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Abstract 

Several oxylipins are potent lipid mediators that regulate diverse aspects of health and disease 

and whose quantitative analysis by liquid chromatography–mass spectrometry (LC-MS) 

presents substantial technical challenges. As members of the lipidomics community, we 

developed technical recommendations to ensure best practices when quantifying oxylipins by 

LC-MS. 
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Lipid signaling mediators are essential factors in health and disease, participating in diverse 

cellular processes related to inflammation, immunity, development, and homeostasis. A major 

category of lipid mediators, comprising large families of structurally related fatty acyls, are 

oxylipins, which include eicosanoids such as prostaglandins (PGs), thromboxanes (TXs), 

leukotrienes (LTs) and epoxyeicosatrienoic acids (EETs), all of which are derived from 

arachidonic acid. Other oxylipins are derived from shorter- or longer-chain polyunsaturated 

fatty acids (PUFAs), such as octadecanoids or docosanoids, including specialized pro-resolving 

mediators (SPMs). Whereas most oxylipins are generated by enzymes such as lipoxygenases 

(LOXs), cyclooxygenases (COXs), and cytochrome P450 monooxygenases (CYPs), they can 

also be formed nonenzymatically by autoxidation. The relevance of oxylipins to human disease 

is undisputed. For example, well-known drugs target the prostaglandin pathway to modulate 

inflammatory diseases, including nonsteroidal anti-inflammatory drugs (NSAIDs), such as 

ibuprofen and diclofenac. In addition, aspirin, which blocks thromboxane biosynthesis when 

used at low doses, is the most widely prescribed drug globally, with a major role in the 

secondary prevention of cardiovascular diseases and emerging potential in reducing cancer 

incidence (1). 

 

Eicosanoids derived from arachidonic acid were first discovered in the 1930s by von Euler (2). 

This was followed by the structural characterization of PGs and TXs in the second half of the 

20th century, leading to the awarding of the Nobel Prize to Bergström and Samuelsson in 1982 

(3), together with Vane for discovering the mechanism of action of aspirin (4). Since then, 

additional families were found, and key mechanisms of oxylipin signaling, metabolism, and 

excretion in urine were revealed in numerous biological and pathophysiological contexts. After 

their initial discovery, oxylipins were often named based on their cellular source; for example, 

prostaglandins were first identified in seminal vesicles. Alternatively, they were named based 
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on a combination of source and chemical structure; for example, with LT being made by white 

blood cells and carrying a triene motif. Although oxylipins are often described as lipid 

mediators or autacoids that are secreted by cells to act on receptors locally, the biological 

functions of many oxylipins are still to be established. Only some, for example, PGs and LTs, 

have G protein–coupled receptors that are formally validated by the International Union of 

Pharmacology (IUPHAR). In the LIPID MAPS classification (5), oxylipins are listed under 

Fatty Acyls, within the main classes, octadecanoids (C18), eicosanoids (C20), and docosanoids 

(C22). 

 

As more oxylipins continue to be discovered and characterized and interest in their bioactivity 

and pre-clinical measurement increases, it has become essential for researchers to have access 

to robust analytical methods that enable their sensitive and selective quantification. It is also 

important that these methods account for the complexity of oxylipin analysis, while leveraging 

the high capability of newer-generation liquid chromatography (LC)–tandem mass 

spectrometry (MS/MS). Over the past 20 years, oxylipin analysis has substantially advanced. 

Indeed, today’s state-of-the-art, targeted LC-MS/MS assays can routinely quantify more than 

100 individual molecular species in small amounts of biofluids or tissue extracts, down to low- 

or sub-picogram amounts on-column in a single analytical run (see Supplementary Materials). 

Although this is already transforming research into these lipids, there remains a major need to 

support researchers new to this field who wish to establish these assays. Oxylipins present 

unique analytical challenges, including low abundance, rapid metabolism to conjugated or 

chain-shortened forms, the presence of many closely eluting isomers, and similar fragmentation 

patterns, especially when generated non-enzymatically. Considering this, quantitative analysis 

of oxylipin families is technically specialist, requiring both chromatography and MS/MS, as 

well as the availability of authentic and stable isotope–labelled synthetic analytical standards. 
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The quantification of oxylipins requires accuracy and precision, as well as correct identification 

and reporting. Given that some oxylipins are present at extremely low endogenous 

concentrations, it is important to ensure that their measurement adheres to best practices. More 

broadly, in the wider field of lipidomics, in response to challenges with data reporting and 

reproducibility, guidelines have been developed, including a Minimal Reporting Checklist (6, 

7). (More information on these specific issues, with references, is provided in the 

Supplementary Materials). Following from that work, but specifically supporting researchers 

interested in performing oxylipin analysis, community recommendations have been developed 

and are presented here. These summarize the key aspects to be considered when establishing 

and routinely running a targeted LC-MS/MS method for oxylipin quantitation in research 

settings and describe those parameters that should be reported in publications. Criteria for 

routine quantitation are proposed, together with parameters to be reported when establishing 

new methods. Additional methods, such as high-resolution accurate mass analysis, data-

dependent and data-independent fragmentation, ion mobility, and MS imaging are not covered, 

but in general, the same overall criteria for performance described herein should apply. Our 

recommendations also contain an extended and fully referenced introduction, providing a 

comprehensive history of the discovery of oxylipins and their MS/MS analysis. 

 

For targeted analysis in a clinical setting, numerous guidelines for bioanalytical methods 

already exist, for example from the International Council for Harmonisation of Technical 

Requirements for Pharmaceuticals for Human Use (ICH), the Food and Drug Administration 

(FDA), and the Clinical & Laboratory Standards Institute (CLSI) (8-10). These describe 

requirements for laboratory methods used in patient care, clinical trials, and diagnostics. 

However, they do not appropriately address the needs and limitations typically observed in 

basic research settings aimed at increasing our understanding of the underlying mechanisms of 

diseases and biological processes. Examples of these limitations include the restricted 
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availability of standards and reference materials, diversity in sample matrix type and sample 

origin, as well as the lack of analyte-free matrices. Furthermore, they do not provide specific 

details related to oxylipins. Addressing this, the new recommendations provide technical advice 

for oxylipin analysis in laboratories reflecting current state-of-the-art practices in discovery 

research. Where analysts use oxylipin assays to make measurements for clinical or diagnostic 

purposes, then the guidelines mentioned earlier also need to be applied. 

 

These community recommendations for laboratory assays for oxylipins were initiated by a 

working group initially established as an International Lipidomics Society (ILS) Interest Group 

(https://lipidomicssociety.org/interest_groups/oxylipin-analysis/). After an open advertisement 

to the biomedical community inviting interested researchers to attend, two webinars were held 

to discuss basic analytical principles that should be included (87 attendees). After feedback 

through an online form and by email, a draft was generated and then circulated to the webinar 

attendees and others for input. After revision, an agreed-upon version was finalized and is 

presented in the Supplementary Materials. These recommendations are fully aligned with the 

ILS Minimal Reporting Checklist, which should also be used  for data reporting (6). 
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