj wijYj;t�1;p) i 62 Iyitp = Yitp i 2 I ) (12)instead of (6). The only di�erence between (6) and (12) is that the yj;t�1;pin the sum has been changed to Yj;t�1;p. When (j; t� 1; p) is a target event,this designates the (constant) target training datum for this event. When itis a hidden event, this designates a (variable) moving target.The training data speci�es desired results for the target events only.Therefore we are free to adjust the moving targets to any values which happento be helpful. The same is true of the weights. Therefore training proceedsby initializing the weights and moving targets arbitrarily and minimizing theerror with respect to both sets of variables using a gradient-based algorithm.



15The derivatives of (11) with respect to the weights and moving targets aremuch simpler than the derivatives with respect to the weights in back prop-agation through time, because the moving targets Yj;t�1;p are independentvariables, and therefore not functions of the weights. Therefore the chainrule does not iterate over more than two time steps. The derivatives are:dEdwij = X(tp) such that (itp)2T[H(yitp � Yitp)yitp(1� yitp)Yj;t�1;p (13)and for (itp) 2 H,dEdYitp = Xj such that (j;t+1;p)2T[H(yj;t+1;p�Yj;t+1;p)yj;t+1;p(1�yj;t+1;p)wji�(yitp�Yitp)(14)with yitp given by (12), not (1).In order to prevent Yitp from varying outside the interval (0; 1) achievableby yitp because of the restricted range of (2), the moving target variables canbe written in terms of new independent variables X by de�ning:Yitp = f(Xitp): (15)This modi�es (13) and (14) slightly. This adjustment was used in mostof the numerical simulations done with the moving targets algorithm, but itis not known how helpful or unhelpful it is.The credit assignment mechanism used by the Moving Targets algorithmis explicit: An error is assigned directly to each hidden event. Distant con-textual information can be used by this algorithm when necessary, becauseerrors at events at distant times compete additively in the error measure(11), rather than diminish exponentially with time as with Back Propaga-tion. An example is presented in [21] and [22] in which a network trainedby the Moving Targets algorithm learns to use information from 100 timesteps in the past to solve a simple problem. However, computational experi-ence with this algorithm shows it to be impractical because it requires longcomputation times and is prone to local minima.



166 ConclusionsWe have seen that simple neural network models are capable of highly com-plex dynamical behaviour. Several textbook attractor types have been ob-served. Training networks to use these capabilities productively can be aneasy or di�cult task, depending whether the problem requires the use of tem-poral information distributed over long time intervals. Such problems requiretraining algorithms which can handle hidden nodes. The most prominent ofthese algorithms, back propagation through time, solves the temporal creditassignment problem in a way which can work only if the relevant informa-tion is distributed locally in time. The Moving Targets algorithm works forthe more general case, but is computationally intensive, and prone to localminima.
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