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Abstract

Almost a decade has passed since the objectives and
benefits of autonomic computing were stated, yet even the
latest system designs and deployments exhibit only lim-
ited and isolated elements of autonomic functionality. In
previous work, we identified several of the key challenges
behind this delay in the adoption of autonomic solutions,
and proposed a generic framework for the development of
autonomic computing systems that overcomes these chal-
lenges. In this article, we describe how existing tech-
nologies and standards can be used to realise our auto-
nomic computing framework, and present its implementa-
tion as a service-oriented architecture. We show how this
implementation employs a combination of automated code
generation, model-based and object-oriented development
techniques to ensure that the framework can be used to
add autonomic capabilities to systems whose characteris-
tics are unknown until runtime. We then use our frame-
work to develop two autonomic solutions for the allocation
of server capacity to services of different priorities and vari-
able workloads, thus illustrating its application in the con-
text of a typical data-centre resource management problem.

Keywords: autonomic computing, self-* system, service-
oriented architecture, model-driven development, reconfig-
urable system

1. Introduction

The onset of a digital economy led to revolutionary trans-
formations to the way in which Information and Communi-
cation Technologies (ICT) are used to conduct business and
research and to provide services in all sectors of the soci-
ety [2, 3]. The ability to accomplish more, faster and on
a broader scale through expert use of ICT is at the core
of today’s scientific discoveries, newly emerged services
and everyday life. Due to unprecedented advances in ICT,
business needs are attended to by ever more complex and

feature-rich systems and systems of systems [4].
Autonomic computing represents a powerful approach to

managing the spiralling ICT complexity brought by these
developments, by reducing the level of expertise required
from the end users of ICT systems, and leveraging the
rich capabilities of complex ICT components. Formally
launched less than a decade ago [5], autonomic comput-
ing proposes that the demanding tasks of configuring, op-
timising, repairing and protecting complex ICT systems are
delegated to the systems themselves [6]. Based on a set of
high-level objectives (or policies), autonomic systems are
intended to “manage themselves according to an adminis-
trator’s goals” [7].

Following several years of intense research, we now have
a good understanding of what autonomic systems should
look like [6, 7, 8, 9, 10] and what best practices to follow in
building them [11, 12, 13, 14]. This significant progress is
to a great extent a by-product of the effort that went into the
development of successful autonomic solutions addressing
specific management tasks in real-world applications [15,
16, 17, 18, 19, 20].

While these developments demonstrate the feasibility
and advantages of the autonomic computing approach to
complexity management, autonomic functionality is far
from ubiquitous in today’s ICT systems. In previous work,
we used insights from the development of a commercial
autonomic system for the management of data-centre re-
sources [15] to identify key challenges in the development
of autonomic systems [11], including:

• The lack of standardisation in ICT resource interfaces.
Despite an increasing trend to add management inter-
faces to new ICT components and devices, and to make
existing interfaces public, autonomic system develop-
ment is hindered by the broad diversity of architectures
and technologies these interfaces are based upon.

• The tendency to hardcode ICT resource metadata
within the control component of the autonomic sys-
tem. Management frameworks are often intended for
handling particular types of resources, and the param-
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eters of these resource types are hardcoded in the con-
trol element of the system. With careful design, com-
plex systems consisting of supported resources can be
successfully managed; however, adding in support for
additional types of resources cannot be achieved in a
cost-effective way.

• The high scalability expectations. As simple, small
ICT systems are easy to manage by low-skilled human
operators, autonomic solutions are required in areas
where the systems to manage are complex and com-
prise large numbers of resources.

Based on best practices devised while investigating these
challenges [11], we then proposed a generic autonomic
framework for the effective development of autonomic so-
lutions in [21, 22] and briefly described its implementation
as a service-oriented architecture (SOA) in [1]. This ar-
ticle represents an extended version of [1]. As such, the
article provides additional information about our generic
autonomic framework and the way in which it addresses
the challenges mentioned above. Also, the article provides
a significantly enhanced description of the framework im-
plementation and of the combination of automated code
generation, model-based and object-oriented development
techniques employed by this implementation. Finally, we
present a new autonomic solution for the typical server ca-
pacity allocation problem from [1], thus additionally illus-
trating how the framework can be used to support utility-
function autonomic computing policies (i.e., policies that
require adjusting the configurable parameters of a system
so as to maximise the value of a user-specified utility func-
tion [23]).

The remainder of the article is organised as follows. Sec-
tion 2 provides an overview of the generic autonomic com-
puting framework, and examines how existing standards,
technologies and tools can be used for its practical reali-
sation. Section 3 presents the implementation of the auto-
nomic architecture proposed by our framework as a service-
oriented architecture, a solution chosen in order to take ad-
vantage of web service technology benefits such as platform
independence, loose coupling and security support [24]. In
Section 4, a case study involving the allocation of server ca-
pacity to services of different priorities and variable work-
loads is used to illustrate the application of the framework.
Section 5 reviews related work in the areas of autonomic
systems development out of legacy resources, model-driven
development of autonomic systems and autonomic comput-
ing expression languages. Finally, Section 6 summarises
our results and discusses a number of further work direc-
tions.

Figure 1. UML component diagram of the
general-purpose autonomic architecture

2. Overview of the generic autonomic
framework

Figure 1 depicts the general-purpose autonomic architec-
ture used by our framework. Originally introduced in [21]
and further developed in [22], this architecture builds on the
recent developments mentioned in the introductory section,
and extends the author’s previous work on the policy-based
management of data-centre resources [15].

The core component of the architecture is a reconfig-
urable policy engine that organises a heterogeneous collec-
tion of legacy ICT resources (i.e., resources not designed to
support management by the policy engine) and autonomic-
enabled resources into a self-managing system. In order
to make autonomic solution development cost-effective, the
policy engine can be configured to handle resources whose
types are unknown during its implementation and deploy-
ment.

The rest of this section describes the components of the
architecture and how they enable the runtime reconfigura-
tion of the policy engine. Existing standards, technologies
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and tools are suggested that can be employed to realise in-
stances of these components.

2.1. Managed resources

The legacy ICT resources whose complexity can be man-
aged through their integration into instances of the architec-
ture include:

• physical and application servers, software applica-
tions;

• virtualisation environments and virtual machines;

• ICT devices such as switches and load balancers;

• factory automation equipment and robotic systems;

• household devices such as home safety and security
devices.

The autonomic-enabled resources in the self-managing sys-
tem are either typical ICT resources that were specifically
designed to expose sensors and effectors interfaces allowing
their direct inter-operation with the policy engine, or other
instances of the architecture. As illustrated in Figure 1, the
latter option is possible because the policy engine is expos-
ing the entire system as an atomic ICT resource through
high-level sensors and high-level effectors.

The high-level sensors expose to the outside world:

• The state of the policy engine itself, namely the cur-
rent values of the engine parameters; for our imple-
mentation of the policy engine, these parameters are
presented in Section 3.2.

• An overall view of the system state. Note that because
the purpose of the high-level sensors is to facilitate the
integration of the autonomic system as a component
into a larger system, this view will typically—but not
necessarily —represent a summary of the system state.
Possible examples of such a summary include the av-
erage load of the servers within the system, the mean
response time for a set of web applications or the fail-
ure rate of the system components. The precise nature
of the system view presented by the high-level sensors
is defined by special policies supplied to the policy en-
gine, as described later in this section.

Likewise, the high-level effectors expose the configu-
ration parameters of the engine (these parameters are de-
scribed in Section 3.2), and any system-wide configuration
parameters specified by the user-provided policy set.

2.2. Manageability adaptors

As recommended by IBM’s architectural blueprint for
autonomic computing [13], standardised adaptors are used
to expose the manageability of all types of legacy ICT re-
sources in a uniform way, through sensor and effector inter-
faces. These two types of interfaces enable the policy en-
gine to access the state of the legacy resources and to config-
ure their parameters, respectively—all without any modifi-
cation to the managed resources. For efficiency reasons, the
sensors should support both explicit reading of specific state
information and, whenever possible, a state-change notifi-
cation mechanism that the policy engine can subscribe to.

Note that the manageability adaptor interfaces for any
instance of our architecture are fully defined by the system
model used to configure the policy engine. This makes pos-
sible the use of model-based development techniques and
tools for the semi-automatic generation of the manageabil-
ity adaptors. By carefully selecting the technology used
to “encode” the system model, off-the-shelf tools can be
employed for this purpose—this is illustrated in Section 3,
where XML system models are used for the configuration
of the policy engine.

Another good approach to implementing the manage-
ability adaptors is based on the OASIS Web Services Dis-
tributed Management (WSDM) standard. The Management
Using Web Services (MUWS) component of WSDM [25]
defines a web service architecture enabling the management
of generic distributed resources. The MUWS specification
describes a standard way in which manageable resources
can expose their capabilities, and defines a number of built-
in capabilities that resources should provide (e.g., Resour-
ceId, Description and Version). Resource-specific capabili-
ties can be provided and listed as elements of the Manage-
abilityCharacteristics built-in capability. The MUWS stan-
dard specifies ways for accessing resource capabilities by
means of web services, and requires that a “resource prop-
erties document” XML schema is provided as a basic model
of the managed resources. An integrated development en-
vironment for the implementation of WSDM-compliant in-
terfaces is currently available from IBM [26].

2.3. System model

Information about the system under the control of the
policy engine—including details about its parameters—is
provided by a system model that is supplied to the engine
at run time. This model represents a specification of all
resources to be managed and of their relevant properties.
Note that the parameters of a system resource (e.g., the CPU
capacity of a server, or the name of a process running on
this server) are termed “properties” throughout most of the
article in order to match the terminology proposed by the
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WSDM standard [25].
As the engine can always be reconfigured using new ver-

sions of the model, resources and resource properties not
referred to in the policies need not be specified. To allow
the use of appropriate operators in autonomic computing
policies and to reduce the amount of work by the policy en-
gine, the model should provide details about each resource
property it defines, including:

• the data type of the property;

• whether the property is read-only or can be modified
by the policy engine;

• if the property has a constant value or it changes over
time;

• if the policy engine can request to be notified about
changes in the property value.

Because the policy engine needs to handle new system
models at runtime, two further requirements must be satis-
fied by these models. The first requirement is that all system
models are instances of the same meta-model, and the sec-
ond that they are expressed in a format that the engine can
use to generate automatically any components it needs to
inter-operate with the manageability adaptors (e.g., classes
for new resource types or manageability adaptor proxies).

Several standards and technologies are good candidates
for the representation of the system model:

• Microsoft’s System Definition Model (SDM) is a
meta-model used to create models of distributed sys-
tems [27] with a high degree of detail. The ongoing
Dynamic Systems Initiative programme [28] intends to
use these complex models as enabling elements in the
development of manageable systems that exhibit ele-
ments of autonomic behaviour. Given its complexity,
the SDM meta-model is less suited for use in conjunc-
tion with the reconfigurable policy engine employed
by our autonomic architecture.

• The WSDM/MUWS standard [25] uses the WS-
Resource Metadata Descriptor framework to describe
the metadata for a resource manageability endpoint.
This allows the specification of the properties of re-
source state variables and parameters, as well as the
definition of resource relationships and operable col-
lections (i.e., set of resources with aggregated state and
operations).

• The Service Modeling Language (SML) specification
put together by a consortium of leading ICT compa-
nies [29] can be used to model complex ICT resources
based on a philosophy similar to that underlying the
design of our autonomic architecture. When SML is

adopted as a W3C standard and an SML development
toolset becomes available, the use of SML models for
the configuration of the policy engine will become a
compelling option.

• The Managed Resource Document (MRD) used by
version 1.1 of IBM’s Policy Management for Auto-
nomic Computing (PMAC) framework, and the com-
bination of web services and autonomic computing
standard specifications that version 1.2 of PMAC uses
are further examples of managed system models [30].

Finally, in order to make the development of these system
models and of the autonomic solutions they underpin cost-
effective, their elements need to be drawn from resource
definition repositories built around domain-specific ICT on-
tologies [11]. This enables the reuse and sharing of man-
ageability adaptors and policies across autonomic solutions
from the same application domain, therefore leveraging the
advantages of ontology-based modelling in the realm of
autonomic computing, as emphasised in [31] and demon-
strated successfully by [32].

2.4. Autonomic computing policies

Our policy model (Figure 2) extends the policy paradigm
in [15, 30, 33, 34] based on best practices proposed in [11].
The abstract Policy type at the root of the policy class hi-
erarchy comprises three elements that are common to all
policy types:

• The policy scope specifies the resources to which
the policy applies, and takes the form of a set of
“resource group” expressions. Each such expres-
sion is specified as a filter applied to a resource
type supported by the policy engine. For example,
given a cluster of servers, resource group expressions
can be used to select all processes running on these
servers and whose name matches a regular expres-
sion regex (i.e., process.name =∼ regex) and/or
all servers whose CPU utilisation exceeds 75% (i.e.,
server.cpuUtilisation > 75%).

• A policy value specified as an arithmetic expression
is associated with each policy, and in the presence of
conflicting/competing policies, higher-priority policies
are realised at the expense of lower priority ones. In its
simplest form, a policy value is an integer number.

• The policy condition is a Boolean expression used
to specify the circumstances in which the policy en-
gine is required to perform an action. This ex-
pression can use as parameters properties of the
system resources in the policy scope, or built-
in system variables such as time. For ex-
ample, the policy condition ’time.hour>=9 &
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+ action: SystemUtilityExpr

ActionPolicy GoalPolicy UtilityFunctionPolicy ResourceDefinitionPolicy

+ action: ResourceDefExpr[1..*]+ action: SetPropertyExpr[1..*] + action: SystemGoalExpr

Policy

+ scope: ResourceGroupExpr[1..*]

+ value: ArithmeticExpr

+ condition: BooleanExpr

Figure 2. Policy model

time.hour<=17’ specifies that the associated pol-
icy action should be performed between 9am and 5pm.

As illustrated in Figure 2, the abstract Policy class is spe-
cialised by four concrete classes of policies. These pol-
icy classes are associated with the action, goal and utility
function policy types defined in [23, 35, 36], and with a
resource-definition policy type that specifies how the pol-
icy engine should expose the managed resources through
its high-level sensor and effector interfaces. The difference
among these policy types is in the way in which they spec-
ify the fourth element of an autonomic computing policy,
namely its action:

• The action element of an action policy1 specifies new
values for one or several properties of the resources
within the scope of the policy. For this reason,
such actions are encoded as sequences of assignment
expressions of the form resource property =
expression.

• The action element of a goal policy is a Boolean
expression that depends on the properties of the re-
sources in the policy scope. Given a goal policy,
the policy engine should adjust the modifiable prop-
erties of the resources in the policy scope in or-
der to ensure that this Boolean expression evaluates
to true at all times. For example, a goal pol-
icy may be specified that requests the policy en-
gine to maintain the response time of all services in
the policy scope below 1500ms—‘MAX(service,

1For historical reasons (in the early days of autonomic computing, ac-
tion policies were the only type of autonomic computing policies), the term
action is used to denote a component of autonomic computing policies, as
well as a type of such policy. The meaning should be obvious from the
context.

service.responseTime)<1500’.2

• The action element of a utility-function policy specifies
a “utility function” that associates a numerical value
with each state of the resources in the policy scope
(i.e., with the values of their properties). The policy
engine is required to adjust the modifiable properties
of these resources in order to bring them into a state
that corresponds to the maximimum value of the util-
ity function that is attainable. Utility-function policies
are described in more detail in the context of the case
study in Section 4.2.

• The action element of a resource-definition policy de-
fines new types of resources that the policy engine is
required to synthesise. The names and properties of
these new resource types are fully specified by the ac-
tion element of the resource-definition policy, and the
policy engine is required to synthesise the software
components for these resources dynamically. Present-
ing the semantics and implementation of resource-
definition policies, and their role in the development
of autonomic systems of systems is beyond the scope
of this article—this information is available instead in
a related publication by the author [58].

As described so far in this section, the four elements of
a policy are specified in terms of expressions of appropri-
ate type, and the ability to apply a rich set of operators and
functions to the resource properties used in these expres-
sions is key to supporting the types of policies in Figure 2.
Accordingly, the policy language should include:

• an extensive set of operators for the manipulation of
primitive types like the one provided by IBM’s Auto-
nomic Computing Expression Language [33];

2Some of the techniques that the policy engine can employ to imple-
ment goal and utility policies are described in Section 4.2.
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• regular expression and time operators similar to those
implemented by Microsoft’s Windows System Re-
source Manager [37];

• functions calculating average/minimum/maximum re-
source property values over a time interval and/or
across a resource set like the built-in operators of the
commercial policy engine in [15].

Additionally, a number of operators from areas such as for-
mal specification [38] and formal quantitative analysis [39]
are required to support or simplify the encoding of the four
policy elements. These include set comprehension and tran-
sitive closure [38], for specifying the “resource group” ex-
pressions in the scope of policies; existential and univer-
sal quantification operators, to support the specification of
policy conditions; and operators varying from ordinary as-
signments to choice, scheduling, linear programming and
other optimisation operators for defining the actions of goal,
utility-function and resource-definition policies.

2.5. Reconfigurable policy engine

The internal architecture of the reconfigurable policy en-
gine (Figure 3) is dictated by the types of policies it im-
plements and by its ability to handle ICT resources whose
characteristics are supplied to the engine at runtime. A “co-
ordinator” module is employing the components described
below to implement the closed control loop of an autonomic
system.

Runtime code generator This component generates the
necessary interfaces when the policy engine is configured
to manage new types of resources or supplied with new “re-
source definition” policies. When a new system model is
used to reconfigure the policy engine, manageability adap-
tor proxies are generated that allow the engine to interoper-
ate with the manageability adaptors for the resource types
specified in the system model. Likewise, when “resource
definition” policies are set up that specify new ways in
which the policy engine should expose the ICT resources
it manages, high-level manageability adaptors need to be
generated.

Manageability adaptor proxies These modules are thin
interfaces allowing the policy engine to communicate with
the autonomic-enabled resources and the manageability
adaptors for the legacy resources in the system.

High-level manageability adaptors These elements are
used to expose the system state and configuration in a for-
mat that allows its integration within another instance of the
general-purpose autonomic architecture. The exposed sys-
tem characteristics include the state and configuration of the

Figure 3. Architecture of the policy engine.
The shaded components are implemented by
the prototype described in Section 3.

policy engine itself (e.g., system model, policy set and mon-
itoring period), as well as any characteristics of the man-
aged resources that are specified by ‘resource definition”
policies implemented by the engine.

Scheduler This module is used to support the various op-
erators appearing in policy actions for the goal and “utility
function” policies handled by the policy engine, examples
of which are provided in Section 4.

Resource discovery This component is used to locate the
resources to be managed by the policy engine. The use of a
technique such as the adaptive resource discovery described
in [40] is recommended, although simpler approaches may
be suitable for some use cases.

Database driver This module is used to maintain policy
engine data such as historical resource property values in an
external persistent storage.

Machine learning modules The ability to implement
goal and “utility function” policies is key to the effective
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management of complexity within an autonomic system.
However, this requires the policy engine to possess in-depth
knowledge about the behavioural characteristics of the man-
aged system that should not (and often cannot) come from
the system administrator. We are proposing that machine
learning techniques [41] are employed by a set of policy
engine modules to generate a behavioural (or operational
[35]) model of the managed ICT resources based on sensor
data and inside policy engine information. The usefulness
of a Modeler component in autonomic systems that support
utility functions is mentioned in [23], although the authors
are not specific about the learning algorithms that such a
component might use.

Quantitative analysis module This component enables
the policy engine to take full advantage of a quantitative
behavioural model that may be provided as part of the sys-
tem model in Figure 1 or, in the future, built by its machine
learning modules. The use of this module to support the im-
plementation of a powerful class of utility-function policies
represents the subject of a forthcoming paper [42].

3. Implementation

Two major choices influence the way in which an in-
stance of the architecture in Figure 1 is realised: the technol-
ogy used to represent the system model; and the technology
chosen for the implementation of the policy engine com-
ponents. This section describes how we made these choices
for a prototype implementation of the architecture and gives
prototype implementation details.

3.1. System model

For our prototype implementation, we chose to repre-
sent system models as plain XML documents that are in-
stances of a pre-defined meta-model encoded as an XML
schema. This choice that disregards some of the bet-
ter suited modelling technologies discussed in Section 2.3
(e.g., [25, 27, 29]) was motivated by the availability of nu-
merous “off-the-shelf” tools for the manipulation of XML
documents and XML schemas that are largely lacking for
the other technologies. In particular, by using existing
XSLT engines and XML-based code generators we short-
ened the prototype development time and avoided the need
to implement bespoke components for this functionality.

As illustrated by the UML class diagram in Figure 4,
our meta-model specifies a managed system as a named set
of resource definitions. Each resource definition (i.e., re-
sourceDefinition in the UML diagram) comprises a unique
identifier ID, a description and a set of resource properties
with their characteristics. A resource property has a data
type (i.e., propertyDataType), and is associated a unique

Figure 4. Meta-model of a managed system

ID and the metadata repository URL where its definition is
available. Several other property characteristics are defined
in the meta-model:

• modifiability—taken from the WS-ResourceMetadata-
Descriptor (WS-RMD) 1.0 specification [43], specifies
if the property is “read-only” or “read-write”;

• mutability—the WS-RMD MutabilityType [43] spec-
ifies if the property is “constant”, “mutable” or “ap-
pendable”;

• primaryKey—indicates whether the property is part of
the property set used to identify a resource instance
among all resource instances of the same type.

• subscribeability—specifies whether a client such as
the policy engine can subscribe to receive notifications
when the value of this property changes;
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3.2. Policy engine

The generality of the autonomic architecture described in
Section 2 allows the implementation of the reconfigurable
policy engine using different technologies, e.g., as a soft-
ware agent running on a data-centre server or a physical
device incorporated into an industrial robotic system.

Our prototype policy engine and the manageability adap-
tors enabling its interoperation with legacy resources were
implemented as web services in order to leverage the plat-
form independence, loose coupling and security features of
this technology. The runtime reconfiguration of the policy
engine necessitated the extensive use of techniques avail-
able only in an object-oriented (OO) environment:

• Dynamic generation of data types (i.e., classes) was re-
quired to support new types of resources when the pol-
icy engine was reconfigured by means of a new system
model.

• Runtime generation of web service proxies was re-
quired to enable the policy engine to interoperate with
new, resource-specific manageability adaptors.

• Reflection (i.e., an object-oriented programming tech-
nique that allows the runtime discovery and creation of
objects based on their metadata [44]) was heavily used
to access the values of the resource properties, both to
read their values once the policy engine obtained them
from the manageability adaptors and to set new values
for the modifiable properties.

• Generic programming (i.e., an OO programming tech-
nique enabling code to be written in terms of data types
unknown until runtime [45]) was used to encode most
of the functionality of manageability adaptors in a base
abstract class, and to obtain resource-specific manage-
ability adaptors by parameterising this abstract class
with the dynamically generated resource data types.

Based on these requirements, J2EE and .NET were selected
as candidate development environments for the prototype
engine, with .NET being eventually preferred due to its
better handling of dynamic proxy generation and slightly
easier-to-use implementation of reflection.

In order to ensure that one instance of the policy engine
can be configured to manage other policy engine instances
as required by our framework, we started by modelling the
policy engine as an instance of the system meta-model in
Figure 4. The resulting model (depicted in Figure 5) de-
fines the properties (i.e., the parameters) of the policy en-
gine, namely:

1. The policy evaluation period, in seconds (i.e., ’pe-
riod’).

Figure 5. Policy engine model
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Figure 6. XML schema for a policy engine “re-
source”

2. The model of the managed system (’system’). Note
that the ’propertyDataType’ of this policy engine prop-
erty (not shown in Figure 5 for the sake of conciseness)
is the system meta-model from Figure 4, in its XML
schema representation.

3. The set of policies to implement (’policySet’). Each
such policy is an instance of a complex data type
whose elements are described later in this section.

4. The locations of the resources to be managed (’re-
sourceUrls’), which for the current version of the pro-
totype are set explicitly (the use of a discovery tech-
nique [40] is intended for future versions).

A simple XSLT [46] (model) transformation that we im-
plemented was used to generate the “policy engine” XML

Figure 7. Policy engine resource (i.e., poli-
cyEngine) and manageability adaptor (i.e., Pol-
icyEngine)—class diagram

schema in Figure 6 from the policy engine model, then a
policyEngine C# class was generated automatically from
this schema using the off-the-shelf XML Schema Definition
(XSD) tool [47] (Figure 7).

Like for any other resource in our autonomic archi-
tecture from Figure 1, the parameters of the policy en-
gine are accessed through a manageability adaptor. As
shown in Figure 7, this adaptor (i.e., PolicyEngine) is a
subclass of ManagedResource< T >, the base class for
all our manageability adaptors. The generic abstract class
ManagedResource< T > comprises three web methods:

• SupportedResource returns the ID of the supported re-
source type.

• GetResources returns the list of all available resource
instances. The method takes as argument a list of re-
source property IDs, and only the values of these prop-
erties are assessed and returned to the caller, thus pre-
venting unnecessary resource property evaluation.

• SetResources takes as argument a list of resources of
the supported type, and assigns any new values spec-
ified by the caller for the resource properties declared
modifiable in the system model. The resources whose
properties need to be modified are uniquely identified
by the value of the resource properties marked as “pri-
mary key” components in the system model.
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These web methods rely on resource-specific methods de-
clared abstract in ManagedResource< T >, and which any
of its subclasses (including PolicyEngine) implements:

• GetRawResources builds a list of all available resource
instances. The values of the resource properties need
not be provided by this method.

• GetResourceProperty takes as arguments a resource
instance and the ID of a resource property, and ensures
that the property value is set in the resource object. The
method is used by GetResources to fill in the required
property values after obtaining a “raw” resource list
from GetRawResources.

• SetResourceProperties takes a resource object and en-
sures that the modifiable properties of the correspond-
ing real-world resource are assigned any new values
specified in the resource object.

The web methods of our prototype, web service imple-
mentation of the policy engine correspond to the high-level
sensors and effectors from the policy engine architecture in
Figure 3. These methods can be used to read as well as to
modify the engine parameters, ensuring that the parameters
of the engine can be set by any type of software component
that can be interfaced with a web service. For our case stud-
ies, we chose to implement a web-based administration tool
that allows the remote configuration of the policy engine
using a web browser (Figure 8), but this is by no means the
only option available.

The four policy engine parameters that our administra-
tion tool reads and modifies using the web methods pro-
vided by the PolicyEngine manageability adaptor are de-
scribed below. Note that these parameters are read by the
tool whenever its front-end web page (shown in Figure 8) is
loaded into a web browser, and modified when the adminis-
trator of the autonomic system uses the controls on this web
page to explicitly operate a change in the engine parameters.

System model This parameter is an instance the XML
system model described in Section 3.1. Changes to the ’sys-
tem’ property of the policy engine represent reconfigura-
tions of the engine for the management of new types of ICT
resources. This ability to specify the types of resources to
be managed by the policy engine at runtime (and to change
this specification as and when needed) represents a key fea-
ture of our autonomic computing architecture, and the rea-
son why we term the policy engine a reconfigurable policy
engine.3

3Clearly, other elements of an autonomic system implemented us-
ing our framework will undergo (re)configuration too, e.g., as a result
of implementing the policies supplied to the policy engine. Such self-
configurations are a defining characteristic of autonomic systems, and are
discussed in detail elsewhere [5, 6, 7, 10, 12].

Internally, this operation involves:

• The automated generation of data types (i.e., C#
classes) for the new types of ICT resources. The steps
involved in the generation of these classes are those
described above for the policy engine itself: first, the
XSLT (model) transformation mentioned earlier in this
section is applied to the newly supplied system model
and an XML schema for the new resource types is ob-
tained; then, the XSD tool [47] is employed to generate
the necessary classes.

• The automated generation of proxies for the manage-
ability adaptor web services associated with the new
resource types. In the .NET framework, this amounts
to generating a Web Service Description Language
(WSDL) file and two “discovery” files for each type of
manageability adaptor, and deploying these files into
a subdirectory of the policy engine. Templates for
each of these files are kept within the policy engine.
This enables the engine to generate the manageability
adaptor WSDL file for a new resource type by sim-
ply replacing a couple of placeholders in its template
WSDL file with the identifier and the XML-encoded
type for the new resource, respectively—both fields
being available from the system model. As concerns
the two “discovery” files, these are identical copies of
the templates maintained within the policy engine.

Resource URLs This parameter is a space-separated list
of URLs, each of which represents the address of a manage-
ability adaptor for a set of resources to be managed by the
policy engine. Changes to the resource URLs trigger the en-
gine to contact the manageability adaptors at the specified
addresses in order to establish the type of resources they ex-
pose. If these manageability adaptors exist and they support
an ICT resource type defined in the system model used to
configure the policy engine, then the policy engine will take
into account all resources exposed through these manage-
ability adaptors when implementing the user-supplied poli-
cies. Manageability adaptors associated with resource types
unknown to the engine are ignored until such time as a sys-
tem model defining these resource types has been provided
to the policy engine.

Policy set This parameter is a space-separated list of poli-
cies that the system administrator can type directly into
the web-based administration tool in Figure 8. Each of
these policies consists of three of the policy components de-
scribed in Section 2.4, i.e., scope, condition and action. The
fourth policy component (i.e., policy value) is not supported
by the current version of the policy engine.

Policy changes lead to a re-analysis of the policy set and
to its parsing into an internal format that makes the period-
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Figure 8. Snapshot of the web client used to configure the policy engine

ical evaluation of policies computationally efficient. Only
policies referring to known types of resources and manip-
ulating their properties in valid ways (e.g., a policy must
not attempt to modify a “read-only” resource property) are
accepted.

Period This parameter is an integer numerical value that
represents the policy evaluation period, expressed in sec-
onds.

The operators that the current version of the policy en-
gine supports within the policy scope, value, condition and
action expressions (cf. Figure 2) are the operators for the
manipulation of primitive data types and only a few of the
more sophisticated operators recommended in Section 2.4
(e.g., set comprehension and scheduling). Support for ad-
ditional operators is added on a regular basis as new case
studies are being explored.

Also, the current version of the policy engine comprises
only a subset of the policy engine components presented in
Section 2.5, namely the components that are shaded in Fig-
ure 3. These components were selected so as to speed up
the completion of a prototype that could be used to assess
the effectiveness of the framework, and to explore the fea-

sibility of our approach in an area in which no research has
been conducted so far, namely the runtime, model-based re-
configuration of autonomic computing policy engines.

4. Case study

This section presents two autonomic solutions for the al-
location of server capacity to a set of services, one employ-
ing action policies and taken from [1] and the other one us-
ing utility-function policies. This choice of a case study was
motivated by the importance that this real-world application
has had since the release of server-level capacity control
APIs such as [37, 48]. Additionally, our prior experience
with data-centre resource management [15] helped signifi-
cantly during the implementation of the two solutions, and
in the interpretation of the case study results.

Note that effective autonomic solutions for case studies
from other application domains were also developed using
our generic autonomic framework and its SOA implemen-
tation presented in this article, including dynamic power
management, adaptive control of cluster availability within
data-centres, and dynamic generation of web content. All
of these case studies are described in detail in [49].
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<system>
<name>server</name>
<resource>

<ID>service</ID>
<property>
<ID>name</ID>
<propertyDataType>

<xs:simpleType name="serviceName">
<xs:restriction base="xs:string"/>

</xs:simpleType>
</propertyDataType>
<mutability>constant</mutability>
<modifiability>read-only</modifiability>
<subscribeability>false</subscribeability>
<primaryKey>true</primaryKey>

</property>
<property>
<ID>priority</ID>
...

</property>
<property>
<ID>cpuAllocation</ID>
<propertyDataType>

<xs:simpleType name="serviceCpuAllocation">
<xs:restriction base="xs:int">
<xs:minExclusive value="0"/>
<xs:maxInclusive value="100"/>

</xs:restriction>
</xs:simpleType>

</propertyDataType>
<mutability>mutable</mutability>
<modifiability>read-write</modifiability>
<subscribeability>false</subscribeability>
<primaryKey>false</primaryKey>

</property>
<property>
<ID>cpuUtilisation</ID>
...

</property>
</resource>

</system>

Figure 9. XML model of the managed system

4.1. Server capacity allocation using action
policies

In order to test the SOA implementation of our au-
tonomic computing framework, we configured a running
instance of the policy engine from Section 3 to allocate
the CPU capacity of a server to a set of services of dif-
ferent priority, and subjected to variable workloads. The
only resource defined in the server model (Figure 9) was
service with four properties: a unique name, an inte-
ger priority, the percentage of the server CPU allocated
to the service (cpuAllocation) and the amount of CPU
utilised by the service, expressed as a percentage of its CPU
allocation (cpuUtilisation).

The policy depicted in Figure 8 allocates a percentage of
the CPU capacity of the server to each ’service’ resource, as
selected by the policy scope. The ’TRUE’ policy condition
requires that the policy action is applied at all times (i.e., in
line with the policy evaluation period of the engine). The
policy action is specified by means of an expression that
uses the SCHEDULE(R, ordering, property, capacity,
min, max, optimal) operator that

Figure 10. The server manageability adaptor

• sorts the resources in R in non-increasing order of the
comparable expressions in ordering;

• in the sorted order, sets the specified resource
property to a value never smaller than min or larger
than max, and as close to optimal as possible;

• ensures that the overall sum of all property values
does not exceed the available capacity.

Accordingly, the policy action

SCHEDULE(service, 〈service.priority〉,
service.cpuAllocation, 100, 15, 100, service.cpuAllocation+

5 ∗ HYSTERESIS(service.cpuUtilisation, 55, 80))

in Figure 8 will set the cpuAllocation property of all ser-
vices to a value between 15% and 100%, subject to the
overall CPU allocation staying within the 100% available
capacity. Optimally, cpuAllocation should be left un-
changed if 55 ≤ cpuUtilisation ≤ 85;4 decreased by
5(%) if cpuUtilisation < 55;5 and increased by 5(%) if
cpuUtilisation > 85.6 Note that this adjustment is per-
formed repetitively, with a period given by the policy eval-
uation period parameter of the policy engine.

Like the policy engine itself, the manageability adap-
tor used to interface the engine with the server was im-
plemented as a sub-class of ManagedResource< T >—
Figure 10.

The policy engine was then configured to manage re-
motely a server simulator running a high-priority ’premier’
service and a lower-priority ’standard’ service. The two ser-
vices handled simulated user requests with exponentially-
distributed inter-arrival time and normally-distributed pro-
cessing time. Figure 11 shows the change in the system

4The HYSTERESIS(val, lower, upper) operator used to achieve this
behaviour returns -1, 0 or 1 if val < lower, lower ≤ val ≤ upper or
upper < val, respectively.

5The current CPU allocation is underutilised in this case, so it is de-
creased to avoid waste of CPU capacity.

6In this case, the service is utilising almost all CPU allocated to it,
running the risk of becoming under-provisioned.
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parameters when the request inter-arrival time of the two
services was varied to simulate different workloads, and the
policy engine was configured to implement the policy de-
scribed earlier in this section; the system behaviour over the
time intervals a to h is described below:

a. Both services are lightly loaded (5000µs request inter-
arrival time) and have the minimum amount of CPU
allocated (i.e., 15% each).

b. The load increases for the standard service, and its al-
located CPU is increased by the policy engine accord-
ingly.

c. For a brief period of time, the standard service uses its
allocated CPU completely; no requests timeout though
as its CPU allocation is increased swiftly.

d. The premium service workload starts to increase, and
the policy engine increases its CPU allocation. Ac-
cordingly, the standard service starts to get less CPU.

e. As the workload for the premium service peaks and
the policy engine schedules additional CPU capacity
for this service, the standard service is allocated insuf-
ficient CPU and some of its client requests time out.7

f. The inter-arrival time for the premium service in-
creases, and some of the CPU capacity allocated to
it during the previous time interval is re-deployed by
the policy engine to the standard service. No more re-
quests time out.

g. Under constant workload, the CPU allocation is mostly
stable.

h. To explore the role of the hysteresis, we re-
placed the hysteresis term in the policy action with
HYSTERESIS(service.cpuUtilisation, 80, 80), thus
eliminating the hysteresis. This led to significant oscil-
lations in the CPU capacity allocated to the services.
The reinstatement of the original policy after this time
interval brings the system back into a stable state.

The policy evaluation period was set to 3 seconds for this
experiment, so that the system could self-adapt to the rapid
variation in the workload of the two services. This allowed
us to measure the CPU overhead of the policy engine, which
was under 1% with the engine service running on a 1.8 GHz
Windows XP machine. In a real scenario, such variations
in the request inter-arrival time are likely to happen over
longer intervals of time, and the system would successfully
self-configure with far less frequent policy evaluations.

Note also that since the policy engine service is imple-
mented as a managed resource, its policy evaluation period

7Requests time out after spending T=5s in a service request queue.

can be adjusted by another policy engine instance, so that
it stays in step with the rate of change in the request inter-
arrival time—a scenario that we are in the process of exper-
imenting with.

4.2. Server capacity allocation using utility-
function policies

We showed in the previous section that our framework
can be used successfully to develop a realistic autonomic
solution. However, the cost-effectiveness of this solution is
limited by its usage of action policies designed by a system
administrator with in-depth knowledge about the system re-
sources. In this section, we describe how the same self-
management capability can be realised by means of utility-
function policies that can be designed by someone aware
of the high-level business goals of the system but who has
limited knowledge about its internal operation.

To implement utility-function policies, the policy engine
needs an understanding of the behaviour of the system and
its resources. Given a resource, we define its state s as the
vector whose elements are the read-only properties of the
resource, and its configuration c as the vector comprising its
modifiable (i.e., read-write and write-only) properties. Let
S and C be the value domains for s and c, respectively.8 A
behavioural model of the resource is a function

behaviouralModel : S × C → S, (1)

such that for any current resource state s ∈ S and for any re-
source configuration c ∈ C, behaviouralModel(s, c) rep-
resents the future state of the resource if its configuration is
set to c.

In practice, the policy engine works with an approxima-
tion of the behavioural model that consists of a set of dis-
crete values of the behaviouralModel in (1)—an approach
that works well with the continuous behavioural models
that are typical to most real-world systems. As a further
simplification, any state and configuration components that
play no role in the resource behaviour (e.g., the name and
priority properties of the service resource in our sys-
tem) are disregarded in the behavioural model approxima-
tion that the policy engine operates with.

There are multiple ways in which the policy engine can
acquire the behavioural model required to support utility-
function policies. The two extreme ones are to have this
model supplied by the resource itself and to have the model
generated automatically by the machine learning modules
within the policy engine (see Figure 3). An intermediate
option is to have an initial behavioural model supplied to
the policy engine, and further refined by its machine learn-
ing modules. Our prototype policy engine does not in-
clude the machine learning modules, hence the required

8Note that S and C are fully specified in the system model.
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Figure 11. Snapshot of a typical server simulation experiment

behavioural model is provided by the manageability adap-
tor for the service resource. This behavioural model
(Figure 12) describes how the response time of a service
varies with the request inter-arrival time and the percentage
of server CPU allocated to the service, and was obtained
from multiple runs of the server simulator in which the av-
erage service response time was recorded for 920 equidis-
tant points covering the entire (interArrivalTime,
cpuAllocation) value domain.

To use utility-function policies in our autonomic solu-
tion, we added several new service properties to the sys-
tem model devised in the previous section (Figure 13):

• responseTime, the service response time, mea-
sured in milliseconds and averaged over the past one-
second time interval;

• interArrivalTime, the mean request inter-arrival
time;

• behaviouralModel, an approximation of the ser-
vice behavioural model.

We then defined a utility function that models the business
gain associated with running n > 0 services with different
levels of service:

utility(R) =
∑
r∈R

r.priority ∗min(1000,

max(0, 2000− r.responseT ime)), (2)

where R is the set of service resources. Figure 14 depicts
the utility function for a server running a “premium” service
with priority 100 and a “standard” service with priority 10.

The policy implemented by the autonomic system was
defined by means of the MAXIMIZE(R, utility, property,
capacity, min, max, model) operator that uses the infor-
mation about the system behaviour encoded in model to
set the value of the specified resource property for all re-
sources in R such as to:
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Figure 12. Service behavioural model

Figure 13. Service model for Section 4.2

• maximize the value of the utility function;

• ensure that the value of property stays between min
and max, and that the sum of the property values
across all resources in R does not exceed the available
capacity.

The arguments of MAXIMIZE were specified as
shown in Table 1, in order to supply the policy en-
gine with the definition of the utility function, and to
link the responseTime, interArrivalTime and
cpuAllocation properties of a service resource to
the components of its behaviouralModel property.
Each time it evaluates the utility-function policy, the pol-
icy engine uses this information to select the elements from
the behavioural model that are in the proximity of the cur-
rent state of the system; the Euclidean metric is used for
this calculation. The new configuration for the system is
then chosen as the one associated with the selected element
that maximizes the value of the utility function.

Figure 14. Utility function

Note that the policy engine could be required to
synthesise the behavioural model itself by spec-
ifying the model argument of MAXIMIZE as
“service.responseT ime(service.interArrivalT ime,
service.cpuAllocation)”, so as to indicate only that the
service response time depends on the request inter-arrival
time and the CPU allocation for the service. This syntax
will be used when machine learning support is added to the
policy engine prototype.

Figure 15 illustrates a typical experiment in which the
utility-function policy described in this section was used to
manage the allocation of CPU to the same two services as
in Section 4.1. The experimental results resemble those ob-
tained when an action policy was used (Figure 11), there-
fore confirming the effectiveness of our approach to devel-
oping autonomic solutions that use utility-function policies
in conjunction with a behavioural model of the managed
resources. The few differences between the two sets of ex-
perimental results indicate that the autonomic solution that
uses utility-function policies is actually superior to the solu-
tion based on action policies, as shown by these differences
across the time intervals a to e in Figure 15:

a. Shortly after the utility-function policy is supplied to
the policy engine, the CPU allocation is decreased to
the minimum level that can ensure the optimal level of
service. When the action policy was used, CPU varia-
tions of such magnitude required multiple policy eval-
uations.

b. The CPU allocated to the standard service increases in
line with its workload.

c. The CPU allocation for the premium service also in-
creases, but the response time of both services can still
be maintained at values that maximize the utility func-
tion.
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Table 1. Arguments of the MAXIMIZE operator for Section 4.2.

argument value
R service
utility SUM(service.priority ∗MIN(1000, MAX(0, 2000− service.responseT ime)))
property service.cpuAllocation
capacity 100
min 15
max 100
model service.responseT ime(service.interArrivalT ime, service.cpuAllocation) =

service.behaviouralModel.responseT ime(
service.behaviouralModel.interArrivalT ime, service.behaviouralModel.cpuAllocation)

d. The amount of CPU required to satisfy the increased
demand for the premium service leaves insufficient
CPU capacity for the standard service to make any
contribution to the utility function, hence it is allocated
the minimum amount of CPU (15%). When the ac-
tion policy was used, all CPU capacity not given to
the premium service was allocated to the standard ser-
vice even if the standard service was of no use to the
business. In contrast, the utility-function policy allo-
cates additional CPU to the standard service only when
enough capacity is available to bring this service into
a region of operation in which it can contribute to the
utility function.

e. The response time for the standard service is recover-
ing slowly, as it takes time to drain the request queue
built during the previous time interval. The use of an
enhanced behavioural model that takes into account
the length of the service request queue should speed
up this recovery.

f. The CPU allocations for the two services are constant
over long periods of time. With action policies, this
could be achieved only by explicitly including a hys-
teresis construct in the policy specification.

Note that in order to outperform solutions based on ac-
tion policies (as demonstrated by our case study), utility-
function policies need to employ “adequately specified”
utility functions. From our experience with develop-
ing policy-based autonomic solutions for data-centre re-
source management, devising effective utility functions for
medium-sized applications requires in-depth knowledge of
the application domain and careful validation before de-
ployment within a production system, but is a task that can
be completed successfully by an experienced system admin-
istrator. When optimal utility functions are sought, multiple
(and possibly conflicting) system objectives need to be cap-
tured by these functions and/or large-scale, complex sys-
tems are involved in the intended autonomic applications,

devising the utility functions is much more difficult. The
development of techniques for the construction of such util-
ity functions represents an active research area in autonomic
computing.

5. Related work

The autonomic infrastructure proposed in [50] is
retrofitting autonomic functionality onto legacy systems by
using sensors to collect resource data, gauges to interpret
these data and controllers to decide the “adaptations” to be
enforced on the managed systems through effectors. This
infrastructure was successfully used to monitor, analyse and
control legacy systems in applications such as spam detec-
tion, instant messaging quality-of-service management and
load balancing for geographical information systems [51].
Our generic autonomic framework addresses several key ar-
eas that are not supported by the approach in [50, 51]. By
using a system model for the configuration of its policy en-
gine, our architecture can be used for the autonomic man-
agement of heterogeneous types of resources. Moreover,
our managed system can include resources beyond the soft-
ware components handled by the infrastructure in [50].

In [52], the authors define an autonomic architec-
ture meta-model that extends IBM’s autonomic computing
blueprint [13], and use a model-driven process to partly au-
tomate the generation of instances of this meta-model. Each
instance is a special-purpose organic computing system that
can handle the use cases defined by the model used for
its generation. Our general-purpose autonomic architecture
eliminates the need for the 19-step generation process de-
scribed in [52] by using a policy engine that can be dynam-
ically reconfigured to handle any use cases encoded within
its system model and policy set.

A number of other projects have investigated isolated as-
pects related to the development of autonomic systems out
of non-autonomic components. Some of these projects ad-
dressed the standardisation of the policy information model,
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Figure 15. Utility-function results

with the Policy Core Information Model [34] represent-
ing the most prominent outcome of this work. Recent ef-
forts such as Oasis’ Web Services Distributed Management
(WSDM) project were directed at the standardisation of the
interfaces through which the manageability of a resource is
made available to other applications [25]. An integrated de-
velopment environment for the implementation of WSDM-
compliant interfaces is currently available from IBM [26].

In a different area, expression languages were proposed
for the specification of policy conditions and actions, and
used to implement a range of policies [30, 33, 53, 54]. In
addition to the development of standards and technologies,
complete autonomic computing solutions have been pro-
duced recently [15, 37, 48], typically for the management
of specific systems, and with limited ability to function in
different scenarios from those they were originally intended
for.

6. Conclusion

We described the SOA-based implementation of a
generic framework intended to simplify significantly the de-
velopment of autonomic systems, and thus to establish au-
tonomic computing as a cost-effective approach to handling
the spiralling complexity of today’s computer systems. The
ability to dynamically reconfigure the policy engine em-
ployed by the framework ensures that it can be used to
build self-managing systems out of legacy and autonomic-
enabled ICT resources whose characteristics are unknown
until runtime, all without any modification to these re-
sources or the policy engine.

Experimental work was carried out to validate the ef-
fectiveness of the SOA implementation of our autonomic
computing framework. In this article, we presented a case
study involving the development of two autonomic solu-
tions for the allocation of server capacity to services of dif-
ferent priorities and varying workloads. The experimental
results showed that our general-purpose framework could
perform the planned management task successfully, and
similarly to a dedicated commercial system for data-centre
resource management [15, 55]. However, unlike the com-
mercial resource-management system, our novel approach
has the unique ability to handle resources whose types are
unknown at implementation and deployment time, there-
fore enabling the cost-effective development of autonomic
solutions across a broad variety of application domains—
additional case studies from other application domains are
described in [49].

The experimental results from the case studies presented
in this article and in [49] suggest that the overheads asso-
ciated with the evaluation of autonomic computing policies
for realistic applications involving small ICT systems are
acceptable. Thus, the realisation of relatively sophisticated
utility-function policies far outweighs the observed utilisa-
tion of 1-2% of the CPU capacity and of a negligible amount
of the memory of a low-end server. Furthermore, notice
that this server need not be part of the managed system if
self-management capabilites are added to a production ICT
system that might be sensitive to such overheads: given its
implementation as a web service, the policy engine can be
deployed on a dedicated server. The only components to be
deployed on the production system when this approach is
used are the low-footprint manageability adaptors.

Clearly, the overhead levels mentioned above are char-
acteristic of applications involving small to medium-sized
ICT systems similar to those considered in our cases stud-
ies. Further work is planned to assess the scalability of the
framework to large and very large ICT systems like those
encountered in today’s data centres.

Ongoing work is also dedicated to augmenting the SOA
implementation by adding the policy engine components
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and functionality specified by our framework but which are
not supported by its current version (cf. Figure 3). In partic-
ular, we are looking at ways to integrate machine learning
[41] into the prototype, along the lines of the work described
in [56, 57]. Another research topic requiring investigation
is the automated synthesis of effective autonomic comput-
ing policies, for instance for the scenario in which one in-
stance of the policy engine is tasked with managing another
instance of the same architecture, as described in the article.

Finally, devising “good” utility-function policies for
complex ICT systems and avoiding conflicts within sets of
such policies represent open research questions for the au-
tonomic computing community. It is hoped that the avail-
ability of generic development frameworks such as the one
described in this article will help address these questions
by re-directing much of the effort involved in developing
an autonomic system away from the implementation of its
components and towards the design and analysis of its au-
tonomic computing policies.
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