
Run-Time Model Evaluation for Requirements Model-Driven Self-Adaptation

Kristopher Welsh
School of Computing, University of Kent, UK

k.welsh@kent.ac.uk

Nelly Bencomo
INRIA Paris – Rocquencourt, France

nelly@acm.org

Abstract—A self-adaptive system adjusts its configuration to
tolerate changes in its operating environment. To date,
requirements modeling methodologies for self-adaptive
systems have necessitated analysis of all potential system
configurations, and the circumstances under which each is to
be adopted. We argue that, by explicitly capturing and
modelling uncertainty in the operating environment, and by
verifying and analysing this model at runtime, it is possible for
a system to adapt to tolerate some conditions that were not
fully considered at design time. We showcase in this paper our
tools and research results.

Keywords-self-adaptation; self-adaptive; model-driven;
run-time requirements

I. EXTENDED ABSTRACT

We have previously demonstrated our approach to
modeling uncertainty in a self-adaptive system’s operating
environment [1]. We achieve this by making statements
about system components, the operating environment, or the
suitability of a particular component to particular operating
conditions. These statements are modelled as claims, which
were first introduced in the NFR framework [2]. Claims are
written as simple statements of fact, and can be included in
an i* [3] Strategic Rationale model, to record the rationale
behind the decision to favour one goal satisfaction strategy
over another. Claims can be supported by other claims, to
form a hierarchy joined with simple AND, OR, MAKE and
BREAK contributions. We have also previously
demonstrated a means of deriving system configurations,
specified in adaptation policies, from the models directly [4].

Building on this previous work, we are now able to
demonstrate a means for a system to evaluate these models at
run time, inferring the configuration specification by model
analysis, bypassing the need for an adaptation policy
completely. Furthermore, we demonstrate that a suitably-
equipped self-adaptive system may transform the run-time
requirements model in response to changes in the operating
environment to yield updated adaptive behaviour. We use
claim monitoring to drive this model transformation, with
suitable monitors verifying or invalidating those claims for
which monitoring is feasible.

Although all claims in the model are assumed true by
default, the degree of confidence held by the analyst in a
claim may vary. Some claims are axiomatic, some represent
well-researched and well-reasoned arguments behind a
decision, and some are little more than conjecture deemed
necessary to allow a specification to be reached in the face of
a uncertain and/or volatile environment. At design time, it

may prove valuable to classify claims by confidence, and to
carry out validation (such as research, testing, or stochastic
modelling) to improve confidence in the less certain claims.
At runtime, a claim in which a low degree of confidence is
held is a prime candidate for monitoring. Claim monitoring
is akin to requirements monitoring [5] [6], where the degree
to which system requirements are achieved is observed and
recorded by the system. Monitoring a claim, however,
involves using monitoring data to prove or disprove the
claim in question. Like much requirements monitoring
literature, we do not specify the form of a claim monitor,
merely its interface with our tools, which are event-based.

A claim deemed, through analysis of monitoring data to
be inaccurate, is said to be falsified. In essence, claim
monitoring provides a means of run-time verification of a
claim, and our model transformation and evaluation tool
provides a means for a self-adaptive system to take action in
the event of a claim’s negative verification.

Our approach in creating a run-time requirements model-
driven self-adaptive system involves the system loading its
own i* Strategic Rationale model, complete with a claim
hierarchy, and monitoring the claims within. Synchronisation
between the in-memory model and the claim hierarchy is
maintained by our tool using events. Claims deemed to be
monitorable are associated with a specific event to be fired
by a monitor if its data indicates the claim no longer holds.
When this event is fired, the claim is falsified on the model,
the model is transformed to reflect this fact, and the other
claims in the model supported by the now falsified claim are
checked to see if they are still sufficiently supported by valid
claims, or their own monitoring data. If they are no longer
sufficiently supported, they too are falsified by propagation.
Finally, the goal model must be evaluated to see if the
currently preferred goal satisfaction strategies (i.e. the
current configuration) are still justified. If a goal selection
strategy is justified only by a falsified claim, another goal
satisfaction strategy may be chosen, and the system adapts to
a configuration in which the replacement goal satisfaction
strategy is utilised. Fig. 1 shows an overview of the approach
used at design-time and runtime.

Let’s study an example. Fig. 2 depicts a fragment of an i*
goal model for a video streaming system. The system uses
self-adaptation to vary the bitrate (and thus the video quality)
of the streamed video. The adaptation in a system this simple
could be achieved parametrically or compositionally, or the
behaviour could even be hard-coded. However, our interest
lies in modeling the character of, and in controlling the
system’s self-adaptation rather than in the implementation
details of the method by which self-adaptation is effected.

In Fig. 2, The “Encode h264 video” goal can be achieved
by either “Encode at 1200kbps” or “Encode at 1800kbps”
tasks. Naturally, encoding video at a higher bitrate yields
better video quality at the expense of more bandwidth, each
modelled as a softgoal. In Fig. 2, the contributions between
the tasks and the softgoals are deadlocked, with no clearly
preferable goal satisfaction strategy.

Figure 1. Overview of the Approach

Figure 2. Fragment of video streaming system’s i* goal model, with claim
hierarchy

The deadlock in Fig. 2 is broken by the “Server has
Sufficient Bandwidth” claim which, by virtue of it being
connected to the model via its own Break link, means that
the positive (help) contribution “Encode at 1200kbps” makes
to “Bandwidth” is disregarded. The claim could equally be
attached to the “Encode at 1800kbps” task’s hurt
contribution to the “Bandwidth” softgoal, again with a Break
link. The “Server has Sufficient Bandwidth” claim is
supported by two AND-ed claims: “Expect less than 100
Simultaneous Users” and “Server has 250mbps Uncontended
Bandwidth”. The “Expect less than 100 Simultaneous Users”
claim is manifestly shaky, is based on prediction, and as such
makes a good candidate for monitoring. It is trivial to
imagine a monitor capable of counting the current number of
simultaneous users, and should that monitor indicate that the
“Expect less than 100 Simultaneous Users” claim is false, an

event is fired, and the claim is falsified. In this scenario, the
“Server has Sufficient Bandwidth” claim is no longer
sufficiently supported, and its link to the model is reversed to
become a Make. Evaluation of the transformed model will
yield that encoding video at 1200kbps is now the preferable
goal satisfaction strategy, and an event is fired instructing the
system to adapt to use the lower bitrate.

By explicitly modelling known uncertainty about the
system and its operating environment as monitorable claims,
our approach makes it possible for a system to adapt to
various combinations of circumstances (combinations of
claims falsified, or otherwise), that weren't explicitly
foreseen at design time. Thus, in some limited
circumstances, a run-time requirements model-driven self-
adaptive system is capable of tolerating uncertainty that was
only partially foreseen.

Demonstration: We demonstrate the tools developed
and their use for several case studies. Particularly, using our
tools, we demonstrate how a self-adaptive system is capable
of loading its i* Strategic Rationale model, complete with
claims, created in the OME3 [8] i* modelling tool. We
showcase the (runtime) model evaluation performed by the
system in the event of a monitored claim being falsified, and
the resultant self-adaptation performed by the system.
Crucially, we show how a system reconfigures to a
configuration that was not necessarily defined at design time.

ACKNOWLEDGMENT

This research is partially supported by the Marie Curie
Fellowship ”Requirements@run.time”. We thanks Pete
Sawyer for his support.

REFERENCES

[1] K. Welsh and P. Sawyer, “Understanding the scope of uncertainty in
dynamically adaptive systems,” in REFSQ, 2010. Proceedings of the
16th International Working Conference on Requirements Engineering:
Foundation for Software Quality.

[2] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, “Non-Functional
Requirements in Software Engineering”. Springer, 1999, vol. 5.I.

[3] E. S. K. Yu, “Towards modeling and reasoning support for early-
phase requirements engineering,” in RE ’97: Proceedings of the 3rd

IEEE International Symposium on Requirements Engineering
(RE’97)

[4] K. Welsh and P. Sawyer, “Deriving adaptive behaviour from i*
models” Fourth International i* Workshop, Hammammet, Tunisia,
2010.

[5] W. Robinson, “A requirements monitoring framework for enterprise
systems,” Requirements Engineering, vol. 11, no. 1, pp. 17 – 41,
2005..

[6] S. Fickas and M. Feather, “Requirements monitoring in dynamic
environments,” in Second IEEE International Symposium on
Requirements Engineering (RE’95), 1995.

[7] K. Welsh , P. Sawyer, N. Bencomo, “Towards Requirements Aware
Systems: Run-time Resolution of Design-time Assumptions”, 26th
IEEE/ACM International Conference On Automated Software
Engineering, USA, 2011.

[8] Available at: http://www.cs.toronto.edu/km/ome/.

	I. Extended Abstract

