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1 Abstract

In this paper we discuss a fast Bayesian extension to kriging algorithms which
has been used successfully for fast, automatic mapping in emergency condi-
tions in the Spatial Interpolation Comparison 2004 (SIC2004) exercise. The
application of kriging to automatic mapping raises several issues such as ro-
bustness, scalability, speed and parameter estimation. Various ad–hoc solu-
tions have been proposed and used extensively but they lack a sound theo-
retical basis. In this paper we show how observations can be projected onto
a representative subset of the data, without losing significant information.
This allows the complexity of the algorithm to grow as O

(
nm2

)
, where n is

the total number of observations and m is the size of the subset of the ob-
servations retained for prediction. The main contribution of this paper is to
further extend this projective method through the application of space–limited
covariance functions, which can be used as an alternative to the commonly
used covariance models. In many real world applications the correlation be-
tween observations essentially vanishes beyond a certain separation distance.
Thus it makes sense to use a covariance model that encompasses this belief
since this leads to sparse covariance matrices for which optimised sparse ma-
trix techniques can be used. In the presence of extreme values we show that
space–limited covariance functions offer an additional benefit, they maintain
the smoothness locally but at the same time lead to a more robust, and com-
pact, global model. We show the performance of this technique coupled with
the sparse extension to the kriging algorithm on synthetic data and outline a
number of computational benefits such an approach brings. To test the rel-
evance to automatic mapping we apply the method to the data used in a
recent comparison of interpolation techniques (SIC2004) to map the levels of
background ambient gamma radiation.
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2 Introduction

Spatial interpolation encompasses a large number of techniques that are used
for prediction at spatial locations where data has not been observed. These
techniques require that a model is constructed for how a given process behaves
at locations where data has not been observed. Simple kriging, or best linear
unbiased prediction (BLUP), is one method that has become very popular in
geostatistics. By utilising covariance functions (or the variogram) to quantify
spatial variability, maps can be produced from incomplete or noisy datasets
using the kriging methodology. One aim of many automatic mapping sys-
tems is that the prediction is performed in (near) real–time [13]. Often spatial
datasets are small since it can be expensive to obtain new observations and
hence the goal of real time mapping can be achieved, because kriging can be
performed efficiently with small datasets. However, in recent years the size of
datasets has been increasing, due to the large increase of sensors on satellites
sampling across the globe (eg. NEUROSAT [2]), aerial photography or large
monitoring networks (eg. EURDEP1). It is not uncommon that the number
of observations can run into the millions. To solve the kriging equations di-
rectly, a (n×n) covariance matrix, Σ, for all the observations (n) needs to be
inverted. Since the computation necessary to invert a matrix grows as O

(
n3

)
,

it can be seen that a näıve implementation of kriging is not feasible for large
datasets. An additional problem that can arise with large datasets is due to
instabilities associated with solving large systems of equations [10, 11] partic-
ularly when the ratio of the highest eigenvalue to the lowest eigenvalue of the
covariance matrix becomes large (ill–conditioning). Concerns about the large
linear systems involved in kriging and the instabilities in their solutions has
motivated a search for better methods. It is unfortunate that the more data
available for interpolation, the more numerically unstable the method may
become [24]. This is fundamentally contrary to what one would like from an
interpolation scheme.

In what follows we will comment on some of the common techniques that
have been used to solve the above mentioned issues. Instead of inverting the
covariance matrix directly, a number of researchers have proposed iterative
methods for solving the kriging equations [17]. Although these methods don’t
have the poor scaling associated with direct methods (O

(
n2

)
per iteration),

they don’t yield exact results, although an improved estimate is obtained
with each iteration. Solving the kriging equations exactly can be guaranteed,
machine precision allowing, if the algorithm is run for n iterations. Hence the
number of iterations should be significantly less than n to achieve any speed
up advantages of using this method.

An alternative solution to the numerical instabilities that arise from solving
large systems of equations is to use a sequential kriging algorithm [29, 5, 21].
Here each observation is considered individually and the inverse covariance

1 http://eurdep.jrt.it
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(or precision) matrix Σ−1 is updated iteratively using the Woodbury matrix
inversion identity [19]. In this way, no large matrix inversions need to be
performed. Furthermore, improvements in the stability of the system can be
achieved by performing updates to the Cholesky factorisation of Σ−1 rather
than using the Woodbury identity directly on Σ−1 which is known to be
unstable particularly if insufficient numerical accuracy is retained or in the
presence of round–off errors [14].

The problems arising from treating large datasets are not new, many tech-
niques have been developed over the years to solve this computational bot-
tleneck. In [9], an alternative solution was introduced which is called moving
window or local neighbourhood kriging where a circular or elliptic moving
window centred on the prediction location is used to select the observations
within its boundaries that are to used for prediction. It is pointed out in [10]
that local neighbourhoods can produce spurious behaviour, this happens par-
ticularly when we cross boundaries as new observations are introduced and
removed from the moving window.

In many real world applications correlations between observations essen-
tially vanish to zero beyond a certain separation distance, so it makes sense
to use a covariance model that models this idea exactly since this leads to
the covariance matrix Σ being sparsely populated. The advantage of Σ being
sparse is that sparse matrix techniques can be used not only to solve the krig-
ing equations with reduced computation, but also to reduce the amount of
storage required for Σ [1]. In the same spirit of obtaining a sparse covariance
matrix another approach given by [15] is based on using the Matérn covari-
ance function and then inducing sparsity by tapering the covariance matrix.
Utilising these methods gives varying results depending on the dataset, the
reduction in computation and storage is connected to the sparsity in the data.
Using the range parameter obtained from the variogram, the degree of spar-
sity can be gauged by the relative length of the range parameter with respect
to the spatial extent and sampling density of the dataset.

Recent work by Cressie [3] has explored using reduced rank matrix ap-
proximations with satellite data which tends to be massive in size, but sparse
in terms of prediction. The Frobenius norm between a fixed rank covariance
matrix and the covariance matrix of the data is minimised to give an approx-
imate covariance. Using the same tactic, other work has suggested using the
Nyström method which replaces the covariance matrix Σ used in the kriging
equations by a lower rank matrix Σ̃ [32]. The quality of the approximation is
good, however for small datasets it has been observed that the quality of the
approximation can be poor [31].

In what follows we will employ a sequential simple kriging algorithm which
is chosen not only for numerical stability, but also because we will show how
the covariance matrix can be updated with new observations, but at the same
time leaving its rank unchanged. This is achieved by projecting the effect,
or weight of an observation onto a representative subset of the data (which
we shall call active points from now on). In doing so the kriging weights of



4 Ben Ingram, Dan Cornford, and David Evans

the active points are updated in such a manner so as to minimise any loss of
information (in the relative entropy sense [22])

∆H = −1
2
log|Σt|+

1
2
log|Σt−1| (1)

at each iteration t where Σt is the covariance matrix after t iterations and
Σt−1 is the covariance matrix calculated during the previous iteration.

Typically the number of active points can be reduced significantly before
any measurable loss of information is observed. The number of active points
we use can be selected a–priori or the algorithm can choose an appropriate
active set size based on some error threshold not being exceeded. We will call
this method projected process kriging (PPK) since the full kriging process is
projected onto a reduced complexity kriging process. The underlying princi-
ples for this technique were first proposed in [6]. In this paper we will present
the this method in the context of geostatistics.

The main contribution of this paper is to extend the PPK methodology
to utilise space–limited covariance functions. In so doing, the covariance ma-
trix Σ and it’s inverse Σ−1 will become sparse, allowing the computational
complexity to be reduced, not only in terms of speed but also in terms of
data storage. This allows us to exploit two types of redundancy in the space–
limited PPK method: redundancy in the observations caused by correlation
(the projection on the active subset) and redundancy in the covariance matrix
caused by the decay of correlation to almost zero in the sparse matrix repre-
sentation using space limited covariance functions. Combined, these methods
provide a principled algorithm which can optimally interpolate large datasets
with minimal information loss. With the introduction of space–limited covari-
ance functions, the data projection is performed only within the range of the
support of the covariance lengthscale parameter, hence we will refer to this
method as local projected process kriging (LPPK).

We show how this method is both fast and robust, and thus suitable to be
applied to automatic mapping in near real–time. One particular challenging
issue with automatic mapping is when extreme values are introduced into
datasets. Since a basic assumption of kriging is that observed data closer
together are more similar, when an extreme value is encountered this can
often distort the fitted covariance model. By using space–limited covariance
functions we are able to maintain the smoothness locally but at the same
time produce a more robust, and compact, global model. Of course this is a
pragmatic solution to the problem of extreme values; in future work we plan
to models these as a separate population.

In Section 3 we will derive the equations that define our kriging method-
ology. Section 4 investigates the use of space–limited covariance functions for
robust behaviour with extreme values. Section 5 describes the experimental
set up and introduces the datasets that we use. Section 6 applies the method-
ology to the SIC2004 data showing that fast automatic mapping is possible,



Fast algorithms for automatic mapping 5

together with a discussion of the results. Section 7 gives our conclusions about
the application of this method.

3 Kriging Methodology

In this section we present the notation, equations and definition of our kriging
extension (LPPK). Exact computation in kriging tends to become impossi-
ble when the number of observations exceeds several thousand. Local kriging
methods show how moving windows of a subset of the dataset can be used. Ei-
ther a specified number of observations or a search radius is used to determine
which observations should be used. As the window moves new observations
are included and discarded. As these boundaries are crossed discontinuities
tend to occur. The longer the range parameter in the variogram the larger the
number of observations that are needed to reduce this discontinuous effect.
Despite these problems, kriging algorithms are almost always implemented in
this manner. As a statistically principled alternative to this we use the entire
dataset for prediction and show how the effect of observations can be sequen-
tially projected onto a representative subset of the data called active points
with a minimal loss of information. In doing so the complexity of the system
is significantly reduced.

3.1 The kriging equations

We assume that Z (x) is a random spatial process with the covariance func-
tion k (xa,xb) where the process Z (x) is known only at n spatial locations
{x1, . . . ,xn}. We define the vector of available data as:

Z ≡ (Z (x1) . . .Z (xn)) (2)

Simple kriging is an optimal spatial predictor in that it minimises the
mean–squared prediction error. To guarantee that the kriging predictor is
optimal, we need to assume that Z is a stationary process and that Z (x) has
zero mean, or that the mean function has already been removed from the
dataset. Note that in this paper we emphasise simple kriging; for other forms
of kriging see [4]. The best linear unbiased predictor at an unobserved location
xn+1 is given by

Ẑ (xn+1) =
n∑

i=1

λiZ (xi) (3)

The predictor is simply a weighted sum of all the observations. Each weight
λi is the corresponding weight for the observation Z (xi). The weights are
calculated by a decreasing function of the distance between each observation
location and the prediction location. This scaled distance is based on choosing
a covariance model which describes the variation in the process. The covari-
ance function will be referred to as k (xa, xb) where xa and xb are two spatial
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locations and the covariance function returns the covariance between the two
locations. The kriging weights are thus calculated by

λ = Σ−1k (4)

where Σ is the square n × n matrix of the covariance between each of the
observations given by:

Σ =

k (x1, x1) . . . k (x1, xn)
...

. . .
...

k (xn, x1) . . . k (xn, xn)

 (5)

and k is the vector of covariances between the observation locations x and
the prediction location xn+1:

k =

k (x1, xn+1)
...

k (xn, xn+1)

 (6)

This yields the equation for predictive mean of the process at location
xn+1:

Ẑ (xn+1) = kT Σ−1Z (7)

and the predictive variance is:

σ2
n+1 (xn+1) = k∗ − kT Σ−1k (8)

where
k∗ = k (xn+1, xn+1) (9)

is the total sill variance of the process.
The complexity of solving the linear system b = Σ−1Z directly in equa-

tion (7) is O
(
n3

)
in computation and O

(
n2

)
in storage. This basically pro-

hibits straightforward kriging for large datasets of more than a few thousand,
and also raises issues for smaller datasets that we wish to treat in (near) real–
time. Furthermore, in an automatic mapping system the parameters of the
process need to be reestimated without human intervention. In a Bayesian
setting or if we were to use a maximum likelihood approach to estimate the
process parameters we cannot avoid the need to invert the covariance matrix.

3.2 Sequential kriging

We now introduce a sequential kriging algorithm. Most kriging implemen-
tations are batch algorithms whereby all the observations (or sometimes a
smaller subset) are processed in a single iteration. Here we will show a sequen-
tial algorithm whereby the model is updated as each observation is considered
individually. To do so we will show the partitioned covariance matrix
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Σn+1 =
[
Σn k
kT ks

]
(10)

and it’s inverse, which can be derived from the Sherman–Morrison–Woodbury
formula [25],

Σ−1
n+1 =

[
Σ−1

n + σ2
n+1mmT m

mT (σ2
n+1)

−1

]
. (11)

Equation (10) shows how the covariance matrix Σ is partitioned and gives
an intuition about the constituent parts of a covariance matrix where k =
k (xn+1,x1...n) which is the covariance evaluated between the new observa-
tion and the observations already included in the model at that iteration.
Equation (11) shows the partitioned inverse Σ−1. We see that the matrix
Σn+1 does not need to be inverted directly, the matrix inverse can be ex-
panded successively by extending with an extra row and column for each new
observation given calculations of m = −σ−2

n+1λ where λ = Σ−1
n k which the

reader will recognise from equation (4) and σ2
n+1 = k∗−kT Σ−1

n k which is also
the predictive variance at the new location [25]. Looking at the constituent
parts individually an intuition can be gained about the process that is taking
place. The vector m is the vector of weights given by Σ−1

n k, of the existing
system given the new observation that is to be added in the current iteration,
this is then scaled by the inverse predictive variance

(
σ2

n+1

)−1 (or predic-
tive precision [26]). The existing matrix inverse, Σ−1

n , is updated by the outer
product mmT scaled by the predictive variance of the new observation, which
thus cancels.

It has been shown that the Sherman–Morrison–Woodbury formula, de-
scribed above, can be numerically unstable [14] particularly in cases when
sufficient numerical accuracy is not retained or in the presence of round–off
errors. Indeed in [27] it is stated that the formula should only be used as a
symbolic rewriting tool, and that for actual computations the Cholesky de-
composition should be used since this is well known to be numerical stable
and efficient. Therefore for stable implementations we recommend retaining
the Cholesky factor of the inverse rather than calculating the inverse directly.
By using the Cholesky factor we also increase performance. Further details of
the Cholesky factor derivations can be found in [27].

3.3 Projected Process Kriging

The PPK algorithm makes a refinement to the sequential kriging algorithm.
Instead of blindly increasing the size of the covariance matrix with each new
observation, the PPK algorithm calculates how informative each new observa-
tion is. This information measure is then used to decide whether an observa-
tion is sufficiently important enough to warrant being added to the covariance
matrix as described by the sequential kriging algorithm. If the observation
adds little or no new information then the observation effect can instead be
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projected onto the covariance matrix without having to increase the size of the
covariance matrix. This process is repeated until all observations have been
considered.

We will now show how to reduce the complexity of the algorithm, while
retaining important features in the data. This is done in the framework of
a sequential algorithm. We refer to the representative observations that are
retained for prediction as the active set which we will denote by I and the r
will represent the active set size. At each iteration t, an observation is added
to the model, or active set, until a maximum number of observations (i.e. the
model complexity, or active set size r, we desire) is reached. It is possible to
update the model exactly with a new input, without increasing the size of the
active set if

k (x,xt+1) =
t∑

i=1

λt+1(i)k(x,xi) (12)

for all x [8]. In such a case we can exactly update the model without increasing
the complexity. If equation 12 does not hold then an approximation is made
by minimising the Kullback-Leibler (KL) divergence measure. We will not
explain the details in this paper, but instead we direct the reader to [6] for a
more rigourous treatment.

Rewriting the predictive mean and variance equations as:

Ẑ (xt+1) =
→
αk , (13)

σ2
t+1 (xt+1) = k∗ − kT

→
Σ−1k , (14)

gives an alternative parameterisation of the kriging equations. Notice that we
have used introduced the projection operator, →, notation to refer to the pa-
rameters of the projected model to distinguish them from the parameters of
the traditional kriging model. The difference between the two inverse covari-
ance matrices in equations (8) and (14) is that Σ−1 is the inverse covariance

matrix between the observations in the active set only.
→
Σ−1 is also the inverse

covariance matrix between the observations in the active set, however, addi-
tionally the effect of the inactive observations has been projected on to this

matrix. We have introduced the notation α =
→
Σ−1ZI where ZI corresponds

to the observations in the active set prior to any projection. However after ob-

servation projections,
→
α 6=

→
Σ−1ZI . Thus

→
α,

→
Σ−1 parameterise the projected

process kriging equations.
In the cases where a residual error occurs in trying to satisfy equation (12)

we have to decide how informative the new observation is. The goal is to select
the active set so that prediction error is minimised. A simple scoring heuristic
is used to score the active points to determine which active point location least
well represents the process. A number of scoring methods have been proposed
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which measure scores such as relative entropy gain [21] and the information
gain criterion [28]. Upon deciding whether the new observation is sufficiently
informative, we either add it to the active set and remove the least informative
point from the active set, or alternatively if it isn’t sufficiently informative,
we simply project the effect of this new observation onto the active points in
the active set.

The projection step that updates
→
α requires calculating a vector of weight

innovations β for each new observation that is to be projected onto the existing
active set

β = λ−
(

→
Σ−1k

)
, (15)

where λ = Σ−1k which is the weighting of the active set locations with
respect to the new observation location. β essentially computes the difference
in weights between the traditional kriging weights and the projected process
kriging weights as each observation is incorporated. The update equations for
the model are now

→
αt+1 =

→
αt + qt+1β (16)

→
Σ−1

t+1 =
→
Σ−1

t + rt+1ββT (17)

where for a Gaussian noise model on the observations, the projection param-
eters are

qt+1 =
Ẑ (xt+1)− Z (xt+1)

σ2
t+1

(18)

which measures the scaled difference, at the current location (xt+1), between
the model prediction after t iterations Ẑ (xt+1) (ie. the previous iteration and
given an active set I) and the observed value at the location Z (xt+1), and

rt+1 =
1

σ2
t+1

(19)

which correctly scales the weights for the covariance updates. There are a
number of things to note. Firstly, we make mention of the update parame-
ters. In this paper we have assumed a Gaussian likelihood function although
the update equations can be derived for arbitrary noise/likelihood models [7].
These update equations were calculated by minimising the KL divergence be-

tween the true model, Σt, and the approximating model,
→
Σt at each iteration

t. Secondly the reader should note that the updates for equation (17) are sim-
ilar to the updates shown by the partitioned matrix in equation (10) but do
not increase the size of the matrix.

We have just discussed the process of adding new observations to the
model representation whether by increasing the complexity of the model or
by projecting the observation’s effect onto a representative subset of the data.
We now note that another feature of this method is removal of active points
from the active set. This is basically the reverse process of adding active points.
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We direct the reader to [5] where full derivations can be found. To optimally
apply this algorithm in practice, it has proven useful to discourage the use
of active point deletion. A better approach is to select the active set a–priori
(selecting the most informative locations rather than randomly) and then
project the inactive observations onto this set. We have noted in experiments
that a dynamic active set can lead to active point flip–flop behaviour whereby
newly inserted active points are removed on the next iteration.

3.4 Relation to Bayesian frameworks

It is common practice within geostatistics that explicit stochastic models are
rarely declared and as a result little use is made of the likelihood–based
methods of inference which are central to modern statistics [12]. The phrase
model–based geostatistics has been used to describe an approach to geostatis-
tical problems based on using formal statistical methods under an explicitly
assumed stochastic model. For our experiments we assume a model–based
Bayesian framework. Many statistically principled extensions to kriging mod-
els have been proposed but have yet to find common place in the geostatis-
tical community due in part to the additional complexity that they bring. In
a Bayesian framework the parameters of the covariance model are considered
random variables also. During the PPK algorithm the parameters are learned
using a maximum likelihood type II approach [5] which uses the marginal
likelihood to calculate the best parameters for the model. We believe the var-
iogram remains a useful tool, particularly in helping to justify assumptions
about the data and in previous work we have shown how this can aid the
modeller in determining the covariance model [20].

4 Space–limited Covariance functions

We will now briefly introduce space–limited covariance functions. Is it often
realistic to assume that correlations essentially disappear beyond a certain
separation distance. However, many popular covariance functions (e.g. Gaus-
sian, exponential) assume correlations exist, albeit small, at infinite spatial
separations. There are a number of reasons why one might want to use a
space–limited covariance function, however one cannot use these arbitrarily.
The essential feature of compact covariances is to exploit the range of the vari-
ation within the data, with respect to the overall spatial range of the dataset.
Firstly by using sparse matrix methods the space needed to store the covari-
ance can be greatly reduced. Direct and iterative sparse matrix methods are
available that result in increased performance. It should be noted that matrix
reordering algorithms become particularly useful in increasing computational
efficiency. We will use the Reverse Cuthill–McKee algorithm as this reduces
the bandwidth of the sparse matrix [23].
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Unfortunately, to construct a space–limited covariance function the co-
variance function cannot be simply truncated beyond a certain lag distance,
since this can destroy the positive definitiveness of the covariance matrix [16].
For our experiments we will use a squared exponential covariance function
along with a space–limited approximation proposed in [18] which is visually
indistinguishable. It should be noted that space–limited covariance models
are already commonly used in geostatistics in the forms of the circular and
spherical covariance models. There are a plethora of space–limited covariance
functions that have been used, particularly in Atmospheric sciences. There are
a variety of ways to construct space–limited covariance functions from existing
covariance functions. One example, the Wendland construction shows how the
differentiability at the origin can be specified and still maintain it’s positive
definiteness [30]. Covariance validity strongly relies on the dimensionality of
the data. Since we are working with spatial data such problems do not pose
any serious problems within our work.

5 Experimental Setup

5.1 SIC2004

The problems of real–time automatic mapping were recently discussed in the
Spatial Interpolation Comparison 2004 exercise and entrants presented various
solutions [13]. The datasets supplied as part of the exercise were collected
from an automatic radiation monitoring networking across Germany. In the
contest only 200 observations were given to contest entrants, with a further
808 spatial locations with known values withheld for each entrant to submit
the predictions of their model for comparison. To test the robustness of the
algorithm a further dataset was given to participants in the form of a joker
dataset where some extreme values were introduced in the form of a simulated
radioactive contaminant escape.

5.2 Dataset

To demonstrate our method we will choose a larger subset of the available
data. In doing so, the advantages of projecting the data onto a smaller subset
will become more obvious. We selected 650 observations at random, and then
used the remaining 358 observations for cross validation. We decided to fix
the number of active points, but still allowed the algorithm the flexibility to
choose which observations were more informative. Deciding how many active
points should be retained is a complex problem and one with no clear theoret-
ical answer. We opt for inspecting a curve as shown in Figure 1 which shows
the cross–validation RMSE as a function of the number of active points. Be-
fore any clear loss of information is noticed, it can be seen that the number of
active points can be reduced to about 90 at which point the RMSE starts to
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rise. Figure 1 also shows the behaviour for the joker dataset. The reader will
notice that the quality of the approximation is poorer for the joker dataset
and that the approximation deteriorates around the 200 active points mark.
Not having the joker dataset a–priori, means we have to set the number of ac-
tive points based on our observations from the routine dataset. Knowing that
an automatic mapping network has to deal with unpredictable events as well
as routine situations, we opt to set the number of active points for our exper-
iments to 120. This gives the algorithm some flexibility should unpredictable
events be monitored. Determining the number of active point in the dataset
is still something that requires much work. It is difficult to know a–priori the
complexity inherent in the data. In selecting a value for the active set size we
must allow for increased complexity in the observed data. We have taken this
into account by setting the active set at 120 when during routine conditions
it is clear that only 90 observations need be used. Although selecting 120 ac-
tive points is well below the estimated 200 active points that are needed for
the prediction with the joker dataset with negligible loss of information, the
model predictions will still be appropriate for determining when emergency
conditions arise.

6 Discussion

Table 1. Summary statistics for routine dataset

Covariance MAE ME RMSE R

Gaussian 0.4846 -0.0015 0.7016 0.793
Gneiting 0.4841 -0.0014 0.7012 0.794

Table 2. Summary statistics for joker dataset

Covariance MAE ME RMSE R

Gaussian 0.9136 -0.1380 2.2113 0.767
Gneiting 0.8996 -0.1195 2.2025 0.769

For the routine dataset the results (Table 1) using the different covariance
functions are virtually identical. There seems to be a very slight improvement
gained by using the compactly supported Gneiting covariance function. Fig-
ure 2 shows maps plotted using the two covariance functions. The features
of each map are virtually identical as might be expected, although the active
points selected seem quite different. One important difference is the density of
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the covariance matrix. Figure 4 shows how the covariance matrix is sparsely
populated in the case of the compactly supported covariance.

The joker data shows quite different results. Firstly, examining Figure 4,
it can be seen that in this case the covariance matrix is much more sparsely
populated. The sparsity is a function of the range parameter. During the
algorithm the optimal parameters are inferred using a maximum likelihood
type II approach having processes all the data. Clearly due to the extreme
values, the range parameters have been significantly reduced. Looking at the
maps in Figure 3 it is clear the horizontal range parameter has far exceeded the
length of the vertical range parameter. Table 2 shows the summary statistics
for the joker dataset. There is now a greater improvement in the quality of the
compact Gneiting covariance based prediction than with the routine dataset,
although the improvement is only marginal with little operational significance.
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Fig. 1. Error curves showing how the crossvalidation error as a function of the
number of active points returned for (left) the routine dataset and (right) the joker
dataset.

7 Conclusions

We have presented a kriging extension (PPK) where the complexity of the
model can be controlled by minimising the information loss from the dataset.
We have exploited the redundancy in the data (or sampling density) by pro-
jecting the observations onto a representative subset of the data. We have fur-
ther extended this by the use of space–limited covariance functions (LPPK)
ensuring that a reduced number of the most relevant observations are pro-
jected and hence further improving stability and speed. By doing so we have
exploited the two types of redundancy in the data thus giving an efficient
method for automatic mapping. Our results indicate that prediction accuracy
is not being lost, but rather a more efficient representation of the model has
been found. Selecting the number of active points is still an unsolved prob-
lem, although our algorithm is sufficiently flexible to dynamically increase
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Fig. 2. Maps created from the routine dataset. Data are marked by crosses and
active points by circles. (left) Gaussian covariance function and (right) Gneiting
covariance function

the active set size based on ensuring that an error measure is not exceeded.
This dynamic behaviour however reduces the computational efficiency and
therefore we recommend fixing the active set.

In this paper we have used a fixed active set size since this leads to faster
performance. We have seen how in emergency conditions that the complexity
can vary particularly when emergencies arise. We note that it is possible with
this algorithm to adaptively select the size of the active set. This is done
based on measuring the residual error associated with each projection. If the
residual error exceeds a certain threshold then the complexity of the model
can be increased.

Having a more compact representation of the model is advantageous in
multiple ways. We note that reduced bandwidth for model transmission and
computation are both important properties for algorithms for use in low power
systems such as satellites or in hand held devices.

In utilising a sequential algorithm we have ensured that a) the covariance
matrix does not become poorly conditioned and b) large datasets need not fit
into computer memory. With these two properties coupled with the projection
of the data onto reduced rank representation we have opened up numerous
avenues for dealing with large datasets in a principled way. Coupled with the
use of sparse covariance matrices and space–limited covariance functions we
have shown how we can further reduce the storage and computation burden.
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Fig. 3. Maps created from the joker dataset. Data are marked by crosses and active
points by circles. (left) Gaussian covariance function and (right) Gneiting covariance
function

Fig. 4. Structure of covariance matrix after Cuthill–McKee reordering.(left) Rou-
tine dataset, 49.4% sparsity and (right) Joker dataset 7.8% sparsity

The problem of treating outliers has been a topic of much discussion. We
have shown that by using a space–limited covariance function a slight improve-
ment in robustness can be achieved. Although no significant improvements in
robustness have been achieved, we feel that in a spatial setting with large
datasets that space–limited covariance functions are appropriate due to their
effective use of storage and reduction in computation.

In future work we will investigate using arbitrary likelihood and algorithm
robustness to improve prediction accuracy. For larger datasets we plan to use
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parallel computation algorithms to distribute computation power and memory
needed across a number of processors.
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