
Mixture Density NetworksChristopher M. BishopNeural Computing Research GroupDept. of Computer Science and Applied MathematicsAston UniversityBirmingham. B4 7ET, U.K.C.M.Bishop@aston.ac.ukFebruary, 1994Neural Computing Research Group Report: NCRG/94/0041Available from: http://www.ncrg.aston.ac.uk/AbstractMinimization of a sum-of-squares or cross-entropy error function leads to network out-puts which approximate the conditional averages of the target data, conditioned on theinput vector. For classi�cations problems, with a suitably chosen target coding scheme,these averages represent the posterior probabilities of class membership, and so can beregarded as optimal. For problems involving the prediction of continuous variables, how-ever, the conditional averages provide only a very limited description of the propertiesof the target variables. This is particularly true for problems in which the mapping tobe learned is multi-valued, as often arises in the solution of inverse problems, since theaverage of several correct target values is not necessarily itself a correct value. In order toobtain a complete description of the data, for the purposes of predicting the outputs cor-responding to new input vectors, we must model the conditional probability distributionof the target data, again conditioned on the input vector. In this paper we introduce anew class of network models obtained by combining a conventional neural network witha mixture density model. The complete system is called a Mixture Density Network, andcan in principle represent arbitrary conditional probability distributions in the same waythat a conventional neural network can represent arbitrary functions. We demonstratethe e�ectiveness of Mixture Density Networks using both a toy problem and a probleminvolving robot inverse kinematics.1Previously issued as NCRG/94/4288

1 IntroductionNeural network models are widely used in applications involving associative mappings inwhich the aim is to learn a transformation from a set of input variables x � fx1; : : : ; xdgto a set of output variables t � ft1; : : : ; tcg. In practice, such networks are trainedusing a �nite set of examples, which we denote by fxq; tqg, where q = 1; : : : ; n, and qlabels the particular training pattern. The central goal in network training is not tomemorize the training data, but rather to model the underlying generator of the data,so that the best possible predictions for the output vector t can be made when thetrained network is subsequently presented with a new value for x. The most generaland complete description of the generator of the data is a statistical one (White, 1989),and can be expressed in terms of the probability density p(x; t) in the joint input-targetspace. This density function speci�es that the probability of a data point (x; t) falling in asmall region (�x;�t) is given by p(x; t)�x�t, and is normalized to give unit probabilityfor the data point to lie somewhere in the input-target space: R p(x; t) dx dt = 1. Notethat, if the generator of the data itself evolves with time, then we must consider time asan additional variable in the joint probability density. In this paper we shall limit ourattention to static distributions, although the models which we shall introduce can beextended to non-stationary problems, provided the models are treated as continuouslyadaptive.For associative mapping problems of the kind we are considering, it is convenient todecompose the joint probability density into the product of the conditional density of thetarget data, conditioned on the input data, and the unconditional density of input datap(x; t) = p(t j x)p(x) (1)where p(t j x) denotes the probability density of t given that x takes a particular value.The density p(x) = R p(x; t) dt of input data plays an important role in validating thepredictions of trained networks (Bishop, 1994). However, for the purposes of makingpredictions of t for new values of x, it is the conditional density p(t j x) which we needto model.As we shall see in the next section, the conventional neural network technique of minimiz-ing a sum-of-squares error leads to network functions which approximate the conditionalaverage of the target data. A similar result holds for the cross-entropy error function.For classi�cation problems in which the target variables have a 1-of-N coding scheme,these conditional averages represent the posterior probabilities of class membership, andso can be regarded as providing an optimal solution. For problems involving the predic-tion of continuous variables, however, the conditional average represents a very limiteddescription of the statistical properties of the target data, and for many applications willbe wholly inadequate. Such applications include the important class of inverse prob-lems, for which the target data is frequently multi-valued. In such cases the conventionalleast-squares approach can give completely erroneous results, as we shall show.In this paper we introduce a new class of neural network models, called Mixture DensityNetworks (MDNs), which overcome these limitations and which provide a completelygeneral framework for modelling conditional density functions. These networks, obtainedby combining a conventional neural network with a mixture density model, contain theconventional least-squares approach as a special case. Indeed, their implementation in1

software represents a straightforward modi�cation of standard neural network models.We demonstrate the e�ectiveness of MDNs using both a toy problem in two variables,and a problem involving robot inverse kinematics.2 Conventional Least SquaresThe usual approach to network training involves the minimization of a sum-of-squareserror, de�ned over a set of training data, of the formES(w) = 12 nXq=1 cXk=1[fk(xq;w)� tqk]2 (2)where tk represent the components of the target vector, and fk(x;w) denote the corre-sponding outputs of the network mapping function, which is parametrized by an array wadaptive parameters (the weights and biases).We begin by considering the nature of the solutions found by least-squares techniques.In a practical application we must deal with a �nite data set. This in turn means thatwe must limit the complexity of the network model (for instance by limiting the numberof hidden units or by introducing regularization terms) in order to control the balancebetween bias and variance (Geman et al., 1992; Bishop, 1995). The use of successivelylarger data sets allows the models to be more exible (i.e. have less bias) without over-�tting the data (i.e. without leading to increased variance). In the limit of an in�nitedata set both bias and variance can be reduced to zero, and the optimal least squaressolution is obtained. In this limit we can replace the �nite sum over data points in thesum-of-squares error function (2) by an integral over the joint probability densityES = limn!1 12n nXq=1 cXk=1[fk(xq;w)� tqk]2 (3)= 12 cXk=1 Z Z [fk(x;w)� tk]2 p(t;x) dt dx (4)where an extra overall factor of 1=n has been introduced into (3) for convenience. Sincethe corresponding network model fk(x;w) is permitted to be very exible, we can formallyminimize the error function by functional di�erentiation with respect to fk(x;w)�ES�fk(x;w) = 0 (5)Substituting (4) into (5), and using (1), we obtain the following expression for the mini-mizing function fk(x;w�) = htk j xi (6)where w� represents the corresponding set of weight values. We have de�ned the condi-tional average of a quantity Q(t) byhQ j xi � Z Q(t) p(t j x) dt (7)2

Thus, the network function is given by the conditional average of the target data, con-ditioned on the input vector. This key result is illustrated in Figure 1, and has manyimportant implications for practical applications of neural networks (Bishop, 1995).
t

xx0

p(t |x0)
t|x0

Figure 1: A schematic illustration of a set of data points (black dots) consisting of values ofthe input variable x and corresponding target variable t. Also shown is the optimal least-squares function (solid curve), which is given by the conditional average of the target data.Thus, for a given value of x, such as the value x0, the least-squares function ht j xi is givenby the average of t with respect to the probability density p(t j x) at the given value of x.We can also derive this result by rewriting the sum-of-squares error in a di�erent form.By adding and subtracting htk j xi inside the square brackets in (4), and again using (1),we obtain ES = 12 cXk=1 Z [fk(x;w)� htk j xi]2 p(x) dx (8)+ 12 cXk=1 Z [ht2k j xi � htk j xi2] p(x) dx (9)We note that the error function only depends on the network weights through the �rstterm (8), whose minimum occurs when (6) is satis�ed. Thus, we again see the result thatthe global minimum of the error function is given by the conditional average of the targetdata. The second term (9) gives the residual value of the error function at its globalminimum, and is seen to correspond to the average variance of the target data around itsconditional average value.Thus, the result of training a standard neural network by least squares is that we have ap-proximated two statistics of the target data, namely the conditional average as a functionof the input vector x, given by fk(x;w�), and the average variance of the data around thisconditional average, given by the residual value of the error function at its minimum. If weknow these two statistics, then we can represent the conditional distribution of the targetdata by a Gaussian function having a centre (which depends on x) given by fk(x;w�) and3

a global variance parameter determined by the residual error. The use of a least squaresapproach does not assume or require the distribution of the target data to be Gaussian,but neither can it distinguish between a Gaussian distribution and any other distributionhaving the same (conditional) mean and (global) variance.Conversely, if we assume that the conditional distribution of the target data is indeedGaussian, then we can obtain the least-squares formalism using maximum likelihood,as follows. We assume that the target data is governed by the following conditionalprobability density functionp(tk j x) = 1(2�)1=2� exp(� [Fk(x)� tk]22�2) (10)where � is a global variance parameter, and where the output variables are treated asindependently distributed. Here Fk(x) is the mean of the target variable tk and is takento be a general function of x. The conditional density of the complete target vector isthen given byp(t j x) = cYk=1 p(tk j x) = 1(2�)c=2�c exp(� 12�2 cXk=1 [Fk(x)� tk]2) (11)The underlying generator function Fk(x) is unknown, and is the basic quantity we seek todetermine, since knowledge of Fk(x), together with the value of the unknown parameter�, gives us a complete description of the data generation process (within the frameworkof the Gaussian assumption). We therefore model Fk(x) by a parametrized functionalform fk(x;w). Feed-forward neural networks o�er a particularly powerful choice for theparametrized function since they can e�ciently represent non-linear multivariate functionswith in principle no serious limitations on the functional forms which they can approximate(Hornik et al., 1989).The values for the parameters w in fk(x;w) must be determined from the �nite set oftraining examples fxq; tqg. This can be achieved by maximizing the likelihood that themodel gave rise to the particular set of data points. If we assume that the training dataare drawn independently from the distribution given by (11), then the likelihood of thedata set is given by the product of the likelihoods for each of the data pointsL = nYq=1 p(tq;xq) = nYq=1 p(tq j xq)p(xq) (12)where we have used (1). The quantity L is a function of the parameters w, and we candetermine appropriate values for w by maximization of L. In practice, it is convenientinstead to minimize the negative logarithm of L, which is usually called an error functionE = � lnL (13)Minimizing E is equivalent to maximizing L since the negative logarithm is a monotonicfunction. Using (11), (12) and (13), and modelling Fk(x) by fk(x;w), we can write E inthe form E = nc ln� + nc2 ln(2�) + 12�2 nXq=1 cXk=1[fk(xq;w)� tqk]2 + nXq=1 ln p(xq) (14)4

Note that only the third term in (14) depends on the parameters w and so their valuescan be determined by minimizing only this term. In addition, the factor 1=�2 can beomitted since it has no e�ect on the minimization with respect to w. This gives rise tothe standard sum-of-squares error function commonly used in neural network trainingES = 12 nXq=1 cXk=1[fk(xq;w) � tqk]2 (15)where the pre-factor of 1=2 has been retained for convenience when computing derivativesof ES. In general, fk(x;w) will be a non-linear function of the parameters w, as wouldbe the case for a multi-layer perceptron network for instance. Thus, the minimizationof ES represents a problem in non-linear optimization, for which there exists a range ofstandard techniques (Press et al., 1992; Bishop, 1995).Having found values for the parameters w�, the optimum value for � can then by foundby minimization of E in (14) with respect to �. This minimization is easily performedanalytically with the explicit, and intuitive, result�2 = 1nc nXq=1 cXk=1[fk(xq;w�)� tqk]2 (16)which says that the optimum value of �2 is given by the residual value of the sum-of-squares error function at its minimum, as shown earlier.For classi�cation problems the target values are generally chosen to have a 1-of-N codingscheme whereby tqk = �kl for an input pattern xq belonging to class Cl. The probabilitydistribution of target values is then given byp(tk j x) = cXl=1 �(tk � �kl)P (Cl j x) (17)where P (Cl j x) is the probability that x belongs to class Cl. Substituting (17) into (6)then gives fk(x;w�) = P (Ck j x) (18)and so the network outputs represent the Bayesian posterior probabilities of membershipof the corresponding classes. In this sense the network outputs can be regarded as optimalsince the posterior probabilities allow minimum risk classi�cations to be made, once theappropriate loss matrix has been speci�ed. For instance, if the goal is to minimize thenumber of misclassi�cations, corresponding to loss matrix given by the unit matrix, theneach new input should be assigned to the class having the largest posterior probability.It should be noted that the cross-entropy error function also leads to network outputswhich approximate the conditional average of the target data. For a �nite data set, thecross-entropy error function can be written asE
 = � nXq=1 cXk=1 ftqk ln fk(xq;w) + (1� tqk) ln(1� fk(xq;w))g (19)In the in�nite-data limit this can be written asE
 = � cXk=1 Z Z ftk ln fk(x;w) + (1� tk) ln(1� fk(x;w))g p(t;x) dt dx (20)5

By functional di�erentiation as before, and making use of (1) and (7), we obtainfk(x;w�) = htk j xi (21)so that the network outputs again represent the conditional averages of the target data.Most conventional applications of neural networks only make use of the prediction for themean, given by fk(x;w�), which approximates the conditional average of the target data,conditioned on the input vector. We have seen that, for classi�cation problems, this repre-sents the optimal solution. However, for problems involving the prediction of continuousvariables, the conditional average represents only a very limited statistic. For many appli-cations, there is considerable bene�t in obtaining a muchmore complete description of theprobability distribution of the target data. We therefore introduce the Mixture DensityNetwork which can in principle represent arbitrary conditional distributions, in the sameway that a conventional neural network can represent arbitrary non-linear functions.3 Mixture Density NetworksAs we have already seen, the conventional least-squares technique can be derived frommaximum likelihood on the assumption of Gaussian distributed data. This motivatesthe idea of replacing the Gaussian distribution in (11) with a mixture model (McLachlanand Basford, 1988), which has the exibility to model completely general distributionfunctions. The probability density of the target data is then represented as a linearcombination of kernel functions in the formp(t j x) = mXi=1 �i(x)�i(t j x) (22)where m is the number of components in the mixture. The parameters �i(x) are calledmixing coe�cients, and can be regarded as prior probabilities (conditioned on x) of thetarget vector t having been generated from the ith component of the mixture. Note thatthe mixing coe�cients are taken to be functions of the input vector x. The functions�i(t j x) represent the conditional density of the target vector t for the ith kernel. Variouschoices for the kernel functions are possible. For the purposes of this paper, however, weshall restrict attention to kernel functions which are Gaussian of the form�i(t j x) = 1(2�)c=2�i(x)c exp(�kt� �i(x)k22�i(x)2) (23)where the vector �i(x) represents the centre of the ith kernel, with components �ik. In(23) we have assumed that the components of the output vector are statistically inde-pendent within each component of the distribution, and can be described by a commonvariance �i(x). This assumption can be relaxed in a straightforward way by introduc-ing full covariance matrices for each Gaussian kernel, at the expense of a more complexformalism. In principle, however, such a complication is not necessary, since a Gaussianmixture model, with kernels given by (23), can approximate any given density function toarbitrary accuracy, provided the mixing coe�cients and the Gaussian parameters (meansand variances) are correctly chosen (McLachlan and Basford, 1988). Thus, the represen-tation given by (22) and (23) is completely general. In particular, it does not assume6

that the components of t are statistically independent, in contrast to the single-Gaussianrepresentation in (11).For any given value of x, the mixture model (22) provides a general formalism for mod-elling an arbitrary conditional density function p(t j x). We now take the various pa-rameters of the mixture model, namely the mixing coe�cients �i(x), the means �i(x)and the variances �i(x), to be general (continuous) functions of x. This is achieved bymodelling them using the outputs of a conventional neural network which takes x as itsinput. The combined structure of a feed-forward network and a mixture model we referto as a Mixture Density Network (MDN), and its basic structure is indicated in Figure 2.By choosing a mixture model with a su�cient number of kernel functions, and a neuralnetwork with a su�cient number of hidden units, the MDN can approximate as closelyas desired any conditional density p(t j x).
neural

network

mixture
model

input
vector

parameter
vector

conditional
probability

density

x

z

p(t |x)

Figure 2: The Mixture Density Network consists of a feed-forward neural network whoseoutputs determine the parameters in a mixture density model. The mixture model thenrepresents the conditional probability density function of the target variables, conditionedon the input vector to the neural network.The neural network element of the MDN can be any standard feed-forward structure withuniversal approximation capabilities. In this paper we consider a standard multi-layerperceptron, with a single hidden layer of sigmoidal units and an output layer of linearunits, and we shall use zj to denote the output variables. Note that the total numberof network outputs is given by (c + 2) �m, as compared with the usual c outputs for a7

network used in the conventional manner.It is important to note that the mixing coe�cients �i(x) must satisfy the constraintmXi=1 �i(x) = 1 (24)This is achieved by choosing �i(x) to be related to the networks outputs by a `softmax'function (Bridle, 1990; Jacobs et al., 1991)�i = exp(z�i)PMj=1 exp(z�j) (25)where z�i represent the corresponding network outputs. This can be regarded as a gener-alization of the usual logistic sigmoid, and ensures that the quantities �i lie in the range(0; 1) and sum to unity, as required for probabilities.The variances �i represent scale parameters and so it is convenient to represent them interms of the exponentials of the corresponding network outputs�i = exp(z�i) (26)which, in a Bayesian framework, would correspond to the choice of an un-informativeBayesian prior, assuming the corresponding network outputs z�i had uniform probabilitydistributions (Jacobs et al., 1991; Nowlan and Hinton, 1992). This representation also hasthe additional bene�t of avoiding pathological con�gurations in which one or more of thevariances goes to zero. The centers �i represent location parameters, and the notion of anun-informative prior suggests that these be represented directly by the network outputs�ik = z�ik (27)As before, we can construct a likelihood function using (12), and then de�ne an errorfunction by taking the negative logarithm of the likelihood, as in (13), to give the errorfunction for the Mixture Density Network in the formE =Xq Eq (28)where the contribution to the error from pattern q is given byEq = � ln(mXi=1 �i(xq)�i(tq j xq)) (29)with �i(t j x) given by (23). We have dropped the term Pq p(xq) as it is independent ofthe parameters of the mixture model, and hence is independent of the network weights.Note that (29) is formally equivalent to the error function used in the `competing lo-cal experts' model of Jacobs et al. (Jacobs et al., 1991). The interpretation presentedhere, however, is quite di�erent. Instead of seeking to impose soft competition between anumber of competing simpler network modules, the aim is to model the complete condi-tional probability density of the output variables. From this density function, any desiredstatistic involving the output variables can in principle be computed.In order to minimize the error function, we need to calculate the derivatives of the errorE with respect to the weights in the neural network. These can be evaluated by using8

the standard `back-propagation' procedure, provided we obtain suitable expressions forthe derivatives of the error with respect to the activations of the output units of theneural network. Since the error function (28) is composed of a sum of terms, one for eachpattern, we can consider the derivatives �qk = @Eq=@zk for a particular pattern q and then�nd the derivatives of E by summing over all patterns. The derivatives �qk act as `errors'which can be back-propagated through the network to �nd the derivatives with respectto the network weights. This is discussed further in Section 4. Standard optimizationalgorithms, such as conjugate gradients or quasi-Newton methods, can then be used to�nd a minimum of E. Alternatively, if an optimization algorithm such as stochasticgradient descent is to be used, the weight updates can be applied after presentation ofeach pattern separately.We have already remarked that the �i can be regarded as conditional density functions,with prior probabilities �i. It is convenient to introduce the corresponding posteriorprobabilities, which we obtain using Bayes theorem�i(x; t) = �i�iPmj=1 �j�j (30)as this leads to some simpli�cation of the subsequent analysis. Note that the posteriorprobabilities sum to unity: mXi=1 �i = 1 (31)Consider �rst the derivatives with respect to those network outputs which correspond tothe mixing coe�cients �i. Using (29) and (30) we obtain@Eq@�i = ��i�i (32)We now note that, as a result of the softmax activation function (25), the value of �idepends on all of the network outputs which contribute to the priors, and so we have@�i@z�k = �ik�i � �i�k (33)From the chain rule we have @Eq@z�k =Xi @Eq@�i @�i@z�k (34)Combining (32), (33) and (34) we then obtain@Eq@z�k = �k � �k (35)where we have used (31).For the derivatives corresponding to the �i parameters we make use of (29) and (30),together with (23), to give @Eq@�i = ��i (kt� �ik2�3i � c�i) (36)9

Using (26) we have @�i@z�i = �i (37)Combining these together we then obtain@Eq@z�i = ��i (kt� �ik2�2i � c) (38)Finally, since the parameters �ik are given directly by the z�ik network outputs, we have,using (29) and (30), together with (23),@Eq@z�ik = �i ((�ik � tk)�2i) (39)The derivatives of the error function with respect to the network outputs, given by (35),(38) and (39), can be used in standard optimization algorithms to �nd a minimum of theerror. For the results presented in this paper, the optimization of the network weightswas performed using the BFGS quasi-Newton algorithm (Press et al., 1992).In the previous section we considered the properties of the standard least-squares networkmodel in the limit of an in�nite data set. We now perform the corresponding analysis forthe Mixture Density Network. Taking the in�nite data set limit of (28) and (29), we canwrite the error function in the formE = � Z Z ln(mXi=1 �i(x)�i(t j x)) p(x; t) dx dt (40)If we set the functional derivatives of E with respect to z�i (x), z�i (x) and z�i (x) to zero weobtain, after some algebraic rearrangement, the following conditions which are satis�edby the mixture model parameters at the minimum of the error function�i(x) = h�i j xi (41)�i(x) = h�i t j xih�i j xi (42)�2i (x) = h�i k�i(x)� tk2 j x)ih�i j xi (43)where �i � �i(x; t), and where the conditional averages are de�ned by (7) as before.These results have a very natural interpretation. For each value of the input vector x,(41) shows that the priors �i(x) are given by the corresponding posterior probabilities,averaged over the conditional density of the target data. Similarly, the centers (42)are given by the conditional average of the target data, weighted by the correspondingposterior probabilities. Finally, the variance parameters (43) are given by the conditionalaverage of the variance of the target data around the corresponding kernel centre, againweighted by the posterior probability of that kernel.Once an MDN has been trained it can predict the conditional density function of thetarget data for any given value of the input vector. This conditional density represents a10

complete description of the generator of the data, so far as the problem of predicting thevalue of the target vector is concerned. From this density function we can calculate morespeci�c quantities which may be of interest in di�erent applications. Here we discuss someof the possibilities.One of the simplest statistics is the mean, corresponding to the conditional average of thetarget data, given by ht j xi = Xi �i(x) Z t�i(t j x) dt (44)= Xi �i(x)�i(x) (45)where we have used (23). This is equivalent to the function computed by a standardnetwork trained by least-squares. Thus, MDNs contain the conventional least-squaresresult as a special case. We can likewise evaluate the variance of the density functionabout the conditional average, to gives2(x) = Dkt� ht j xik2 j xE (46)= Xi �i(x)8><>:�i(x)2 + �i(x)�Xj �j(x)�j(x)29>=>; (47)which is more general than the corresponding least-squares result since this variance isallowed to be a general function of x. Similar results can be obtained for other momentsof the conditional distribution.For many problems we might be interested in �nding one speci�c value for the outputvector. The most likely value for the output vector, for a given input vector x, is givenby the maximum of the conditional density p(t j x). Since this density function is repre-sented by a mixture model, the location of its global maximum is a problem in non-linearoptimization. While standard techniques exist for solving such problems (Press et al.,1992), these are iterative in nature and are therefore computationally costly. For applica-tions where speed of processing for new data is important, we may need to �nd a faster,approximate, approach.If we assume that the component kernels of the density function are not too stronglyoverlapping, then to a very good approximation the most likely value of t will be givenby the centre of the highest component. From (22) and (23), we see that the componentwith the largest central value is given bymaxi (�i(x)�i(x)c) (48)and the corresponding centre �i represents the most likely output vector, to a goodapproximation. Alternatively, we may wish to consider the total `probability mass' asso-ciated with each of the mixture components. This would be appropriate for applicationsinvolving multi-valuedmappings with a �nite number of distinct branches, in which we areinterested in �nding a representative vector corresponding to the most probable branch.11

(This approach is also less susceptible to problems due to arti�cially small values of �iarising from regions of sparse data). An example of such a problem, involving the kine-matics of robot arms, is discussed in the next section. Since each component of themixture model is normalized, R �i(t j x) dt = 1, the most probable branch of the solution,assuming the components are well separated and have negligible overlap, is given bymaxi f�i(x)g (49)The required value of t is then given by the corresponding centre �i.A whole variety of other statistics can be computed from the conditional probabilitydensity, as appropriate to the particular application.4 Software ImplementationThe implementation of the MDN in software is very straightforward, and for large-scaleproblems will typically not lead to a signi�cant computational overhead compared withthe standard least-squares approach. Consider a multi-layer perceptron network trainedby minimizing a sum-of-squares error function using a standard optimization procedure(such as gradient descent or quasi-Newton). The only modi�cation to the software whichis required arises from the modi�ed de�nition of the error function, with all other aspectsof the implementation remaining unchanged. In general, we can regard the error functionas a `module' which takes a network output vector zq (for a particular pattern q) and acorresponding target vector tq and which can return the value of the error Eq for thatpattern, and also the derivatives �q of the error with respect to the network outputs zq.This is illustrated in Figure 3. The derivatives of the error function with respect to oneof the weights w in the network is obtained by use of the chain rule@Eq@w =Xi @Eq@zi @zi@w =Xi �qi @zi@w (50)where the quantities �qi = @Eq=@zi can be interpreted as `errors' which are to be back-propagated through the network. For the particular case of the sum-of-squares errorfunction we have Eq = 12 jzq � tqj2 (51)�q = zq � tq (52)In order to modify the software to implement the MDN, (51) and (52) must be replaced bythe appropriate expressions. The error function for a particular pattern is given by (29),while the elements of the vector � are given by (35), (38) and (39). The implementationof an MDN is particularly simple and natural in an object oriented language such asC++, since the error module can be represented as a class, with methods to set themixture parameters for a given set of network outputs, and to return the error functionor its derivatives. The error function class can also be provided with methods to returnthe value of the conditional probability density for given values of x and t, or to return12

error

function

zq

t q

E q

∆

δq = z E qFigure 3: For the purposes of software implementation, an error function can be regardedas a module which takes a network output vector zq (for a particular pattern q) and acorresponding target vector tq and which can return the value of the error Eq for thatpattern, as well as the derivatives of the error with respect to the network outputs, �q =rzEq.other statistics derived from the conditional probability density (such as the centre vectorcorresponding to the most probable kernel).For applications involving large numbers of input variables, the computational require-ments for the MDN need not be signi�cantly greater than with a standard network trainedusing a sum-of-squares error function, since much of the computational cost lies in theforward and backward propagation of signals through the network itself. For networkswith a large number of inputs (and hence a large number of weights in the �rst layer) thiswill exceed the cost of evaluating the error function and its derivatives.In any algorithm which uses gradient-based methods to perform error minimization, avery powerful check on the software can be made by comparing the error derivativesobtained from the analytic expressions with those calculated using �nite di�erences. Closeagreement between these two approaches demonstrates that a high proportion of the codehas been implemented correctly. Note that substantially improved accuracy is obtained ifsymmetric central di�erences are used, rather than simple �nite di�erences, since in thelatter case we have E(w + �)� E(w)� = @E@w +O(�) (53)where � is a small parameter, whereas central di�erences giveE(w + �)� E(w � �)2� = @E@w +O(�2) (54)for which the correction terms are much smaller. Of course, for use in error minimization,the analytic expressions should be used in preference to the �nite di�erence formulaesince, not only are they more accurate, but they are substantially more computationallye�cient (Bishop, 1995).5 A Simple Inverse ProblemMany potential applications of neural networks fall into the category of inverse problems.Examples include the control of industrial plant, analysis of spectral data, tomographicreconstruction, and robot kinematics. For such problems there exists a well de�ned for-ward problem which is characterized by a functional (i.e. single-valued) mapping. Often13

this corresponds to causality in a physical system. In the case of spectral reconstruction,for example, the forward problem corresponds to the prediction of the spectrum whenthe parameters (locations, widths and amplitudes) of the spectral lines are prescribed.For practical applications, however, we generally have to solve the corresponding inverseproblem in which the roles of input and output variables are interchanged. In the caseof spectral analysis, this corresponds to the determination of the spectral line parametersfrom an observed spectrum. For inverse problems, the mapping can be often be multi-valued, with values of the input for which there are several valid values for the output.For example, there may be several choices for the spectral line parameters which give riseto the same observed spectrum (corresponding, for example, to the exchange of widthparameters for two co-located lines). If a standard neural network is applied to suchinverse problems, it will approximate the conditional average of the target data, and thiswill frequently lead to extremely poor performance. (The average of several solutions isnot necessarily itself a solution). This problem can be overcome in a natural and e�ectiveway by appropriate use of a Mixture Density Network instead.In order to illustrate the application of the MDN, we begin by considering a simpleexample of an inverse problem involving a mapping between a single input variable and asingle output variable. Consider the mapping from t (regarded here as an input variable)to x (regarded as an output variable) de�ned byx = t+ 0:3 sin(2�t) + � (55)where � is a random variable with uniform distribution in the interval (�0:1; 0:1). Themapping from t to x provides an example of a forward problem. In the absence of thenoise term �, this mapping is single-valued, so that each value of t gives rise to a uniquevalue of x. Figure 4 shows a data set of 1,000 points generated by sampling (55) atequal intervals of t in the range (0:0; 1:0). Also shown is the mapping represented bya standard multi-layer perceptron after training using this data set. The network had1 input, 5 hidden units with `tanh' activation functions, and 1 linear output unit, andwas trained for 1,000 complete cycles of the BFGS quasi-Newton algorithm. It can beseen that the network, which is approximating the conditional average of the target data,gives an excellent representation of the underlying generator of the data. This result isinsensitive to the choice of network structure, the initial values for the network weights,and the details of the training procedure.We now consider the corresponding inverse problem in which we use exactly the samedata set as before, but we try to �nd a mapping from the x variable to the t variable.The result of training a neural network using least-squares is shown in Figure 5. Againthe network tries to approximate the conditional average of the target data, but nowthis corresponds to a very poor representation of the process (55) which generated thedata. The precise form of the neural network mapping is now more sensitive to networkarchitecture, weight initialization, etc., than was the case for the forward problem. Themapping shown in Figure 5 is the best result obtained after some careful optimization(with the network often �nding signi�cantly poorer solutions). The network in this casehad 20 hidden units and was trained for 1,000 cycles of the BFGS algorithm. It is clear thata conventional network, trained by minimizing a sum-of-squares error function, cannotgive a good representation of the generator of this data.We next apply an MDN to the same inverse problem, using the same data set as before.14

0.0 0.5 1.0
0.0

0.5

1.0

x

t

Figure 4: A simple example of a forward problem, showing 1,000 data points (the circles)generated from the mapping x = t + 0:3 sin(2�t) + � where � is a random variable having auniform distribution in the range (�0:1; 0:1). The solid curve shows the result of training amulti-layer perceptron network with 5 hidden units using a sum-of-squares error function.The network approximates the conditional average of the target data, which gives a goodrepresentation of the generator of the data.
0.0 0.5 1.0

0.0

0.5

1.0

x

t

Figure 5: This shows precisely the same data set as in Figure 4, but with the roles of inputand target variables interchanged. The solid curve shows the result of training a standardneural network using a sum-of-squares error. This time the network gives a very poor �t,as it tries to represent the conditional average of the target data.15

For clarity we restrict attention to MDNs with 3 kernel functions, as this is the minimumnumber needed to give good solutions for this problem (since the inverse mapping has 3branches at intermediate values of x, as is clear from Figure 5). In practice, the appropri-ate number of kernels will not be known in advance and must be addressed as part of themodel order selection problem. Experiments with 5 kernel functions on this same problemgive almost identical results to those obtained using 3 kernels. We shall discuss the prob-lem of selecting the appropriate number of kernel functions in Section 7. The networkcomponent of the MDN was a multi-layer perceptron with 1 input, 20 hidden units with`tanh' activation functions, and 9 output units (corresponding to the 3 parameters foreach of the 3 Gaussian kernel functions). This network structure has not been optimizedto any degree since the main purpose of this exercise is to illustrate the operation of theMDN. The MDN was trained with 1,000 cycles of the BFGS algorithm. Once trained,the MDN predicts the conditional probability density of t for each value of x presentedto the input of the network. Figure 6 shows contours of p(t j x) as a function of t and x.It is clear that the MDN has captured the underlying structure in the data set, despitethe multi-valued nature of the inverse problem. Notice that the contour values are muchhigher in regions of x where the data is single-valued in t. This is a consequence of thefact that p(t j x) satis�es R p(t j x)dt = 1 at each value of x, and can be seen more clearlyin Figure 7 which shows plots of p(t j x) versus t for 3 values of x. Note particularly that,for x = 0:5, the MDN has correctly captured the tri-modal nature of the mapping.
0.0 0.5 1.0

0.5

1.0

0.0

x

t

Figure 6: Plot of the contours of the conditional probability density of the target dataobtained from a Mixture Density Network trained using the same data as in Figure 5. Thenetwork has 3 Gaussian kernel functions, and 5 sigmoidal units in the hidden layer.The outputs of the neural network part of the MDN, and hence the parameters in themixture model, are necessarily continuous single-valued functions of the input variables.The MDN is able to produce a conditional density which is unimodal for some valuesof x and trimodal for other values, as in Figure 6, by modulating the amplitudes of themixture components. This can be seen in Figure 8 which shows plots of the 3 priors �i(x)as functions of x. It can be seen that for x = 0:2 and x = 0:8 only one of the 3 kernels hasa signi�cant prior probability. At x = 0:5, however, all 3 kernels have comparable priors.16

0

10

20

0.0 0.5 1.0

p(t | x)

t

x

x

x = 0.8

= 0.5

= 0.2

Figure 7: Plot of the conditional probability densities of the target data, for various valuesof x, obtained by taking vertical slices through the contours in Figure 6, for x = 0:2, x = 0:5and x = 0:8. It is clear that the Mixture Density Network is able to capture correctly themulti-modal nature of the target data density function at intermediate values of x.
0.0

0.5

1.0

0.0 0.5 1.0

α i

xFigure 8: Plot of the priors �i(x) as a function of x for the 3 kernel functions from the sameMixture Density Network as was used to plot Figure 6. At both small and large values ofx, where the conditional probability density of the target data is unimodal, only one of thekernels has a prior probability which di�ers signi�cantly from zero. At intermediate valuesof x, where the conditional density is tri-modal, the three kernels have comparable priors.17

Having obtained a good representation for the conditional density of the target data, it isthen in principle straightforward to calculate any desired statistic from that distribution.We consider �rst the evaluation of the conditional mean of the target data ht j xi, givenby (45), and the squared variance s2(x) of the target data around this mean, given by(47). Figure 9 shows a plot of ht j xi against x for the MDN used to plot Figure 6,together with plots of ht j xi � s(x). This representation corresponds to the assumptionof a single Gaussian distribution for the target data, but with a variance parameter whichis a function of x. While this is more general that the standard least-squares approach(which assumes a constant variance) it still gives a poor representation of the data in themulti-valued region. Notice that, in the regions where the data is single valued, the MDNgives a much smoother and more accurate representation of the conditional average of thetarget data than was obtained from the standard least-squares neural network as shownin Figure 5. This can be attributed to the fact that the standard network is having tomake a single global �t to the whole data set, whereas the MDN uses di�erent kernels forthe di�erent branches of the mapping.
0.0 0.5 1.0

t

x
0.0

0.5

1.0

Figure 9: This shows a plot of ht j xi against x (solid curve) calculated from the MDNused to plot Figure 6, together with corresponding plots of ht j xi � s(x) (dashed curves).Notice that for small and large values of x, where the mapping is single-valued, the MDNactually gives a better representation of the conditional average than the standard least-squares approach, as can be seen by comparison with Figure 5. This can be attributed tothe fact that the standard network is having to make a single global �t to the whole dataset, whereas the MDN uses di�erent kernels for the di�erent branches of the mapping.We can also consider the evaluation of the centre of the most probable kernel accordingto (49), which gives the result shown in Figure 10. This now represents a discontinuousfunctional mapping from x to t, such that, at each value of x, the MDN make a goodprediction for the value of t, which lies well within one of the branches of the data. Itcan be seen that the discontinuities correspond to the crossing points in Figure 8 whichseparate the regions in which di�erent priors have the largest value. Comparison withthe corresponding mapping obtained with the standard neural network approach, givenin Figure 5, shows that the MDN gives substantially improved predictions for the inverse18

mapping.
0.0 0.5 1.0

0.0

0.5

1.0

x

t

Figure 10: Plot of the central value of the most probable kernel as a function of x fromthe Mixture Density Network used to plot Figure 6. This gives a (discontinuous) functionalmapping from x to t which at every value of x gives an accurate representation of the data.The diagram should be compared with the corresponding result obtained from a conventionalneural network, shown in Figure 5.6 Robot KinematicsAs our second application of Mixture Density Networks, we consider the kinematics ofa simple 2-link robot arm, as shown in Figure 11. For given values of the joint angles(�1; �2), the end e�ector is moved to a position given by the Cartesian coordinatesx1 = L1 cos(�1)� L2 cos(�1 + �2) (56)x2 = L1 sin(�1)� L2 sin(�1 + �2) (57)where L1 and L2 are the lengths of the two links of the robot arm. Here we considera particular con�guration of robot for which L1 = 0:8 and L2 = 0:2 and where �1 isrestricted to the range (0:3; 1:2) and �2 is restricted to the range (�=2; 3�=2). The mappingfrom (�1; �2) to (x1; x2) is known as the forward kinematics, and is single-valued. However,for practical robot control, the end e�ector must be moved to prescribed locations and itis therefore necessary to �nd corresponding values for the joint angles. This is called theinverse kinematics and corresponds to the mapping from (x1; x2) to (�1; �2). In general,the inverse kinematics is not a single-valued mapping. This is illustrated in Figure 12,where we see that there are two con�gurations of the joint angles, known as `elbow up'and `elbow down', which both give rise to the same end e�ector position. The extentof the elbow up and elbow-down regions, for the particular con�guration of robot armconsidered here, is shown in Figure 13. We see that there are regions (A and C) whichare accessible using only one of the two con�gurations, and for end e�ector positions in19

either of these regions, the inverse kinematics will be single valued. There is also a region(B) in which end e�ector positions can be accessed by both elbow-up and elbow-downcon�gurations, and in this region the inverse kinematics is double-valued.
L1

L2

θ1

θ2

(x1 , x2)

Figure 11: Schematic illustration of a two-link robot arm in two dimensions. For given valuesof the joint angles �1 and �2, the position of the end e�ector, described by the Cartesiancoordinates (x1; x2), is uniquely determined. In practice, control of the robot arm requiresthe solution of the inverse kinematics problem in which the end e�ector position is speci�edand the joint angles �1 and �2 must be found.We �rst consider the use of a standard neural network, trained by minimizing a sum-of-squares error function, to learn the inverse kinematics mapping. A training set of 1,000points was generated by selecting pairs of joint angles at random with uniform distributionwithin the allowed limits, and computing the corresponding end e�ector coordinates using(56) and (57). A test set, also of 1,000 points, was generated in a similar way, but witha di�erent random selection of joint angles. A standard multi-layer perceptron networkhaving 2 inputs, N hidden units with `tanh' activation functions, and 2 linear outputunits was used. Here N was set to 5, 10, 15, 20, 25 and 30, and in each case the networkwas trained for 3,000 complete cycles of the BFGS algorithm. The performance of thenetwork was assessed by presenting the test set end e�ector coordinates as inputs andusing the corresponding values of joint angles predicted by the network to calculate theachieved end e�ector position using (56) and (57). The RMS Euclidean distance betweenthe desired and achieved end e�ector positions is used as a measure of performance. Thismeasure is evaluated using the test set, after every 10 cycles of training using the trainingset, and the network having the smallest RMS error is saved. All the networks gavevery similar performance. Figure 14 shows the positioning errors achieved by the bestnetwork (20 hidden units) for all of the points in the test set. Comparison with Figure 13shows that the positioning errors are largest in region B where the inverse kinematicsmapping is double valued. In this region the end e�ector positions achieved by the robotlie at the outer boundary of the accessible region, corresponding to a value of �2 = �.20

(x1 , x2)

elbow
up

elbow
downFigure 12: This diagram shows why the inverse kinematics mapping for the robot arm ismulti-valued. For the given position (x1; x2) of the end e�ector, there are two solutions forthe joint angles, corresponding to `elbow up' and `elbow down'.

0.0

0.5

1.0

0.0 0.5 1.0

A

B

C

x1

x2
elbow
down

elbow
upFigure 13: For the particular geometry of robot arm considered, the end e�ector is able toreach all points in regions A and B in the `elbow down' con�guration, and all points in regionsB and C in the `elbow up' con�guration. Thus, the inverse kinematics will correspond to asingle-valued mapping for positions in regions A and C, and to a double-valued mapping forpositions in region B. The base of the robot arm is at (0:0; 0:0).21

Examination of Figure 12 shows that this is indeed the result we would expect, since theaverage of the joint angles for an elbow-up con�guration and the corresponding elbow-down con�guration always gives this value for �2.
0.0

0.5

1.0

0.0 0.5 1.0x1

x2

Figure 14: This shows the result of training a conventional neural network, using a sum-of-squares error function, on the inverse kinematics problem for the robot arm correspondingto Figure 13. For each of the 1,000 points in the test set, the positioning error of the ende�ector is shown as a straight line connecting the desired position (which forms the inputto the network) to the actual position achieved by the robot when the joint angles are setto the values predicted by the outputs of the network. Note that the errors are everywherelarge, but are smaller for positions corresponding to regions A and C in Figure 13 wherethe inverse kinematics is single valued, and larger for positions corresponding to the doublevalued region B.The same datasets were also used to train an MDN having two kernel functions in themixture model. The network component of the MDN was a standard multi-layer percep-tron having two inputs, N hidden units and 8 output units, and the same optimizationprocedure was used as for the previous network trained by least squares. In this case thebest network had 10 hidden units, and the corresponding position errors are plotted inFigure 15. It is clear that the positioning errors are reduced dramatically compared tothe least-squares results shown in Figure 14. A comparison of the RMS positioning errorsfor the two approaches is given in Table 1, which shows that the MDN gives an order ofmagnitude reduction in RMS error compared to the least-squares approach.Model RMS positioning errorLeast squares 0.0578MDN 0.0053Table 1: Comparison of RMS positioning errors for the robot end e�ector, measured usingthe test set, for a standard neural network trained by least-squares, and for a MixtureDensity Network. 22

0.0

0.5

1.0

0.0 0.5 1.0x1

x2

Figure 15: As in Figure 14, but showing the corresponding results obtained using a MixtureDensity Network. The RMS error in positioning the end e�ector is reduced by an order ofmagnitude compared with the conventional network, and the errors remain small even inthe region where the inverse kinematics is double-valued.7 DiscussionIn this paper we have introduced a new class of networks, called Mixture Density Net-works, which can model general conditional probability densities. By contrast, the conven-tional network approach, involving the minimization of a sum-of-squares error function,only permits the determination of the conditional average of the target data, togetherwith a single global variance parameter. We have illustrated the use of Mixture DensityNetworks for a simple 1-input 1-output mapping, and for a robot inverse kinematics prob-lem. In both of these examples the required mapping is multi-valued and so is poorlyrepresented by the conditional average.There are many other approaches to dealing with the problem of learning multi-valuedmappings from a set of example data. In general, however, these are concerned withgenerating one speci�c solution (i.e. one branch of the multi-valued mapping). The Mix-ture Density Network, by contrast, is concerned with modelling the complete conditionaldensity function of the output variables, and so gives a completely general descriptionof the required mapping. From the conditional density, more speci�c information canbe extracted. In particular, we have discussed methods for evaluating moments of theconditional density (such as the mean and variance), as well as for selecting a particularbranch of a multi-valued mapping.Implementation of Mixture Density Networks is straightforward, and corresponds to amodi�cation of the error function, together with a di�erent interpretation for the networkoutputs. One aspect of the MDN which is more complex than with standard models isthe problem of model order selection. In applying neural networks to �nite data sets,23

the degree of complexity of the model must be optimized to give the best generalizationperformance. This might be done by varying the number of hidden units (and hencethe number of adaptive parameters) as was done for the simulations in this paper. Itcould also be done through the use of regularization terms added to the error function, orthrough the use of `early stopping' during training to limit the e�ective number of degreesof freedom in the network. The same problem of model complexitymust also be addressedfor MDNs. However, there is in addition the problem of selecting the appropriate numberof kernel functions. Changes to the number of kernels leads to changes in the numberof adaptive parameters in the network through changes to the number of output units(for a given number of hidden units), and so the two problems are somewhat interrelated.For problems involving discrete multi-valued mappings it is important that the numberof kernel functions is at least equal to the maximum number of branches of the mapping.However, it is likely that the use of a greater number of kernel functions than this willhave little ill e�ect, since the network always has the option either of `switching o�'redundant kernels by setting the corresponding priors to small values, or of `combining'kernels by giving them similar �i and �i parameters. Preliminary experiments on theproblems discussed in this paper involving a surplus of kernels indicates that there is nosigni�cant reduction in network performance. Future research will be concerned with theautomation of model order selection for Mixture Density Networks, as well as with theperformance of these networks in a range of large-scale applications.AcknowledgementsI would like to thank Pierre Baldi, David Lowe, Richard Rohwer and Andreas Weigendfor providing helpful comments on an earlier draft of this report.

24

ReferencesBishop, C. M. (1994). Novelty detection and neural network validation. IEE Proceed-ings: Vision, Image and Signal Processing 141 (4), 217{222. Special issue on appli-cations of neural networks.Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford UniversityPress.Bridle, J. S. (1990). Probabilistic interpretation of feedforward classi�cation networkoutputs, with relationships to statistical pattern recognition. In F. Fogelman Souli�eand J. H�erault (Eds.), Neurocomputing: Algorithms, Architectures and Applications,pp. 227{236. New York: Springer-Verlag.Geman, S., E. Bienenstock, and R. Doursat (1992). Neural networks and thebias/variance dilema. Neural Computation 4 (1), 1{58.Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networksare universal approximators. Neural Networks 2 (5), 359{366.Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton (1991). Adaptive mixturesof local experts. Neural Computation 3 (1), 79{87.McLachlan, G. J. and K. E. Basford (1988).Mixture Models: Inference and Applicationsto Clustering. New York: Marcel Dekker.Nowlan, S. J. and G. E. Hinton (1992). Simplifying neural networks by soft weightsharing. Neural Computation 4 (4), 473{493.Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). NumericalRecipes in C: The Art of Scienti�c Computing (Second ed.). Cambridge UniversityPress.White, H. (1989). Learning in arti�cial neural networks: a statistical perspective.NeuralComputation 1 (4), 425{464.

25

