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Abstract

Attractor properties of a popular discrete-time neural network
model are illustrated through numerical simulations. The most com-
plex dynamics is found to occur within particular ranges of param-
eters controlling the symmetry and magnitude of the weight matrix.
A small network model is observed to produce fixed points, limit cy-
cles, mode-locking, the Ruelle-Takens route to chaos, and the period-
doubling route to chaos.

Training algorithms for tuning this dynamical behaviour are dis-
cussed. Training can be an easy or difficult task, depending whether
the problem requires the use of temporal information distributed over
long time intervals. Such problems require training algorithms which
can handle hidden nodes. The most prominent of these algorithms,
back propagation through time, solves the temporal credit assignment
problem in a way which can work only if the relevant information is
distributed locally in time. The Moving Targets algorithm works for
the more general case, but is computationally intensive, and prone to
local minima.

1 Introduction

It would be difficult to dispute that thought processes involve time in an
essential manner. Therefore neural network models must be understood as
dynamical systems if they are to serve as plausible models or practical devices
for the physical underpinnings of mental processes in general.



This paper treats some dynamical aspects of the commonly-used discrete-
time model

Yir = f(zwijyj,t—l) (1)

where y;; 1s a real-valued output of node ¢ at time ¢, w;; is a real-valued weight
from node j to node ¢, and f is the logistic function

f(@) =1/(1 + 7). (2)

We begin by reviewing some results of Renals and Rohwer [18] on some
properties of the attractors of these systems. At the very least, these results
show that the weight matrix of this system parameterizes a rich variety of
temporal patterns. This encourages us to speculate that some of these pat-
terns encode useful calculations. If so, then it is an engineering problem to
find training algorithms which match a suitable weight matrix to a given
problem.

Actually there is no doubt that some of the temporal patterns generated
by the systems (1) represent useful calculations, because it is straightforward
to engineer a weight matrix which produces a neural network model func-
tionally equivalent to a conventional computer. One has only to sketch a
simple neural circuit for a NAND gate and one for a Flip-Flop to be con-
vinced of this. Pollack [13] has carried this to a further extreme by showing
that an infinite Turing tape can be embedded in the infinite precision of the
real variable y;;. We shall see that (1) produces complex and varied temporal
behaviour over broad regions of weight space, even in very small networks,
so we are encouraged that there may often be more efficient ways to pro-
duce many calculations than the straightforward neural implementation of a
Turing machine. And of course, network models lend themselves to learning
from examples by continuous parameter tuning, whereas Turing machines
require explicit programming.

Following the description of the attractors produced by (1), we turn to a
discussion of the Moving Targets training algorithm [20, 21, 22], including an
update on the status of research in this area. This algorithm is not biolog-
ically plausible and has serious practical disadvantages, but it offers a clear
notational framework for an ensuing discussion of training issues in discrete-
time systems. This discussion will point out that some types of temporal
training problems are qualitatively more difficult than others, and that the
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Figure 1: Influence of symmetry and magnitude of weights on complexity
of motion. 20-node network. r is magnitude of weight matrix; a specifies
amount of symmetry. Totally antisymmetric weight matrix for ¢ = —1;
totally symmetric for ¢ = 1. Linear network when r — 0; hard thresholds
when r — oc.

most difficult class is also the most interesting. We shall also briefly note
that the important issues concerning generalization which arise in feedfor-
ward networks used for classification problems become even more serious in
dynamical problems.

2 Attractor properties

A broad overview of the temporal patterns generated by systems (1) is in-
dicated by figure 1. This shows an entropy-like measure of the complexity
of the power spectra of the attractors generated at 273(=21x13) points of a



2-parameter subspace of the otherwise random 225-parameter weight space
of a 20-node network. The two parameters are r and «a in

wij = ro(a)Si; + (1 — o(a)) A, (3)

where S is symmetric, A is antisymmetric, and o(a) varies from 0 to 1 as «a
varies from —1 to 1, changing most rapidly when « is near —1 or 1. Thus w
is purely antisymmetric when a = —1, purely symmetric when ¢ = 1, and
random when a = 0. The steepness of the slope of (2) at 0 increases with
the other parameter, r. Means (represented by dark disks) and standard
deviations (represented by surrounding circles) of this complexity measure
were taken over 10 randomizations of the weight matrix at each of 10 initial
states of the nodes. Full details appear in [18].

We see that the most complex behaviour is centered on slightly antisym-
metric matrices in a particular range of r-values. The blank area at low
r (nearly linear networks) indicates fixed point behaviour. The blank ar-
eas at ¢ = 1 (symmetric matrices) correspond to fixed points and period-2
oscillations (which are not detected by the measure used). A theorem of
Frumkin and Moses [4] proves that these are the only possible motions for
purely symmetric weights when r — oo. The purely antisymmetric case
(¢« = —1) shows fixed points and period-4 limit cycles, consistent with a
theorem of Gutfreund, Reger, and Young [7] on the r — oo antisymmetric
case. Qualitatively similar results were obtained for networks with between
4 and 25 nodes. The overall complexity increases with the number of nodes
(very roughly linearly), with the region of maximum complexity remaining
the same. (To achieve this constancy, the magnitude of the random weights
is varied inversely as the square root of the number of nodes, thus keeping
the RMS expected input to each node constant for random states.)

The relationship between the results for the discrete system and the dif-
ferential system

dy;it) = —yilt) + F(r > wiy;) (4)

were investigated by varying the parameter At in the mapping

yilt + At) = —(1 = At)yi(t) + Atf(r > wiy;(1)). (5)



This mapping reduces to (1) when At = 1 and to (4) when At — 0. Re-
nals [16] reports that the maximum complexity gradually increases as At is
reduced, and that the region of maximum complexity moves toward higher
r values and lower (more antisymmetric) a values. The region occupied by
fixed points grows, presumably because of the growing influence of the term
—(1—=At)y,(t). This is consistent with the results of Simard, et. al. [26], who
report fixed point behaviour at low r in the differential system (4), and those
of Kurten and Clark [10] who found chaotic behaviour in a system similar to
(4), but with a limited number of connections into each node (limited fan-in).
These results were confirmed in further simulations by Scheurich [24], who
also studied the effects of restricted fan-in in the discrete-time system (1). A
further survey in the region of large r and small At (< 0.1) would be highly
desirable, because smooth variation of the complexity measure with decreas-
ing At has not yet been convincingly observed, and therefore we cannot yet
be certain that its continuum limit is meaningful.

Renals [18, 17] also studied the structure of the attractors of some of the
most complex systems found in the survey by using bifurcation diagrams,
attractor sections, dimension calculations, and Lyapanov exponents.

The bifurcation diagram in figure 2 indicates how the attractor changes
as r is varied. For each point on the r-axis, a random 8-node network was
iterated for 10000 time steps from the same initial state to run out transients.
Then the output of a particular node was plotted in the y-direction after each
step of a subsequent run of 10000 steps. Qualitatively similar results were
obtained whichever node was used. When r = 0, there is a fixed point
at y = 0.5. This can be trivially understood by inspection of equations
(1) and (3). The location of this fixed point drifts continuously as r is
increased, until more complex motion sets in at r = 5.2822. Here the state
follows points along a topologically circular path at an irrational frequency
of about 0.26 revolutions per iteration of the mapping (1). An enlarged view
of the bifurcation diagram in this region is shown in figure 3. A second
incomensurate frequency appears at r = 5.2840, soon after the bifurcation to
oscillatory motion. These two frequencies drift continuously, mode-locking
to form limit cycles when their frequencies become comensurate with each
other and the period of the mapping. A third frequency appears along with
a broad-band spectrum at about r = 6.9, the attractor section begins to
show backfolding, and more chaotic behaviour. This pattern is consistent
with the Ruelle-Takens-Newhouse route to chaos [12]. At r = 10.69 there is
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Figure 2: Bifurcation diagram for entire range of r studied.
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a chaotic attractor of correlation dimension of approximately 2.2 [15]. The
largest Lyapunov exponent is seen to be negative for fixed points and limit
cycles, rising to zero when there is no modelocking.

The period doubling route to chaos [3] can be clearly seen in the bifur-
cation diagram around r = 12 figure 4. The correct universal Feigenbaum
constants were computed from this diagram.

Intermittent chaos was observed by Scheurich [24] in some regions of a
similar system.

3 Dynamics and Cognition

A science of neurodynamics should one day explain the cognitive or com-
putational significance (if any) of the temporal patterns produced by neural
network models. Fixed point attractors serve as models of memories in the
associative memory models typified by Hopfield’s model [8]. However biolo-
gists such as Nelson and Bower [30], Baird [1], or Gray, et. al. [6], are more
disposed to using oscillatory or chaotic attractors for this purpose. Skarda
and Freeman [27] suggest that chaos, especially of the intermittent variety,
might model an “idle” state in which the mind is prepared to trigger any
of a wide variety of associative memories, which would correspond to the
quasiperiodic parts of an intermittently chaotic attractor. Mode locking is
required by Shastri’s dynamical model of variable binding [25] in order to
temporally correlate events on an ensemble of nodes.

The techniques of nonlinear dynamics concentrate primarily on attrac-
tors, but the cognitive role of attractors may be overshadowed by the role of
transients. A conventional computer program halts at the end of a compu-
tation (if all goes well). Viewed as a dynamical system, all the computation
occurs on the transient, although the final result is encoded in the fixed point
attractor. If we associate “mental states” or “memories” with attractors in a
neural network model, then an important part of the cognitive theory must
concern how the network state moves from one attractor to another. If this
can happen without external influence, then technically these “attractors”
may not really be attractors after all. A point is on an attractor, loosely
speaking, if and only if a small neighborhood of the point is revisited an
infinite number of times as the state evolves forever under the dynamical
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law. Therefore the technical issue is whether a memory which has been vis-
ited once is eventually revisited according to a given model. In a theory
such as this, the structure of the entire attractor would provide information
about switching between mental states, and the states themselves would be
described by a theory of “sub-attractors”. Alternatively it may be better to
model memories as proper attractors in networks or subnetworks and invoke
external perturbations (from the environment or other subnetworks) to move
the state between attractors. A formalism which takes a unified view of these
two scenarios might be quite useful. The method of Crutchfield [2] might be
a step in this direction.

4 Training

Neural network models might be useful as practical engineering tools for
applications such as pattern recognition, qualitative reasoning, and motor
control. Abstractly, one would like a network to produce temporal patterns,
perhaps in response to external temporal patterns, which have specified prop-
erties. It can be a difficult matter to specify the desired properties formally.
Connectionist systems offer the possibility of avoiding this issue by using
training methods based on learning from examples. An example consists of
a partially specified temporal pattern.

4.1 Learning of Dynamics from examples— notation

Let us formalize the partial specification of a set of temporal patterns. A set
of sequences of fully-specified network states can be given by numbers Y}, for
node ¢ at time ¢ in sequence p. (A weight matrix may or may not exist which
produces a given pattern.) Let us call the combination of indices (¢tp) an
event. A sequence of events might be only partially specified because of the
absence of data for Yj;, at particular events. Let us call such events hidden,
in analogy with the hidden layers of feedforward networks for which there
is no training data. At non-hidden (let us say, visible) events, Vi, might
represent a desired output of the dynamical system to be trained, or else an
input to be imposed by the environment. Let us refer to the former case as
a target event and the latter as an input event. When environmental inputs
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are imposed on the network, the dynamical law (1) is replaced by

Yip = fO_wiYii-1,p) v g 1
j
Yip = Yiep el

(6)

where [ is the set of input events.

In general, a node can participate in different types of events at different
times. Therefore a phrase such as “the set of target nodes” is meaningtul
only with reference to a given time and sequence, unless (as if often true)
this set happens to be the same for all times and sequences.

4.2 The importance of hidden events

Training problems which do not involve hidden events are relatively easy
to solve, provided a solution exists. Because the training data completely
specifies the network state at every time step, the network needs only to learn
how to associate each state with its successor, ignoring the overall ordering
of the states. This is precisely the form of problem normally presented to
a feedforward network with one layer of weights. Therefore the problem
reduces to that of training a feedforward network. Lapedes and Farber [11]
exploit this fact in their work on emulating chaotic time-series using a neural
network model.

A training problem can be presented in such a way that hidden events are
avoided entirely. It may be that a problem does not specify input or target
data for every time step, but such a problem can be extended by supplying
target data ad hoc for such events. If the extended problem is solved, the
original problem is solved as well.

Hidden nodes are therefore necessary only if it is impossible to train the
feedforward network problem for state transitions. There are two possible
cases of this necessity: The feedforward problem may be well-posed or ill-
posed. In a well-posed problem, there are no two transitions for which the
same initial state is mapped into different final states. If the feedforward
problem cannot be solved with a network having one layer of weights, a so-
lution can be found by adding one or more layers of hidden nodes to the
feedforward network [5]. If n layers of hidden nodes are added to the feed-
forward network, then the the hidden nodes of the corresponding recurrent
network are updated at (n + 1)-times the rate of the others.



12

The difficult (and more interesting) case is the ill-posed feedforward prob-
lem. The overall problem may be well-posed, in the sense that there are no
two identical sequences of states which precede transitions into two different
states; disambiguation requires information from further in history than the
previous time step. This information can only be carried by hidden events
because the input and target events do not uniquely specify a successor state.
If the overall problem is ill-posed, it can be converted to a well-posed problem
by choosing different initial hidden events for the ambiguous sequences.

If information from the past few time steps suffices to uniquely specify
a transition, then the problem can be reduced to the feedforward case by
extending the network to include time-delay lines:

T

Yir = f(z Zwﬂjyj,t—l) (7)

7=0 j

Equivalently, T" — 1 sets of nodes are added, each of which is dedicated to
maintaining a copy of past node activations up to the maximum delay time
T'. However, if the information required for disambiguation lies in the distant
past, this method requires a correspondingly large T' and therefore involves
a very large weight matrix.

In the most difficult problems, the training data from nearby time steps
does not carry enough information to uniquely specify the target data for
subsequent time steps. It is necessary for the network to learn to detect
and remember information which is of no use in the present, but may be
useful in the distant future. Hidden nodes are absolutely necessary in this
case, because no other nodes can express the required memories. With no
training data to apply directly, the training algorithm must decide what
should happen at the hidden events. This is the temporal credit assignment
problem, [28].

Even if transitions can be unambiguously specified by current or recent
training data, it may be a good idea to use hidden nodes, and to encourage
the use of information from the distant past in order to achieve good gen-
eralization performance. The information required for generalization may
distributed over a long time interval even though random noise serves to
make each state in the training data unique, given its predecessor.
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5 Two gradient descent algorithms for solv-
ing the credit assignment problem

In this section we compare two training algorithms which are closely related
mathematically, but solve the temporal credit assignment problem in very
different ways. Both algorithms use a gradient method to minimize a sum of
positive definite measures of error. For simplicity, let us consider a quadratic

E=5 > {viw—Yiu}™ (8)

(itp)eT

CITOor Mmeasure:

Here Y}, is the target data for event (¢tp) € T', and y;s, is the corresponding
output produced by the network.

5.1 Backpropagation through time

The two algorithms differ in their definitions of the functional form of vy,
and the range of summation in (8). They produce the same values for y,
if ¥ = 0. The first algorithm is back-propagation through time as defined
by Rumelhart, Hinton and Williams [23]. In this case v, is defined for
(¢tp) € T simply by (6); ie., ¥z, is whatever will be produced by running the
network with the given training data for inputs. These are functions only of
the weight matrix w, so F is a function only of w. The derivatives dE /dw;;
are computed and used in a gradient-based minimization algorithm such as
gradient descent or the conjugate gradient method [14].
These derivatives take the form given by the familiar delta rule:

dF
dwij = %: 5itpyjtp (9)
where
0 (itp) el
5itp - (yitp - 1/z'zfyv)yitp(l — yitp) (th) S T . (10)

> Ot pWiilit(L — yip)  (itp) € H
There is no error measure defined directly on the hidden events, but

the ¢’s defined on these events govern the size of their contribution to the
derivatives with respect to the weights leading into them. Therefore the
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0’s provide at least an approximate measure of how credit is assigned to
the various hidden events. Note that the é’s diminish multiplicitively with
each time step, going backwards in time. Thus the magnitude of the delta’s
tends to diminish exponentially with time. Therefore this credit assignment
method is unlikely to work in problems which can be solved only by using
distant contextual information.

The same derivatives dF/dw;; can be computed from a feedforward it-
eration rule given by Robinson [19], Kuhn [9] and Williams and Zipser [29].
Being the same derivative, it suffers from the same defect. The feedforward
iteration rule has a similar multiplicative property.

5.2 Moving Targets

The Moving Targets algorithm was introduced by Rohwer in [20] and dis-
cussed further in [21] and [22]. In this algorithm errors are assigned directly
to hidden events by assigning to each hidden event a real variable which is
treated as though it were target training data. These variables are the mov-
ing targets. (Perhaps “variable” would be a better word than “moving”.)
targets. Thus, the total error measure is like (8), except that the sum is
extended to include hidden events,

E=5 Y Ay Y™ (11)

(itp)eTUH

and the definition of y;, is changed to

Yitp = f(Z] wz’ij,t—Lp) ? € 1 (12)
Yip = Yigp iel

instead of (6). The only difference between (6) and (12) is that the y;:_1,
in the sum has been changed to Y;;_1,. When (j,¢ — 1,p) is a target event,
this designates the (constant) target training datum for this event. When it
is a hidden event, this designates a (variable) moving target.

The training data specifies desired results for the target events only.
Therefore we are free to adjust the moving targets to any values which happen
to be helpful. The same is true of the weights. Therefore training proceeds
by initializing the weights and moving targets arbitrarily and minimizing the
error with respect to both sets of variables using a gradient-based algorithm.
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The derivatives of (11) with respect to the weights and moving targets are
much simpler than the derivatives with respect to the weights in back prop-
agation through time, because the moving targets Y, ;, are independent
variables, and therefore not functions of the weights. Therefore the chain
rule does not iterate over more than two time steps. The derivatives are:

= Z (?Jitp - Yitp)yitp(l - yitp)YJ}t—Lp (13)

dwij (tp) such that (itp)eTum

and for (itp) € H,
dE

v = Z (Yitr1p= Y10 V01,01 =Yj 611 p)Wji— (Yitp— Yiep)
ulp j such that (j,t+1,p)eTuH

(14)
with v, given by (12), not (1).
In order to prevent Yj;, from varying outside the interval (0,1) achievable
by yit, because of the restricted range of (2), the moving target variables can
be written in terms of new independent variables X by defining:

Yitp = f(Xitp)- (15)

This modifies (13) and (14) slightly. This adjustment was used in most
of the numerical simulations done with the moving targets algorithm, but it
is not known how helpful or unhelpful it is.

The credit assignment mechanism used by the Moving Targets algorithm
is explicit: An error is assigned directly to each hidden event. Distant con-
textual information can be used by this algorithm when necessary, because
errors at events at distant times compete additively in the error measure
(11), rather than diminish exponentially with time as with Back Propaga-
tion. An example is presented in [21] and [22] in which a network trained
by the Moving Targets algorithm learns to use information from 100 time
steps in the past to solve a simple problem. However, computational experi-
ence with this algorithm shows it to be impractical because it requires long
computation times and is prone to local minima.



16

6 Conclusions

We have seen that simple neural network models are capable of highly com-
plex dynamical behaviour. Several textbook attractor types have been ob-
served. Training networks to use these capabilities productively can be an
easy or difficult task, depending whether the problem requires the use of tem-
poral information distributed over long time intervals. Such problems require
training algorithms which can handle hidden nodes. The most prominent of
these algorithms, back propagation through time, solves the temporal credit
assignment problem in a way which can work only if the relevant informa-
tion is distributed locally in time. The Moving Targets algorithm works for
the more general case, but is computationally intensive, and prone to local
minima.
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