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Abstract. Laplacian-based descriptors, such as the Heat Kernel Signa-
ture and the Wave Kernel Signature, allow one to embed the vertices of a
graph onto a vectorial space, and have been successfully used to find the
optimal matching between a pair of input graphs. While the HKS uses a
heat di↵usion process to probe the local structure of a graph, the WKS
attempts to do the same through wave propagation. In this paper, we
propose an alternative structural descriptor that is based on continuous-
time quantum walks. More specifically, we characterise the structure of
a graph using its average mixing matrix. The average mixing matrix is
a doubly-stochastic matrix that encodes the time-averaged behaviour of
a continuous-time quantum walk on the graph. We propose to use the
rows of the average mixing matrix for increasing stopping times to de-
velop a novel signature, the Average Mixing Matrix Signature (AMMS).
We perform an extensive range of experiments and we show that the pro-
posed signature is robust under structural perturbations of the original
graphs and it outperforms both the HKS and WKS when used as a node
descriptor in a graph matching task.

Keywords: Graph Characterisation, Structural Descriptor, Quantum
Walks, Average Mixing Matrix

1 Introduction

Graph-based representations have been used with considerable success in com-
puter vision in the abstraction and recognition of object shape and scene struc-
ture [8, 4, 13]. A fundamental problem in graph-based pattern recognition is that
of recovering the set of correspondences (matching) between the vertices of two
graphs. In computer vision, graph matching has been applied to a wide range
of problems, from object categorisation [4, 1] to action recognition [14, 15]. More
formally, in the graph matching problem the goal is to find a mapping between
the nodes of two graphs such that the edge structure is preserved.

While there exists a wide range of methods to solve this problem, many graph
matching algorithms greatly benefit from the use of local structural descriptors to
maximise their performance. To this end, a structural descriptor or signature is
assigned to each node of the graphs, e↵ectively embedding the graphs nodes onto
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a vectorial space. Given an underlying correspondence between the node sets of
the graphs, the assumption underpinning these approaches is that corresponding
nodes will be mapped to points that are close in the signature space.

Two structural signatures that have proven to be particularly successful are
the Heat Kernel Signature (HKS) [12] and the Wave Kernel Signature (WKS) [2].
Both signatures belong to the family of Laplacian-based spectral descriptors and
were introduced for the analysis of non-rigid three-dimensional shapes. More
specifically, they are similarly based on the idea of using the spectrum of the
graph Laplacian (and more in general the Laplace-Beltrami operator on the
shape surface) to characterise the points on the shape surface. While the Heat
Kernel Signature is based on a heat di↵usion process, the Wave Kernel Signature
is based on the propagation of a wavefunction.

In this paper, we introduce a novel structural signature based on a quantum
mechanical process taking place over the graph. In particular, we propose to
probe the graph structure using a continuous-time quantum walk [6]. We make
use of the average mixing matrix [5] to define a quantum analogue of the heat
kernel, and we propose to take the rows of the average mixing matrix at increas-
ing times t as our vertex descriptor. The average mixing matrix was introduced
by Godsil, and it describes the time-averaged probability of a quantum walks
starting from node x to visit node y at time t. The motivation behind our work
is based on the fact that quantum walks have proven to be very successful in
characterising graph structures [11, 10, 3, 9]. Moreover, using the average mix-
ing matrix allows us to overcome to lack of convergence of quantum walks. We
show that the proposed signature is robust to structural noise and outperforms
state-of-the-art signatures in a graph matching task.

The remainder of the paper is organised as follows: Section 2 reviews the nec-
essary quantum mechanical background and Section 3 introduces the proposed
signature. The experimental evaluation is presented in Section 4 and Section 5
concludes the paper.

2 Quantum Walks and Average Mixing Matrix

In this section, we introduce the necessary quantum mechanical background. We
start by reviewing the define of continuous-time quantum walks, and then we
show how to compute the average mixing matrix of a graph.

2.1 Continuous-Time Quantum Walks

The continuous-time quantum walk represents the quantum analogue of the
continuous-time random walk [6]. Let G = (V,E) denote an undirected graph
over n nodes, where V is the vertex set and E ✓ V ⇥ V is the edge set. In a
continuous-time random walk, p(t) 2 Rn denotes the state of a walk at time t.
The state vectors evolves according to the heat equation

p(t) = e�Ltp(0), (1)
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where the graph Laplacian L is the infinitesimal generator matrix of the under-
lying continuous-time Markov process.

Similarly to its classical counterpart, the state space of the continuous-time
quantum walks is the vertex set of the graph. The classical state vector is replaced
by a vector of complex amplitudes over V whose squared norm sums to unity,
and as such the state of the system is not constrained to lie in a probability
space, thus allowing interference to take place. The general state of the walk at
time t is a complex linear combination of the basis states |ui, i.e.,

| (t)i =
X

u2V

↵u(t) |ui , (2)

where the amplitude ↵u(t) 2 C and | (t)i 2 C|V | are both complex. Moreover,
we have that ↵u(t)↵⇤

u(t) gives the probability that at time t the walker is at the
vertex u, and thus

P
u2V ↵u(t)↵⇤

u(t) = 1 and ↵u(t)↵⇤
u(t) 2 [0, 1], for all u 2 V ,

t 2 R+.
The evolution of the walk is governed by the Schrödinger equation

@

@t
| (t)i = �iH | (t)i , (3)

where we denote the time-independent Hamiltonian as H. Generally speaking, a
continuous-time quantum walk is induced whenever the structure of the graphs
is reflected by the (0,1) pattern of the Hamiltonian. For example, we could take
the adjacency matrix or the Laplacian. In the following we assume H = A.

Given an initial state | (0)i, solving the Schrödinger equation gives the ex-
pression of the state vector at time t,

| (t)i = U(t) | (0)i , (4)

where U(t) = e�iAt is the unitary operator governing the temporal evolu-
tion of the quantum walk. Eq. 4 can be conveniently expressed in terms of
the spectral decomposition of the adjacency matrix A = �⇤�>, i.e., | (t)i =
�>e�i⇤t� | (0)i, where � denotes the n⇥n matrix � = (�1|�2|...|�j |...|�n) with
the ordered eigenvectors �js of H as columns and ⇤ = diag(�1,�2, ...,�j , ...,�n)
is the n ⇥ n diagonal matrix with the ordered eigenvalues �j of A as elements,
and we have made use of the fact that exp[�iAt] = �>exp[�i⇤t]�.

2.2 Average Mixing Matrix

Given a graph G = (V,E) with adjacency matrix A and its associated unitary
operator U(t), the behaviour of a continuous-time quantum walk at time t is
captured by the mixing matrix [5]

MG(t) = eiAt � e�iAt = U(�t) � U(t), (5)

where A �B denotes the Schur-Hadamard product of two matrices A and B.
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Note that, while in the classical case the probability distribution induced
by a random walk converges to a steady state, this does not happen in the
quantum case. However, we will show that we can enforce convergence by taking
a time-average even if U(t) is norm-preserving. Let us define the average mixing
matrix [5] at time T as

cMG;T =
1

T

Z T

0
MG(t) dt. (6)

The entry uv can be interpreted as the average probability that a walker is
found at vertex v when starting the walk from vertex u. Let us define P� =Pµ(�)

k=1 ��,k�
>
�,k to be the projection operator on the subspace spanned by the

µ(�) eigenvectors ��,k associated with the eigenvalue � of A. Given this set of
projectors, the unitary operator inducing the quantum walk can be rewritten as

U(t) =
X

�

e�i�tP� (7)

Given Eq. 7, we can rewrite the equation for the mixing matrix as

MG(t) =
X

�12⇤

X

�22⇤

e�i(�1��2)tP�1 � P�2 , (8)

and thus we can reformulate Eq. 6 as

cMG;T =
X

�12⇤

X

�22⇤

P�1 � P�2

1

T

Z T

0
e�i(�1��2)t dt, (9)

which has solution

cMG;T =
X

�12⇤

X

�22⇤

P�1 � P�2

i(1� eiT (�2��1))

T (�2 � �1)
. (10)

In the limit T ! 1, Eq. 10 becomes

cMG;1 =
X

�2⇤̃

P� � P� (11)

where ⇤̃ is the set of distinct eigenvalues of the adjacency matrix.

2.3 Properties of the Average Mixing Matrix

Given a graph G = (V,E), let cMG;1(i, j) denote the element of cMG;1 at the
ith row and jth column. Recall that two nodes u, v 2 V are strongly cospectral
if and only if P�eu = ±P�ev for all eigenvalues �, where eu is an element of the
standard basis of R|V |. It can be shown that the following properties hold for
the matrix cMG;1:
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1. cMG;1 is doubly stochastic and rational, and that cMG;1 is positive semidef-
inite whenever G is connected [5];

2. Let G and H be cospectral, regular, and switching equivalent graphs. Then
cMG;1(j, j) = cMH;1(j, j), for every j = 1, 2, ..., n;

3. LetG andH be cospectral, walk-regular graphs. Then cMG;1(j, j) = cMH;1(j, j),
for every j = 1, 2, ..., n;

4. two vertices i and j are strongly cospectral if and only if the two corre-
sponding rows of the average mixing matrix are the same, i.e., cMG;1(i, k) =
cMG;1(j, k), for each k [5];

5. suppose G is a regular and connected graph and G is the complementary
graph. Then cMG;1 = cMG;1 if and only if G is connected.

We omit the proof of 2, 3 and 5 for lack of space, while the proofs of 1 and 4 can
be found in [5]. Note that 2, 3, 4 and 5 outline the conditions under which some
diagonal element of the mixing matrix of can be duplicated, the rows of two
mixing matrices are identical, and two mixing matrices have exactly the same
elements, respectively. In other words, the above properties give an important
indication of the limitations of the matrix cMG;1 to discriminate between di↵er-
ent graphs. Although the same properties have not been proved for an arbitrary
stopping time T , our experimental analysis in Section 4 suggests that some of
these properties may still hold for T < 1.

3 The Average Mixing Matrix Signature

Given a graph G = (V,E) and a vertex x 2 V , we define the Average Mixing
Matrix Signature (AMMS) at x at time T as

AMMS(x, T ) = sort(cMG;T (x,�)), (12)

where cMG;T (x,�) denotes the row of the average mixing matrix corresponding to
x, and sort is a sorting function. Given a time interval [Tmin, Tmax], the AMMS
is then created by concatenating the sorted rows for every T 2 [Tmin, Tmax].

As Eq.12 shows, for each stopping time T , we decide to take the whole row
of the average mixing matrix rather than just the diagonal element cMG;T (x, x).
Recall from Section 2 that under some particular conditions two graphs can have
the same diagonal entries of cMG;1. Although the same has not been proved for an
arbitrary T , we take the entire row in an attempt to maximise the discriminatory
power of the signature. Finally, to ensure the permutational invariance of the
signature, for each T we sort the elements of the average mixing matrix rows.

Note that, while there is no specific reason to take all the elements of the
sorted row rather than simply the first k, in the experimental evaluation we show
that the best performance is usually achieved for large values of k, so we propose
to take the entire row. Finally, from Eq. 10 we observe that the computational
complexity of the proposed signature is O(|V |4).
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Fig. 1. CMU house sequence with the feature points and the Delaunay graphs super-
imposed.

4 Experimental Evaluation

To evaluate the proposed signature, we compare it on a graph matching problem
against the HKS as well as the WKS. In the following, we refer to the percentage
of correctly matched nodes as accuracy.

4.1 HKS and WKS

Heat Kernel Signature The HKS is based on the analysis of a heat di↵usion
process on the shape governed by the heat equation

�@u(x, t)
@t

= �u(x, t), (13)

where � is the Laplace-Beltrami operator. Assuming at time t = 0 all the heat is
concentrated at a point x, it can be shown that the amount of heat that remains
at x at time t is

HKS(x, t) =
1X

i=0

e��it�i(x)
2 (14)

where �i and �i denote the ith eigenvalue and the ith eigenfunction of the
Laplace-Beltrami operator, respectively. The HKS at a point x is then con-
structed by evaluating Eq. 14 for di↵erent t 2 [tmin, tmax]. As suggested in [12],
here we sample 100 points logarithmically over the time interval defined by
tmin = 4 ln(10)/�max and tmax = 4 ln(10)/�min], where �min and �max denote
the minimum and maximum eigenvalue of the graph Laplacian, respectively.

Wave Kernel Signature The WKS is based on the analysis of wavefunction
evolution on the shape surface governed by the Schrödinger equation

�@ (x, t)
@t

= i� (x, t). (15)



The Average Mixing Matrix Signature 7

0.2
1 20

0.25

0.3

25 15

0.35

Av
g.

 A
cc

ur
ac

y 
(%

)

Tmax k

50 10

0.4

0.45

75 5

0.5

1100

Fig. 2. Evaluation of the sensitivity to the parameters values. Here k denotes the
number of row elements used to construct the signature and T

max

is the maximum
stopping time considered.

Although similar in the definition, note that the dynamics behind the WKS
(oscillation) and the HKS (dissipation) are fundamentally di↵erent. The WKS
evaluates the expected probability of measuring a quantum particle in the point
x of the shape surface at any time, i.e.,

WKS(x, e) =
1X

i=0

�i(x)
2fe(�i)

2, (16)

where �i and �i denote the ith eigenvalue and the ith eigenfunction of the
Laplace-Beltrami operator, respectively, and fe is a log-normal energy distribu-
tion that depends on a parameters e. The WKS for a point x is then constructed
by evaluating Eq. 16 for di↵erent values of e 2 [emin, emax]. Here we set all the
parameters of the WKS as illustrated in [2].

4.2 Datasets

We use a dataset made of the images from the CMU house sequence, where each
image is abstracted as a Delaunay graph over a set of corner feature points. All
the resulting graphs are composed of 30 to 32 nodes. Fig. 1 shows the ten images
with the feature points and the graphs superimposed.

In addition, we consider a synthetic datasets consisting of 10 Delaunay graphs
over 20 nodes. This dataset is generated as follows. We create a first graph by gen-
erating 20 computing the Delaunay triangulation of 20 uniformly randomly scat-
tered two-dimensional points. Then, we generate 9 additional graphs by slightly
perturbing the original points and recomputing the Delaunay triangulation.
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Fig. 3. Average accuracy for increasing levels of Erdős-Rényi noise. Here p denotes the
probability of adding or removing an edge.

4.3 Graph Matching Experimental Setup

For a pair of input graphs, we compute the AMMS for each graph node. Here
we decide to sample 10 points logarithmically over the time interval [0.1, 1].
The choice of Tmax = 1 is experimentally motivated in the next subsection. In
general, we observe that on all the datasets considered in this paper the best
performance is achieved for low values of Tmax. Given the nodes signatures, we
then compute the matrix of pairwise Euclidean distances between the signatures.
Finally, we cast the graph matching problem as an assignment problem which
can be solved in polynomial time using the well-known Hungarian method [7].

4.4 Sensitivity to Parameters

We first investigate the sensitivity of the proposed signatures to the number k
of row elements that we consider for each stopping time T 2 [Tmin, Tmax], as
well the value of Tmax. Staring from a seed graph G from the synthetic dataset,
we generate 100 noisy copies G0 by removing or adding an edge with probability
p = 0.03. Then, we compute the matching for each pair (G,G0) and each choice
of the parameters k and Tmax, and we plot the average accuracy in Fig. 2.
Here we let k = 1, 2, · · · , n, where n is the number of nodes of G, and we let
Tmax = 1, 2, · · · , 100. Fig. 2 shows that the best accuracy is achieved for k larger
than 10 and Tmax = 1.

4.5 Robustness to Erdős-Rényi Structural Noise

In order to evaluate the robustness of the AMMS to structural noise, we perform
the following experiment. Given a graph G from the synthetic dataset, we create
a series of noisy versions of G, for increasing amounts of Erdős-Rényi noise. To
this end, we flip an edge of the graph with probability p and obtain the noisy
graph G0. For each value of p, we repeat the noise addition process 100 times to
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Dataset CMU House Synthetic

HKS 30.2963± 3.8879 14± 1.3162
WKS 44.3704± 4.1975 14.5556± 1.7467
AMMS(diag) 43.3333± 3.8461 16.3333± 1.6314
AMMS(row) 52.5185± 3.8170 19.4444± 2.1095

Table 1. Average accuracy (± standard error).

obtain 100 noisy copies of G. Then, we compute the optimal matching using the
proposed signature and we compare the results against those obtained using the
HKS and the WKS. Fig. 3(a) shows the average accuracy for increasing levels
of structural noise. Note that the AMMS and the WKS are significantly less
susceptible to noise than the HKS. It is also interesting to observe that as p
grows over 0.8, the number of correctly matched nodes for the AMMS start to
increase (see Fig. 3(b)). We posit that this is evidence that the average mixing
matrix of a graph G is equivalent or very similar to that of its complement G
also for arbitrary T < 1. Note that for T ! 1 this is true if G is regular
and connected, and G is connected as well. Although this is not the case for
the graphs used in these experiments, the geometric nature of the Delaunay
triangulation yields indeed fairly regular graphs.

4.6 Graph Matching Accuracy

Table 4.6 shows the average accuracy on the CMU house and the synthetic
datasets. We consider two alternative versions of the proposed signatures: 1)

AMMS(diag) is the signature where only the diagonal elements cMG;T (x, x) are
used; 2) AMMS(row) is the signature where all the rows elements are used. In
both the datasets considered, our signature performs significantly better than
both the HKS and the WKS. Moreover, the AMMS(row) always outperforms
the AMMS(diag), highlighting the importance of using all the elements of the
row and suggesting once again that the properties listed in Section 2 hold for
an arbitrary T . Finally, we note that the AMMS(diag) always outperforms the
HKS but not the WKS.

5 Conclusion

In this paper, we have introduced a novel structural signature for graphs. We
probed the structure of the graph using continuous-time quantum walks and
we proposed to consider the rows of the average mixing matrix for increasing
stopping times T as the node descriptor. The experimental results show that
this signature can outperform state-of-the-art signatures like the Heat Kernel
Signature and the Wave Kernel Signature in a graph matching task. Future work
should focus on the optimisation of the signature parameters for general graphs,
as well as reducing the computational complexity associated with the Average
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Mixing Matrix Signature. Recall that we observed that the best performance is
usually achieved for low values of Tmax. Therefore, one idea may be to reduce
the computational complexity of the proposed signature by resorting to a linear
approximation of its values.

Acknowledgments. Simone Severini was supported by the Royal Society and
EPSRC.
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