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Abstract

Epilepsy is one of the most common neurological disorders in children. Diagnosing epilepsy

in children can be very challenging, especially as it often coexists with neurodevelopmental

conditions like autism and ADHD. Functional brain networks obtained from neuroimaging

and electrophysiological data in wakefulness and sleep have been shown to contain signa-

tures of neurological disorders, and can potentially support the diagnosis and management

of co-occurring neurodevelopmental conditions. In this work, we use electroencephalogra-

phy (EEG) recordings from children, in restful wakefulness and sleep, to extract functional

connectivity networks in different frequency bands. We explore the relationship of these net-

works with epilepsy diagnosis and with measures of neurodevelopmental traits, obtained

from questionnaires used as screening tools for autism and ADHD. We explore differences

in network markers between children with and without epilepsy in wake and sleep, and

quantify the correlation between such markers and measures of neurodevelopmental traits.

Our findings highlight the importance of considering the interplay between epilepsy and neu-

rodevelopmental traits when exploring network markers of epilepsy.

Introduction

Epilepsy is estimated to impact nearly 10.5 million children worldwide [1]. According to the

World Health Organization, approximately 80% of people with epilepsy live in low- and mid-

dle-income countries (LMICs), where epilepsy presents an increased risk of premature
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mortality, and where the highest prevalence peaks in children [2]. In addition to the personal,

social, and economic impact of epilepsy on children and their families, seizures have been

shown to be detrimental to brain development [3], potentially leading to cognitive dysfunc-

tion. The condition is often associated with lifelong disabilities, poor quality of life and even

death [4, 5]. Therefore, early and accurate diagnosis of epilepsy is paramount. Early manage-

ment can significantly reduce the adverse effects of seizures, improving quality of life, reducing

the risks of harm and death, and improving the social and economic status of the families

affected by epilepsy, especially in LMICs. Unfortunately, epilepsy diagnosis can be very chal-

lenging. The rate of epilepsy misdiagnosis is estimated to be near 20% generally [6]. Due to a

wide range of non-epileptic paroxysmal disorders affecting children [7], as well as the practical

hurdles in implementing EEG in children (especially those with challenging behaviour) and

the difficulties associated to interpretation of paediatric EEG [8], misdiagnosis in children is

believed to be even greater than for adults [9].

Diagnosis and management of neurological and neurodevelopmental conditions are made

more challenging when they coexist. This is frequently the case with epilepsy, where its preva-

lence in children with Autism Spectrum Disorder and ADHD is 20% and 15%, respectively,

which is significantly higher than in neurotypical children (~1%) [10]. The complex relation-

ship between epilepsy and co-occurring neurodevelopmental conditions remains an important

open question, the resolution of which could improve clinical outcomes and provide optimal

and individualised care.

Epilepsy is increasingly conceptualised as a condition of aberrant brain networks [11, 12].

Scalp electroencephalography (EEG) is one of the most widespread methods used to quantify

these networks. Functional networks obtained from scalp EEG have shown fundamental dif-

ferences between people with epilepsy and healthy controls, for both adults [13–15] and chil-

dren [16, 17]. Neurodevelopmental conditions, such as autism and ADHD, have also been

investigated using the framework of network science [18], although these methods are less well

stablished in this context. Moreover, very few studies have investigated the joint effect of epi-

lepsy and co-occurring neurodevelopmental conditions on functional brain networks [19].

This is necessary to understand network signatures that are specific either to epilepsy, or to

neurodevelopmental conditions, rather than being sensitive to their co-occurrences. Network

markers of epilepsy may be influenced by the presence of neurodevelopmental traits, poten-

tially leading to erroneous interpretations of the relationship between these markers and sei-

zure propensity.

Another important factor when exploring network markers of co-occurring neurological

and neurodevelopmental conditions is the influence of sleep. A growing number of studies

support the association between poor sleep and both epilepsy and neurodevelopmental condi-

tions [20–25]. This relationship tends to be bidirectional, where sleep disruption can increase

seizure propensity and presentation of neurodevelopmental conditions, which can in turn

result in poor sleep [26]. At the same time, graph metric analysis has shown that several aspects

of sleep, such as the wake-sleep transition itself as well as sleep deprivation, are associated with

connectivity changes in functional brain networks [27–32]. Markers of epilepsy might also be

influenced by stages of awareness (wake and sleep), given the known changes to the propensity

for epileptic discharges with sleep stage [33, 34].

In this work we explore the combined effects of epilepsy and neurodevelopmental traits on

functional connectivity networks obtained from EEG recordings from children in waking rest-

fulness and sleep. We identify differences in functional connectivity between subjects with and

without epilepsy, which are consistent across frequency bands. We also show that such differ-

ences are less pronounced during sleep. Finally, we quantify the correlation between neurode-

velopmental traits and network measures, identifying similar effects as seen for epilepsy. These
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results highlight the importance of considering the co-occurrence of neurodevelopmental

traits when a graph metric approach is implemented in this context.

Methods

Data acquisition and participants

The data used in this study were acquired at Birmingham Children’s Hospital and Worcester-

shire Royal Hospital. Written informed consent and assent were obtained from parents and

children and the study received NHS ethical approval from the Northwest—Preston Research

Ethics Committee (REC reference 19/NW/0337). Methods were performed in accordance

with relevant guidelines and regulations. EEG recordings were collected in “nap sleep EEG”

sessions (i.e., recordings taken during a short period where the child falls asleep) from children

suspected of having epilepsy, as part of the diagnostic process. Sixty-two recordings, collected

between September 2019 and December 2021, were retrieved. EEG data were acquired from

19 electrodes positioned according to the 10–20 system and sampled at 512Hz. In some partic-

ipants, melatonin or mild sleep deprivation were used to encourage sleep, according to clinical

protocols. Families also completed the Social Communication Questionnaire (SCQ) [35] and

the Conners’ 3AI Questionnaires [36], which are standard tools to describe autism and ADHD

characteristics, respectively. All questionnaires were evaluated by experienced psychologists

(AW and CR) to provide continuous indices associated with autism/ADHD traits. Raw scales

of the SCQ and Conners’ questionnaires can have values in the ranges of [0,40] and [0,20],

respectively.

In order to define a quantity that represented overall neurodevelopmental traits (NT), we

combined SCQ and Conners’ raw scores as:

NT ¼
1

2

SCQ
40
þ
Conners0

20

� �

With this definition, NT ranges in [0,1], where 0 means a null score in both tests while 1

means maximum scores in both tests. This index allows us to quantify the overall level of

neurodevelopmental traits in a single dimension [37]. It is important to clarify here that NT
should not be interpreted as a detailed quantification of autism and ADHD diagnosis.

These conditions have complex diagnostic pathways, which go beyond the interpretation of

these questionnaires. However, despite its limitations, these questionnaires (and therefore

NT) constitute an accessible and informative marker for the characteristics associated with

these conditions.

EEG analysis

EEG annotation was performed by two experienced electrophysiologists (Neuronostics Ltd).

For each participant, electrophysiologists were provided with the complete EEG recording

from the nap sleep session (recording duration between 00:28:00 and 03:48:49 [hh:mm:ss])

and asked to identify the cleanest and most “uneventful” 30-second long EEG segments

(avoiding major artifacts or clear epileptiform activity) in wakefulness, and sleep stages N1—

N3, when available. Sleep stages were defined according to AASM guidelines [38]. Very few

epochs were identified in sleep stage N3, so those were not considered in this analysis. Electro-

physiologists were blind to epilepsy diagnosis and to any metadata associated with neurodeve-

lopmental traits.
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Final cohort

From the original 62 participants, 34 had at least one EEG epoch identified and complete

metadata available (age, sex, epilepsy diagnosis, SCQ score and Conners’ score) and were

included in this study. These participants were aged between 4 and 15 years old (median 9 y)

and included 13 females and 21 males. 24 participants were diagnosed with epilepsy (11 focal,

7 generalised, 4 Rolandic, and 2 Encephalopathy) while 10 were not. These groups will be

referred to as “epilepsy” and “controls”, respectively. Raw scores for the SCQ ranged between 0

and 27 (median 9), while Conners’ raw score ranged between 0 and 20 (median 9.5). Tables

with detailed metadata are provided in the S1 File.

Functional networks

We derived weighted undirected functional networks from each EEG epoch using the phase

locking factor (PLF). To do this, we first downsampled the data to 256 Hz and band-pass fil-

tered between the desired frequencies. A 4th order Butterworth filter was used with forward

and backward filtering to minimise phase distortions. Functional networks were calculated in

five frequency bands: delta (1Hz-4Hz), theta (4Hz-7Hz), alpha (7Hz-13Hz) and beta (13Hz-

30Hz), as well as low alpha (6Hz-9Hz). Low alpha was used as networks calculated in this fre-

quency band in adults have shown different properties in healthy individuals and those with

generalized epilepsy [13].

For a pair of signals k and l, the PLFkl is given by PLFkl ¼
1

T j
PT

t¼1
eiðykðtÞ� ylðtÞÞj, where T is the

number of equally-spaced time samples in an epoch and θk is the phase of the Hilbert trans-

form of signal k. We also calculated the time-averaged lag, tkl ¼ argð
PT

t¼1
eiðykðtÞ� ylðtÞÞÞ. Only

nonzero time lags (|τkl|>0) were considered to avoid spurious connections due to volume con-

duction. We then computed 99 surrogate epochs from each of the EEG signals using a univari-

ate iterated amplitude adjusted Fourier transform (iAAFT). Functional networks were then

calculated for the EEG epochs and for the surrogates. For each epoch, we rejected connections

that did not exceed a 95% significance level compared to the same connection weights com-

puted from the surrogates calculated for that epoch. This method results in a weighted, undi-

rected network akl, which we used to calculate graph metrics. The PLF framework has been

extensively used to explore biomarkers of epilepsy from EEG data in different contexts [13, 15,

39–42]. Details about the methods used to calculate the network mean degree (MD), degree

standard deviation (DStd), average local clustering coefficient (ALCC) and global efficiency

(GE) can be found in the S1 File.

Statistical analysis

We explored the weighted mean degree of different classes (controls and epilepsy types) using

boxplots (see Fig 1), where the median (red line), 25th - 75th percentiles (blue box), non-outlier

extremes (black dashed lines) and outliers (red crosses) of the distributions are presented.

Effect size was quantified using the rank-biserial correlation [43] (|r|2[0,1], where 0 means no

rank correlation and 1 means perfect separation between groups), and significance was calcu-

lated using the Wilcoxon rank-sum and Kruskal-Wallis tests. To further quantify the differ-

ences between classes, receiver operating characteristic (ROC) curves were calculated for all

frequency bands. The area under the ROC curve (AUC) was calculated and uncertainty (error

bars) was quantified using a leave-one-out approach. To quantify the relationship between

mean degree and neurodevelopmental traits (continuous index), we used the nonparametric

Spearman rank correlation measure.
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When comparing controls and epilepsy groups, the age distributions were not significantly

different (p-value: 0.79), however there was a clear sex imbalance (controls: 60% female, epi-

lepsy: 29% female), so we corrected the marker values for sex in all comparisons presented

below by subtracting the mean over the respective sex. Regarding the correction for confound-

ing factors for the NT index, no significant differences were observed between epilepsy and

controls, or between males and females. Also, no significant correlation was observed between

the NT index and age. Nevertheless, to avoid cumulative effects of potential confounding fac-

tors, when considering relationships between NT and mean degree, we corrected this network

marker for age, sex, and epilepsy diagnosis using linear regression.

Results

Mean degree is smaller in epilepsy compared to controls

The mean node degree calculated using functional connectivity networks obtained from EEG

epochs during wakefulness is presented in Fig 1. Each plot describes the summary statistics of

the mean degree distribution for the different frequency bands of interest. The first two boxes

in each plot indicate the mean degree distribution for control and epilepsy subjects, respec-

tively. The subsequent boxes, in faded colours, indicate results for the sub-groups of epilepsy

types (Ge: generalised, Ro: Rolandic, Fo: focal, and EE: encephalopathy). For all frequency

Fig 1. Summary statistics of the functional connectivity networks’ mean degree (corrected for sex), calculated for different frequency bands and using

wake epochs. The first two boxes in each plot (“Cont” and “Epi”) indicate the comparison between subjects without and with epilepsy, respectively. Subsequent

boxes show the breakdown of different epilepsy types (Ge: generalised, Ro: Rolandic, Fo: focal, and EE: encephalopathy). The rank-biserial correlation and p-

value (two-tailed Wilcoxon rank sum test, uncorrected for multiple comparisons) for the difference between “Cont” and “Epi” are also shown.

https://doi.org/10.1371/journal.pone.0309243.g001
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bands, the median mean degree calculated for subjects with epilepsy was lower than for con-

trols. This result was not only consistent across frequency bands, but also held when controls

were compared with most epilepsy types individually. Rolandic epilepsy presented mean

degree values similar to controls in the low-alpha and alpha bands. However, it is important to

note that this group consisted of only 4 subjects, so any comparison for this group in isolation

has to be considered carefully. The rank-biserial correlations presented in each plot indicate

that the difference between the mean degree for controls and subjects with epilepsy was clearer

in the beta band. We also quantified the differences between controls and epilepsy in degree

standard deviation (DStd), average weighted clustering coefficient (AWCC), and global effi-

ciency (GE). We observed trends that were consistent over all frequency bands (elevated DStd

and GE for controls and elevated AWCC for children with epilepsy). However, the effect sizes

were small (see S1 Fig in S1 File) and these metrics were not considered further.

To further quantify the differences between the mean degree for controls and epilepsy, and

to estimate its classification power as a marker, we calculated the receiver operating character-

istic (ROC) curve, presented in Fig 2. The area under the ROC curve (AUC) varied between

0.66 and 0.84, depending on the frequency band used to calculate the networks, reflecting the

consistent difference observed in the mean degree for controls and epilepsy in Fig 1.

Differences in mean degree are smaller in sleep compared to wakefulness

As sleep has been shown to be an important factor impacting seizure susceptibility in different

types of epilepsy [20, 26], one important question is how it impacts functional brain networks

of children with epilepsy. To answer this question, we calculated differences in mean degree

Fig 2. Receiver operating characteristic (ROC) curve calculated using the mean degree to classify subjects without and with epilepsy

(wake epochs).

https://doi.org/10.1371/journal.pone.0309243.g002
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between controls and children with epilepsy for epochs obtained from sleep stages N1 and N2.

Following the calculation of the area under the ROC curve for epochs obtained from wakeful-

ness, presented in Fig 2, we used the AUC to quantify the differences between mean degree for

controls and children with epilepsy in sleep (Fig 3). As subjects transition from wakefulness

into sleep (N1 and N2), the differences in mean degree between cases and controls decrease, as

evidenced by the decrease in the AUC from wake to N1 and N2 in Fig 3. For the delta, theta

and beta bands, significant differences were observed between wake and N1/N2, while no sig-

nificant differences were observed between N1 and N2. In the low alpha and alpha bands, no

significant differences were observed between wake and N1, while both stages have signifi-

cantly different AUC than N2 (Kruskal-Wallis test, Bonferroni correction for multiple

comparisons).

Neurodevelopmental traits correlate with decrease in mean degree

The effect of autism and ADHD traits on functional brain networks is explored in Fig 4. In

this figure, the network mean degree (corrected for age, sex and epilepsy diagnosis), calculated

for wake epochs, was plotted as a function of the neurodevelopmental trait index (see Meth-

ods), for all frequency bands. Fig 4 shows a negative correlation between neurodevelopmental

Fig 3. Area under the ROC curve for the mean degree, calculated in different stages of awareness (wake, N1 and N2).

https://doi.org/10.1371/journal.pone.0309243.g003
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traits and mean degree, for all frequency bands. The correlation is clearer for higher frequen-

cies, and remains significant when corrected for multiple comparisons in the low alpha, alpha

and beta bands. It is important to note that the mean degree values here are corrected for epi-

lepsy diagnosis (see Methods), so the correlation between mean degree and neurodevelopmen-

tal trait index is independent of epilepsy diagnosis. When we consider N1 and N2 epochs, the

correlation was generally less clear but followed a similar trend (see S2 and S3 Figs in S1 File).

The influence of the neurodevelopmental trait index (NT) on the mean degree affects the

classification of controls and epilepsy subjects using this marker. Fig 5 (left) shows NT and

mean degree (corrected for sex), calculated for controls and epilepsy in the low alpha band

(which had the highest correlation with NT). For the MD threshold of maximum balanced

accuracy (dashed line), some subjects were misclassified (blue dots below the dashed line, and

red dots above it). When we analysed the NT of the misclassified subjects (Fig 5 - right), we

noticed that controls misclassified as epilepsy have a larger median NT than controls correctly

classified. The opposite effect was seen for epilepsy. The number of misclassified subjects was

small, but the trend was clear and consistent across all frequency bands (see S4 Fig in S1 File).

When estimating the classification power of MD through the calculation of the AUC, if instead

of only correcting this marker for sex imbalance (as in Fig 3) we also correct it for NT, the

AUC generally improves, especially for wake epochs, as shown in Fig 6.

Discussion

In this work, we investigated how paediatric epilepsy and co-occurring traits of neurodevelop-

mental conditions impact functional brain networks obtained from EEG in wakeful rest and

sleep. We showed that, for networks obtained from wake resting-state epochs, epilepsy diagno-

sis correlates with a decreased mean degree within different frequency bands, with this effect

being most apparent in the beta band. For epochs obtained in sleep stages N1 and N2, this

effect is generally less pronounced. We have also shown that a marker associated with autism

Fig 4. Spearman correlation and p-value (C and p) between neurodevelopmental trait index (NT) and mean

degree (MD) corrected for age, sex, and epilepsy diagnosis. MD calculated using wake epochs.

https://doi.org/10.1371/journal.pone.0309243.g004
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and ADHD characteristics (NT) has a negative correlation with mean degree, which is consis-

tent across frequency bands and stages of awareness. We also quantified how neurodevelop-

mental traits can influence the classification power of mean degree when separating controls

and epilepsy subjects. We showed that children without epilepsy and with high NT have a

higher risk of being misclassified than those with low NT. Conversely, children with epilepsy

with low NT might have a higher risk of being classified as not having epilepsy if the influence

of NT is not accounted for when identifying optimal classification thresholds.

Fig 5. (Left) mean degree corrected for age, calculated using wake epochs, as a function of neurodevelopmental traits. Cont (Epi) are shown in blue (red). The

dashed line represents the threshold of optimal balanced accuracy for the separation between Cont and Epi. (Right) Comparison between neurodevelopmental

traits of subjects classified correctly (Cont> threshold / Epi< threshold) and incorrectly (Cont< threshold / Epi> threshold). Shown here only for low alpha

band (6Hz– 9Hz). See Supporting Information for the same calculation in other frequency bands.

https://doi.org/10.1371/journal.pone.0309243.g005

Fig 6. Comparison between AUC calculated using MD only corrected for sex (as in Fig 3) and corrected for sex and neurodevelopmental traits index

(NT).

https://doi.org/10.1371/journal.pone.0309243.g006
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Functional networks extracted from EEG have been studied in the context of epilepsy previ-

ously [44]. Adebimpe et al. [39] used high-density scalp EEG to explore differences in func-

tional connectivity networks between children with Rolandic epilepsy and healthy controls.

The authors show that networks from subjects with epilepsy present significantly lower mean

degree than healthy controls in the delta and beta bands. This agrees with the results presented

in this work. Chowdhury et al. [13] compared functional networks from adult controls and

adults diagnosed with idiopathic generalised epilepsy. They showed that, in the low-alpha

band, network mean degree and degree variance are elevated in epilepsy, while clustering coef-

ficient is lower in epilepsy. These results differ from what has been observed in paediatric

cases. However, it is important to point out that changes in the pre-processing and calculation

of functional networks can have a significant effect on network markers, as can type of epi-

lepsy, so comparisons across different studies need to be interpreted carefully. Potential differ-

ences between the effects of epilepsy on network markers in children and adults can result

from the intricate influence of brain maturation in the paediatric brain. Resting-state func-

tional EEG networks have been shown to present complex band-specific changes during the

maturation period (e.g., positive correlation between network segregation and age in the

upper alpha band) [45]. These results evidence the importance of considering the influence of

brain maturation in the study of epileptogenic brain networks in children. The effects of age

were accounted for in the present study, but comparisons were made considering a relatively

broad age range (4 to 15 years old). Further studies with larger sample sizes, clustering partici-

pants in narrower age ranges, are needed to clarify the influence of brain maturation on EEG

networks in the context of epilepsy and neurodevelopmental disorders.

The results described above, observed in networks derived from wakeful rest, were also con-

sistent with those from epochs from sleep stages N1 and N2, however the effect size was gener-

ally smaller during sleep. This result is interesting since NREM sleep has been shown to

activate interictal epileptiform discharges (IED) in many types of epilepsies [46], which actu-

ally underpins the use of nap studies to support epilepsy diagnosis. However, it is important to

notice that smaller control-epilepsy differences for markers in sleep than in wake does not

imply that ictal or interictal activity should be less frequent in sleep. The relationship between

IEDs and seizure susceptibility is still unclear, with some works suggesting that IEDs can have

anti-seizure effects, depending on the underlying physiological mechanisms leading to seizures

[47, 48]. In this scenario, states where IEDs are more frequent could lead to network represen-

tations with features associated to low ictogenicity. The detailed relationship between IEDs

and network markers would require long wake and sleep recordings, rich in IEDs, and is

beyond the scope of this work.

Some limitations of this work need to be considered when interpreting the results presented

above. Our analysis was implemented considering a relatively small number of subjects, espe-

cially in the control group. Despite this limitation, significant differences and clear trends were

observed in the relationship between network markers and epilepsy diagnosis and/or neurode-

velopmental traits. These results will serve as a basis for further validation studies using larger

cohorts. Another important consideration is that different epilepsy syndromes were grouped

together in part of the analysis presented above. This is justified by the observation, in this and

other works [15], of shared network characteristics in different epilepsies when compared to

controls. Future studies with a larger number of subjects should also focus on stratifying the

analyses above in different epilepsy types, presenting a more detailed quantification of the

influence of each epilepsy syndrome in network markers. One factor potentially influencing

the results presented above is the administration of melatonin and/or sleep deprivation to

encourage sleep. Previous works have suggested that sleep deprivation can alter functional

brain networks obtained from EEG [30, 49], but a comprehensive understanding of these
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effects (especially in addition to the use of melatonin) is still an open question. Detailed infor-

mation about individual sleep facilitation protocols was not available at the time of data gather-

ing for this study and therefore its effects on functional networks could not be quantified.

Despite the difficulties to access such data in clinical scenarios, future studies should try to dis-

entangle those effects, or attempt to include data only from individuals who were able to

achieve sleep without any additional protocols. Finally, autism and ADHD traits were not dif-

ferent between the control and epilepsy groups. Previous works suggest that both conditions

have a higher prevalence in epilepsy than in typically developing children [10], indicating that

the data used in this study might not be representative of the general population. However, it

is important to point out that the “control” group in this work represents children suspected of

having epilepsy who had a differential diagnosis. To the best of our knowledge, the expected

prevalence of autism and/or ADHD in such a group is unknown.

The use of network-based biomarkers in the context of epilepsy and other neurodevelop-

mental disorders has the potential to significantly improve the diagnostic journey. Future stud-

ies in this area should focus on exploring local changes in functional brain networks associated

to these conditions (e.g., altered connectivity patterns in sub-networks associated to specific

brain functions which are strongly implicated in the epilepsy). Another important factor to be

explored is the influence of age in brain networks, and how different conditions alter func-

tional connectivity patterns at different stages of brain maturation [50]. A comprehensive

quantification of biomarkers along developmental trajectories would result in more accurate

and personalized frameworks to support diagnosis.

Conclusion

The influence of neurodevelopmental conditions, like autism and ADHD, on functional net-

works extracted from EEG data is still an open question. Evidence suggests that autism is char-

acterised by long-range underconnectivity [51], but this has been challenged and the diversity

in methodology makes it difficult to evaluate and compare across studies [52]. In this study we

have shown that network mean degree presents a negative correlation with the neurodevelop-

mental trait index NT (autism and ADHD characteristics). This relationship does not compre-

hensively describe the effect of autism and/or ADHD on functional brain networks, but it

shows how the traits associated with these conditions can influence network-based biomarkers

and, therefore, their potential clinical value. In order to disentangle the influences of autism

and ADHD on network markers, future studies should extend the analysis presented here by

considering cases with confirmed clinical diagnoses of these conditions, and focus on the main

characteristics that differentiate their classification.

Most studies that explore network markers of epilepsy from EEG recordings tend to

exclude subjects with co-occurring conditions from the analysis, especially neurodevelopmen-

tal conditions. However, it is often unclear how and to what extent subjects have been tested,

especially when sub-clinical traits of neurodevelopmental conditions are considered. The

results presented in this work show that ignoring this information can lead to skewed model

calibration and inaccurate classification, especially for children with high NT. Such inaccura-

cies could lead to even longer diagnostic delays, misdiagnosis, and inappropriate treatment

strategies.
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