Impact of Nanoadditives on Performance and Combustion Characteristics of neat Jatropha Biodiesel

Abstract

Jatropha biodiesel was produced from neat jatropha oil using both esterification and transesterification processes. The free fatty acid value content of neat jatropha oil was reduced to approximately 2% from 12% through esterification. Aluminium oxide (Al2O3) and cerium oxide (CeO2) nanoparticles were added separately to jatropha biodiesel in doses of 100 ppm and 50 ppm. The heating value, acid number, density, flash point temperature and kinematic viscosity of the nanoadditive fuel samples were measured and compared with the corresponding properties of neat fossil diesel and neat jatropha biodiesel. Jatropha biodiesel with 100 ppm Al2O3 nanoparticle (J100A100) was selected for engine testing due to its higher heating value and successful amalgamation of the Al2O3 nanoparticles used. The brake thermal efficiency of J100A100 fuel was about 3% higher than for neat fossil diesel, and was quite similar to that of neat jatropha biodiesel. At full load, the brake specific energy consumption of J100A100 fuel was found to be 4% higher and 6% lower than the corresponding values obtained for neat jatropha biodiesel and neat fossil diesel fuels respectively. The NOx emission was found to be 4% lower with J100A100 fuel when compared to jatropha biodiesel. The unburnt hydrocarbon and smoke emissions were decreased significantly when J100A100 fuel was used instead of neat jatropha biodiesel or neat fossil diesel fuels. Combustion characteristics showed that in almost all loads, J100A100 fuel had a higher total heat release than the reference fuels. At full load, the J100A100 fuel produced similar peak in-cylinder pressures when compared to neat fossil diesel and neat jatropha biodiesel fuels. The study concluded that J100A100 fuel produced better combustion and emission characteristics than neat jatropha biodiesel.

Publication DOI: https://doi.org/10.3390/en12050921
Divisions: Engineering & Applied Sciences > Aston Institute of Materials Research (AIMR)
Engineering & Applied Sciences
Additional Information: © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Uncontrolled Keywords: Biofuel,CI engine,Combustion,Emission,Greenhouse gas,Jatropha biodiesel,Nanoparticle,Performance,Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology,Energy (miscellaneous),Control and Optimization,Electrical and Electronic Engineering
Full Text Link:
Related URLs: https://www.mdp ... 6-1073/12/5/921 (Publisher URL)
http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2019-03-10
Accepted Date: 2019-03-05
Authors: Hossain, Abul Kalam ( 0000-0002-8713-8058)
Hussain, Abdul

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

[img]

Version: Accepted Version

Access Restriction: Restricted to Repository staff only


Export / Share Citation


Statistics

Additional statistics for this record