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Fibre-optical parametric devices, including two candidates fibre-optical parametric amplifier and
optical phase conjugator, play crucial roles in the future of optical communications. They offer
solutions for high gain with ultra-wide bandwidth, low noise and all-optical mitigation of optical
channel impairments. However, the stimulated Brillouin scattering effect poses a fundamental
challenge as it limits the pump power these devices need. Among suppression techniques,
pump-phase modulation is widely used because of its modest cost although it introduces a
temporal variation in the devices’ transfer functions. In this thesis, we propose digital signal
processing algorithms, including both parametric and non-parametric approaches, which can
compensate for penalties induced by pump-phase modulation schemes. We focus on the linear
and nonlinear regression tasks, where the latter is solved by kernel methods. By carrying
out numerical simulations, we prove the effectiveness of our proposed schemes against the
existing compensation algorithms. Therefore, we believe the proposed algorithms will unlock
the potentials of optical parametric devices, simplify the experimental design and become a
vital part of parametric devices enabled transmission systems.
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Chapter 1

Introduction

1.1 Motivation

The increasing growth of data traffic has driven the demand for more bandwidth and higher

transmission speeds, accelerating advancements in optical communication systems. While tra-

ditional optical devices, such as semiconductor lasers and conventional amplifiers, have been

able to address many of these needs, they face inherent limitations in bandwidth and tunabil-

ity. These constraints pose significant challenges to the performance and scalability of optical

transmissions, making it difficult to keep pace with the rapidly growing data demands of future

networks.

Fibre-optical parametric devices, which utilise the fibre’s nonlinear optical properties, es-

pecially four-wave mixing (FWM) effect, have emerged as promising candidates to overcome

existing limitations of traditional systems and advance the next generation of optical networks.

Two notable examples of such devices are the optical phase conjugator (OPC), used for signal

recovery and distortion compensation, and the fibre-optical parametric amplifier (FOPA), which

offers a novel approach to signal amplification. Both devices have attracted significant research

attention due to their wide range of advantages and have strong potential to become pivotal

technologies in future optical communication systems. Their advantages include the ability to

operate over a broad spectral range, enabling higher data throughput and more efficient use

of the available optical spectrum. The FOPA, in particular, can achieve very high gain with low

noise figures, making it an effective solution for significantly extending transmission reach. The

OPC offers an interesting approach to signal processing by optically compensating for signal
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distortions along the transmission link. Both can be dynamically tuned across a wide range of

wavelengths, making them suitable for wavelength-division multiplexing (WDM) systems.

While their potential is immense, fundamental challenges, such as stimulated Brillouin scat-

tering (SBS), have hindered the full integration of fibre-optical parametric devices into existing

optical systems. Significant progress has been made in SBS suppression research for fibre-

optical parametric devices, with several key milestones achieved. In additional to proposed

techniques related to fibre design and fabrication, the introduction of phase modulation to the

pump source in fibre-optical parametric devices has emerged as a widely adopted and effective

approach due to its efficiency and relatively low implementation cost. However, this approach

presents its own challenge, which causes temporal variation in the device’s transfer function,

potentially leading to signal degradation, especially in systems using coherent optical transmis-

sion. Designing such systems while ensuring the signal quality, particularly in scenarios with

cascaded devices like the cascaded FOPA link, remains a complex and ongoing challenge.

The thesis aims to mitigate this problem through the advancements in digital signal process-

ing (DSP). By analysing the nature of the signal distortion induced by pump-phase modulation,

we propose DSP algorithms, including both parametric and non-parametric approaches, to es-

timate and mitigate signal distortion in fibre-optical parametric devices-based systems. These

proposed DSP algorithms, which are designed for both OPC and FOPA, will enable the po-

tential for further SBS suppression improvement using the pump-phase modulation approach

while ensuring robust end-to-end system performance. These solutions will pave the way for

more effective integration of fibre-optical parametric devices into modern optical networks.

1.2 Thesis outline

The motivation behind designing DSP algorithms for fibre-optical parametric devices-based

transmission, along with the structure of this thesis, is outlined in chapter 1.

Following this introduction, chapter 2 presents the necessary background knowledge and

explains the operating principles of FOPA and OPC. This chapter also reviews existing tech-

niques for SBS suppression aimed at enhancing their efficiency. Notably, a novel approach for

optimising the pump-phase modulation parameters is proposed, along with calculations demon-

strating the increase in the SBS power threshold.

The fundamentals of key DSP blocks are covered in chapter 3. This chapter discusses

L. H. Nguyen, PhD Thesis, Aston University 2024 2



1. Introduction

existing DSP algorithms, including chromatic dispersion compensation (CDC) and carrier phase

recovery (CPR), which are essential to support the proposed algorithms for optical transmission

using fibre-optical parametric devices. We will also cover the theory of the kernel-based method

framework, which will be used in the latter part of the thesis.

In chapter 4, we develop a compensation scheme for mitigating both signal phase and

amplitude distortions in transmission systems using mid-link OPC. The proposed algorithm is

compared with phase-only compensation schemes to highlight the critical importance of ad-

dressing distortions in both signal domains.

In chapter 5, we propose an online digital compensation scheme for the optical system

with cascaded FOPA. The pump-dithering distortion in this scenario requires a more detailed

investigation, particularly their evolution across multiple cascaded stages. Despite this chal-

lenge, the proposed approach demonstrates an effective improvement in signal quality over the

conventional CPR algorithm.

In chapter 6, we apply the kernel-based methods to advance the compensation algorithm.

As a non-parametric learning model, this approach offers more flexibility within the DSP chain

by providing a compensation solution without prior knowledge of the pump-phase modulation

frequencies. Our compensation algorithms are done in both real and complex domains, with

the latter offering more potential for both amplitude and phase compensation.

Finally, we summarise the key findings of this thesis in chapter 7 and outline potential areas

for future research.
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Chapter 2

Fibre-optical parametric devices

Fibre-optical parametric devices are optical components that leverage parametric processes

within fibre to perform various functionalities. A parametric process involves nonlinear interac-

tions where the properties of light are modified by interactions with other optical waves, driven

by the effects of nonlinear fibre. For efficient interactions, the phase-matching condition must

be satisfied, which is significantly influenced by the fibre’s dispersion characteristics. There-

fore, to fully understand the operating principle of fibre-optical parametric devices, it is crucial

to first discuss the fibre’s chromatic dispersion and nonlinearity, as these are fundamental fibre

properties affecting performance.

We will then examine different types of fibre-optical parametric devices, starting with FOPA.

This analysis involves deriving its behaviour under different pump schemes based on the fibre

parameters, allowing us to assess its performance and optimise its gain spectrum effectively.

We will also discuss the OPC, focusing on its behaviour and its application in mitigating signal

impairment.

Another major topic in this chapter is the SBS effect, which imposes fundamental limitations

on the operation of fibre-optical parametric devices. We will explain its principle and review

existing suppression techniques, focusing on the pump-phase modulation approach. This tech-

nique provides significant suppression with a relatively modest cost. Finally, we will propose an

optimisation procedure, which is a part of our published ONDM conference paper [4] and Optics

Express article [10], for the selection of pump-phase modulation parameters. This procedure

aims to achieve a significant SBS power threshold increase while minimising the modulating

bandwidth.
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2.1 Single-mode fibre properties

While fibre-optical parametric devices can also be implemented in multi-mode fibre (MMF) [12],

they encounter challenges due to intermodal dispersion effects, where different fibre modes

travel at varying speeds, leading to reduced coherence in the parametric processes. In con-

trast, the single-mode fibre (SMF), which supports only a single propagation mode, simplifies

the design of these processes, making them more predictable and easier to optimise. Further-

more, SMF is well-established and widely used in telecommunications and other applications,

contributing to its accessibility and reliability. As a result, most advancements in fibre-optical

parametric devices have been achieved using SMF. Therefore, in this chapter, we will focus on

studying the properties of SMF and their implications for fibre-optical parametric devices.

Fibres used in transmission links exhibit power attenuation, characterised by a loss coeffi-

cient, denoted as ϱ, with the value for SMF typically around 0.2 dB/km at 1550 nm. However, for

this discussion, we will assume that fibres, including highly nonlinear fibre (HNLF) used within

the fibre-optical parametric devices, are ideally lossless. Under this assumption, we will delve

into the principles of chromatic dispersion, which plays a crucial role in shaping the gain spec-

tra of the fibre-optical parametric devices, and then fibre nonlinearity, with a particular focus on

FWM, the fundamental mechanism driving the operation of the fibre-optical parametric devices.

2.1.1 Chromatic dispersion

For an optical wave with angular frequency ε propagating along a lossless SMF 1, the electric

field component at a distance z and time t, denoted as E(z, t), can be expressed as [13]

E(z, t) = E(0, t)ej(ωz→εt), (2.1)

where ω = 2ςn/φ is the propagation constant or wavevector, with φ representing the wave-

length and n the fibre’s refractive index. It is important to note that ω depends on the angular

frequency ε, and is also denoted as ω(ε).

For a point where the phase ωz → εt remains constant, the velocity at this point, known

as the phase velocity, is defined as vp = dz/dt = ε/ω = c/n, where c is the speed of light

in a vacuum. The group velocity, which describes the speed of the overall pulse envelope, is

1Assuming a lossless SMF simplifies the analysis, especially for short transmission distances, which
are common in the design of fibre-optical parametric devices. In such cases, the signal attenuation due
to fibre loss is negligible. Therefore, the lossless assumption is made to isolate the effects of dispersion,
avoiding the additional complexity of signal attenuation in the analysis.
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defined as vg = dε/dω. When different spectral components of the wave travel at different

velocities, they arrive at different times. This variation in speed causes a short optical pulse,

which contains multiple frequency components, to experience pulse broadening. Chromatic

dispersion, which describes the dependence of the optical fibre’s response on the frequency

ε, is therefore a critical factor in the propagation of modulated signals. To quantify chromatic

dispersion effects, we define ω(m) = dmω/dεm, with the group velocity given by vg = 1/ω(1).

Optical pulse dispersion occurs when ω(1) changes with frequency ε, i.e. the second-order

derivative, ω(2)
↑= 0; this parameter is known as group-velocity dispersion (GVD) parameter.

When wavelength is considered rather than frequency, the effect is usually quantified by the

chromatic dispersion coefficient, which is defined as

D = →
2ςcω(2)

φ2
. (2.2)

The wavelength at which ω(2) = 0 is called the zero-dispersion wavelength, denoted as

φ0. In practice, φ0 can vary along the fibre length due to variations in the fibre core diameter,

typically caused by imperfections in the fabrication process. Moreover, temperature fluctuations

can also affect the value of φ0. To minimise these variations, shorter fibre lengths are often

preferred. Therefore, any reduction in fibre length must be compensated by an increase in

pump power2. Achieving a high pump power thus becomes a critical aspect of device design, a

topic that will be explored in the second half of this chapter.

When the pulse signal propagates at the wavelength close to φ0, it experiences minimal

distortion. The distortion, when ω(2) = 0, is caused by the higher-order dispersion terms, such

as third-order ω(3) or fourth-order ω(4) dispersion parameters. These higher-order terms, along

with the relative frequency locations of the pump signals concerning φ0, determine the phase-

matching conditions and thus determine the frequency response of the fibre-optical parametric

devices.

2.1.2 Fibre nonlinearity

The response of an optical medium to an intense light wave is highly dependent on the optical

intensity I. This nonlinear behaviour, driven by the third-order susceptibility ↼(3), is commonly

known as third-order nonlinearity or Kerr nonlinearity. The fibre refractive index can be ex-

2Using shorter fibres necessitates higher pump power to achieve the desired performance. We will
see later that the transfer functions of fibre-optical parametric devices are dependent on the product of
the fibre length and the pump power.
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pressed as [12]

n = n0 + n2I, (2.3)

where n0 is the refractive index under weak-field conditions and n2 is the nonlinear refractive

index. For convenience, an alternative parameter, the nonlinear coefficient ↽, is often used and

is defined as [12]

↽ =
2ςn2

φAe!
, (2.4)

where Ae! is the fibre’s effective area, which represents the cross-sectional area over which

the optical power is distributed in the fibre core. As discussed later, the nonlinear coefficient ↽

is a key parameter in determining the maximum gain of fibre-optical parametric devices. Similar

to pump power, a higher ↽ is desirable, because it enables the use of shorter fibre lengths,

thereby reducing the longitudinal variation of the zero-dispersion wavelength φ0.

In a typical SMF, ↽ is around 1→2 (W · km)→1, while in a HNLF, ↽ is typically in the range of

20→30 (W · km)→1 [14]. The HNLF achieves this high nonlinear coefficient due to their reduced

fibre core radius, which decreases Ae! in Eq. (2.4) and the increased n2, which is enhanced by

incorporating a higher proportion of germanium dioxide in the fibre core material. As a result,

HNLF is often used as the nonlinear medium for fibre-optical parametric devices.

Recall that ω = 2ςn/φ, so any modulation of the refractive index n (due to the Kerr effect)

leads to a corresponding modulation of the propagation constant ω, which in turn causes phase

modulation of the optical signal. This phase modulation can occur in two primary forms: self-

phase modulation (SPM), where the effect is due to the signal itself, or cross-phase modulation

(XPM), where it is influenced by other co-propagating waves. When phase modulation occurs in

the presence of multiple optical waves, their interaction generates new frequency components

through the process known as FWM. The interaction of typically three optical waves gives rise

to a fourth wave, with the energy exchanged across different frequencies. We will discuss the

principles of FWM in the context of fibre-optical parametric devices in the following section.

2.2 Fibre-optical parametric amplifier

Unlike conventional optical amplifiers that rely on stimulated emission such as the Erbium-

doped fibre amplifier (EDFA), the FOPA leverages the nonlinear properties of fibre to amplify

optical signals, offering enhanced capabilities for optical networks. This nonlinear mechanism
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enables FOPA to surpass conventional amplifiers in certain key aspects. One of its most no-

table advantages is its adjustable gain spectrum. The shape of the optical gain spectrum can

be tailored by tuning the fibre dispersion properties, allowing bandwidths to extend to several

hundred nanometers, far exceeding the 35nm bandwidth of an EDFA[15]. By carefully de-

signing the fibre and selecting the appropriate pump wavelength, the centre frequency can be

adjusted to fully exploit this broad gain spectrum [16], whereas EDFA offers only limited tuning

capabilities. Additional advantages of FOPA include high gain [17] and a low noise figure. In its

phase-insensitive configuration, FOPA can achieve a noise figure below 4 dB, comparable to

that of EDFA [12], and, when operated in a phase-sensitive amplification mode, it can approach

the quantum limit of sub-3 dB [18]. Furthermore, optical parametric processes in FOPA en-

able applications beyond amplification, such as wavelength conversion and phase conjugation,

which are essential for the design of OPC, as discussed in a later subsection.

In this section, we will explore its fundamental operating principle based on FWM, derive its

transfer function and then examine its gain spectra under different pump schemes. In a FOPA

setup, a strong pump signal co-propagates with the input signal along a HNLF, as illustrated

in Fig. 2.1. The nonlinear interaction between the intense pump wave and the signal wave

generates new frequency components, resulting in the amplification of the signal. After this

interaction, an optical filter is used to extract the amplified signal from the other generated

components.

Optical 
filter

Pump laser

Input signal

Output signal

HNLF

Figure 2.1: General scheme of fibre-optical parametric amplifier.

A crucial assumption for the following analysis is that all interacting waves share the same

state of polarisation and maintain it throughout the entire fibre length. We begin by examining

the non-degenerate FOPA scenario, illustrated in Fig. 2.2(a), where two distinct pump waves

at frequencies ε1 and ε2 are present along with a signal at frequency ε3. As a result of the

FWM process, a new wave, known as the idler, emerges at frequency ε4, satisfying the relation

ε1 + ε2 = ε3 + ε4. In terms of photon exchange, two photons at pump frequencies combine

to amplify the signal photon, while simultaneously generating the idler photon. Introducing

the central frequency εc = (ε1 + ε2)/2, this relation implies that the signal ε3 and idler ε4
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are symmetric with respect to εc. The degenerate FOPA scenario, depicted in Fig. 2.2(b),

represents a special case of this interaction where both pumps have identical frequencies, i.e.

ε1 = ε2 = εc. In this case, the pump loses a photon pair to the signal and the idler.

!! !"!# !$!%

Pump Pump

Signal Idler

!# !! = !"

Pump

Signal Idler

!$

(a) (b)

Figure 2.2: Diagram of frequency locations in four-wave mixing in two scenarios: (a) dual-pump FOPA
and (b) single-pump FOPA.

The phase-matching condition, which ensures momentum conservation, is given by !ω ↭
ω3 + ω4 → ω1 → ω2 = 0, where ωk represents the wavevector of the wave at frequency εk. In

the single-pump scenario, the linear phase mismatch simplifies to !ω ↭ ω3 + ω4 → 2ω1 = 0.

Since FWM is a phase-sensitive process, satisfying the phase-matching condition is crucial for

achieving efficient parametric amplification.

Assuming negligible GVD effects on the signal envelopes and a constant nonlinear coeffi-

cient ↽ applied to all nonlinear interactions, the propagation of four interacting waves along the

nonlinear fibre in the two-pump FOPA scenario can be described as follows [12]

dA1

dz
= j↽



|A1|
2A1 + 2

4∑

i=1, i ↑=1

|Ai|
2A1 + 2A3A4A

↓

2e
j”ωz



 , (2.5)

dA2

dz
= j↽



|A2|
2A2 + 2

4∑

i=1, i ↑=2

|Ai|
2A2 + 2A3A4A

↓

1e
j”ωz



 , (2.6)

dA3

dz
= j↽



|A3|
2A3 + 2

4∑

i=1, i ↑=3

|Ai|
2A3 + 2A1A2A

↓

4e
→j”ωz



 , (2.7)

dA4

dz
= j↽



|A4|
2A4 + 2

4∑

i=1, i ↑=4

|Ai|
2A4 + 2A1A2A

↓

3e
→j”ωz



 , (2.8)

where Ai is the slowly varying envelope of the wave at frequency εi. In the single-pump

FOPA scenario, a special case where ε1 = ε2, we can substitute A2 in Eq. (2.5) with A1.

Consequently, the equations for the third and fourth waves are given by [12]
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dA3

dz
= j↽



|A3|
2A3 + 2

4∑

i=1, i ↑=3

|Ai|
2A3 + (A1)

2A↓

4e
→j”ωz



 , (2.9)

dA4

dz
= j↽



|A4|
2A4 + 2

4∑

i=1, i ↑=4

|Ai|
2A4 + (A1)

2A↓

3e
→j”ωz



 . (2.10)

In each of the equations of Eq. (2.5) to Eq. (2.10), the first term on the right-hand side

represents the SPM induced by the wave itself, while the second represents the XPM induced

by other co-propagating waves. The final term in each above equation represents the FWM

effect, which involves the generation of a fourth wave due to the interaction among three other

waves.

2.2.1 Dual-pump scheme

In this section, we analyse the equations from Eq. (2.5) to Eq. (2.8), which describe the non-

degenerate FOPA involving two distinct pump waves. By solving these equations for A3, we

derive the transfer function of the FOPA, defined as the ratio of the output signal to the input

signal, allowing us to plot the FOPA gain spectrum. We then discuss the selection of key

parameters to achieve the desired power gain and a flat-top gain profile.

In the absence of pump depletion, the two pump powers are assumed to remain constant,

i.e. P1(z) = P1 and P2(z) = P2. Consequently, the signal and idler powers are much lower

compared to the pump levels. We also assume that the initial phases of all pump waves are

equal to zero, i.e. A1(0) =
↓
P1 and A2(0) =

↓
P2. In this case, the SPM and XPM terms in

Eqs. (2.5) and (2.6) dominate over the FWM terms. The propagation equations of the pump

waves can be simplified to

dA1

dz
= j↽(P1 + 2P2)A1, (2.11)

dA2

dz
= j↽(P2 + 2P1)A2. (2.12)

Solving these equations yields the solutions A1(z) = A1(0)ejω(P1+2P2)z and A2(z) =

A2(0)ejω(P2+2P1)z. For Eqs. (2.7) and (2.8), which correspond to the signal and idler, we

assume no pump depletion and neglect the SPM terms and the XPM terms between the signal

A3 and the idler A4. This simplification leads to
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dA3

dz
= jp3A3 + jr3A

↓

4e
jq3z, (2.13)

dA4

dz
= jp4A4 + jr4A

↓

3e
jq4z, (2.14)

where p3 = p4 = 2↽P0, r3 = r4 = ↽P0 and q3 = q4 = 3↽P0 →!ω. It is often convenient to

denote the total pump power as P0 = P1 + P2, assuming a symmetric pump condition where

P1 = P2. Since our focus is on the signal at the FOPA output, we will temporarily leave Eq.

(2.14), which describes the idler. By defining the total wavevector mismatch as

⇀ ↭ p3 + p↓4 → q3 = !ω + ↽P0, (2.15)

and introducing the variable transformation C3 = A3e
j(ω

2→p3)z, Eq. (2.13) simplifies to [12]

d2C3

dz2
→ g2C3 = 0, (2.16)

where the parametric gain coefficient g is defined as

g =

√
(↽P0)2 →

(⇀
2

)2
. (2.17)

We observe that ⇀ in Eq. (2.15) arises from the linear wavevector mismatch, !ω, as well

as the second term, !ωNL ↭ ↽P0, which can be interpreted as the nonlinear wavevector

mismatch. The general solution of Eq. (2.16) has the form

C3 = M3e
gz +N3e

→gz, (2.18)

where M3 and N3 are determined by the initial conditions. To find them, we first take the

derivative of the above equation and obtain

dC3

dz
= g

(
M3e

gz
→N3e

→gz
)
. (2.19)

Using Eqs. (2.18) and (2.19) and letting z = 0, we solve the coefficients

M3 =
1

2

[
C3(0) +

1

g

dC3(0)

dz

]
, (2.20)

N3 =
1

2

[
C3(0)→

1

g

dC3(0)

dz

]
. (2.21)

At length z = 0, we have C3(0) = A3(0) and the derivative

dC3(0)

dz
= j

⇀

2
A3(0) + jr3A

↓

4(0). (2.22)
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By assuming A4(0) = 0 (no idler at the fibre input), we can rewrite the coefficients in Eqs.

(2.20) and (2.21) as

M3 =
A3(0)

2

(
1 + j

⇀

2g

)
, (2.23)

N3 =
A3(0)

2

(
1→ j

⇀

2g

)
. (2.24)

Substituting them into Eq. (2.18) and using the definitions cosh(x) = (ex + e→x)/2 and

sinh(x) = (ex → e→x)/2, we obtain the final solution as [12]

C3 = A3(0) cosh(gz) + j
⇀

2g
A3(0) sinh(gz) (2.25)

The FOPA complex parametric signal gain, defined as the ratio between A3(L) and A3(0)

with L is the HNLF length, is thus calculated as

µs ↭
A3(L)

A3(0)
=

[
cosh(gL) + j

⇀

2g
sinh(gL)

]
exp

[
j
(
2↽P0 →

⇀

2

)
L

, (2.26)

The signal power gain is given by Gs = |µs|
2 and reaches its maximum value when the

total wavevector mismatch ⇀ = 0. The maximum parametric gain coefficient is gmax = ↽P0,

obtained by setting ⇀ = 0 in Eq. (2.17). The corresponding maximum power gain is

Gs,max = | cosh(gmaxL)|
2 = | cosh(”NL)|

2, (2.27)

where ”NL ↭ ↽P0L refers to the nonlinear phase shift. Equation (2.26) also indicates

that the shape of the FOPA gain spectrum is modulated by ⇀, which depends on the linear

wavevector mismatch !ω. The fibre dispersion parameters, namely ω(3) and ω(4), as well as

the relative location of φ0 with respect to the pump frequencies, contribute to this term.

We now focus on studying the gain spectrum of the FOPA. It is often convenient to define

the signal frequency detuning !εs of the signal at ε3 from the central frequency εc as !εs ↭
ε3 → εc = εc → ε4. Similarly, the pump frequency detuning !εp of the pump waves at ε1

and ε2 from εc is given by !εp ↭ ε1 → εc = εc → ε2. In some cases, the signal wavelength

detuning, defined as !φs = φ3 → φc = φc → φ4, is also used. The relationship between !εs

and !φs can be expressed as

!εs = →
2ςc!φs

φc(φc +!φs)
(2.28)

From the definition of !ω = ω3 + ω4 → ω1 → ω2 and with the above definitions of !εs and

!εp, we can write
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!ω = ω(εc +!εs) + ω(εc →!εs)→ ω(εc +!εp)→ ω(εc →!εp). (2.29)

Using the power series expansion in terms of !εs and !εp, we observe that the odd-order

derivative terms cancel each other out. Finally, we obtain

!ω = 2
↔∑

m=0

ω(2m)

(2m)!


(!εs)

2m
→ (!εp)

2m

. (2.30)

The linear wavevector mismatch !ω depends only on the even-order derivatives of ω at εc.

It is typically practical to truncate higher-order terms in Eq. (2.30) with m > 2. This leads to the

two-term model of !ω as [12]

!ω = ω(2)

(!εs)

2
→ (!εp)

2

+

ω(4)

12


(!εs)

4
→ (!εp)

4

. (2.31)

Here, ω2 can be approximated as follows when φc is adjusted close to φ0

ω(2) = ω(3)(εc → ε0) +
ω(4)

2
(εc → ε0)

2. (2.32)

Given the pump frequencies ε1 and ε2, which determine !εp, we can observe that !ω

is an even function of !εs, according to Eq. (2.30) or (2.31). Consequently, the graphs of

the total wavevector mismatch ⇀, the parametric gain coefficient g and the complex parametric

signal gain µs versus !εs are symmetric with respect to εc, as described by Eqs. (2.15), (2.17)

and (2.26), respectively. However, their graphs versus !φs are not symmetric due to Eq. (2.28),

which makes them functions of not only (!φs)2, but also !φs. Nevertheless, this asymmetry

will not be very pronounced unless the FOPA has a very wide gain bandwidth.

Optimising the FOPA gain is a crucial step in the design process, where the goal is to

achieve a relatively flat and wide gain spectrum. Since the FOPA gain, as described by Eq.

(2.26), is determined by the parametric gain coefficient g, the optimisation process involves

selecting appropriate parameters to produce a flat-top curve of g versus !φs or !εs. The

relationship between g and !φs or !εs is determined by the linear wavevector mismatch !ω,

as shown in Eqs. (2.15), (2.17) and (2.31). We plotted their relationship in Figs. 2.3 and 2.4,

based on [12].

We begin by examining the curve of the linear wavevector mismatch !ω, as a function

of the squared frequency detuning (!εs)2 using Eq. (2.31). Assuming ω(2) < 0, this curve

is parabolic when ω(4) > 0, as illustrated in Fig. 2.3(a), and semi-parabolic when ω(4) < 0,

as depicted in Fig. 2.4(a). The initial value in both cases, at !εs = 0, denoted as !ω↑, is
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Figure 2.3: Theoretical graphs in the FOPA dual-pump scenario with ω(4) > 0 of (a) Linear wavevector
mismatch !ω versus squared frequency detuning (!εs)2 and (b) Parametric gain coefficient g versus
linear wavevector mismatch !ω.
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Figure 2.4: Theoretical graphs in the FOPA dual-pump scenario with ω(4) < 0 of (a) Linear wavevector
mismatch !ω versus squared frequency detuning (!εs)2 and (b) Parametric gain coefficient g versus
linear wavevector mismatch !ω.

influenced not only by these dispersion parameters but also by the pump frequency detuning,

!εp, i.e.

!ω↗ = →ω(2)(!εp)
2
→

ω(4)

12
(!εp)

4. (2.33)

When ω(4) > 0, it is important to note that only values of !ω that result in a defined g

in Eq. (2.17), where the expression under the square root must be greater than or equal to

zero, will be considered. This constraint implies that !ω cannot exceed !ωmax = ↽P0, where

the parametric gain coefficient g reaches zero. The curve reaches its minimum at (!εs)2 =

→6ω(2)/ω(4), and this minimum value is

!ωmin = ω(2)

((
→
6ω(2)

ω(4)

)
→ (!εp)

2

)
+

ω(4)

12

(
→
6ω(2)

ω(4)

)2

→ (!εp)
4


. (2.34)

When ω(4) < 0, there is no minimum value for !ω. The maximum value of !ω is determined

by the smaller of !ω↑ or !ωmax.

Next, we consider the graphs of g versus !ω, as given by Eq. (2.17), shown in Figs.
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2.3(b) and 2.4(b). The curves exhibit elliptical shapes. When ω(4) < 0, we consider the entire

ellipse, as !ω can become arbitrary negative. We recall that the maximum value of g occurs at

gmax = ↽P0 when ⇀ = 0 or !ω = →↽P0. The minimum value, which drops to zero, is reached

when !ω approaches !ωmax or →3↽P0.

By examining both graphs in Fig. 2.3 (when ω(4) > 0) simultaneously, we observe that

as the squared signal frequency detuning (!εs)2 increases from zero, the parametric gain

coefficient g transitions from g(!ω↑) to g(!ωmin), eventually dropping to zero or g(!ωmax).

In contrast, considering both graphs in Fig. 2.4 (when ω(4) < 0), we see that g starts from

!ω↑ and decreases quadratically. Because !ω decreases monotonically, it is challenging to

maintain values that yield results close to gmax over a wide range of (!εs)2.

Achieving a high value of g over a broad range of signal frequency detuning is important

for optimising the FOPA gain spectrum. In this case, the scenario with ω(4) > 0 offers more

flexibility for achieving this goal. The dispersion parameters ω(2) and ω(4), along with the pump

frequency detuning !εp in Eqs. (2.33) and (2.34), should be selected so that !ω↑ and !ωmin

in Fig. 2.3(a) are close to →↽P0. This ensures that the gain remains high across the desired

range of signal detuning.

Parameters Values
φ0 1560.7 [nm]
φc 1563.7 [nm]
!εp 45↔ 10→9 [rad/s]
ω(3) 1.09↔ 10→41 [s3m→1]
ω(4) 3.85↔ 10→55 [s4m→1]
↽ 10 [W→1km→1]
L 200 [m]
P0 1.785 [W]

Table 2.1: Dual-pump scheme parameters

A set of FOPA parameters with ω(4) > 0 that will be used for the dual-pump FOPA scheme

throughout this dissertation is listed in Table 2.1. First, the values of the nonlinear coefficient ↽,

the fibre length L and the pump power P0 are selected to achieve a maximum power gain Gs,max

of 25 dB. Based on the optimisation process outlined earlier, our choice of other parameters

yields !ω↑
↗ →0.012 m→1 and !ωmin ↗ →0.017 m→1, while →↽P0 ↗ →0.018 m→1, aligning well

with the selection criteria discussed. The ability to optimise these values close to each other

is due to !εp ↑= 0, as is the case in the dual-pump scheme. The involvement of !εp shifts

!ω↑ away from zero, allowing it to be adjusted appropriately. As we will see later, this property
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cannot be achieved in the single-pump scheme, making the dual-pump scheme more effective

for achieving a flat-top FOPA gain spectrum.

Figure 2.5: FOPA gain spectrum in the dual-pump scheme.

The FOPA gain spectrum, based on the chosen parameters, is shown in Fig. 2.5. Since

the graph is plotted against the wavelength detuning, !φs, a slight asymmetry is observed, as

anticipated in our earlier discussion. The result shows a reasonably flat spectrum with a peak

gain around 25 dB within the wavelength detuning range of -40 nm to 40 nm. Outside this

region, the FOPA gain drops quickly due to the failure to satisfy the phase-matching condition.

This broad, flat spectrum is highly beneficial for applications that require a wide wavelength

operating range.

2.2.2 Single-pump scheme

We will apply a similar approach to analyse the single-pump scheme, where the propagation

of the interacting waves is governed by Eqs. (2.5), (2.6) and (2.9). In this section, we will

derive the transfer function for FOPA in the single-pump scheme, followed by a discussion on

the optimisation method for the gain profile.

Similar to the dual-pump scheme, the assumption of negligible pump depletion allows us to

neglect the FWM term in Eq. (2.5). In the single-pump scheme, this simplification is extended

further by only considering the wave associated with A1. This means that only the SPM term in

Eq. (2.5) is relevant, leading to the simplified expression

dA1

dz
= j↽P1A1. (2.35)

Since there is only a single pump, Eq. (2.6) does not apply. Solving the differential equation

above yields A1(z) = A1(0)ejωP1z. The propagation equations for the signal and idler are
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analogous to Eqs. (2.13) and (2.14) with modifications: p3 = p4 = 2↽P1, r3 = r4 = ↽P1 and

q3 = q4 = 2↽P1 →!ω. Following the same procedure, the complex parametric gain µs in the

single-pump FOPA scheme is identical to that in Eq. (2.26) with P1 replacing P0. This indicates

that the same power gain can be achieved if P1 = P0, but the total wavevector mismatch is

⇀ ↭ p3 + p↓4 → q3 = !ω + 2↽P1, (2.36)

which is different from Eq. (2.15) in the dual-pump scheme. Therefore, although the single-

pump scheme achieves the same maximum power gain as the dual-pump scheme, it produces

a different shape for the FOPA gain spectrum. The optimal operating wavelength, which yields

the maximum gain, occurs when !ω = →2↽ P1 in the single-pump scheme, compared to !ω =

→↽ P0 in the dual-pump scheme. By expressing the relationship between the linear wavevector

mismatch !ω and the fibre dispersion, and following a similar procedure to the dual-pump

scheme while considering the two-term model, we can derive

!ω = ω(2)(!εs)
2 +

ω(4)

12
(!εs)

4. (2.37)
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Figure 2.6: Theoretical graphs in the FOPA single-pump scenario of (a) Linear wavevector mismatch !ω
versus squared frequency detuning (!εs)2 and (b) Parametric gain coefficient g versus linear wavevec-
tor mismatch !ω.

We plotted Fig. 2.6, based on [12], to examine the relationship between relevant quantities

in the single-pump scenario. First, we analyse the relationship between !ω and (!εs)2, as

given by Eq. (2.37), shown in Fig. 2.6(a). Assuming again that ω(2) < 0, the curvature of the

!ω graph depends on the sign of ω(4). As (!εs)2 increases, the graph exhibits a parabolic

trajectory, with a global minimum present when ω(4) > 0, while it forms a semi-parabolic curve

with its minimum at the origin when ω(4) < 0. The graph of the parametric gain coefficient

g as a function of !ω is presented in Fig. 2.6(b). This graph illustrates an elliptical shape,

where gmax = ↽P1 occurs at !ω = →2↽P1, and g approaches zero as !ω reaches either zero

or →4↽P1. For optimal parametric amplification, !ω must approach →2↽P1 in Fig. 2.6(a) to
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achieve the maximum g in Fig. 2.6(b). To achieve this desired behaviour, we select ω(4) <

0 in this case, as this ensures that the curve descends to the appropriate minimum value.

Conversely, if ω(4) > 0, careful selection of both ω(2) and ω(4) is required to ensure that the

global minimum of the !ω curve lies below →2↽P1.

Parameters Values
φ0 1560.7 [nm]
φp 1563.7 [nm]
ω(3) 1.09↔ 10→41 [s3m→1]
ω(4) -2.85↔ 10→55 [s4m→1]
↽ 10 [W→1km→1]
L 200 [m]
P 1.785 [W]

Table 2.2: Single-pump scheme parameters

The initial value !ω↑, defined analogously to the dual-pump scheme, is zero regardless of

the sign of ω(4). As (!εs)2 increases, !ω↑ decreases quadratically. This behaviour indicates

significant fluctuations in the parametric gain coefficient g and, consequently, in the FOPA power

gain as (!εs)2 increases. In the absence of !εp, it is impossible to shift !ω↑ closer to the

minimum value of !ω, thus preventing the realisation of a flat-top gain spectrum, as is achieved

in the dual-pump scheme.

Figure 2.7: FOPA gain spectrum in the single-pump scheme.

The FOPA gain spectrum, calculated using the parameters listed in Table. 2.2, is shown in

Fig. 2.7. In this case, a negative value of ω(4) has been selected, as discussed earlier. The

parameters were also chosen to achieve a power gain of 25 dB, consistent with the dual-pump

scheme. As shown in Fig. 2.7, the power gain initially increases with the wavelength detuning,

reaching an optimal level in line with our previous discussion. The spectrum exhibits two peaks

on either side, before declining rapidly as the phase-matching condition is no longer satisfied.
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2.3 Optical phase conjugation

Having explored the FOPA in both dual-pump and single-pump configurations and their respec-

tive gain spectra, we now shift our focus to another critical application of the FWM process:

OPC. While FOPA has proven effective for signal amplification and wavelength conversion,

FOPA offers a complementary approach that specifically addresses the challenges posed by

fibre dispersion and nonlinearity in optical transmission systems.

In this section, we will begin with a briefly overview of key milestones in the development

of OPC, highlighting its fundamental concept. Following this, we will continue our analysis of

FWM to derive the transfer function for OPC, which specifically accounts for the idler signal.

Finally, we will discuss the mathematical reason behind why OPC can play an important role in

mitigating signal distortions in the optical transmission.

An OPC is an optical device that generates a phase-conjugated replica of an incoming

optical signal [19]. Initially proposed as a method for compensating fibre dispersion [20, 21],

the use of OPC has since evolved to mitigate nonlinear effects in optical networks [22, 23, 24,

25]. While other compensation techniques, such as digital-back-propagation (DBP) [26, 27],

have been explored to address channel impairments, they often face significant challenges,

including the complexity of DSP. This has prompted ongoing research into simplifying the

complexity [28]. In contrast, mid-link OPC has attracted considerable attention as an elegant

and effective solution for improving channel capacity. By passing the distorted signal through

an OPC, signal distortion experienced in the first fibre can be reversed as the phase-conjugated

signal propagates along the second fibre with similar characteristics. With OPC, a single device

can simultaneously counteract both dispersion and nonlinearity, enabling the transmission of

high bandwidth signals and supporting advanced modulation formats [29].

The initial implementation concept of OPC was based on backward FWM, where the gener-

ated idler wave travels in the opposite direction to the signal. However, it was later demonstrated

that phase-conjugated waves could also be generated in the forward direction with fibre-based

FWM [30]. This approach was further validated by experimental works in [21, 31]. The setup

for fibre-based OPC is similar to that shown in Fig. 2.1, with the main difference being that

the selected output signal is the idler at ε4 in Fig. 2.2. A simplified diagram demonstrating the

generation of the phase-conjugated wave is shown in Fig. 2.8.

To derive the transfer function of OPC, we begin with Eq. (2.14), which governs the prop-
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agation of the idler wave. By performing a variable change, we set C4 = A4 e
j(ω2→p4)z. This

substitution transforms the equation into a form similar to Eq. (2.16), but with C4 replacing C3.

The final solution, with the same assumption of A4(0) = 0, is expressed as

C4 = j
↽P0

g
A↓

3(0) sinh(gz). (2.38)

The complex idler signal gain, defined as the ratio between A4(L) and A↓

3(0), is [12]

µi ↭
A4(L)

A↓

3(0)
= j

↽P0

g
sinh(gL) exp

[
j
(
2↽P0 →

⇀

2

)
L

, (2.39)

HNLF

Pump ("!, "")

Signal ("#) Filter Phase-conjugated ("$)

%0 '

Figure 2.8: Schematic of phase-conjugated wave generation in FWM.

We thus obtain a complex conjugate version of the input signal A3(0) at the output of the

fibre. In general, if the amplification sufficiently compensates for the signal attenuation due to

fibre loss, we can obtain the complex conjugate version A↓(z, t) of the transmitted signal A(z, t).

The OPC can mitigate distortions when deployed mid-span in optical transmission systems, as

depicted in Fig. 2.9. This is achieved through the generation of the phase-conjugated wave,

which has an inverse spectral profile, a technique known as mid-span spectral inversion [32].

In Fig. 2.9, after propagation along the first fibre segment, the signal’s spectrum becomes

distorted and broadened. The mid-link OPC generates a wave at a new frequency, symmetric

to the original one relative to the central frequency εc. This new wave has an inverted spectrum

compared to the pre-OPC signal. The highest frequency components become the lowest ones,

and if they travel faster in the first half of the link, they will now propagate more slowly in the

second half, assuming both fibres have the similar characteristics. Therefore, the chromatic

dispersion caused by two fibres can be compensated at the transmission output. Regarding

Kerr nonlinearity, the signal exhibits intensity-dependent phase shifts in the first half of the link

followed by equivalent negative phase shifts in the second half. Therefore, spectral inversion

reverses both signal distortions, resulting in an undistorted signal at the transmission output.

Additionally, the ability of OPC to simultaneously compensate for chromatic dispersion and
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Figure 2.9: Schematic of mid-link OPC transmission and spectrum changes along the link.

Kerr nonlinearity can be explained within the framework of the nonlinear Schrodinger equation

(NLSE) [13], which describes optical pulse propagation along a nonlinear fibre, i.e.

⇁A

⇁z
+

jω(2)

2

⇁2A

⇁t2
→ j#|A|

2A = 0, (2.40)

where # is the transmission fibre nonlinear coefficient. Equation (2.40) demonstrates both

dispersion and nonlinearity effects, which cause pulse broadening and phase modulation, re-

spectively. In the transmission system with length L, the phase conjugate wave A↓(z, t) is

generated at z = L/2 and its propagation in the second half can be described by substituting

A↓(z, t) into Eq. (2.40). By taking the complex conjugate of both sides, we obtain

⇁A

⇁z
→

jω(2)

2

⇁2A

⇁t2
+ j#|A|

2A = 0, (2.41)

This shows that the phase conjugate wave propagates in a manner that reverses both dis-

tortions experienced by the original wave, thanks to the symmetry of the OPC transmission.

OPC is thus expected to become an essential tool in long-haul optical transmission, where

restoring the signal quality can be theoretically achieved.

2.4 SBS suppression techniques

The performance of the optical parametric processes heavily depends on the optical pump

power sent to the HNLF. However, this power scaling is significantly constrained by a nonlinear

process known as SBS [13]. SBS causes substantial pump power loss through back-scattering,

effectively imposing a threshold on the amount of power that can be used for the parametric

amplification process. In this section, we will first cover the fundamentals of SBS effect, estab-

lishing a foundation for understanding the approaches used to mitigate it. We will then discuss

various suppression techniques, including longitudinal variations in fibre properties and the in-

troduction of phase modulation to pump sources, with the primary focus on the latter. Finally,
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we will explore how to design an effective pump-phase modulation scheme for optimal SBS

suppression.

!!

!"
!#

Fibre

Figure 2.10: Schematic diagram about stimulated Brillouin scattering. The pump light at ϑp scatters
from Bragg diffraction induced by the acoustic wave at ϑB to generate the Stokes wave at ϑs = ϑp → ϑB .

The optical pump field induces temporal and spatial variations in the fibre’s density through

the process of electrostriction [33]. This density modulation generates an acoustic wave, which

then leads to a periodic modulation of the refractive index within the fibre. Consequently, the

pump light at frequency ϑp undergoes scattering via Bragg diffraction, resulting in the generation

of a Stokes wave with a frequency ϑs. As depicted in Fig. 2.10, the frequency of the Stokes

wave is downshifted due to the Doppler effect, as the grating created by the acoustic wave

moves away from the fibre’s input. The Brillouin frequency shift, defined as the difference

between the pump and Stokes frequencies, ϑp → ϑs, is given by

ϑB =
2npvA
φp

, (2.42)

where φp is the pump wavelength, np is the refractive index at φp and vA is the acoustic

wave velocity. In silica fibres, the Brillouin frequency shift at the pump wavelength of φp = 1550

nm is approximately 11.15 GHz. The scattered light interacts with the pump field, amplifying

the acoustic wave responsible for the scattering process. This mutual reinforcement, driven by

energy conservation, results in the depletion of the pump power. Therefore, SBS emerges as a

fundamental challenge in the design of OPC and FOPA.

The Brillouin gain exhibits a Lorentzian spectral profile, with its bandwidth, !ϑB , being

inversely proportional to the phonon lifetime. Specifically, !ϑB is defined as !ϑB = #B/(2ς),

where #B represents the phonon decay rate. In optical fibres, the acoustic phonon lifetime is

typically on the order of 10 ns, resulting in a narrow Brillouin gain bandwidth, typically ranging

from 10 to 50 MHz. The Brillouin peak gain, gB , which occurs at the frequency ϑB , depends on

1/#B and is thus inversely proportional to the Brillouin gain bandwidth !ϑB . When the spectral

width of the pump, !ϑp, exceeds !ϑB , the Brillouin gain is significantly reduced by a factor of

1 +!ϑp/!ϑB . Under these conditions, the SBS threshold is given by [34]
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Pth =
21kAe!

gBLe!

(
1 +

!ϑp
!ϑB

)
, (2.43)

where k denotes the pump polarisation factor, which ranges between 1 and 2, while Ae!

and Le! are the effective fibre area and effective fibre length respectively. Increasing the SBS

threshold or effectively suppressing SBS effect becomes a crucial task for the design of efficient

OPC and FOPA devices. In the following, we will discuss various existing techniques for SBS

suppression.

2.4.1 SBS suppression through nonuniform Brillouin frequency shift

The first approach to increasing the SBS threshold Pth involves reducing the Brillouin peak

gain gB in Eq. (2.43). This can be achieved by introducing variations in the Brillouin frequency

shift ϑB along the length of the fibre, thereby inducing a frequency mismatch. As a result, the

Stokes waves generated at different points within the fibre are not perfectly aligned, disrupting

the phase-matching condition. This lack of constructive interference leads to a reduced overall

amplitude of the Stokes wave. According to Eq. (2.42), ϑB depends on the refractive index

np and the acoustic velocity vA. Modifying either of these parameters along the fibre length

requires changes to the fibre design and fabrication, forming a class of techniques aimed at

controlling the SBS threshold.

Temperature variations can affect both the fibre’s refractive index and acoustic velocity.

Since the Brillouin gain is linearly dependent on temperature [35], introducing temperature gra-

dients along the fibre can effectively increase the SBS threshold. Experimental studies have

demonstrated that periodic temperature variations along 1.6 km of polarisation-maintaining fi-

bre, with a maximum temperature difference of 37↔C, can entirely suppress the SBS effect [36].

In this case, the SBS threshold increased from 4.4 mW to close to 10 mW when a heater is ap-

plied. Another study using a multi-level temperature variation with a maximum range of 140↔C

demonstrated a 4.8 dB increase in the SBS threshold over 100 m of HNLF [37].

Strain variation is another effective method for broadening the Brillouin gain bandwidth. By

introducing a sinusoidal fibre strain variation of ±0.35% through fibre twisting during the fabri-

cation process, the Brillouin spectrum width increased from 50 MHz to 400 MHz [38]. Further

broadening of the Brillouin spectrum, up to 1.7 GHz, was achieved by a programmable fibre

coiling machine capable of applying arbitrary strain distributions with a maximum strain differ-
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ence exceeding 3% [39]. This significant enhancement, as demonstrated by experimental data,

resulted in a theoretical increase of 15.5 dB in the SBS power threshold.

The Brillouin frequency shift can also be manipulated by varying the core radius along the

fibre length, which changes the acoustic velocity vA in Eq. (2.42) [40]. This method resulted in

an SBS threshold increase of 3.6 dB compared to conventional fibres, as reported in the study.

Fibre dopants can modify the optical and acoustic index profiles of the fibre, leading to

a shift in the Brillouin frequency [41]. Varying the fluorine (F ) concentration along the fibre

length, resulting in a relative-index difference of 0.2%, produced a 7 dB increase of the SBS

power threshold compared to the conventional fibres at an operating wavelength of 1550 nm

[42].

2.4.2 SBS suppression through pump-phase modulation

Another effective approach for increasing the SBS threshold is modulating the pump phase, also

known as dithering, which broadens the pump’s spectral width !ϑp as described in Eq. (2.43).

It works by generating multiple frequency sidebands around the central spectral line, effectively

distributing the pump power across these components. The reduced intensity of each spectral

mode results in the generation of weaker acoustic waves, which in turn leads to the suppression

of SBS gain. Phase modulation is preferred over amplitude modulation because it preserves the

total pump power while achieving the desired broadening, making it a more efficient technique

for managing the SBS threshold.

The first experimental work of this method demonstrated more than 12 dB of SBS suppres-

sion at 1320 nm over 31.6 km of SMF [43]. Since then, this technique has been widely adopted

due to its simplicity and lower cost compared to more complicated fibre design modifications.

It is also versatile, as it can be applied to various types of fibres without requiring physical al-

terations. Several strategies have been explored for selecting the radio-frequency (RF) signal

used to drive the phase modulator, including arbitrary and sinusoidal waveform.

Phase modulation using a random driving electrical signal or an electrical noise source is

very efficient in broadening the pump linewidth although the resulted optical spectrum is hard

to control. A RF white noise source, assisted by RF low pass filters for optical bandwidth con-

trol, was used to achieve an SBS enhancement factor of around 18 dB at an optical bandwidth

of 1.47 GHz within a 70 m fibre [44]. In a later work, using a 3 GHz signal modulated by

a 25-1 pseudo-random binary sequence (PRBS) pattern, a fibre amplifier with 1.7 kW output
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power could be realised [45]. In contrast to the continuum spectrum generated by a white noise

source, phase modulation using PRBS produces a discrete spectrum, offering greater flexibil-

ity in tuning the overlap with the Brillouin gain spectrum and, consequently, in controlling the

SBS process seeding. However, despite the effectiveness of these techniques, they introduce

additional random or pseudo-random distortion into the output signal, which complicates signal

compensation at the receiver and may lead to challenges in maintaining overall signal quality.

Pump laser Phase 
modulator

~

Combiner

~

To HNLF

…

…

!!! !!"#

(a)

0−1 +1−2 +2−3 +3−4 +4

!!$

(b)

Figure 2.11: (a) Setup diagram of pump-phase modulation using multiple sinusoidal tones. (b) Pump
spectrum after being phase modulated by a sinusoidal tone εmi .

Sinusoidal waveform phase modulation, on the other hand, introduces deterministic dis-

tortion to the optical signal, which is easier to predict and manage. Additionally, sine wave

generators are widely available and inexpensive, contributing to the popularity of this approach

in practical applications. A diagram illustrating the pump-phase modulation scheme using a set

of multiple sinusoidal tones, denoted as [εm1 , . . . ,εmNt
] where Nt is the number of tones, is

shown in Fig. 2.11(a). These tones are combined electronically and used to drive the phase

modulator. The resulting phase-modulated pump signal is then sent to the HNLF for the FWM

process.

The pump spectrum after phase modulation with an arbitrary tone at frequency εmi , where

i ↘ [1, . . . , Nt], is demonstrated in Fig. 2.11(b). The phase-modulated pump signal contains

sidebands around the pump frequency εp, spaced by the modulation frequency εmi . The

amplitude of each sideband can be described by the Bessel function of the first kind for a

given order [46]. In Fig. 2.11(b), the horizontal axis represents the Bessel function order. We
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observe that the higher-order peaks are much weaker than the zero-th and first-order peaks.

The modulation index of the sinusoidal tone, set at 1.435 rad for this plot, results in nearly equal

amplitudes between the zero-th and first-order peaks [47].

The modulation frequency εmi should exceed the SBS gain bandwidth !ϑB , which typically

ranges from 20 to 50 MHz for the HNLF [46]. This ensures that the broadened pump spectrum

extends beyond the SBS region, thus reducing the potential for SBS gain. Multiple RF tones are

employed to further decrease the power of the generated frequency components in Fig. 2.11,

thereby reducing the power spectral density (PSD) integrated over the SBS gain bandwidth.

Several experimental studies have demonstrated the effectiveness of combining multiple RF

tones for enhanced SBS suppression. For example, a FOPA with 70 dB gain was achieved

by significantly surpassing the SBS power threshold, where the pump laser was modulated by

a 10 GHz tone followed by four RF additional tones at 105, 325, 1000 and 3110 MHz [17].

The technique can be further enhanced by controlling the amplitudes and phase differences

between the RF tones, with a suppression of 17 dB achieved with two modulation frequencies

at 2.5 GHz and 3 GHz [48]. The motivation behind optimising the RF tone parameters is to

produce an optimally broadened pump spectrum, which will be the main focus of section 2.5.

!! !!+!"! !!-!"!+!"" !!+!"" !!+!"!+!""!!-!"!!!+!"!-!""!!-!""!!-!"!-!""

!! !!+!"!!!-!"!

(a)

(b)

Figure 2.12: (a) Estimated pump spectrum after phase modulation with one tone at εm1 . (b) Estimated
pump spectrum after phase modulation with two tones at εm1 and εm2 = 3εm1 .

The efficiency objective of the pump-phase modulation is to maximise the broadened pump

bandwidth using the lowest possible modulation frequencies. Lower RF tone frequencies re-

duce the hardware demands on electronic equipment and minimise the impact on the FOPA

transfer function. Since the power from the pump frequency is redistributed across the gener-

ated sidebands after modulation, achieving equal-amplitude spectral lines is important for opti-

mal spectral broadening. Recent works have been done in tuning the amplitudes and phases
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of RF tones to obtain close-to-equal power distribution of generated peaks [47], and using up to

three modulation frequencies, a spectrum with up to 11 equal-amplitude spectral lines could be

obtained [49]. The author in [50] suggested that selecting the modulation frequencies spaced

by multiples of three, e.g. [εm1 , 3εm1 , 9εm1 , . . . ], can result in more efficient broadening. The

reason behind this can be found in Fig. 2.12, where the estimated broadened pump spec-

trum for a single modulation tone at εm1 is plotted in Fig. 2.12(a). Because the second-order

sidebands are significantly lower than the zero-th and first-order components, we only consider

peaks at εp and εp ± εm1 . By introducing a second modulation frequency εm2 = 3εm1 , we

can generate up to nine equal-amplitude frequency components at εp, εp±εm1 , εp±εm2 and

εp ± εm1 ± εm2 , as shown in Fig. 2.12(b). These components are evenly spaced by the lower

modulation frequency εm1 . The SBS power threshold can be further increased by introducing

additional RF tones, each tone spaced in multiples of three from the lowest frequency, which

is also known as the base frequency εm1 . The number of generated frequency components is

generally 3Nt , and the optical power is distributed evenly among these peaks, resulting in the

increase of SBS power threshold by the same factor.

While we have discussed the frequency selection rule for the RF tones, the amplitudes

and phases of these tones play crucial roles in determining the overall effectiveness of the

pump-phase modulation technique. Achieving a broad and flat spectral profile, where the pump

energy is evenly distributed across the generated sidebands, requires careful tuning of both the

amplitudes and phases. Inaccurate choices can lead to uneven power distribution, reducing the

efficiency of SBS suppression. In the next section, we will explore the procedure for optimising

these parameters to achieve the desired pump spectral broadening.

2.5 Optimisation of pump-phase modulation with sinusoidals

We will present a numerical optimisation approach, where a desired rectangular spectrum,

representing the theoretical upper limit of the SBS power threshold increase, is used as the

learning target. The optimisation process will iteratively adjust the tone parameters, including

amplitude and phases, to achieve the closest possible match to this target spectrum. Through-

out the optimisation, we will monitor and calculate the corresponding increase in the SBS power

threshold. We will then examine the resulted broadened spectrum in the last part.

We consider the case where the driving signal of the phase modulator, as depicted in Fig.
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2.11(a), consists of multiple sinusoidal waves, defined as

ϕ(t) =
Nt∑

i=1

Ami sin(εmit+ ξmi), (2.44)

where the parameters Ami , εmi and ξmi are the amplitude, frequency and phase of the i-th

tone. The set of frequencies is [εm1 , 3εm1 , 9εm1 , . . . ], according to the rule discussed in the

section 2.4.2. In this optimisation, we selected a base frequency of εm1 = 60 MHz to ensure it

exceed the Brillouin gain bandwidth. Our task is to optimise Ami and ξmi for an even broadened

pump spectrum given the number of RF tones Nt.

3!! peaks

1
3!!

Figure 2.13: Ideal rectangular pump spectrum used as the reference.

The number of tones Nt is chosen based on the requirement to raise the SBS threshold

sufficiently, and in the analysis throughout this thesis, we would like to achieve a power gain

of 25 dB. In the 1550 nm wavelength region, the nonlinear phase shift ”NL = ↽P0L typically

ranges from 0.2 to 0.3 rad [34]. Given that the maximum achievable power gain is expressed

as Gs,max = | cosh(”NL)|2, this corresponds to a maximum gain of only 0.17 to 0.39 dB, which

is significantly below the required 25 dB gain. Achieving 25 dB gain requires a nonlinear phase

shift of approximately 3.57 rad. It is therefore necessary to increase the SBS threshold Pth by a

factor of approximately 11.9 to 17.85, or equivalent a range of 10.76 to 12.52 dB. The increase

in the SBS threshold is analytically calculated as [48]

!Pth = →10 log


P̃max

P̃0,max


, (2.45)

where P̃0,max and P̃max are the maximum power densities over the SBS bandwidth be-

fore and after pump-phase modulation. Increasing !Pth is equivalent to reducing P̃max to its

minimum possible value, which theoretical occurs when all generated peaks from phase modu-

lation have equal amplitudes. Given the frequency selection rule discussed earlier, the number
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(b)(a)

Figure 2.14: The convergence of the mean square error (MSE) cost function J in the modulation
schemes with(a) 3 tones and (b) 4 tones.

of generated peaks is 3Nt , so each generated peaks should have an amplitude of 1/3Nt when

P̃0,max is normalised to one. With 3 and 4 RF tones corresponding to Nt = 3 and Nt = 4, the

theoretical increase in SBS threshold would be 14.31 dB and 19.08 dB respectively, based on

calculations from Eq. (2.45). One may notice that the use of 3 RF tones is sufficient to achieve

our desired SBS increase factor. However, achieving a broadened pump spectrum with perfectly

equal peaks and thereby reaching these theoretical values is impractical due to the beating ef-

fects of the RF tones, which we did not consider in the simplified analysis shown in Fig. 2.12.

Moreover, the above calculation assumes a perfect conversion rate of the pump power for the

FWM effect, which is not practical due to losses in the experimental setup. Therefore, the use

of four tones might be a safe choice to achieve our desired performance for FOPA.

Although we cannot achieve an ideal rectangular broadened pump spectrum, we sought to

optimise them as equally as possible by conducting an iterative learning process. In detail, we

employed an adaptive approach to optimise Ami and ξmi and construct the signal ϕ(t) using

Eq. (2.44) that results in a nearly rectangular broadened pump spectrum. We first define a

reference spectrum with an ideal rectangular shape as depicted in Fig. 2.13. The number of

peaks as well as the amplitude of each peaks are also shown. We then create an arbitrary

learning signal in the form of ϕ(t) with random initialisation of Ami and ξmi . They are updated

to minimise the cost function which is defined as

J =
3Nt∑

i=1

|pi → pi,ref |
2, (2.46)

where pi and pi,ref represent the amplitudes of the i-th discrete peaks of the learning and

reference spectra respectively. The mean square error (MSE) cost function was minimised in

Tensorflow using the gradient descent method. The concept of gradient descent here is to
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(b)

(a)

Figure 2.15: The evolution of the amplitudes and phases during the optimisation process in the modu-
lation schemes with(a) 3 tones and (b) 4 tones.

iteratively update the variables Ami and ξmi by moving them along the opposite direction of the

gradient to reduce the cost function. The gradient is the vector of partial derivatives of the cost

function J with respect to the variables. The update rule for the amplitudes and phases are

Ami := Ami → µ
⇁J

⇁Ami

, (2.47)

ξmi := ξmi → µ
⇁J

⇁ξmi

, (2.48)

where ⇁J/⇁Ami and ⇁J/⇁ξmi are the partial derivatives of the cost function J with respect

to the amplitude Amj and phase ξmj of the modulation tones respectively. The parameter µ,

known as the learning rate, governs the convergence behaviour of the algorithm. It is selected

as a compromise between convergence speed and algorithm stability. The convergence plots

with a learning rate µ = 0.25 are shown in Fig. 2.14. These plots demonstrate that the algorithm

converges in both modulation schemes, with the MSE values stabilising before 1500 epochs.

The evolution of the amplitudes Ami and phases ξmi for both pump-phase modulation

schemes can be seen in Fig. 2.15. We observe that the convergence rates of these parame-

ters closely corresponds to the MSE convergence trends shown in Fig. 2.14. The parameters

in the modulation schemes with three tones reach their optimal values more quickly than those
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(a) (b)

Figure 2.16: The broadened spectra after pump-phase modulation using the optimal parameters in the
modulation schemes with (a) 3 tones and (b) 4 tones.

in the four-tone scheme, reflecting the faster MSE convergence in the three-tone case. These

optimised parameter values, obtained after the algorithm convergence, will be applied for our

numerical model of the pump-phase modulation scheme for further analysis.

The broadened pump spectra for both modulation schemes are plotted in Fig. 2.16, where

the vertical and horizontal lines are aligned with the reference spectrum. These lines form the

regions where the sideband peaks are intended to fit. In both schemes, the frequency com-

ponents within the target region are significantly larger than those outside it. While achieving

a perfectly rectangular spectrum is theoretically impossible, we observe a well-balanced distri-

bution of generated peaks inside the target region, with suppressed peaks outside. The upper

horizontal red lines indicate the theoretical minimum for the maximum power densities values

P̃max in Eq. (2.45) can achieve. Using the optimised tone parameters, the resulting spectra

effectively keep the maximum power densities close to these theoretical thresholds, indicating

an efficient optimisation of the pump-phase modulation.

A key focus of this optimisation is determining the corresponding increase in the SBS power

threshold based on the optimal RF tone parameters. Using Eq. (2.45) and the observed P̃max

in Fig. 2.16, we can calculate the SBS power threshold !Pth. To track its relation with the

convergence trend, these computations were performed after each epoch. Since the optimi-

sation results depend on the random initialisation of the learning parameters Ami and ξmi , we

conducted the optimisation across 100 batches, with each batch corresponding to a different

random initialisation. The results are plotted in Fig. 2.17, where the black lines represent

the calculated !Pth for each batch and the green lines show the averaged curved across all

batches. This graph shows both the individual batch variations and the overall trend of !Pth as

the optimisation progresses.
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(a) (b)

Figure 2.17: The SBS power threshold increase evolution during the optimisation process in the modu-
lation schemes with (a) 3 tones and (b) 4 tones.

The observed values of !Pth at the final of the optimisation are approximately 13.2 dB

and 17.2 dB for the three-tone and four-tone modulations schemes, respectively. These results

are smaller than the theoretical values of 14.31 dB and 19.08 dB, as discussed earlier. This

observation aligns with our previous discussion about the impracticality of achieving a perfectly

rectangular broadened pump spectrum, which are associated with the theoretical limits. When

comparing the required SBS power threshold increase of up to 12.52 dB for 25 dB power gain,

the three-tone scheme appears to be a marginal choice when we decide the number of RF tones

to use. We thus continue using both the three-tone and four-tone schemes in our numerical

model throughout this thesis.

2.6 Conclusion

In this chapter, we have examined two primary fibre-optical parametric devices: FOPA and

OPC. We began by exploring the principles of FWM and solving the corresponding propagation

equations under the assumption of no pump depletion, which allowed us to derive the transfer

functions for both devices.

Regarding FOPA, we emphasised the importance of fibre parameters and their influence on

performance. A parameter optimisation procedure was outlined for the design stage to achieve

the desired power gain spectrum. We also provide a detailed explanation of why the dual-pump

FOPA scheme results in a flatter gain profile than the single-pump scheme, albeit at the cost

of increased experimental complexity. This trade-off is a key consideration for practical imple-

mentation. For OPC, we highlighted its promising future in optical transmission, emphasising
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its theoretical ability to mitigate both chromatic dispersion and fibre nonlinearity simultaneously.

In the latter of this chapter, the SBS effect and various suppression techniques were the

main focuses. We discussed the principle of SBS, along with its power threshold, to deter-

mine key parameters that can be adjusted for suppression. A thorough review of suppression

techniques provided insights into key milestones in the field. Among these, the pump-phase

modulation approach stands out due to its effective suppression capability at a modest cost.

We explored the efficient frequency selection method for multi-tone pump-phase modulation.

Notably, we proposed and published an optimisation procedure aimed to optimise the SBS sup-

pression efficiency further by learning the amplitudes and phases of modulation tones through

an adaptive approach. Its effectiveness was demonstrated by analysing the resulted broadened

pump spectrum and calculating the SBS power threshold increase.
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Chapter 3

Digital signal processing

The development of coherent receivers, which mix the incoming signal with a local oscilla-

tor (LO), has transformed optical communications by enabling the extraction of both amplitude

and phase information from the optical signal [51]. By providing access to full optical signal infor-

mation, coherent receivers have presented numerous opportunities for researchers to develop

novel DSP algorithms at the receiver (Rx), allowing for more effective mitigation of various chan-

nel impairments [52]. The combination of coherent receivers and advanced DSP techniques

provides powerful solutions for modern backbone optical networks, making DSP research a

focal point of interest.

In this chapter, we will explore the architecture of coherent receivers and their ability to

capture both signal amplitude and phase. While a full DSP chain comprises multiple blocks,

such as IQ imbalance compensation, polarisation mode dispersion (PMD) compensation or Kerr

nonlinearity compensation, our focus here will be on the most relevant DSP blocks addressing

fibre chromatic dispersion and laser phase noise mitigation. In each block, we will review the

most widely used algorithms that will be used for further analysis in this thesis.

The latter part of this chapter will focus on the theory of kernel-based methods, which serve

as the foundation for several algorithms proposed for FOPA systems in chapter 6. They are a

class of algorithms designed to capture nonlinear relationships between data points without the

need to explicitly compute in the higher-dimensional space. Kernel-based methods in DSP thus

have attracted significant research interest due to their flexibility and effectiveness in complex

signal processing tasks.
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Figure 3.1: Configuration of coherent transmitter.

3.1 Coherent transceiver

During the third generation of optical fibre communications, coherent systems were extensively

studied as a means to increase repeater spacing, due to their superior sensitivity compared to

direct-detection systems. This sensitivity enables the receiver to operate closer to the quan-

tum limit, whereas the performance of intensity modulation-direct detection (IM-DD) systems is

strongly constrained by electronic and shot noise [53]. However, research on coherent systems

was subsequently overshadowed by the advancements of WDM systems utilising IM-DD and

the development of EDFA, which offers a cost-effective means of increasing repeater spacing

[54]. Research into coherent systems regained momentum at the beginning of this century,

driven by the increasing recognition of their benefits for data rate enhancement.

The configuration diagram of a coherent transmitter is shown in Fig. 3.1. At the transmitter

(Tx), four digital signals produced by DSP, corresponding to the in-phase (I) and quadrature (Q)

components of both the x→ and y→ signal polarisation, are converted to the analog domain by

four digital-to-analog converter (DAC)s [55]. These signals are then pre-amplified before being

fed into two IQ Mach-Zehnder modulator (MZM)s. In the case of Tx imperfection, imbalances

in gain, phase and delay between the I and Q paths, as well as between different polarisation,

may occur. The optical outputs are then combined by a polarisation beam combiner (PBC)

before being transmitted through the optical fibre.

The Rx is designed to convert the incoming signal into four electrical signals, which rep-

resent four data sequences originally transmitted by the coherent transmitter [55]. The archi-

tecture of a phase and polarisation diversity coherent receiver is illustrated in Fig. 3.2. At the

optical front-end, both the incoming optical signal and the LO are split into two polarisations

by two polarisation beam splitter (PBS)s. These polarisation components are then mixed by
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Figure 3.2: Configuration of coherent receiver.

a pair of 90↔ hybrids. Four balanced photodiode (PD)s detect the resulting electrical signals,

which are then amplified by four transimpedance amplifier (TIA)s. The mixing due to the 90↔

hybrids produces beating terms - interference between the incoming optical signal and the LO

- detected by the balanced PDs. Since LO serves as a reference signal, this beating allows

both the amplitude and phase of the incoming signal to be extracted. Four analog-to-digital

converter (ADC)s then converts the amplified signals into four digital signals Ix, Qx, Iy and Qy

corresponding to the in-phase (I) and quadrature (Q) components for the x→ and y→ polarisa-

tion channels. Each signal is proportional to the beating between the corresponding polarisation

component of the received signal and the LO. Specifically, Ix, Qx, Iy and Qy are proportional

to Re{ExE↓

LO
}, Im{ExE↓

LO
}, Re{EyE↓

LO
} and Im{EyE↓

LO
}, respectively [56], where Re{·}

and Im{·} represent the real and imaginary parts of the signal.

The received signals are often distorted by various impairments and noise, making it the

responsibility of the DSP to recover the original signal. To achieve this, the received signals are

processed through a series of DSP blocks, each designed to mitigiate specific distortions and

enhance the signal quality.

3.2 Chromatic dispersion compensation

We focus here on the chromatic dispersion, as previously discussed in section 2.1.1. Chromatic

dispersion causes the spreading of optical pulses as they propagate along the fibre, which

results in inter-symbol interference (ISI) and limiting both transmission distance and bandwidth.
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Therefore, CDC algorithms must be employed to preserve signal integrity in high-speed, long-

distance data transmission. They ensure that the transmitted signal is accurately recovered

at the receiver, enhancing the reliability of optical communication. In this section, we will first

explain the frequency response of CDC, followed by its implementation in the time domain.

To compensate for chromatic dispersion, we begin by considering a linear system, where

fibre nonlinearity is neglected. The propagation of an optical pulse A(z, t) over at a distance z

and time t, originally described by Eq. (2.40), can now be expressed as

⇁A

⇁z
+

jω(2)

2

⇁2A

⇁t2
= 0. (3.1)

By applying the Fourier transform Ã(z,ε) of A(z, t), this equation becomes

⇁Ã(z,ε)

⇁z
→

jω(2)

2
ε2Ã(z,ε) = 0. (3.2)

Solving this equation gives us the channel response

G(z,ε) =
Ã(z,ε)

Ã(0,ε)
= exp

(
j
ω(2)ε2z

2

)
. (3.3)

Since chromatic dispersion is a static impairment, it can be compensated by applying an

all-pass filter with an inverse channel response, i.e. H(z,ε) = 1/G(z,ε). The transfer function

for dispersion compensation over a transmission length L, denoted as H(ε), can be expressed

in terms of the dispersion coefficient D, defined in Eq. (2.2), as

H(ε) = exp

(
j
φ2Dε2

4ςc
L

)
. (3.4)

The Fourier transform of the dispersion-compensated signal is obtained by multiplying the

Fourier transform of the distorted signal by the transfer function H(ε) defined in Eq. (3.4). The

all-pass compensating filter with response H(ε) can be approximated in the time domain using

a finite impulse response (FIR) filter. Although implementing the filter in the frequency domain

is more efficient [57, 58, 59], we opt for the time-domain implementation due to its simplicity

and straightforward approach.

In the time domain, the output of a FIR filter yn at any time step n is calculated as

yn =
M∑

i=→M

wixn→i, (3.5)

where xn is the distorted signal due to chromatic dispersion, and xn→i represents the neigh-

bouring samples affected by the memory effect caused by dispersion. The FIR filter is char-
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acterised by a set of tap coefficients wi, with the total number of coefficients being 2M + 1,

where M is the filter delay. Since the received signal in a coherent system is complex-valued,

the computation with tap coefficients also takes place in the complex domain.

The filter coefficients can be dynamically updated based on error evaluation, such as with

a least mean squares (LMS) adaptive filter [60]. Alternatively, the coefficients can be pre-

calculated based on the compensating filter response H(ε) in frequency domain, as defined in

Eq. 3.4), given the knowledge of the channel. The i-th filter coefficient has its analytical form

given by [52]

wi =

√
jcT 2

φ2DL
exp

(
→j

ςcT 2i2

φ2DL

)
, (3.6)

where T is the sampling period. The filter delay can also be analytically determined as

M =


φ2

|D|L

2cT 2


, (3.7)

where the notation ≃·⇐ denotes the largest integer number which does not exceed the value

inside the bracket. According to Eq. (3.6), the tap weights exhibit constant amplitudes, with

the real and imaginary components change periodically. It is also worth noting that the number

of tap coefficients derived from Eq. (3.7) represents only the upper limit. The actual required

filter length may be much smaller, and research has been conducted on filters with fewer taps

and reduced implementation cost [61]. Because CDC is not the main focus of this thesis, we

only use it as a fundamental block within the DSP chain used in our transmission scenarios.

We thus either use the time-domain method described by Eqs. (3.6) and (3.7) or directly ap-

ply the compensating filter response H(ε) from Eq. (3.4) to achieve the goal of dispersion

compensation.

3.3 Carrier phase recovery

CPR is a fundamental block within DSP that estimates and corrects the phase of the opti-

cal carrier. In coherent communication systems, the detection of phase-modulated symbols,

especially when using advanced modulation formats such as phase shift keying (PSK) and

quadrature amplitude modulation (QAM), is severely affected by phase noise. This phase noise

arises from the non-zero linewidths of the laser sources in both Tx and Rx, as well as in optical

parametric devices. CPR plays an important role to mitigate this issue, enabling the use of
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advanced modulation formats for improved bandwidth utilisation. There have been numerous

algorithms proposed for CPR, such as Viterbi-Viterbi algorithm [62] or method with maximising

a posteriori (MAP) estimation [63], and they can broadly be classified into two classes: feed-

back and feed-forward approaches. In this section, we will review two candidate algorithms

from each approach: LMS-based phase recovery [64, 65] and blind phase search (BPS) [66],

highlighting their operational principles and contributing parameters.

3.3.1 LMS-based phase recovery

As a feedback CPR, the LMS-based phase recovery works as an one-tap adaptive filter whose

tap weight is update iteratively based on symbol error evaluation [64]. In detail, at symbol step

n, the algorithm computes a complex tap coefficient wn to derotate the distorted symbol rn,

producing the equalised symbol zn = rnwn which is then passed to a decision circuit. An

alternative method produces an estimated phase ϖ̂n instead [65], and the derotated symbol is

calculated as zn = rne
→jε̂
n , as illustrated in Fig. 3.3. The decision circuit calculates the squared

distances between the derotated symbol zn and the constellation points, and selects the closest

point as the decision-directed symbol [zn]D.

LMS-based 
phase update

!!"! [!!]"

+ −

'(!

)#$(.)
)!

Figure 3.3: LMS-based phase recovery scheme.

The tap coefficient wn or estimated phase ϖ̂n is then updated based on the squared error

between the equalised symbol and its corresponding decision-directed one, i.e. |en|2 = |zn →

[zn]D|2. The tap weight wn is updated using the normalised LMS algorithm [67] as

wn+1 = wn → µ
enr↓n
|rn|2

, (3.8)

where µ is the step size or learning rate and the superscript ⇒ denotes the complex conju-

gate operator. The estimated phase ϖ̂n has its updating rule written as

ϖ̂n+1 = ϖ̂n → µIm[zne
↓

n], (3.9)
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The parameter µ is selected to balance the trade-off between the tracking capability and

noise tolerance, and is thus sensitive to the signal modulation formats [68]. A high µ means

a faster reaction to the phase variation but makes the algorithm vulnerable to the stochastic

noise and leads to incorrect decision-directed symbols and phase estimates, potentially causing

cycle slips. A small µ, in contrast, reduces noise sensitivity but reacts slowly to high phase

variation, and thus makes the algorithm vulnerable to large laser linewidths. In general, the

LMS-based phase recovery is computationally simple given a proper tuning of the step size µ,

but its feedback nature makes it challenging for hardware realisation.

3.3.2 Blind phase search

The BPS algorithm, as a widely-used feed-forward CPR method, estimates the optimal phase

by testing a set of candidate phase values, rather than relying on a feedback error signal for

iterative updating [66]. The optimal phase is selected based on the criterion that minimises the

squared distance between the derotated symbol and the closest constellation point. A diagram

demonstrating the operation of the BPS algorithm is shown in Fig. 3.4. The BPS algorithm

divides a phase quadrant, ranging from 0 and ς/2, into B test phases. Each test phase ϕb is

given as

ϕb =
ςb

2B
, (3.10)

where b is an integer number in the range [0, B → 1]. The number of test phases B is

chosen as a trade-off between the algorithm resolution and computational complexity. In our

transmission scenarios with 16-QAM signal within this thesis, we set B = 32.

For each received symbol rn, the algorithm rotates it by each of test phases to generate

the rotated symbols zn,b = rnejϑb . There are B possible rotated symbols zn,b corresponding

to B test phases. The rotated symbols are passed through decision circuits which generate

the corresponding detected symbols [zn,b]D. The algorithm measures the squared distances

between the rotated symbols and their corresponding detected symbols, i.e.

|dn,b|
2 = |zn,b → [zn,b]D|

2. (3.11)

To improve noise tolerance, the algorithm considers a window of 2K+1 symbols surround-

ing the current symbol. The algorithm selects the estimated phase ϕ̂n from possible values of

ϕb that minimises the sum of squared distances over this window, i.e.
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Figure 3.4: BPS phase recovery scheme.

min
b

K∑

k=→K

|dn→k,b|
2. (3.12)

The window length 2K + 1 is a key parameter governing the algorithm’s performance, with

the behaviour being similar to the learning rate µ in the feedback CPR algorithm. A longer

window increases noise tolerance but limits the algorithm’s ability to track high-speed changes.

Due to the symmetry of the constellation in QAM signals, the BPS algorithm exhibits a

four-fold ambiguity problem. It refers to the fact that phase rotations by multiples of ς/2 re-

turn equivalent constellation points. To resolve this issue, we calculate the phase difference

between two consecutive estimated phases to correct phase jumps by multiples of ς/2. Given

the selected phase ϕ̂n at symbol step n derived from Eq. (3.12), the number of cycle jump Cn

is determined as

Cn =


1

2
→

ϕ̂n → ϕ̂n→1

ς/2


, (3.13)

where ≃·⇐ operates as the floor function defined in Eq. (3.7). The second term inside the

floor function represents how many ς/2 steps between two consecutive estimated phases. The

floor operation with threshold 1/2 returns an integer value which represents how many multiples

of ς/2 the current estimated phase has shifted. The corrected estimated phase is thus
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ϕ̂n,corrected = ϕ̂n + Cn
ς

2
. (3.14)

This corrected value is used to produce the equalised symbol instead of the initial estimated

phase ϕ̂n for better phase recovery.

We have discussed two typical CPR algorithms: while LMS-based algorithm can provide a

simple tool in numerical simulations, BPS algorithm offers a more hardware-friendly solution,

which is more practical.

3.4 Digital signal processing with kernel methods

The concept of kernel methods is mapping input signals from a finite-dimensional space into

a higher-dimensional reproducing kernel Hilbert space (RKHS) using kernel functions. Hilbert

space is a space which allows us to deal with signal of infinite dimension [69]. The kernel func-

tions, through kernel trick, allow us to compute the dot products in the RKHS without explicitly

defining or calculating feature vectors in that space. We can instead directly compute the kernel

functions with input vectors from the original space.

On the other hand, many real-world problems are about nonlinear relationships which linear

models cannot sufficiently capture. Only nonlinear models can learn the complex input-output

relationships. However, nonlinear models are often computationally expensive and challeng-

ing to interpret. Feature mapping provides an elegant solution, allowing the complex nonlinear

relationship to be linearly represented in the higher-dimensional space. This can be achieved

implicitly through the use of kernel functions as discussed above. Therefore, kernel methods

provide a powerful framework to model nonlinear functions while relying on linear algebra. This

capability makes kernel methods highly valuable in machine learning for regressions and clas-

sification tasks. They are also attractive tools in the statistics and signal processing areas [70].

3.4.1 Feature mapping

An illustration of feature mapping is shown in Fig. 3.5, produced from [70], where the data is

mapped from an input space, denoted as X , into a higher-dimensional Hilbert space, denoted

as H, by a nonlinear mapping ϖϖϖ(·). The feature mapping ϖϖϖ(·) can be written as
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Figure 3.5: Demonstration of feature mapping to ϖϖϖ(·) to Hilbert space.

ϖϖϖ : X →⇑ H

xxx ⇓→⇑ ϖϖϖ(xxx).

In the higher-dimensional space H, we can apply a linear model to learn an arbitrary func-

tion f(xxx), which is nonlinear in the original space X , i.e.

f(xxx) = ⇔ϖϖϖ(xxx), ẇww↖H, (3.15)

where ⇔·, ·↖H represents the dot or inner product operation and ẇww is the weight vector in

the Hilbert space1. The problem of the space H is that the transformed data can be very

high-dimensional, making the computation of the dot product here computationally challenging.

Kernel methods introduce the kernel trick, which enables the dot product computation between

transformed vectors without explicitly performing the mapping into higher-dimensional space. It

instead uses a positive definite function (or a kernel function) [70] to compute the dot product

directly in terms of the original input. This allows kernel methods to efficiently compute the

similarities between data points, which are represented by dot products, as if they were mapped

into the higher-dimensional space. The kernel function is defined as

k(xxx,xxx↗) = ⇔ϖϖϖ(xxx),ϖϖϖ(xxx↗)↖H, (3.16)

where xxx and xxx↑ are two arbitrary data vectors. The feature mapping also conceptually
1The weight vector ẇww has the size equal to the dimension of the Hilbert space.
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implies that any data point xxx↑ can be defined by its similarity k(xxx,xxx↑) to the data point xxx.

Although kernel methods are used for classification and regression tasks, we mainly focus

on its application in regression within this thesis. In the next subsections, we will explore the

learning algorithms with kernel methods for nonlinear regression task.

3.4.2 Kernel ridge regression

Kernel ridge regression extends the concept of ridge regression to model nonlinear relation-

ships between input features and output predictions through the use of kernel functions. We

define a general problem for nonlinear regression: Given an input xxxn ↘ RL and an observation

output yn ↘ R, we aim to model the underlying function yn = f(xxxn) + ▷n, where ▷n repre-

sents the noise, often assumed to be normally distributed with zero mean and variance ◁2, i.e.

▷n ↙ N (0,◁2). We consider a training set of N observations and define XXX ↘ RN↗L is the in-

put observation matrix, which stacks its rows with N input patterns. The corresponding output

vector is denoted as yyy ↘ RN .

We first examine linear ridge regression before extending it to nonlinear regression. In the

linear regression case, we seek the weight vector www ↘ RL that minimises the least-squares

cost function

min
www

J(www) = ||y →XXXy →XXXy →XXXwww||2 + φ||www||2, (3.17)

where || · || is the L2-norm of the vector inside the brackets and φ is the regularisation term.

This φ term is chosen to balance the trade-off between data fitting and the amplitudes of the

weight vector. The solution of this equation is given by

ŵww =
(
XXXTXXX+ φIII

)→1
XXXTyyy, (3.18)

where III is the identity matrix. We now consider the case of nonlinear regression, where

the relationship between xxxn and yn cannot be captured by a linear model. We can map the

data into a higher-dimensional feature space (possibly infinite-dimensional), where the problem

becomes linear again. In the feature space H, the least-squares cost function becomes

min
ẇww↘H

J̇(ẇww) =
N∑

i=1

||yi → ⇔ϖϖϖ(xxxi), ẇww↖H||
2 + φ||ẇww||2

H
, (3.19)

where ||ẇww||2
H

= ⇔ẇww, ẇww↖H is the squared norm of ẇww in the Hilbert space. We now introduce

the Representer Theorem [71], which shows that solutions to certain cost minimisation prob-
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lems, involving quadratic regularisers like the one above, can be represented as expansions

in terms of the training data. Therefore, the nonlinear function f(xxx) can be written as a linear

combination of the kernel functions computed with the training data points [72]

f(xxx) =
N∑

i=1

ϱik(xxxi,xxx). (3.20)

If we define the kernel matrix KKK with the entry KKKij at i-th row and j-th column as

KKKij = k(xxxi,xxxj), (3.21)

and by the definition of kernel function in Eq. (3.16), we can also write

KKK = ϖϖϖ(XXX)ϖϖϖ(XXX)T. (3.22)

From Eq. (3.22) and Eq. (3.20), we can now represent the nonlinear mapping f for the

entire training data as

f(XXX) = KKKϱϱϱ, (3.23)

where ϱϱϱ = [ϱ1,ϱ2, ...,ϱN ]T ↘ RN is the coefficient vector. Because the function f can

be considered as linear in the higher-dimensional space, we have f(xxx) = ⇔ϖϖϖ(xxx), ẇww↖H. From

Eq. (3.22), the weight vector ẇww can be written in the basis defined by rows of all mapped data

points, i.e.

ẇww =
N∑

i=1

ϱiϖϖϖ(xxxi). (3.24)

The cost function in Eq. (3.19) can now be rewritten as

min
ϑϑϑ

J̇(ϱϱϱ) = ||yyy →KKKϱϱϱ||2 + φϱϱϱTKKKϱϱϱ. (3.25)

Its solution is given by

ϱϱϱ = (KKK+ φIII)→1yyy. (3.26)

We observe that the original problem of finding the optimal weight vector ẇww ↘ H, which

lies in a potentially high-dimensional space, can be reformulated into a more computationally

efficient problem of finding the coefficient vector ϱϱϱ ↘ RN. This transformation leverages the

kernel trick, allowing us to work with kernel evaluations instead of explicitly computing in a

high-dimensional feature space. In the next subsection, we will explore an approach that also

leverages kernels, but within a probabilistic framework. This method not only provides predic-

tions but also quantifies uncertainty, a key feature for tuning kernel hyperparameters.
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3.4.3 Gaussian process

A Gaussian process (GP) defines a distribution over functions, where the function values at any

finite set of input points are jointly distributed according to a multivariate Gaussian distribution.

GPs are powerful because they capture not just the predicted values but also the uncertainty

associated with those predictions. This makes them useful for tasks that require confidence

intervals or uncertainty quantification.

In a GP, the function f(xxx) is assumed to be a random variable drawn from a Gaussian

process GP , which is fully specified by its mean function m(·) and covariance function k(·, ·)

i.e.

f(xxx) ↙ GP(m(xxx), k(xxx,xxx↗)). (3.27)

The mean function m(xxx) is defined as the expected function at input xxx, i.e.

m(xxx) = E[f(xxx)]. (3.28)

The covariance function k(xxx,xxx↑), which is also known as the kernel function, represents the

correlation between function values at different input points xxx and xxx↑, i.e.

k(xxx,xxx↗) = Cov(f(xxx), f(xxx↗)). (3.29)

Assuming the mean function is zero for simplicity, the function values f(xxx) at a finite set of

training inputs XXX = {xxx1, ...,xxxN}
T follow a multivariate normal distribution, i.e.

fff = [f(xxx1), ..., f(xxxN )]T ↙ N (0,KKK), (3.30)

where KKK is the kernel matrix defined in Eq. (3.21). The observation output vector yyy, which

includes noise ▷n ↙ N (0,◁2), can be written as

yyy ↙ N (0,KKK(XXX,XXX) + ◁2III), (3.31)

where KKK(XXX,XXX) is the kernel matrix computed for the training set. To predict the output for

a test input set XXX↓, GP considers the joint distribution of the observation output yyy and the test

outputs yyy↓, which is given by [73]

[ yyy
yyy↓


↙ N

(
000,

[
KKK(XXX,XXX) + ◁2III KKK(XXX,XXX↓)

KKK(XXX↓,XXX) KKK(XXX↓,XXX↓)

])
. (3.32)

The conditional distribution of yyy↓ given yyy provides the predictive mean and covariance

yyy
↓
= K(XXX↓,XXX)K(XXX↓,XXX)K(XXX↓,XXX)


KKK(XXX,XXX) + ◁2III

→1
yyy, (3.33)
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Cov(fff↓) = K(XXX↓,XXX↓)K(XXX↓,XXX↓)K(XXX↓,XXX↓)→KKK(XXX↓,XXX)

KKK(XXX,XXX) + ◁2III

→1
KKK(XXX,XXX↓). (3.34)

This provides both the predictive mean and the covariance, allowing us to quantify the

uncertainty of the predictions.

3.4.4 Kernel functions

In this section, we will discuss few commonly used examples of kernel function and which

assumptions on the underlying functions are corresponded to each of them. A valid kernel

function should be symmetric and positive semidefinite [73].

We first discuss about Gaussian kernel, which is also known with other names, such as

radial basis function (RBF) kernel or the squared exponential kernel. Gaussian kernel is widely

recognised for its ability to handle nonlinear relationships and its flexibility, often delivering

strong performances across various datasets while relying on only a single hyperparameter.

However, its drawbacks include high computational and memory costs as the dataset size in-

creases, which are also general disadvantages of kernel-based methods, and its sensitivity to

hyperparameter tuning, which can lead to overfitting if not managed properly. Despite these

challenges, the Gaussian kernel is a universal approximator, meaning it can model any dataset

if appropriately tuned. This makes it a reliable and effective starting point when applying kernel

methods to nonlinear problems. The name ”Gaussian” comes from their expression, which is

similar to the probability density function of the Gaussian distribution. Its form is

kRBF(xxx,xxx
↗) = exp

(
→
||xxx→ xxx↗||2

2l2RBF

)
, (3.35)

where lRBF represents the kernel lengthscale, which governs the kernel’s response to the

distance between points. A small value of lRBF means the kernel function decays quickly with

the distance ||xxx→xxx↑||, so the pointsxxx andxxx↑ needs to be very close to be regarded as having high

similarity. In contrast, a high value of lRBF allows the highly separated points to be considered

as similar.

A demonstration of a GP with Gaussian kernel is shown in Fig. 3.6, where the colour

map showing the calculated kernel function values given the input points xxx and xxx↑ is plotted in

Fig. 3.6(a). We also plotted three functions f(xxx) sampled from GP prior in Fig. 3.6 to show

the properties of the underlying functions which Gaussian kernel makes assumption in. The

Gaussian kernel is modelled for functions with local variation structure, with the lengthscale
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(a) (b)

Figure 3.6: Gaussian kernel with its (a) covariance matrix and (b) example functions sampled from GP
prior.

lRBF defines their smoothness. Functions with rapid variations, where high similarity is only

considered for close points, are modelled with a short lengthscale lRBF, while a long lengthscale

is selected for smoother functions.

The Gaussian kernel is most widely used choice for kernel selection due to its flexibility

and simplicity. Although it is governed by a single hyperparameter - lRBF, it is a universal

approximator given enough data and right hyperparameter choice.

The second kernel function we consider is the periodic kernel. It was derived in [74], with

the objective of modelling functions with repeated structures. It is also referred to by exponential

sine squared due to its mathematical expression, which is

kPer(xxx,xxx
↗) = exp

(
→
2 sin2(ς||xxx→ xxx↗||/p)

l2Per

)
, (3.36)

where lPer is the lengthscale with its implicit meaning is similar to lRBF within Gaussian

kernel. The hyperparameter p is called periodicity, which defines the period of the oscillation

within modelling functions. It ensures that the calculated function values are still dependent on

the point distances but only within repeated cycles.

The covariance matrix associated with the periodic kernel is plotted in Fig. 3.7(a), where the

covariance values exhibit a repeating pattern as the distance between points varies, reflecting

the periodic nature of the kernel. Three sample functions drawn from a GP with the periodic

kernel are shown in Fig. 3.7(b), with each clearly demonstrating the repeated structure. This

makes the periodic kernel is ideal for modelling cyclic behaviour, and particularly useful for esti-

mating the dithering-induced distortion in FOPA links, where signal distortion exhibits oscillatory

characteristics.

While there are many other types of kernel functions, such as linear kernel, rational quadratic
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(a) (b)

Figure 3.7: Periodic kernel with its (a) covariance matrix and (b) example functions sampled from GP
prior.

kernel and constant kernel [73], this thesis only focuses on those most relevant to the specific

problems involving periodicity and smoothness. We have seen that each kernel function has

its own hyperparameter, such as lRBF in Eq. (3.35) or lPer in Eq. (3.36). These hyperparame-

ters determine how the model generalises and selecting appropriate values for them is crucial

for achieving optimal performance. Hyperparameter selection can be performed through grid

search or cross-validation, but these approaches can be computationally expensive, especially

if the number of hyperparameters increases. To address this, we will take a probabilistic ap-

proach by introducing the concept of GP.

3.4.5 Kernel hyperparemeter optimisation

Each kernel function comes with its own hyperparameters and in GP regression, selecting a

right set of hyperparameters is as crucial as choosing the kernel function itself. A common

approach for hyperparameter optimisation involves maximising the marginal likelihood function

p(yyy|XXX,000), where 000 is the vector of GP hyperparameters. It quantifies how likely the observed

output data yyy is given the input data XXX and the model hyperparameters 000.

We start with the probability density function of yyy, which follows a multivariate normal distri-

bution as described in Eq. (3.31), is given by

p(yyy|XXX,000) =
1

(2ς)N/2|KKKy|
1/2

exp

(
→
1

2
yyyTKKK→1

y yyy

)
, (3.37)

where |.| defines the determinant operator and KKKy = KKK(XXX,XXX) + ◁2III is defined as the

covariance matrix considering the noisy output data. It is usually more convenient to work with

the log marginal likelihood instead, which is expressed as [73]
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log p(yyy|XXX,000) = →
1

2
yyyTKKK→1

y yyy →
1

2
log |KKKy|→

N

2
log(2ς). (3.38)

The first term, yyyTKKK→1
y yyy, evaluates how well the model fits the observed data. The sec-

ond term, log |KKKy|, acts a regulariser by penalising the model complexity. The last term is

a normalised constant term and does not depend on the model parameters. Therefore, the

optimisation process aims to maximise the log marginal likelihood with respect to hyperparam-

eter 000. This results in a trade-off between accurately fitting the data and reducing the model

complexity, allowing the model generalise well to unseen data.

3.5 Conclusion

We have discussed in this chapter how the optical signal, thanks to the coherent receivers, is

detected preserving both phase and amplitude information. We also reviewed existing algorithm

for fundamental blocks, CDC and CPR blocks, within DSP chain which will be applied to our

scenario in the following chapters. In the second part of this chapter, we provided the theoretical

fundamentals about kernel-based methods and discussed how it can be used for nonlinear

regression task. We also briefly introduced the role of kernel functions within GP regression

before introducing two primary families of kernel functions. A hyperparameter optimisation

procedure by maximising log marginal likelihood was also discussed.
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Chapter 4

Amplitude and phase distortion

compensation in systems with optical

phase conjugator

In this chapter, we examine the optical transmission systems with a mid-link OPC, focusing

on the phase distortion induced by the residual dithering introduced at the OPC stage. The

conventional DSP algorithms, typically employed to mitigate phase noise arising from non-

zero laser spectral widths, are ineffective in addressing this particular form of phase distortion.

To overcome this limitation, we propose a novel compensation scheme that simultaneously

addresses the phase distortion in conjunction with the secondary amplitude distortion caused

by fibre dispersion in the latter half of the transmission link. Notably, the ability to compensate

for the amplitude distortion is an innovative aspect of this work which was published in the

CLEO and ICTON paper [1, 2], as only phase compensation has been previously explored in

the literature.

4.1 Mid-link optical phase conjugation transmission

We consider an optical transmission of total N spans, each with a SMF segment followed by

an optical amplifier (OA), using a mid-link OPC configuration, as shown in Fig. 4.1. The OPC

is deployed at the midpoint, dividing the transmission into two segments, each containing N/2

spans. As discussed in section 2.3, by creating a phase-conjugated copy of the signal, the OPC
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can effectively reverse, at the end of the second half, any distortions accumulated in the first

segment.

×"/2

Tx RxOA OPC OA

×"/2

% → %∗

Figure 4.1: Scheme of OPC transmission.

We modelled the OPC based on the dual-pump polarisation-insensitive configuration de-

scribed in [75, 76], as illustrated in Fig. 4.2. In this setup, two pump lasers are phase modulated

by phase modulator (PM)s driven by electric RF tones generated from an arbitrary waveform

generator (AWG). Two low-pass filter (LPF)s are used to remove any higher-order frequency

components generated by the nonlinear response of the preceding RF amplifiers. The two

phase-modulated pumps are then combined by a PBC before being sent to a HNLF for signal

mixing.

One of key insights from Chapter 2 is that the pump-phase modulation is essential for SBS

suppression, which is then important to achieve sufficient OPC conversion efficiency. The con-

version efficiency is defined as Gi = |µi|
2, where µi represents the complex idler gain derived

from Eq. (2.39). The maximum conversion efficiency is thus given as

Gi,max = sinh2(”NL), (4.1)

where the nonlinear phase shift ”NL is defined in Eq. (2.27). For HNLFs in the 1550

nm region, typical nonlinear phase shifts are only around 0.2-0.3 radians [34], resulting in the

maximum conversion efficiency Gi,max of approximately -13.9 to -10.3 dB. Additional calculated

values of maximum conversion efficiency, corresponding to different SBS threshold increase

factors, are provided in Table 4.1.

SBS threshold increase factor 1 3 9
Number of required RF tones 0 1 2

Max nonlinear phase shift [rad] [0.2, 0.3] [0.6, 0.9] [1.8, 2.7]
Max conversion efficiency [dB] [-13.9, -10.3] [-7.72, 0.23] [9.4, 17.4]

Table 4.1: SBS-limited conversion efficiency for different levels of SBS suppression.

From this table, we observe that achieving ’lossless’ optical phase conjugation requires in-

creasing the nonlinear phase shift by at least a factor of three. Considering additional external

factors which may reduce the conversion efficiency, it is beneficial using a pump-phase modu-
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Pump laser

Pump laser

PM

PM

AWG

LPF

LPF

To HNLF

Figure 4.2: Dual-pump configuration for OPC implementation.

lation with two RF tones. In [75, 76], two sinusoidal RF tones at f1 = 60 MHz and f2 = 600

MHz are used to for the electrical signal driving the phase modulator.

4.2 Residual dithering-induced distortion

In the dual-pump configuration depicted in Fig. 4.2, the ideal scenario occurs when the two

pumps are precisely driven by two out-of-phase signals which theoretically cancel out any

phase distortions which could be transferred to the signal. However, in practice, imperfec-

tions in adjustments of these driving signals, due to mismatches in electronic components or

any deviations in the amplifier characteristics, often result in residual dithering that is trans-

ferred to the output signal. In detail, when the AWG generates two sets of RF tones in Fig. 4.2,

achieving perfect out-of-phase operation is challenging, resulting in a nonzero phase mismatch.

This mismatch prevents complete cancellation of phase distortions, leading to residual phase

fluctuations in the output signal. In practice, phase mismatches typically range from a few de-

grees to tens of degrees, depending on the synchronisation accuracy of the AWG. This residual

dithering can degrade overall system performance, particularly in coherently detected transmis-

sion system. In this section, we will first model the phase distortion due to residual dithering,

followed by a discussion in the phase-to-phase and phase-to-amplitude distortion conversion

caused by chromatic dispersion in the second fibre segment.
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(a) (b)

Figure 4.3: Constellation diagrams of presumed OPC transmission without ASE and laser phase noise
in (a) back-to-back configuration (b) 10-span configuration.

4.2.1 Residual dithering-induced phase distortion

The pump-phase modulation scheme was numerically modelled according to [77], where the

driving signals, which were generated by a two-channel AWG, are composed by two sinusoidal

RF tones at f1 and f2, corresponding to angular frequencies ε1 and ε2 respectively. The

electrical signals are expressed as

ϕ1(t) = (A+ 1A) [cos(ε1t+ 10) + cos(ε2t+ 10)] , (4.2)

ϕ2(t) = →A [cos(ε1t) + cos(ε2t)] , (4.3)

where A is the modulation index in rad, 1A and 10 denote the modulation index mismatch

and phase mismatch respectively, representing the imperfect RF tone adjustments. In our anal-

ysis, we set the modulation index A = 1.2 rad and the modulation index mismatch 1A = 0.01

rad while varying the phase mismatch 10. The complex envelope of the two phase-modulated

pump waves are modelled as

Api(t) = |Api|e
j[ϖϱi(t)+ϱmi(t)], (4.4)

where i = 1, 2 represents the pump index. The phase distortion 1ϖi(t) is caused by the

non-zero spectral width of the laser and is numerically modelled using the Brownian motion

model. In this model, 1ϖi(t) is composed of increments between consecutive time steps that

follow a Gaussian distribution [78]. The second term, ϖmi(t), accounts for the modulated pump

phase by RF tones. The driving signals described in Eqs. (4.2) and (4.3) are amplified by non-

ideal RF amplifiers before being passed through LPFs as depicted in Fig. 4.2. To simulate the

nonlinearity of these RF amplifiers, we employ a third-order polynomial model [79]. Therefore,
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the pump-phase modulation by each pump ϖmi(t) is expressed as [77]

ϖmi(t) =


d2h(t→ 2)


ϱ1ϕi(2) + ϱ2ϕi(2)

2 + ϱ3ϕi(2)
3

, (4.5)

where ϱ1, ϱ2 and ϱ3 are the coefficients of the RF amplifier’s response, h(t) is the low-pass

filter’s impulse response. In our simulation, the RF amplifier response’s coefficients are set as

ϱ1 = 1, ϱ2 = 0.007 and ϱ3 = 0.005 to align with the experimental data in [76]. The envelope

of the idler signal is proportional to Ap1 · Ap2, so the phase modulation transferred to the idler

signal is

$(t) =
2∑

i=1

[1ϖi(t) + ϖmi(t)] . (4.6)

We can see that under the assumption of linear response of the RF amplifiers, the dithering-

induced pump phase modulation transferred to the OPC output is zero when we can achieve an

ideal counter-phasing configuration for ϕ1(t) and ϕ2(t). In other words, it can be achieved when

1A = 10 = 0. Otherwise, the phase modulation of the idler is modulated by the frequencies

f1, f2 and the values of the modulation mismatch 1A and phase mismatch 10. A constellation

diagram obtained after a numerical simulation of an OPC back-to-back transmission is shown

in Fig. 4.3(a). If we neglect the laser phase noise and amplified spontaneous emission (ASE)

noise, the final constellation diagram only demonstrates the phase distortion arising from the

effect discussed above.

4.2.2 Phase-to-phase and phase-to-amplitude distortion conversion

In the mid-link OPC transmission which is assumed to be free of laser phase noise and ASE

noise, we are left with chromatic dispersion, fibre nonlinearity and the residual dithering-induced

phase distortion which was discussed in the previous section. Suppose that the OPC can

effectively correct the distortion from dispersion and nonlinearity, one may think we are left with

only dithering-induced phase distortion. However, the received constellation diagram shows the

presence of amplitude distortion, as demonstrated in Fig. 4.3(b) with a transmission of 10 fibre

spans. This effect occurs when phase modulation in the idler signal at the OPC output interacts

with the chromatic dispersion present in the fibre during the second half of the transmission.

The relationship between phase and amplitude modulation at the input and output of a

dispersive fibre can be given by a small-signal analysis. The input signal with optical power

Sin(t) = ⇔S↖ + !Sin(t), where ⇔S↖ is the average and !Sin(t) is the small-signal intensity
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Figure 4.4: Phase-to-phase and phase-to-amplitude modulation effects in dispersive channel.

modulation, and phase ϖin(t) is related to the output signal with optical power Sout(t) = ⇔S↖+

!Sout(t) and phase ϖout(t) by [80]

[
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[
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2≃S⇐

ϖin(jε)

]
. (4.7)

In our OPC model, only phase modulation is present, so we only consider the terms with

ϖin(jε). We plot the phase-to-phase and phase-to-amplitude modulation based on Eq. (4.7) in

Fig. 4.4. Phase-to-phase modulation reflects how the signal phase changes along the disper-

sive channel, while phase-to-amplitude distortion describes how phase changes cause varia-

tions in the signal amplitude. This explains why the symbols with phase distortion in Fig. 4.3(a)

are converted into clouds with both phase and amplitude distortions in Fig. 4.3(b). This hap-

pens differently for different frequency components as shown in Fig. 4.4, leading to inter-symbol

interference in which overlapping symbols cause degradation to the neighbouring symbols. It

is an effect with memory, so we need to account for sufficient channel memory to reverse this

effect. Recognising and understanding this phenomenon is important to design effective com-

pensation schemes at the receiver, preserving signal quality over long-haul transmission.

4.3 Phase and amplitude distortion compensation scheme

In the previous section, we examined how residual pump-phase modulation is transferred to the

OPC output and how this phase modulation leads to different types of distortion at the receiver.

Both phase and amplitude distortions negatively affect systems using advanced modulation for-

mats such as QAM, which relies on the accurate detection of both signal phase and amplitude.

In this section, we propose a dithering-induced distortion compensation (DDC) scheme to ef-
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t	=	kTs
OPCejϕt	(t) ejϕr	(t)
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Figure 4.5: Baseband equivalent model of transmission with single-stage OPC.

fectively mitigate these distortions by estimating the residual dithering-induced phase distortion

and cancelling out the phase-to-phase and phase-to-amplitude distortion conversion.

4.3.1 Operating principle

We first analyse, in time domain, the impact of residual dithering-induced phase distortion and

how it contributes to the distortion conversion observed at the received signal. This can be

achieved by examining a linear baseband equivalent model, shown in Fig. 4.5, of the optical

transmission with a mid-link OPC. In this model, each half of the transmission link, consisting

of N/2 fibre spans, is represented by a FIR filter, whose impulse response is denoted as hf (t).

Examining the signal propagation, the transmitted signal, x(t), is first affected by the transmitter

laser phase noise ϖt(t) before passing through the filter represented by hf (t). After the OPC

stage, the signal propagates to the second half of the link, also modelled by the same filter

hf (t). At the receiver, the signal is further influenced by the LO laser phase noise ϖr(t). The

signal is then undergoes complex conjugation (denoted by the block labelled c.c), followed by

matched filtering and downsampling. The received symbol at time instant k is denoted as y[k].

The operation of OPC is modelled as a complex conjugation block followed by the presence of

phase distortion $(t) in Eq. (4.6). The contributions of ASE noise is excluded from this analysis

for simplicity.

Because the total laser phase noise, defined as 1ϖ(t) = ϖt(t) + ϖr(t) + 1ϖ1(t) + 1ϖ2(t),

varies on a much slower timescale than the residual dithering-induced phase distortion ϖmi(t)

(kHz compared to GHz level), our analysis focuses on the interaction between fibre dispersion,

represented by hf (t), and the faster phase distortions ϖmi(t). The total laser phase noise

can thus be separated from this process and assumed to be compensated by a conventional

CPR algorithm. Therefore, the end-to-end relationship between the input signal x(t) and output

signal y(t) can be expressed as

y(t) = ejϖϱ(t)
[[
[x(t) ⇒ hf (t)]

↓ ejϱm(t)

⇒ hf (t)

↓
, (4.8)
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where ⇒ denotes the convolution and the superscript ↓ represents the complex conjugate

operator. The total dithering-induced phase distortion is ϖm(t) = ϖm1(t) + ϖm2(t). Applying

the linear approximation ejϖ ∝ 1 + jϱ, we can simplify the above equation to

y↗(t) = x(t)→ [[x(t) ⇒ hf (t)] jϖm(t)] ⇒ h↓

f (t), (4.9)

where y↑(t) = y(t)e→jϱε(t) represents the laser phase noise-compensated signal. The

participation of the residual dithering-induced phase distortion ϖm(t) leads to the deviation

between the transmitted signal x(t) and received signal y↑(t). An estimate of the second term

is thus crucial to correct the received signal. From the above equation, we can solve for the

residual dithering-induced phase distortion ϖm(t). Given that ϖm(t) is real-valued, it can be

expressed as

ϖm(t) = →Im


[y↗(t)→ x(t)] ⇒ hf (t)

x(t) ⇒ hf (t)


(4.10)

At the receiver, the signal y↑(t), obtained after the CPR stage, is known and the channel

impulse response hf (t) can be estimated based on prior knowledge of the link characteristics.

However, the input signal x(t) remains unknown and needs to be estimated. We propose

approximating x(t) using the decision-directed symbols from the output of the CPR block. This

leads to a two-stage compensation scheme, which will be discussed in the next section.

4.3.2 Compensation scheme

Based on the preceding analysis, the proposed compensation scheme to mitigate the dithering-

induced distortion operates in two stages, as depicted in Fig. 4.6. The first stage applies a CPR

algorithm, such as the BPS method [66], to produce the symbols free from laser phase noise.

The second stage focuses on estimating the second term in Eq. (4.9). In this stage, an estimate

x̄[k] of the transmitted symbol x[k] is generated by a decision circuit, which then participates in

Eq. (4.9) in the role of transmitted signal x(t) to recreate the residual dithering-induced complex

distortion. This block also requires knowledge of the channel impulse response hf [k], which

can be estimated using the method outlined in [52], given the number of spans and the fibre’s

dispersion coefficient. The final estimate of the transmitted symbol x̂[k] is then produced by

adding the estimated dithering-induced complex distortion to the output of the CPR block.

However, the effectiveness of this stage significantly depends on how accurately the residual

dithering-induced phase distortion ϖ̂m[k] is estimated. In the next section, we will explore a
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Figure 4.6: The compensation scheme for OPC transmission.

linear regression approach to learn this phase distortion.

4.3.3 Estimation of dithering-induced phase distortion

The total pump-phase modulation transferred to the idler ϖm[k] is the key term the algorithm

needs to predict. Based on Eqs. (4.2), (4.3) and (4.5), this term follows a sinusoidal pattern

corresponding to the frequencies used in the pump-phase modulation. This behaviour can be

confirmed by analysing the PSD of the first estimated residual dithering-induced phase distor-

tion after the CPR stage. This estimate is calculated as the angle of the complex difference

between the symbols after CPR, y↑[k], and the corresponding detected symbols, [y↑[k]]D, i.e.

↫ {y↑[k]→ [y↑[k]]D}. As illustrated in Fig. 4.7, the PSD plot clearly reveals two prominent fre-

quency peaks at frequencies f1 = 60 MHz and f2 = 600 MHz. The prediction of ϖm[k] thus

can be done by performing linear regression with the feature vector using the knowledge of the

above frequencies. In detail, the feature vector BBB[k] ↘ R2Nt is formed as

!1

!"

Figure 4.7: Power spectral density of the residual dithering-induced phase distortion.
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BBB[k] = [sin[εik], cos[εik], ...]
T , i = 1, 2, ..., Nt. (4.11)

In our scenario, there were two modulation frequencies corresponding to Nt = 2, but the

general case can consider up to Nt number of RF tones. The estimated residual dithering-

induced phase modulation ϖ̂m[k] is obtained as ϖ̂m[k] = 000T[k]BBB[k] through a coefficient vector

000 ↘ R2Nt . The linear regression model was trained using batch gradient descent (GD) algorithm

with a training sequence of 1000 symbols and a learning rate of 0.1. The algorithm convergence

is shown in Fig. 4.8(a) with the convergence is guaranteed after 100 epochs. After the algorithm

reaches its convergence, it uses decision-directed symbols instead of the reference ones. To

plot these graphs and for further analysis, we used the modulation index A = 1.2 rad, the

modulation index mismatch 1A = 0.01 rad for Eqs. (4.2) and (4.3). The phase mismatch

10 = 6↔ for Fig. 4.8 and will be varied in one of the next testing scenarios.

(a) (b)

Figure 4.8: Regression learning of residual dithering-induced phase distortion.

4.4 Compensation result

The direct-count bit-error-rate (BER) is used as the evaluation metric to compare the perfor-

mance between different compensation schemes across testing scenarios. The parameters

used in our numerical simulation are listed in Table. 4.2 with the fibre parameters are corre-

sponding to the standard SMF. The propagation along the SMF was modelled using the split-

step Fourier method (SSFM) with maximum step width of 1 km and maximum phase change

of 0.005 rad. For our analysis, we modelled a transmission of a 16-QAM signal using a root-

raised-cosine (RRC) filter with a roll-off factor of 0.1 at 28 Gbaud, with 8 samples per symbol.

The BER values in each scenario was averaged over 10 batches of 216 symbols.

We start our analysis by finding the optimal launched power for our mid-link OPC trans-
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Parameters Values
Modulation 16-QAM
Baud rate 28 [GBaud]

Span length 100 [km]
Loss 0.2 [dB/km]

Dispersion 17 [ps/(nm.km)]
Nonlinearity 1.2 [W→1km→1]

Tx/Rx laser linewidths 100 [kHz]
OPC laser linewidths 50 [kHz]

Noise figure 4.5 [dB]

Table 4.2: OPC transmission numerical simulation parameters

mission. In this scenario, we considered the number of spans N = 20, which is equivalent

to the transmission distance of 2000 km. It will be the maximum number of spans considered

in this analysis. To isolate the impact of the residual-dithering induced phase distortion, we

assumed a nearly perfect OPC model with the phase mismatch 10 = 0↔. We used the LMS-

based algorithm for the CPR block because of its reduced computational cost, and tried with

different learning rate values. We plotted the BER curve versus the various launched power

and observed the best curve obtained at the learning rate of 0.005, and this curve is plotted

in Fig. 4.9. As observed from the graph, the optimal BER is achieved at a launched power

of 1 dBm, which will be used for the next testing scenarios. Although mid-link OPC transmis-

sion theoretically compensates for fibre dispersion and nonlinearity, the increase in BER within

the nonlinear regime is primarily caused by parametric noise amplification. This amplification

arises from independent ASE sources introduced by each amplifier along the transmission.

Only the ASE from the first amplifier of the link benefits from the same nonlinear compensation

as the signal after OPC. For any subsequent amplifiers, this ideal compensation cannot be fully

achieved due to asymmetry with respect to the receiver and the mid-link OPC. As a result,

additional parametric noise amplification further degrades the signal-to-noise ratio, limiting the

effectiveness of nonlinear compensation [81].

Regarding compensation schemes to be compared, besides the BPS method, which will

be used for the CPR stage, we also included a phase-only compensation scheme outlined in

[77]. In this algorithm, the author performed a grid search on phase (GSP) to find the best

suitable fitting for the residual dithering-induced phase modulation ϖm. Two grids of 10 ↔ 10

were applied for the amplitude and phase values. While the searching range of phase is [0, 2ς]

rad, the range for the amplitude is [0, 0.2] rad. The algorithm returns the optimal values which

minimise the squared distance between the corrected symbol and the nearest constellation
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Figure 4.9: Launched power optimisation in mid-link OPC transmission.

point. This method is supported by a stage of BPS, so we will refer it as BPS-GSP in the later

discussion. Our proposed algorithm will be referred as BPS-DDC.

4.4.1 Performance over transmission distance

Under the optimum launched power of 1 dBm, the performance comparison in terms of BER

versus transmission distance between testing compensation schemes is shown in Fig. 4.10.

In this analysis, the phase mismatch is set as 10 = 6↔. We note that the number of spans N

is always an even number because of the symmetry of the mid-link OPC transmission, with its

value runs within the range between 4 and 20 in this simulation.

Figure 4.10: Performance of OPC transmission system with compensation schemes.

We observe that the BPS-GSP method achieves a significant BER improvement at short

transmission distances, but the enhancement is quickly reduced as the number of spans in-
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creases. It can be explained by the second term in Eq. (4.9) becomes more pronounced

as more channel memory due to higher transmission distance. Compensation in only phase

domain is thus insufficient for signal recovery task, and even the interaction with fibre disper-

sion causes an additional complex distortion, which makes the fitting on phase time series

even more tricky and more prone to errors. Conversely, by including the fibre dispersion into

the calculation, our proposed BPS-DDC can take into account of the interaction of residual

dithering-induced phase distortion with it, and maintain a consistent BER improvement across

considered transmission distance range. At the maximum transmission distance, we achieved

a bit less than one order of BER improvement over other phase-only compensation schemes.

4.4.2 Impact of phase mismatch

It is worth testing the impact of phase mismatch 10, which obviously contributes to the overall

system performance. Figure 4.11 makes comparison between different compensation schemes

under the variation of the pump phase mismatch 10 after transmissions of 12 spans.

Figure 4.11: Performance of OPC transmission system with compensation schemes considering differ-
ent phase mismatches.

The differences between schemes are hard to distinguish for up to the phase mismatch

10 = 2↔, but become more obvious as the phase mismatch becomes larger. We can see that

the BPS-GSP fails to offer a substantial BER improvement regardless the amount of phase

mismatch at this long transmission distance. In contrast, our propsed BPS-DDC can provide a

significant BER improvement for the phase mismatch which is even larger than 6↔ as seen in

the previous analysis. The graph also highlights that the enhancement is still meaningful even

when the phase mismatch is up to 10↔. We also included in Fig. 4.11 the constellation diagrams
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of the final symbols corresponding to different compensation schemes at the phase mismatch

10 = 6↔. The colours of the points are matched with the colours of the BER curves. The

corrected symbols with BPS-DDC (yellow points) are suppressed in both amplitude and phase

compared to with those from other schemes (blue and green points). That is the evidence to

support the capability of mitigating simultaneously phase and amplitude of our proposed DDC

scheme.

4.5 Conclusion

In this chapter, we investigated the transmission with mid-link OPC and discussed where the

residual dithering-induced phase distortion comes from and how it degrades the signal constel-

lation. The main focus of this chapter is conversion mechanism which creates phase-to-phase

and phase-to-amplitude at the received signal after the second fibre segment. The effect is

caused by the interaction of residual dithering-induced phase distortion with channel disper-

sion, and becomes more significant when the transmission distance increases. To mitigate

these distortions, we have developed a two-stage DSP compensation scheme, with assistance

from BPS method. By estimate the residual dithering-induced phase distortion through linear

regression algorithm, we could estimate and effectively remove both phase and amplitude dis-

tortion induced by imperfect pump-phase modulation from our transmitted signal and achieved a

significant BER improvement over across wide range of number of spans for 28 Gbaud 16-QAM

signal transmission.
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Chapter 5

Phase and amplitude distortion

compensation in optical parametric

amplified systems

In this chapter, we extend our investigation into phase and amplitude distortion caused by pump

dithering, focusing now on optical transmissions employing FOPAs. While these systems en-

counter challenges similar to those seen in OPC systems, the dithering-induced distortions in

FOPA system are more complex and difficult to estimate. This complexity comes from the fact

that distortions are introduced at multiples cascaded stages, with each contributing to the over-

all dithering-induced distortion. Moreover, the interaction with fibre dispersion accumulates over

cascaded stages, further complicating the distortion pattern. In this chapter, we propose two

novel online dithering compensation schemes: a multi-branch approach [3] and a single-branch

method [5]. Both are designed for simultaneously mitigating of phase and amplitude distortion,

with the latter is an improved version of the former. The single-branch compensation scheme is

suitable for both single- and dual-pump FOPA configurations, as well as different pump-phase

modulation schemes. The method and results presented within this chapter are also included

in the CLEO-PR paper [7] and the Optics Express journal article [10].
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5.1 Fibre-optical parametric amplified transmission

In this study, we examine a FOPA transmission link with N spans, as depicted in Fig. 5.1.

Each span consists of 100 km of SMF, resulting in 20 dB of signal loss, which is subsequently

compensated by a following FOPA.

Tx …FOPA

Span 1
Rx

Span "
FOPA

Figure 5.1: Schematic diagram of a transmission system with N cascaded FOPA stages.

The considered FOPA model incorporates both single-pump and dual-pump configurations,

assuming no pump depletion. The FOPA complex signal gain for the model without pump-phase

modulation is provided in Eq. (2.26). We used the same parameters listed in Tables 2.1 and

2.2 for the FOPA numerical model in this chapter. As discussed in Chapter 2, achieving a 25

dB FOPA gain, which is necessary to compensate for the 20 dB signal loss and an additional

5 dB insertion loss, requires an increase in the SBS threshold via pump-phase modulation.

Therefore, to accurately model FOPA within the transmission link in Fig. 5.1, a new calculation

for FOPA gain under the influence of pump-phase modulation is needed, which will be discussed

in the next section.

5.2 Influence of pump-phase modulation

Assume the electrical driving signal within pump-phase modulation schemes is a combination

of multiple Nt tones, as discussed in Chapter 2, given the definition ϕt = ⇁ϕ(t)/⇁ t as the first

derivative of the pump phase, we can write it as

ϕt =
Nt∑

i=1

Amiεmi cos(εmit+ ξmi), (5.1)

where the selection of frequencies εmi is detailed in section 2.4.2, while the amplitude Ami

and phase ξmi can be optimised as outlined in section 2.5. The phase modulation introduces a

time-dependent instantaneous phase mismatch, 1ω(t), which is added to the linear wavevector

mismatch !ω and subsequently to the total wavevector mismatch ⇀ in Eqs. (2.15), (2.30),

(2.36) and (2.37) . This additional term is a function of ϕt and in the single-pump scheme, it is
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(a) (b)

Figure 5.2: (a) The amplitude and (b) phase spectral responses of the FOPA complex gain, along
with the corresponding dithering-induced RMS amplitude and phase fluctuations as a function of signal
wavelength detuning.

expressed as [82, 83]

1ω(t) = ω(2)ϕ2
t → ω(3)

(
ϕt!ε2

s +
1

3
ϕ3
t

)
+

1

12
ω(4)

(
ϕ4
t + 6ϕ2

t!ε2
s

)
. (5.2)

This term for the dual-pump scheme can be expressed as [84]

1ω(t) =
1

2
ω(3)(!ε2

s →!ε2
p)(ϕ1,t + ϕ2,t), (5.3)

where ϕ1,t and ϕ2,t are the first derivatives of the two pump phases corresponding to the

pumps P1 and P2. The pump phase modulation thus modulates the FOPA complex gain, origi-

nally given in Eq. (2.26), as

µ̃s(t) =

[
cosh[g(t)L] + j

⇀(t)

2g(t)
sinh[g(t)L]

]
e[j(2ςP0→

ω(t)
2 )]L, (5.4)

where ⇀(t) = ⇀+ 1ω(t) and the time-dependent g(t) is calculated from Eq. (2.17) with the

new ⇀(t). Equation (5.4) simplifies to Eq. (2.26) when 1ω(t) = 0, which occurs when ϕt = 0

in the single-pump scheme (i.e. no pump-phase modulation) or ϕ1,t = →ϕ2,t in the dual-pump

scheme (i.e. the two pumps are ideally in phase opposition). In this analysis, RF amplifier is

linear. Because the total wavevector mismatch ⇀ is modulated by the pump-phase modulation

(in single-pump scheme) or by residual dithering (in the dual-pump scheme), the FOPA gain

modulation exhibits temporal variations in both amplitude and phase. The magnitude of these

distortions depends on the signal frequency detuning !εs, as shown in Eqs. (5.2) and (5.3).

Quantifying the gain fluctuations is essential to select the optimal operating region for FOPA.

To achieve this, we define the root-mean-square (RMS) amplitude fluctuation ◁amp and the RMS

phase fluctuation ◁phase of the discrete time-varying FOPA complex gain µ̃s[i] as
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◁amp =


NS∑

i=1

(|µ̃s[i]|→ |µs|)
2, (5.5)

◁phase =


NS∑

i=1

(↫{µ̃s[i]}→ ↫{µs})
2, (5.6)

where NS is the number of samples and µs represents the FOPA complex gain without

pump-phase modulation, calculated from Eq. (2.26). These dithering-induced fluctuations,

plotted against signal wavelength detuning !φs, are shown in Fig. 5.2. The fluctuations in

this graph are caused by the four-tone phase modulation scheme. The graph also displays

the power gain and phase spectral responses of the FOPA complex gain versus the signal

wavelength detuning, calculated from the central wavelength !φs = φs → φc (in the dual-pump

scheme) or from the pump wavelength !φs = φs → φp (in the single-pump scheme), in the ab-

sence of pump phase modulation. The RMS fluctuations in the dual-pump scheme are generally

smaller than that in the single-pump scheme because of the relatively small residual dithering

signal due to the imperfect tone adjustment transferred to the signal instead of the entire dither-

ing signal contributed by one pump in the single-pump scheme. In detail, the magnitude of the

first derivative of pump phase ϕt participating in modulating the FOPA gain is smaller in the

dual-pump scheme than the single-pump one.

The maximum RMS fluctuations in both amplitude and phase in the dual-pump scheme

can be seen at the zero wavelength detuning, i.e. !φs = 0 nm, while that is where the RMS

fluctuations in the single-pump scheme reach their minimum points. A local minimum of the

RMS amplitude fluctuation in the single-pump scheme can be seen at !φs = →35.7 nm, where

the optimal gain is achieved. It is an interesting property because when we operate FOPA at

this wavelength for maximum gain, only the phase distortion prevails, and the primary impact

on the output signal mainly originates from the phase fluctuation of the FOPA gain. The RMS

phase and amplitude fluctuations in the single-pump scheme then experience rapid growths

as the wavelength detuning goes beyond this value. Figure 5.2 illustrates the selected op-

erating wavelengths for both the single-pump and dual-pump schemes, including two notable

wavelength detuning values mentioned above. The solid lines represent the optimal operating

wavelength for the single-pump scheme that yields 25 dB power gain, and we will also inves-

tigate the dual-pump scheme at this wavelength. The dashed lines denotes another operating
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wavelength for the dual-pump scheme, where the RMS fluctuations are highest, to test the

capability of the proposed compensation scheme to phase and amplitude suppression.

5.3 Phase and amplitude distortion compensation schemes

In this section, we will propose DDC algorithms, which compensate for the dithering-induced

phase distortion and also the phase-to-phase and phase-to-amplitude distortions due to the

effect outlined in section 4.2.2. We will begin with the examination of the baseband equivalent

model of the FOPA transmission system to see how the cascaded stages of phase distortion

contribute differently than the single-stage in Chapter 4. We will then introduce a compensation

scheme built from the legacy of the algorithm designed for mid-link OPC systems, followed by

an advanced compensation scheme with a reduced complexity.

5.3.1 Operating principle

Similar to the algorithm designed for OPC systems, the proposed DDC methods here were

developed through reverse engineering the transmission link, taking into account the precise

interaction dynamics between dithering-induced phase fluctuations and the fibre chromatic dis-

persion. We first examine the equivalent baseband model, as depicted in Fig. 5.3, where the

ASE noise is not shown for the sake of simplicity.

!(#)%(#) …	ℎ!(#)

("#(")	(&) ("#($)(&)("(%	(&) ("(&	(&)

	ℎ!(#)

Figure 5.3: The baseband equivalent model of FOPA transmission.

The relationship between the input x(t) and output y(t) signal waveforms can be expressed

as

y(t) =
[((

x(t)ejϱt(t) ⇒ hf (t)
)
ej#

(1)(t)
)
⇒ · · · ⇒ hf (t)


ej#

(N)(t)

ejϱr(t), (5.7)

where ⇒ denotes the convolution operation. Since the effect of fibre nonlinearity is not

considered in this analysis, each fibre span was modelled by a linear filter characterised by

the impulse response of hf (t). The phase noise components, ϖt(t) and ϖr(t), originated from

the laser sources at the transmitter and receiver, respectively, due to their nonzero linewidths.
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Similar to the transmission with OPC, they were modelled as Wiener processes with increments

that follow a Gaussian distribution [78]. At the n-th span, the total phase distortion is given

by $(n)(t) = ϖ(n)
p (t) + ϖ(n)(t), where ϖ(n)

p (t) represents the phase noise of the pump laser,

modelled in the same way as ϖt(t) and ϖr(t). The term ϖ(n)(t) accounts for the dithering-

induced phase distortion, which is caused by fluctuations in the complex gain of the FOPA driven

by pump-phase modulation, as discussed in Chapter 2. By inverting the signal propagation, an

approximate estimate of the transmitted signal x̂(t) is derived from the received signal y(t) as

x̂(t) =
[(

y(t)e→j[ϱr(t)+#(N)(t)]
⇒ he(t)

)
· · · · · e→j#(1)(t)


⇒ he(t)


e→jϱt(t), (5.8)

where he(t) represents the inverse response of each fibre span, satisfying the condition

he(t) ⇒ hf (t) = 1(t), where 1(·) denotes the Dirac delta function. It is important to emphasise

that phase variations due to non-zero linewidth of laser sources occur over time scales that

are much longer than those associated with dithering-induced phase distortion. Therefore, we

can neglect the interaction between laser phase noise and fibre dispersion. This allows us to

focus exclusively on the interaction between dithering-induced phase distortion and chromatic

dispersion in our analysis. As a result, Eq. (5.8) simplifies to

x̂(t) = e→jϖϱ(t)
[(

y(t)e→jϱ(N)(t)
⇒ he(t)

)
· · · · · e→jϱ(1)(t)


⇒ he(t)


, (5.9)

where 1ϖ(t) =


n
ϖ(n)
p (t) + ϖt(t) + ϖr(t) represents the accumulated phase noise con-

tributed by all laser sources along the transmission link. By applying the small-signal approxi-

mation eiϖ ∝ 1 + iϱ to the dithering-induced phase fluctuations ϖ(n)(t), where n = 1, 2, ..., N ,

we can further simplify Eq. (5.9) to

x̂(t) ∝ y↗(t)→
N∑

n=1

[(
y↗(t) ⇒ h(n)

f (t)
)
jϖ(n)(t)


⇒ h(n)

e (t)

, (5.10)

where h(n)
f

(t) and h(n)e (t) refer to the impulse response and inverse impulse response,

respectively, of an equivalent linear filter that accumulates the effects of n spans. In detail,

h(n)
f

(t) can be expressed as the convolution of n individual filters, i.e. h(n)
f

(t) = hf (t) ⇒ · · · ⇒

hf (t). A similar expression applies for the inverse impulse response h(n)e (t). The first term,

y↑(t), represents the signal after being compensated for both laser phase noise and chromatic

dispersion, i.e.

y↗(t) =
[
y(t) ⇒ h(N)

e (t)

e→jϖϱ(t). (5.11)
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Figure 5.4: Proposed multi-branch dithering-induced distortion compensation scheme.

Eq. (5.10) reveals that the conventional DSP output, denoted by y↑(t), deviates from the

transmitted signal due to the presence of the second term, where the dithering-induced phase

distortion ϖ(n)(t) plays a significant role. We can also observe that this distortion becomes

increasingly pronounced as the number of fibre spans increases. This observation suggests the

need to develop a scheme for estimating and compensating for this distortion in the received

signal.

5.3.2 Multi-branch compensation scheme

This scheme will focus on the estimation of the dithering-induced phase distortions ϖ(n)(t)

values, and we use them to recreate the resulting complex distortion, which is the second term

in Eq. (5.10). We can rewrite Eq. (5.10) as

x̂(t) ∝ e→jϖϱ(t)


y(t) ⇒ h(N)

e (t)→
N∑

n=1

[(
y(t) ⇒ h(N→n)

e (t)
)
jϖ(n)(t)


⇒ h(n)

e (t)


. (5.12)

We proposed the compensation scheme based on this equation, with the principle shown

in Fig. 5.4. The CPR algorithm employed here is the BPS method, known for its efficiency in

hardware implementation [66]. The compensation scheme is constructed by N + 1 branches,

with N lower branches corresponding to N terms within the second term in Eq. (5.12). Given

the FIR filter impulse responses h(n)e [k] can be estimated by [52], we are only required to

estimate the phase distortion terms ϖ(n)[k]. It can be done by learning the coefficient vectors
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Figure 5.5: Performance comparison between the conventional carrier phase recovery algorithm and
the proposed compensation algorithm. The inset illustrate the constellation diagrams after 1500 km.

000(n) in the linear regression ϖ(n)[k] =
(
000(n)

)T
BBB(n)[k], where the feature vector BBB(n)[k] ↘ R2Nt ,

defined as

BBB(n)[k] =

sin[εm1k], cos[εm1k], . . . , sin[εmNt

k], cos[εmNt
k]
T

, (5.13)

where εmi are the dithering frequencies which are assumed to be known. We now can

express the output of each branch and subsequently the predicted symbol x̂[k] with respect

to 000(n). Given the reference transmitted symbol x[k] within the training phase, we can use

the complex LMS algoritm [85] to solve for 000(n), which defines the dithering-induced phase

distortion ϖ(n)[k]. In detail, we evaluated the error contributed by each branch, and update

each 000(n) accordingly based on that. We can then produce the predicted symbol x̂[k] using the

scheme in Fig. 5.4.

The performance of this multi-branch DDC algorithm is compared against the scheme with

a single stage of BPS algorithm, as shown in Fig. 5.5. We achieved a consistent BER im-

provement of around one order of magnitude compared to the scheme without DDC. The

constellation diagrams obtained at 1500 km are also included to show the capability of sup-

pression of both phase and amplitude distortion. However, the number of branches depends

on the number of FOPA cascaded stages makes this algorithm hard to scale as we have more

fibre spans.
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5.3.3 Single-branch compensation scheme

In this section, we plan to reduce the computational cost with a single branch of compensation.

The complete DSP chain, incorporating the proposed single-branch DDC algorithm, is illus-

trated in Fig. 5.6. The received signal y[k] at time instant k is obtained after matched filtering

and downsampling, which are omitted here for simplicity. The signal y↑[k] refers to the output of

a conventional DSP chain, which includes CDC and CPR [52],

Figure 5.6: Dithering-induced distortion compensation in the DSP chain.

In this stage, we aimed to estimate the second term in Eq. (5.10) as the discrete-time

dithering-induced complex distortion D[k], i.e.

D[k] =
N∑

n=1

[(
y↗[k] ⇒ h(n)

f [k]
)
jϖ(n)[k]


⇒ h(n)

e [k]


(5.14)

The channel impulse response h(n)
f

[k] can be expressed as a sum of scaled and shifted

Dirac delta functions, i.e.

h(n)
f [k] =

↔∑

m=→↔

h(n)
f,m1[k →m], (5.15)

where h(n)
f,m

represents the m-th tap coefficient of the filter h(n)
f

[k]. Consequently, the con-

volution y↑[k] ⇒ h(n)
f

[k] can be expressed as

y↗[k] ⇒ h(n)
f [k] =

↔∑

m=→↔

y↗[k →m]h(n)
f,m. (5.16)

By applying the same procedure to the inverse impulse response h(n)e [k], we can finally

represent the dithering-induced complex distortion D[k] as

D[k] = j

M/2∑

m,m→=→M/2

y↗[k →m→m↗]
N∑

n=1

(
h(n)
f,m→m→ϖ(n)[k →m↗]h(n)

e,m→

)
, (5.17)

where M/2 represents the filter delay. Since all impulse responses considered here are
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assumed to be finite, we can constrain the memory of this function to M +1, which depends on

the number of spans N , to reduce the algorithm’s computational complexity. The term within

the bracket in Eq. (5.17), which is h(n)
f,m→m→ϖ(n)[k →m↑]h(n)

e,m→ , is a function of dithering-induced

phase distortion ϖ(n)[k→m↑], which shares the same sinusoidal waveform as ϖ(n)[k]. Equation

(5.17) indicates that we can estimate the dithering-induced complex distortion D[k] by passing

the conventional DSP output y↑[k] through an adaptive time-varying digital filter. This filter’s tap

coefficients, h(n)
f,m→m→ϖ(n)[k →m↑]h(n)

e,m→ , are functions of the ϖ(n)[k] terms.

! " = $!" " ,… ,$" " #

= ' sin +$%" , cos +$%" ,… , sin +$&!" , cos 	+$&!"
#	

/'["] 	2!% 2!% 2!%…
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Figure 5.7: Dithering-induced distortion estimation filter.

We thus propose a filter structure to estimate the dithering-induced complex distortion D[k]

as shown in Fig. 5.7. The tap coefficients w→M [k], w→M+1[k], ..., w0[k], ..., wM→1[k], wM [k]

can be learned using a linear regression approach. These coefficients are functions of the

first derivative of the pump phase ϕt, as defined in Eq. (5.1). They are predicted by fitting

a parametric model based on the known modulation frequencies fmj or εmj as described

in Eq. (5.1). We thus can define the feature vector B[k] similar to that in Eq. (5.13). By

defining the coefficient vector 000[k] ↘ C(2M+1)↗2Nt such that WWW [k] = 000[k]BBB[k], we can deter-

mine the vector of time-varying filter taps WWW [k] = [w→M [k], . . . , wM [k]]T ↘ C(2M+1)↗1. The

dithering-induced complex distortion D[k] is then estimated as D[k] = WWWT[k]YYY ↑[k], where

YYY ↑[k] = [y↑[k → M ], ..., y↑[k], ..., y↑[k + M ]] ↘ C(2M+1)↗1 is a signal block of y↑[k] of size

(2M + 1). The transmitted signal at time instant k can be recovered as x̂[k] = y↑[k] →D[k] =

y↑[k] →BBBT[k]000T[k]YYY ↑[k]. The objective is now to update the coefficient vector 000[k] to minimise

the difference between x̂[k] and the reference symbol xref [k]. This can be achieved using the

complex LMS algorithm [85], with the feature vector BBB[k] and the signal block YYY ↑[k] are en-

gineered at the beginning of each update cycle. The complete flow chart detailing the steps

within each cycle is shown in Fig. 5.8.

The complex LMS algorithm updates the coefficient vector 000[k] using the complex error e[k],
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Figure 5.8: Flow diagram of dithering-induced distortion compensation algorithm.

which is the difference between the reference symbol and the recovered symbol. This update

happened at the symbol speed. During the training phase, the reference symbol is provided as

the training symbol d[k], while outside the training phase, it is generated by a decision circuit

based on the known symbol alphabets, as depicted in Fig. 5.6.

5.4 Compensation results

We conducted numerical simulations of the transmission of a single-polarisation 16-QAM sig-

nal across up to N = 12 fibre spans. The transmitted signal is pulse-shaped using a RRC

filter with a roll-off factor of 0.1 and is upsampled to 8 samples per symbol. The details of the

transmission and FOPA parameters are provided in Table 5.1. To prevent the coherent accu-

mulation of dithering-induced distortion across multiple FOPA stages, we introduced a random

time shift in the pump-phase modulation at each FOPA stage. In practice, each FOPA operates

independently, often separated by hundreds of kilometres, meaning that the distortions intro-

duced at different FOPA stages do not remain phase-aligned but instead exhibit random relative

phase differences. That is why, to replicate this effect in our simulations, we applied a random

time shift, uniformly distributed within the range [0, 2ς] radians, at each FOPA stage to create

a more realistic transmission environment. The system’s performance was evaluated using the

Q2-factor, calculated as

Q2[dB] = 20 log(
↓

2erfc→1(2↔ BER)), (5.18)

where BER represents the ratio between the directly-counted error bits and the total bits of

10↔ 216 symbols under testing.
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Parameters Values
Modulation 16-QAM
Baud rate 28 [GBaud]

Span length 100 [km]
Loss 0.2 [dB/km]

Dispersion 17 [ps/(nm.km)]
Nonlinearity 1.2 [W→1km→1]

Tx/Rx laser linewidths 50 [kHz]
FOPA laser linewidths 30 [kHz]

Noise figure 4.5 [dB]

Table 5.1: FOPA transmission numerical simulation parameters

5.4.1 Performance over number of spans

Figure 5.9 shows the performance comparison between the schemes without and with our

proposed DDC algorithm, measured in terms of Q2-factor versus the number of fibre spans. The

comparison was conducted across three different scenarios: the FOPA single-pump scheme,

and two FOPA dual-pump schemes - one with the same operating wavelength as the single-

pump scheme (!φs = →35.7 nm) and the other with zero wavelength detuning (!φs = 0

nm). The single-pump FOPA is operated only at !φs = →35.7 nm because, unlike dual-

pump configuration, which provides a flat gain spectrum, the single-pump scheme achieves its

maximum power gain only at this specific wavelength. Operating it at any other wavelength

would not provide sufficient compensation for signal attenuation and insertion loss, which total

25 dB. For the dual-pump FOPA, in addition to testing at !φs = →35.7 nm, we also evaluate

the compensation performance at !φs = 0 nm. This allows us to verify the effectiveness of our

proposed algorithm across different operating wavelengths, leveraging the flat gain spectrum of

the dual-pump FOPA.

A four-tone pump-phase modulation was employed, with a base frequency of ϑm1 = 60

MHz, resulting in a frequency set of [60, 180, 540, 1620] MHz. In the non-DDC schemes, only

CDC and CPR blocks were applied, with the latter using the BPS algorithm with a test-phase

resolution of B = 32 phase angles [66]. The filter lengths for both the BPS and the DDC will be

optimised, as discussed later.

The FOPA dual-pump scheme at !φs = →35.7 nm represented by the red curves clearly

perform better than the other scenarios. As shown in Fig. 5.2, operating FOPA at this wave-

length exhibits the smallest fluctuations in both amplitude and phase among the pumping

schemes considered. Our analysis indicated that these curves are very close to the theo-

retical limit in which transmission does not have any penalties from pump-phase modulation.
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Figure 5.9: The performance of the proposed compensation scheme in terms of Q2-factor versus num-
ber of spans.

Given that the distortion impact in this scenario is minimal, there is limited potential for further

enhancement by our proposed DDC algorithm. Therefore, the difference between the curves

without and with DDC is not significant. The performance when operating the FOPA at !φs = 0

nm is depicted by the green curves. The increased amplitude and phase fluctuations observed

in Fig. 5.2 manifest as noticeable performance degradation compared to the previous sce-

nario. In this case, our proposed DDC algorithm demonstrated its effectiveness by raising the

Q2-factor to the level comparable to those achieved at the optimal wavelength. In the single-

pump scheme, the significantly higher phase fluctuation, coupled with their interaction with fibre

dispersion, results in a substantial drop in system performance. Nevertheless, our DDC algo-

rithm consistently provides a significant improvement in Q2-factor as the number of fibre spans

increases, achieving an approximate 4.7-dB Q2 improvement at a BER level of 2 ↔ 10→2, af-

ter 7 spans. The insets in Fig. 5.9 show the constellation diagrams that corresponds to this

improvement at 700 km.

5.4.2 Amplitude and phase suppression capability

Fig. 5.10 illustrates the accumulated RMS fluctuations in both phases and amplitude of the

received symbols relative to the transmitted symbols, plotted as functions of the number of

spans. The RMS fluctuations in amplitude, !amp, and in phase, !phase, were calculated as

!amp =

√
1

Ns

∑
(|x̂|→ |xref |)2, (5.19)

!phase =

√
1

Ns

∑
(↫x̂→ ↫xref)2, (5.20)
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where Ns = 216 is the number of symbols and the calculations were taken and averaged

over 10 batches. Recall that x̂ represents the recovered symbol, while xref denotes the refer-

ence symbol. In the non-DDC scenario, x̂ is obtained after processing through only conven-

tional DSP blocks, which include CDC and CPR.

Figure 5.10: The evolution of the RMS phase and amplitude fluctuations.

The results shown in Fig. 5.10 closely mirror the performance trends observed in the Q2-

factor analysis. The RMS fluctuation levels for the FOPA at !φs = 0 were effectively reduced

to levels similar to those of the FOPA dual-pump scheme operating at the optimal wavelength of

!φs = →35.7 nm. Although the single-pump scheme exhibited very high fluctuation levels with

steep slopes as the number of spans increases, significant improvements were still achieved.

With the application of the DDC algorithm, the curves experienced much gentler slopes and

notably lower RMS fluctuations. This behaviour confirmed the effectiveness of our proposed

DDC algorithm in simultaneously mitigating fluctuations in both signal amplitude and phase.

5.4.3 Tolerance to dithering frequency deviations

In our algorithm, constructing the feature vector BBB[k] from the given dithering modulation fre-

quencies is a crucial step. To assess the resilience of our DDC algorithm to deviations in these

frequencies from their expected values, we evaluated its performance under varying conditions.

In detail, the dithering modulation frequencies were not fixed but instead followed a normal

distribution with mean values matching the expected frequency set, i.e. [60, 180, 540, 1620]

MHz, and a standard deviation denoted as ◁f . Figure 5.11 demonstrates the Q2 improvement

achieved by our proposed DDC algorithm over conventional DSP after 7 fibre spans, plotted

against the standard deviation of the dithering modulation frequencies, ◁f .

We observed that there is no noticeable reduction in Q2-factor enhancement for both the
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Figure 5.11: Performance improvement due to DDC algorithm versus the dithering frequency variation.

single-pump scheme and the dual-pump scheme at !φs = 0 when ◁f = 0.1MHz. The dual-

pump scheme at the optimal wavelength of !φs = →35.7 nm was excluded from this analysis

since it offers minimal room for improvement. However, as ◁f increases, a predictable decline in

the performance of both schemes was evident. At ◁f = 1MHz, our DDC method still achieved

approximately half the improvement seen under the ideal condition when ◁f = 0. This indicated

that maintaining accurate RF frequency generation in electronic components is important for

preserving a decent system performance. In practice, the accuracy of these devices typically

ensures that frequency variations remain within 1 MHz, which supports the effectiveness of our

DDC algorithm under realistic operating conditions.

5.4.4 Base frequency

We already know that the RMS fluctuations in amplitude and phase depend on the first deriva-

tive of the pump-phase modulation, ϕt, as defined in Eq. (5.1). The modulation frequencies

εmi and consequently the broadened bandwidth of the pump spectrum due to phase modu-

lation play a crucial role in determining the extent of dithering-induced distortion. For a given

pump-modulation scheme, while the number of frequencies is fixed and their relative locations

are selected based on the principles discussed in Chapter 2, the base frequency ϑm1 is the key

parameter which determines the broadened bandwidth of the pump spectrum. In this analy-

sis, we assessed the performance of our DDC algorithm, under a four-tone pump-modulation

scheme, focusing on how it varies with the base frequency ϑm1. The results are plotted in Fig.

5.12 for both the single-pump scheme and the dual-pump scheme with !φs = 0 , after 7 and

12 spans.
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Figure 5.12: Q2-factor performance as a function of the base frequency ϑm1.

In the single-pump scheme, we observe a sharp decline in the Q2-factor performance

curves without the DDC algorithm as the base frequency ϑm1 increases from 50 to 80 MHz,

resulting in a total decrease of around 3 dB within this region. This performance degrada-

tion is attributed to the higher RMS amplitude and phase fluctuations caused by the larger

first derivative term ϕt, which is directly related to the base frequency ϑm1. The DDC algo-

rithm demonstrated its effectiveness by mitigating this decline, resulting in more gradual curves

corresponding to both considered transmission lengths, with a maximum degradation of only

around 1 dB. In the dual-pump scheme, the DDC algorithm nearly eliminates these decline

trends, making the Q2-factor performance largely independent of the base frequency ϑm1.

5.4.5 Filter optimisation process

The averaging filter length, denoted by 2K + 1, and the number of filter taps, denoted by

2M + 1, are critical parameters that shape the responses of the BPS and the DDC algorithm

respectively. Figure 5.13 demonstrates the process of selecting the optimal filter lengths for

both BPS and DDC, plotted for different values of base frequency ϑm1. While increasing the

number of filter taps generally enhances the Q2-factor performance, this improvement comes at

the cost of higher computational complexity. Therefore, the optimal filter lengths for both algo-

rithms were chosen as the smallest values beyond which further increases return no substantial

performance gain.

In the BPS graph shown in Fig. 5.13, the rapid increase in Q2-factor performance highlights

the necessity of extending the BPS filter length to address the phase cycle slip issue. The cycle

slips occur when estimated phase time series by the algorithm experiences a discontinuity by

a multiple of ς/2, due to incorrect symbol detection by the decision-directed circuit. This is
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Figure 5.13: The filter optimisation for BPS and DDC algorithms.

often influenced by high-speed phase variations, such as dithering-induced phase distortion.

To mitigate this effect, a larger block size is required since higher BPS filter length ensures

that the output symbol decision is more heavily influenced by neighbouring symbols, thereby

reducing the chance of overreacting to sudden phase changes. We also observe that a longer

BPS filter length is required when either a higher base frequency ϑm1 is used or when single-

pump scheme is employed. This is due to the increased RMS fluctuations in the phase of the

FOPA output signal in both scenarios, which in turn makes the decision-directed circuit more

prone to incorrect detection. A longer filter length is thus necessary in these cases to stabilise

the phase estimation.

For the DDC algorithm, a similar trend is observed where a longer DDC filter length gen-

erally provides better compensation capability. This is because the filter needs to account for

sufficient memory to capture the interactions between the dithering-induced phase distortion

and fibre dispersion, as described in Eq. (5.17). However, like the BPS algorithm, this improve-

ment plateaus once a sufficient number of neighbouring symbols are included. The optimal

DDC filter length scales linearly with the base frequency ϑm1 due to the larger phase fluctua-

tions in the FOPA gain, which was discussed in the previous subsection. It results in stronger

inter-symbol interference, thereby necessitating a higher-order filter for effective compensation.

5.5 Conclusion

We have presented a new online DSP algorithm to simultaneously mitigate phase and amplitude

distortions caused by pump-phase modulation and its interaction with the chromatic dispersion

in transmissions using multiple cascaded FOPAs. Integrated at the of end of the conventional
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DSP chain, which includes CDC and CPR, the algorithm effectively estimates and removes the

complex distortion accumulated during transmission. Our numerical simulations have demon-

strated its effectiveness through the improvements in Q2-factor performance across the different

FOPA pump schemes, including an approximate 4.7-dB gain for 28-GBaud 16-QAM transmis-

sion with a single-pump scheme after 7 spans. This also indicates a substantial increase of

transmission reach at a given Q2-factor level. Furthermore, the performance improvement over

conventional DSP achieved for a dual-pump FOPA operating around the centre of its gain band-

width indicates that the algorithm can be advantageously deployed in wavelength-division mul-

tiplexing scenarios. The proposed scheme is important for future FOPA transmission designs,

where pump-phase modulation is essential for achieving the required gain. In the next chapter,

we will explore a new approach to this problem: a non-parametric model for distortion estimate.
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Chapter 6

Kernel-based compensation in optical

parametric amplified systems

In this chapter, we will investigate the dithering-induced distortion compensation problem using

kernel-methods. This represents a step forward in advancing our proposed algorithm from

the previous chapter, employing a non-parametric approach that avoids explicit engineering of

the dithering-induced distortion’s feature vector. By allowing the algorithm to learn the data

pattern itself, we help it generalise better to unseen data. Another objective we aim to achieve

is avoiding the two-stage approach and seeking a one-stage compensation scheme that can

also compensate for laser phase noise. We will propose three kernel-based compensation

algorithms within this chapter: one for phase-only compensation, published in the CSNDSP

paper [6], and two others with complex-valued processing capability for phase and amplitude

distortion compensation, published in the ECOC paper [8] and IPC paper [9].

We will begin this chapter by continuing the discussion of kernel methods in section 3.4.

There are two issues we need to address in applying kernel methods to our dithering compen-

sation problem. Firstly, the phase and amplitude distortions in the received signal result not only

from sinusoidal pump dithering but also from laser phase noise. Since we aim for a single block

that can compensate for both, the time series representing the phase distortion cannot be cap-

tured by a single periodic kernel or the Gaussian kernel. The second issue with kernel-based

learning is the growth of the dictionary, which adds complexity when calculating the kernel ma-

trix. An online algorithm cannot handle this computational cost, so a proper method to prune the

data dictionary must be introduced. We will discuss the solution for the first problem in section
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6.1, where a custom kernel is created from fundamental kernel functions. The second problem

will be addressed in section 6.2, where a sliding-window approach makes the algorithm suitable

for online operation.

6.1 Combining kernels

In many real-world scenarios, the underlying function we aim to model often exhibits multi-

ple types of structures, making it difficult to capture its behaviour using a single kernel. Each

fundamental kernel, tailored for a specific pattern type, may fail to accurately model complex re-

lationships. In these cases, combining different kernels provides a more flexible and expressive

approach, allowing a richer variety of characteristics to be captured [86].

(a) (b)

Figure 6.1: Example functions sampled from GP prior when using a combined kernel from Gaussian
and periodic kernels by (a) multiplying them and (b) adding them.

There are two primary ways to combine kernels: addition and multiplication [87], and from

which more complex kernels can be created. We consider the combination of two kernels

defined in section 3.4.4, Gaussian kernel and the periodic kernel, to demonstrate the purpose

of each operation.

Multiplying kernels models the interaction between different function behaviours, working as

an AND operation [87]. In this case, the combined kernel returns a high value only when both

contributing kernels yield high values simultaneously. For example, if two input points xxx and xxx↑

are in the same phase of oscillation (as defined by the periodic kernel) but are sufficiently far

apart (as measured by the Gaussian kernel), the combined kernel will not return a high value.

Therefore, the values of f(xxx) and f(xxx↑) will not be close, even though they should be similar

when using the periodic kernel alone. The result is that the functions sampled from the GP

defined by the combined kernel are periodic, but with smoothly varying amplitudes depending
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on the lengthscale of the Gaussian kernel. This behaviour can be seen in the example functions

shown in Fig. 6.1(a). Multiplying the Gaussian kernel and periodic kernel is particularly useful

for modelling functions with a periodic pattern influenced by underlying trends.

In contrast, adding kernels works like an OR operation [87], allowing us to capture pattern

types independently. In this case, there is no interaction between the function behaviours, with

each contributing separately to the overall pattern. For example, when we add a Gaussian

kernel with a periodic kernel and sample functions from the corresponding GP, the result can

be seen in Fig. 6.1(b). The sampled functions exhibit periodic pattern with constant amplitude,

a characteristic inherited from the periodic kernel. Meanwhile, the Gaussian kernel contributes

to the smooth variations in the slopes of these periodic functions.

In summary, combining kernels by multiplying or adding can be used to explicitly encode

structural assumptions about complicated underlying functions. This method is particularly

useful when prior knowledge is available regarding the phenomena being modelled. Further

refinement of this approach could involve automatic kernel construction, where a suitable model

is discovered through a search process [88]. However, this advanced topic lies beyond the

scope of this thesis.

6.2 Sliding-window kernel-based method

In this section, we will discuss why we need to develop a sparsification strategy for kernel

method learning with large datasets. We will then introduce the online sparsification approach

we have chosen for further analysis, which can reduce the computation burden of the original

kernel method.

We recall that if N is the number of data points, the kernel matrix KKK has a size of N ↔ N .

As N increases, which is the case in optical receivers where data arrives sequentially, the

kernel method faces scalability issues. The computational and memory costs are O(N3) and

O(N2), respectively, and they grow significantly. Memory resources become limited for storing

new data, and computational time can exceed the incoming data interval [89]. Sparsification

is needed to reduce both costs by discarding less relevant data points from the dictionary.

Moreover, it helps avoid overfitting to the training data. By considering only the most relevant

points, we enable the algorithm to generalise better to future data [90].

In online mode, we receive the input xxxn at time step n and are required to make the predicted
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output ŷn corresponding to that input. The learning is then evaluated by an error quantity yn→ŷn,

where yn is the true output. The algorithm updates its solution to minimise the cost function,

which depends on the error, and uses the learned solution for the next available data. When

the kernel method operates in online mode, the solution ϱϱϱ of the kernel ridge regression in Eq.

(3.26) is updated at each time step n as

ϱϱϱn = (KKKn + φIII)→1 yyyn, (6.1)

where KKKn is the kernel matrix KKK at time step n, and yyyn is the corresponding desired target.

A naive approach to kernel learning involves the growth in size of the kernel matrix KKKn, as

illustrated in Fig. 6.2(a). This approach faces challenges in terms of memory and computational

costs, as discussed above.

K1
K2

K3
K4

K5

…

X1 X2 X3 X4 X5 …
X1
X2
X3
X4
X5

…
…

…
Kn-1

Kn
Kn+1

…

Xn-1
Xn
Xn+1

…

Xn-1 Xn Xn+1… …(a) (b)

Figure 6.2: (a) Kernel matrices KKKn with growing sizes. (b) Kernel matrices KKKn with fixed sizes in sliding-
window approach.

A standard approach to solving this problem is to set the number of data points considered,

or the dictionary, N in Eq. (3.20) a finite and fixed value as the algorithm runs. This can

be achieved by setting growth and pruning criteria. The former decides whether a new data

point xxx is admitted into the dictionary, while the latter provides a benchmark to discard less

informative data points. One simple criterion for growth is the coherence criterion [91], where

the similarities between the new point xxx and existing points xxxi in the dictionary are measured.

The maximum value among these is then compared to a coherence threshold to ensure that

the new point added is not too similar to the existing points. A more complex growth criterion,

known as approximate linear dependency (ALD), is outlined in [92]. It checks whether the

new basis vector 000(xxx) in the feature space is linearly independent or nearly independent of

the existing basis vectors. Regarding pruning approaches, a criterion based on the function
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representation f(xxx) =


i
ϱik(xi,xxxxi,xxxxi,xxx) was proposed. In detail, any existing data point xxxi with the

smallest coefficient magnitude |ϱi| can be discarded [93], as it corresponds to the basis vector

that contributes least to the function representation. Among other approaches, a simple and

straightforward method is to discard the oldest data points. This is part of the sliding-window

approach [94], where the algorithm admits a new available point and discards the oldest one.

The evolution of kernel matrices KKKn in this approach is demonstrated in Fig. 6.2(b). This

approach is useful in scenarios where the statistical properties of the data change over time,

such as variations in the amplitudes and phases of sinusoidal waves. In such cases, older data

points may become less relevant to the current state of the system, making the sliding-window

approach a suitable choice for maintaining an adaptive model. A more complicated pruning

approach, known as least squares error or greedy error pruning, can be found in [95]. In this

method, the point to discard is the one whose removal from the dictionary results in the smallest

increase in the squared error |yn → ŷn|2, which corresponds to the point that contributes least

to the overall prediction.

In the scope of this thesis, we opt for the sliding-window approach due to its compatibility

with evolving data characteristics and its reduced complexity. In the next sections, we will delve

into the application of the kernel method for phase and amplitude compensation in optically

parametric amplified links.

6.3 Kernel-based phase compensation using real combined ker-

nel

In this chapter, we consider a FOPA link, as illustrated in Fig. 6.3. In each stage, we assume a

20-dB linear loss, equivalent to 100 km of SMF, which is then compensated by a single-pump

FOPA. Our FOPA operates at the optimal wavelength, where it yields a power gain of 25 dB

to account for an additional 5 dB of device insertion loss. The FOPA parameters used in this

chapter differ slightly from the previous model, with the full list provided in Table 6.1. A four-

tone pump-phase modulation scheme (Nt = 4) with a base frequency f1 = 100 MHz was

used, resulting in a set of RF tones of [0.1, 0.3, 0.9, 2.7]GHz. Since the single-pump FOPA

operates at the optimal wavelength, as discussed in the previous chapter, the phase distortion

dominates over amplitude distortion at the FOPA output. In the FOPA link, this dithering-induced

phase distortion is mixed with the laser phase noise caused by nonzero laser linewidth, making
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the total phase distortion the primary contributor to the system degradation. We thus aim to

develop a phase compensation scheme which can simultaneously mitigate both types of phase

distortion.

Tx … Rx

FOPA FOPAStage 1 Stage "

Figure 6.3: FOPA link with multiple cascaded stages.

Parameters Values
φ0 1562.9 [nm]
φp 1563.7 [nm]
ω(3) 1.2↔ 10→41 [s3m→1]
ω(4) -2.85↔ 10→55 [s4m→1]
↽ 10 [W→1km→1]
L 200 [m]
P 1.785 [W]

Table 6.1: Single-pump scheme parameters

In this section, we first focus on a single-stage phase-only compensation scheme designed

to simultaneously mitigate both laser phase noise and dithering-induced phase distortion.

6.3.1 Compensation scheme and kernel selection

We consider the high-level diagram of the proposed compensation scheme, as shown in Fig.

6.4. At the symbol index n, the total phase distortion of the received symbol rn can be written

as ϖn = 1ϖn + ϕn, where 1ϖn and ϕn are the cumulative random laser phase noise modelled

as a Wiener process and the dithering-induced phase distortion. The core of this compensation

scheme is a sliding-window kernel recursive least square (SWKRLS)-based phase estimation

block, which aims to predict the total phase distortion ϖ̂n as accurately as possible, approximat-

ing ϖn. This estimated phase distortion is then used to rotate the received symbol rn to produce

the corrected symbol zn = rne→jε̂n . A decision circuit is employed to return the decision-

directed symbol, [zn]D corresponding to zn. The angle difference between the symbol before

phase rotation rn and the decision-directed symbol [zn]D, denoted as ϖ̃n = ↫{yn}→↫{[zn]D},

serves as a phase distortion teacher for training the SWKRLS-based phase estimation algo-

rithm in free-running mode. During the training phase, the algorithm uses reference transmitted

symbols to compute the phase distortion teacher until it reaches convergence.
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Figure 6.4: Block diagram of the proposed kernel-based phase recovery scheme.

The SWKRLS-based estimator applies kernel method to estimate the dithering-induced

phase distortion, thereby selection of an appropriate kernel function is crucial for the estimation

accuracy. As we learned from Chapter 3, this choice should be made based on the distinctive

characteristics or underlying patterns of the phase distortion time series. Our prior understand-

ing of the phase distortion reveals that the total phase distortion ϖn can be modelled as a

combination of a periodic pattern, arising from the impact of pump-phase modulation, and a

long-term variation trend, primarily due to laser phase noise. Based on the discussion in sec-

tion 6.1, since these two pattern types contribute independently to the total phase distortion,

adding a periodic kernel and a Gaussian kernel can allow us effectively capture these features.

The periodic pattern, which comes from the oscillations at the frequencies of the RF tones

used within the FOPA’s dithering scheme, can be captured by a kernel function which is sum-

mation of exponential sine squared kernels (defined in section 3.4.4) corresponding to each

frequency, i.e.

kPer(tm, tn) =
Nt∑

i=1

exp

(
→
2 sin2(ς|tm → tn|)/pi)

l2Per

)
, (6.2)

where the data points are the time values tn at symbol index n. The hyperparameters

pi (i = 1, 2, ..., Nt) and lPer represent the kernel’s periods and lengthscale respectively. We

assumed the number of dithering tones Nt = 4 for the considering scenario, corresponding to

the four-tone pump-phase modulation. The periods pi can be calculated from the RF modulating

tone frequencies as pi = 1/fi, with the latter can be extracted at the receiver.

The long-term variation trend, which arises from the effect of laser phase noise, can be

modelled by using a Gaussian kernel, which was defined in Eq. (3.35) of section 3.4.4. Finally,

to capture both above characteristics of the phase distortion ϖn, we proposed a customised
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kernel, which is a summation of the defined periodic kernel and the Gaussian kernel, i.e.

ktotal(tm, tn) = kPer(tm, tn) + kRBF(tm, tn). (6.3)

We applied the SWKRLS algorithm [94], which uses the sliding-window approach discussed

in the previous section to constraint the dictionary size. This can help our algorithm to operate

in an online setting. Our customised kernel ktotal(·, ·) is selected as the kernel function for the

SWKRLS algorithm.

We will quickly review the kernel learning strategy in this paragraph, with the detailed dis-

cussion can be found in section 3.4. The kernel method aims to minimise a least-squares cost

function, i.e. |y → ŷ|2, which is calculated between the true output y and the predicted one ŷ.

By using a valid kernel function k(·, ·), the algorithm maps the input data within the dictionary,

denoted as X, into a higher-dimensional space as Ẋ. We used the notation · here instead of

ϖϖϖ(·) as defined in section 3.4 to avoid confusion with the phase distortion ϖn. In that feature

space, the predicted output ŷ can be linearly represented as ŷ = Ẋẇ. According to Represen-

ter Theorem, the weight ẇ can be represented with the basis vectors defined by rows of Ẋ, i.e.

ẇ = ẊTϱϱϱ. Given the definition of kernel matrix K = ẊẊT, the least-squares cost function can

be rewritten as |y→Kϱϱϱ|2. The kernel method aims to solve for ϱϱϱ using the training set (X,y),

and then makes prediction for a new test point x↓ as y↓ =


i
ϱik(·,x↓) using known data

inputs within dictionary. In this problem, we selected the kernel matrix based on our customised

kernel, i.e. K(i, j) = ktotal(ti, tj).

In the SWKRLS algorithm, and in this problem, we are given the input-output pairs of

time values and measured phase distortion {(t1, ϖ̃1), (t2, ϖ̃2), ...} that come sequentially as

the transmission runs. A sliding window of size N is applied to limit the dictionary to only the

last N pairs. Therefore, an observation input matrix Xn = [tn, tn→1, ..., tn→N+1]T ↘ RN and an

observation output vector yn = [ϖ̃n, ϖ̃n→1, ..., ϖ̃n→N+1]T ↘ RN are formed at the symbol index

n. A regularised kernel matrix at this time, Kn = ẊnẊT
n + φI, is calculated, where I is the

identity matrix. The matrix K has previously been used without regularisation, but from now on,

it will be considered as the regularised one for simplicity. The solution ϱϱϱn is obtained through

the corresponding inverse kernel matrix K→1
n , i.e.

ϱϱϱn = K→1
n yn. (6.4)

However, the computation of Kn and K→1
n are not done explicitly because of the high com-

putational cost. The SWKRLS algorithm instead updates them recursively using the previous
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one-step matrices Kn→1 and K→1
n→1, i.e. [94]

Kn =

[
K̄n→1 bn

bT
n cn

]
, (6.5)

where bn = [k(tn→N+1, tn), ..., k(tn→1, tn)]T ↘ RN→1 is the vector of kernels calculated be-

tween the last N → 1 inputs and the new input tn, and cn = k(tn, tn) + φ. The matrix K̄n→1 is

the created by removing from Kn→1 the first row and column. The inverse kernel matrix K→1
n is

also updated accordingly as

K→1
n =

[
K̄→1

n→1 → K̄→1
n→1bndT

n dn

dT
n en

]
, (6.6)

where en = (cn → bT
nK̄

→1
n→1bn)→1 and dn = →K̄→1

n→1bnen. After finding the solution ϱϱϱn using

Eq. (6.4), the SWKRLS algorithm produce the predicted phase for the next symbol at symbol

index of (n+ 1) as [94]

ϖ̂n+1 =
N∑

i=1

ϱi⇀(tn+1→i, tn+1), (6.7)

by calculating kernel values between the points within the dictionary and the new point, tn + 1.

This predicted phase value will be used to rotate the symbol rn+1 and the cycle will be repeated.

6.3.2 Compensation results

To evaluate the effectiveness of the proposed algorithm, we performed numerical simulations

of a single-polarisation 16-QAM transmission at 28-GBaud. The transmitted signal is pulse-

shaped using a RRC filter with a roll-off factor of 0.1. The link parameters are the same as

listed in Table 5.1, with the FOPA parameters are taken from Table 6.1. At each FOPA stage, we

also introduced a random time shift to the sinusoidal RF tones within pump-phase modulation

scheme. The selected evaluation metric is BER measured over 50 batches of 216 symbols.

We started with our analysis by optimising the kernel hyperparameters, which are defined

in Eqs. (3.35) and (6.2). Since the periods pi within (6.2) can be extracted from the modulating

RF frequencies, we are required to optimise two lengthscale hyperparameters lPer and lRBF of

the periodic kernel and Gaussian kernel respectively. This can be achieved by maximising the

log marginal likelihood as defined in section 3.4.5 of a Gaussian process [73]. It was taken on

the training data set which is available in the pre-setting phase. We plotted the calculated nor-

malised marginal likelihood as the heat map in Fig. 6.5, where larger values closer to one refers

to models fitting the data with high confidence. The pre-setting phase lasts 100 symbols and the
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x

Figure 6.5: Hyperparemeter optimisation with log marginal likelihood for kernel-based phase recovery.

regularisation parameter is selected as φ = 0.1 within this optimisation procedure. Examining

Fig. 6.5 suggests us to select the optimum values for the periodic kernel’s lengthscale lper = 10

and the Gaussian kernel’s lengthscale lRBF = 104. To demonstrate our selection, we plotted in

Fig. 6.6 the comparison between the fitted data and the traning data over the pre-setting phase.

We observed a good matching between these two time series, thereby reflecting the accuracy

of hyper-parameters selection. The SWKRLS algorithm applied here with the dictionary size

N = 100.

Figure 6.6: Data fitting within the training set.

The performance comparison between our proposed SWKRLS-based phase compensa-

tion scheme and the LMS-based phase recovery [65] was made. We plotted the BER curves

of two schemes versus the number of FOPA stages in Fig. 6.7. The compensation capability

of the conventional CPR method rapidly degrades as number of FOPA stages increases. It is

an expected behaviour because the method is designed for slower laser phase noise, which

is typicall at kHz level. It thus cannot track and effectively the dithering-induced phase distor-

L. H. Nguyen, PhD Thesis, Aston University 2024 92



6. Kernel-based compensation in optical parametric amplified systems

tion, which is much faster and accumulated across FOPA stages. Increasing the capability of

tracking high-speed phase variation by increasing the learning rate of LMS-based algorithm

may potentially make the recovery scheme more vulnerable to phase cycle slips. Our proposed

SWKRLS-based scheme, which utilises a careful selection of a customised kernel, can signifi-

cantly outperforms the LMS-based phase recovery scheme within one stage of compensation.

We observed at least one order of magnitude BER improvements across various number of

FOPA stages.

Figure 6.7: Performance result comparison for kernel-based phase compensation versus conventional
phase recovery.

This result is the first step with kernel-based methods although it only offers the phase

distortion compensation capability. In the next section, we will advance the method to make it

operate in the complex domain. By achieving that, we can enable the simultaneous dithering-

induced phase and amplitude distortion compensation capability.

6.4 Kernel-based phase and amplitude compensation using com-

plex kernel

We aim to design a phase and amplitude distortion compensation scheme based on kernel

methods in this section. Since only dithering-induced phase distortion prevails when we operate

FOPA at the optimal wavelength, we are required to shift the operating wavelength to a different

one where the dithering-induced amplitude distortion is more pronouncing. By using the FOPA

model with parameters listed in Table 6.1, we plotted in Fig. 6.8 its amplitude and phase spectral

responses along with the corresponding RMS fluctuations in phase and amplitude. We selected

the operating region with the wavelength detuning !φs = →20 nm, where the dithering-induced
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amplitude distortion reaches its peak.

(a) (b)

Figure 6.8: (a) The amplitude and (b) phase spectral responses of the FOPA complex gain and the
corresponding dithering-induced RMS amplitude and phase fluctuations versus the signal wavelength
detuning.

The FOPA link considered in this scenario is the same as that in the previous section, which

is plotted in Fig. 6.3. The signal at FOPA output in this scenarios exhibits both phase and

amplitude distortions, which are also accumulated along the link.

6.4.1 Compensation scheme

A straightforward approach to apply kernel methods in the complex domain is to use the com-

plex versions of widely-known real kernels. For example, the complex version of the real Gaus-

sian kernel, which is defined in Eq. (3.35), is given as

⇀(x,x↗) = exp


→

L∑

i=1

(x↗

i → x↓

i )
2

2◁2


, (6.8)

where the data points xxx,xxx↑ ↘ CL and the superscript ↓ denotes the complex conjugation.

We will use this kernel function for the complex-valued (CV)-SWKRLS algorithm, which is a part

of the compensation diagram shown in Fig. 6.9.

Instead of predicting the phase distortion, our proposed CV-SWKRLS-based distortion es-

timator aims to produce a CV distortion d̂n ↘ C at the symbol index n. The total complex

distortion is technically removed from the received symbol rn by dividing it by the estimated

distortion d̂n to obtain zn = rn/d̂n. The rotated symbol zn is then passed through a deci-

sion circuit which produces a decision-directed symbol [zn]D. A decision-driven distortion is

then calculated by taking the ratio between the received symbol rn and the decision-directed

symbol [zn]D, i.e. d̃n = rn/[zn]D. This decision-driven distortion is then fed back to the CV-

SWKRLS-based estimation block to train the algorithm and also to become one of the inputs
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Figure 6.9: Block diagram of the proposed complex-valued kernel-based recovery scheme.

for future distortion’s prediction. The scheme uses the exact transmitted symbols in the role of

decision-directed symbols to calculate the decision-driven distortion before the convergence is

reached.

The problem formulation for CV-SWKRLS in the online setting can be described as follow-

ing: it attempts to make one-step ahead prediction of the complex distortion d̂n based on a

vector of last L decision-driven values, i.e. xn = [d̃n→1, ..., d̃n→L]T. In the sliding-window ap-

proach, the dictionary size of N is fixed by only accounting for the last N input-output pairs.

The input observation matrix is defined as Xn = [xn, ...,xn→N+1]T and the output observation

vector as yn = [d̃n, ..., d̃n→N+1]T. The kernel function is used here is the complex Gaussian

kernel in Eq. 6.8. The procedure to solve for the coefficient vector ϱϱϱn is defined in the previous

section and in [94]. After obtaining the updated solution ϱn at the end of n-th cycle, the CV-

SWKRLS-based estimator can make prediction of the total distortion d̂n+1 at the beginning of

(n+ 1)-th cycle using the expression

d̂n+1 =
N∑

i=1

ϱi⇀(xn+1→i,xn+1). (6.9)

The calculation is made using the kernel values measured between the data points xi within

the dictionary and the new input vector x. The estimated distortion d̂n+1 is then used to recover

the distorted symbol rn+1 as the cycle continues.
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6.4.2 Compensation results

The complex Gaussian kernel function in Eq. 6.8 has only one hyperparameter, which is the

lengthscale ◁. The CV-SWKRLS algorithm’s hyperparameters include the block length L, the

dictionary size N and the regularisation parameter φ. For the visualisation purpose, we can

only perform the optimisation process for maximum three hyperparameters. We realised that

the regularisation parameter φ can be set fixed, and let the kernel width ◁ govern the overfitting

problem. The optimisation was performed for 20 batches of 216 symbols received at the end of

10 FOPA stages, and we used BER as the evaluation metric. The optimisation results taken for

block length L, dictionary size N and kernel width ◁ are shown in Fig. 6.10. Our decision which

omits the regularisation parameter φ can also be support by this graph. Based on definition

of Gaussian kernel function in Eq. (6.8), a smaller value of kernel width ◁ makes the kernel

function narrower, and the algorithm only considers the nearby data points as being similar. It

results in the algorithm more sensitive to noise and overfit, while a greater value of ◁ can help

reduce it. This is the reason why the BER level starts becoming meaningful as the kernel width

◁ exceeds a certain threshold. For the optimal point, which yields the lower BER, we observed it

at N = 50, L = 50, ◁ = 101.2, which is marked by the blue circle. This set of hyperparameters

will be used for further performance evaluation.

Figure 6.10: Hyperparameter optimisation for the kernel method using complex kernel function.

The performance comparison, in terms of BER, between our proposed algorithm and the

conventional CPR algorithm, LMS-based phase recovery [65], was performed for 100 ↔ 216
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Figure 6.11: Performance comparison between complex-valued kernel-based compensation using com-
plex kernel function and the conventional phase recovery algorithm.

symbols. Two BER curves are shown in Fig. 6.11, with a substantial BER improvement of

our proposed algorithm over the conventional CPR algorithm. The same reason as that in the

previous section can be used to explain this difference. The conventional CPR algorithm is de-

signed for the relatively slow laser phase noise and does not perform well to the high-frequency

dithering-induced phase distortion. We also included the constellation diagrams between two

schemes after 10 stages to show the effectiveness of our proposed scheme.

6.5 Kernel-based phase and amplitude compensation using com-

plexification of RKHS

In this section, we apply a technique allowing us to exploit the popular real kernel functions

instead of using the complex versions. We will then make a comparsion between two techniques

at the end of the section.

6.5.1 Learning with complexification of Hilbert space

In this section, we considered another way to operate kernel methods in the complex domain,

which is the concept of ”complexification” of real RKHS [96]. In this case, the complex input

data x ↘ CL is represented as x = xr + jxi, where the real and imaginary parts xr,xi ↘ RL

respectively are mapped to a ”complexified” RKHS based on the rule

!̂(x) = ”(xr,xi) + j”(xr,xi) (6.10)
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where ”(xr,xi) = ⇀(·, (xr,xi)) is the feature map with a chosen real kernel. It thus allows

us to use a real version of Gaussian kernel, defined in Eq. (3.35), for complex-valued data

processing.

The compensation scheme with CV-SWKRLS-based distortion estimation block is the same

as in Fig. 6.9. The CV-SWKRLS-based algorithm also aims to predict the one-step ahead

complex distortion d̂n based last L decision-driven distortions, defined in the vector xn =

[d̃n→1, ..., d̃n→L]. However, in this case, instead of using directly the vector xn, we converted it

into a real-valued composite representation x̂n ↘ R2L defined as

x̂n = [Re(xn), Im(xn)]. (6.11)

In the online setting of the CV-SWKRLS algorithm, we defined the observation input matrix

from the composite versions of x as X̂n = [x̂n, ..., x̂n→N+1]T, and the observation output vector

yn = [d̃n, ..., d̃n→N+1]T. The procedure to solve for the coefficient vector ϱn is defined in section

6.3. The prediction for the distortion at (n+1)-th cycle is also performed based on the composite

representations as

d̂n+1 =
N∑

i=1

ϱi⇀(x̂n+1→i, x̂n+1). (6.12)

Figure 6.12: Hyperparameter optimisation for kernel-based method using complexification of RKHS.

6.5.2 Compensation results

Following the similar optimisation procedure, we carried a grid search over a space with three

hyperparameters: dictionary size N , kernel width ◁ and regularisation parameter φ. We set the

block length as L = 20. The optimisation was taken for 50 batches of 216 symbols received
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after 10 FOPA stages with BER being the evaluation metric. The optimisation result was plotted

Fig. 6.12, where we observed the optimal operating point, which is denoted by the blue circle,

at this set of hyper-parameters: N = 50, ◁ = 100.5, φ = 10→1.

Figure 6.13: Performance comparison between complex-valued kernel-based compensation using com-
plexification of RKHS and the conventional phase recovery algorithm.

We demonstrated the performance of our proposed CV-SWKRLS-based compensation

scheme with the RKHS complexification concept in Fig. 6.13. It is compared against the con-

ventional CPR scheme with LMS-based algorithm [65]. Our CV-SWKRLS-based scheme, as

expected, significantly outperforms the conventional CPR method by achieving at least one

order of magnitude of BER improvement across various number of spans. The capability of

simultaneous phase and amplitude distortion compensation of our proposed algorithm can be

evidenced in Fig. 6.14. The figure demonstrates the evolution of RMS fluctuations for both

phase and amplitude as a function of the number of cascaded FOPA stages. The calculations

of RMS for amplitude and phase can be found in Eqs. (5.19) and (5.20), respectively. In both

quantities, our proposed algorithm shows improved suppression capability compared to the

conventional CPR scheme.

We have discussed two methods to operate the kernel method in the complex domain:

either using a directly complex kernel function or through the complexification of RKHS. We

observe a substantial BER improvement with the second method over the first, as illustrated in

Fig. 6.15. This can be explained by the fact that complexifying a real RKHS is more effective

when the real and imaginary parts of the data are independent and exhibit same properties

in terms of similarity [97], as is the case for our considered FOPA link. Although the received

signal exhibits both amplitude and phase distortions, phase distortion remains dominant, as
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Figure 6.14: Amplitude and phase suppression capability of kernel-based compensation using com-
plexification of RKHS compared to the conventional phase recovery algorithm.

evident from the constellation diagrams of the conventional CPR algorithm. By treating the real

and imaginary components separately, the complexification of real RKHS enables the model

to better capture their independent characteristics. This allows for more effective suppression

of phase distortion compared to amplitude distortion, resulting in a more circular constellation

diagram. For the first method, the use of pure complex kernel function has notable drawbacks,

as discussed in [98]. In detail, the complex Gaussian kernel introduces challenges such as

non-stationary and inconsistencies in similarity measurement, the real parts are measured in

terms of similarity and the imaginary parts are measured in terms of dissimilarity. These issues

highlight the limitations of purely complex kernels in our scenario.

Figure 6.15: Performance comparison between two complex-valued kernel-based compensation
schemes and the conventional phase recovery algorithm.
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6.6 Conclusion

In this chapter, we have presented algorithms that use a kernel-based approach to simulta-

neously mitigate phase and amplitude distortions caused by pump-phase modulation in the

transmission link with multiple cascaded FOPA stages. A single-stage compensation scheme

using kernel methods was proposed for phase distortion mitigation, which outperformed the

conventional phase recovery algorithm. We also discussed the operation of kernel methods

in the complex domain, enabling the simultaneous compensation of phase and amplitude dis-

tortion. We also compared two approaches related to complex-valued processing, with the

method using the complexification of RKHS providing better improvement than the one using

pure complex kernels. While the results presented in this work focus on a single wavelength,

we believe that the proposed method is scalable and can be applied to WDM systems with mul-

tiple wavelengths. The compensation approach is wavelength-specific, but it can be extended

across a wide range of wavelengths by adjusting the parameters for each channel accordingly.

In a WDM system, the compensation process can be executed independently and in parallel

for each wavelength channel, making it feasible to implement the method in systems with many

channels.
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Chapter 7

Conclusions and future work

The thesis has introduced several DSP algorithms designed to mitigate the adverse effects of

pump-phase modulation while preserving the efficacy of SBS suppression. This work lays the

groundwork for the integration of fibre-optical parametric devices into modern optical commu-

nications. With effective SBS suppression supported by DSP algorithms, the FOPA can offer

exceptionally high gain with low noise. Moreover, its wide gain bandwidth makes it a promis-

ing solution for future dense wavelength-division multiplexing (DWDM) systems. The proposed

DSP algorithm enable the OPC to remain a highly effective all-optical compensation technique

for fibre impairments, including chromatic dispersion and fibre nonlinearity. We will now review

key findings we have discussed within this thesis before exploring potential future directions.

7.1 Key findings

Section 2.5 in Chapter 2 introduced an optimisation approach for the amplitude and phase

parameters of the RF tones within pump-phase modulation schemes. The goal was to achieve

a broadened pump spectrum with evenly distributed frequency peaks, which is important to

effectively suppress the SBS effect. This desired spectrum was set as the target for our learning

process. Using a least-squares cost function, regression on the RF tones was implemented in

Tensorflow with batch gradient descent.

Chapter 4 studied the mid-link OPC transmission systems and examined how both phase

and amplitude distortions develop, driven by the residual dithering-induced phase distortion

and the memory effect of channel fibre dispersion. We proposed a linear regression approach

to estimate this phase distortion based on a feature vector constructed from sinusoidal terms
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with detected modulating frequencies. This enabled us to recreate the phase-to-phase and

phase-to-amplitude distortion conversion in the time domain and reverse it via a two-stage

compensation scheme.

In Chapter 5, we advanced the DDC scheme by addressing multiple sources of dithering

phase distortion, particularly in transmission systems with cascaded FOPA stages. The accu-

mulation of phase distortion across stages, along with interactions between accumulated phase

distortion and fibre dispersion across different segments, significantly increases the problem’s

complexity. We began with a multi-branch approach that estimated the dithering phase dis-

tortion in each FOPA stage, compensating for corresponding phase and amplitude distortions.

We then improved the complexity of the algorithm by developing a single-branch compensation

approach. In this approach, an adaptive time-varying FIR filter was employed to compensate

for both amplitude and phase distortions, as evidenced by a reduction in their respective RMS

values. An intensive study was conducted to demonstrate the robustness of the algorithm, in-

cluding scenarios involving random modulating frequency variations and increases in the base

frequency increase.

Chapter 6 introduced a novel approach using kernel methods, a non-parametric machine

learning technique, to mitigate the compensation problem. Kernel methods, known for their

ability to automatically discover underlying patterns in data, were used to enhance our com-

pensation algorithm without the need for explicit engineering of feature vectors. Operating in an

online setting, we can effectively simplify the compensation scheme into a single stage, which

also accounts for the laser phase noise. The first scheme for phase compensation was pro-

posed by selecting a custom kernel function that captured the mathematical characteristics of

the phase distortion time series. Two additional algorithms were developed to process signals

in the complex domain, which is essential for simultaneous mitigation of phase and amplitude

distortions. Applying kernel methods in the complex domain is an emerging research area, as

they have traditionally been used for real-valued data. Two approaches were introduced: using

pure complex kernels and the complexification of real RKHS, both of which demonstrated the

effectiveness in BER improvements.
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7.2 Future work

In addition to FOPA, phase-sensitive amplifier (PSA) is a powerful amplification technique and

a crucial tool for advanced communication systems. PSA is known for its ability to enhance

sensitivity by amplifying the signal while suppressing noise [99]. This property makes it valuable

in applications that require high signal fidelity. The integration of DSP algorithms is important

to preserve the benefits of PSA in noiseless operation. Research into DSP algorithms for PSA

systems is thus promising to unlock new possibilities for PSA applications.

Regarding kernel methods, widely linear kernels [100] are interesting extensions of linear-

ity in statistical modelling by incorporating both linear and nonlinear components. This allows

them to effectively learn complex data structures and support both real-valued and complex-

valued data. Additionally, the generalised kernel learning framework for complex-valued data,

introduced in [97], offers promising adaptability to our problem, providing greater flexibility de-

pending on the distortion characteristics. These approaches present exciting opportunities to

further enhance the kernel-based phase and amplitude compensation scheme.

We also aim to extend the scope of the kernel-based dithering compensation method further

by exploring its potential in mitigation of other channel impairments, such as fibre nonlinearity

and chromatic dispersion. Kernel methods are universal approximators according to Represen-

ter Theorem, and with a rich selection of kernel functions, they offer the possibility to address

impairments like channel memory and nonlinearity.

In conclusion, this thesis has shown promising results for the integration of fibre-optical

parametric devices into modern optical networks. The proposed DSP algorithms significantly

reduce penalties due to pump-phase modulation, easing the need for complex sub-system

designs to counter SBS effect. This research opens up exciting future directions, both in optical

network applications and in the further improvement of the algorithms.
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