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Abstract

We introduce a novel inversion-based neurocontroller for solving control problems in-
volving uncertain nonlinear systems which could also compensate for multi-valued systems.
The approach uses recent developments in neural networks, especially in the context of
modelling statistical distributions, which are applied to forward and inverse plant models.
Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the
outputs of neural networks can be obtained using the statistical properties of networks.
More generally, multicomponent distributions can be modelled by the mixture density net-
work. In this work a novel robust inverse control approach is obtained based on importance
sampling from these distributions. This importance sampling provides a structured and
principled approach to constrain the complexity of the search space for the ideal control
law. The performance of the new algorithm is illustrated through simulations with example

systems.

1 Introduction

In nonlinear stochastic control problems, once the objective functional is defined we would ideally
seek a dynamic programming solution. This however, is practically unfeasible, not least because
of the unbounded search space in which we need to maintain possible solution trajectories.
The method of approximation we choose is to construct nonlinear neural network models for the
forward and inverse plant dynamics. However we are interested in intrinsically stochastic systems.

Since standard neural network approaches produce deterministic system approximations, we need



a way to allow for sampling from the (unknown) distribution of control signals which would
be generated by the real stochastic system. We achieve this by employing the same neural
networks to estimate error variances around the predicted mean values of the control values,
thus characterising the distribution of the control signals as Gaussian. For inverse problems, the
mapping can be often multi-valued, with values of the inputs (tracking signal) for which there
are several valid values for the outputs (control signals). In this case, mixture density networks
can be implemented to model the more general distribution of the control signal.

In recent years, neural network models have evolved into favourite candidates in the field of
nonlinear system identification and control, due to their ability to approximate multi-variable
nonlinear mappings. In addition to having nonlinear features, dynamic systems may have noise
events affecting their inputs and outputs, and usually are time-variant. Because artificial neural
networks can be adapted on line [15, 4, 13], usually they are capable of good approximation in
such situations. However for most real control problems where disturbances play an important
part and where a relatively big sampling interval is used, the predicted output of the neural
network is inherently uncertain. Neural networks now have the ability to model general distri-
butions rather than just producing point estimates, and in particular can produce an estimate
of the uncertainty involved in the predictions [3, 7, 16]. Recent research interest has been to
go beyond the classical methods for identification and control by accounting for model and sys-
tem uncertainty explicitly in the modelling process. As examples, in [2] a systematic procedure
that accounts for the structured uncertainty when a neural network model is integrated in an
approximate feedback linearisation control scheme has been developed. The use of an adaptive
critic controller when there is input uncertainty has been discussed in [5]. The application of
recently developed minimal resource allocating network (M RAN) in a robust manner under
faulty conditions has been demonstrated in [14]. A robust adaptive nonlinear control method for
controlling a class of nonlinear systems in the presence of both unknown nonlinearities and un-
modelled dynamics has been illustrated in [8]. In [3, 11] a new class of network models obtained
by combining a conventional neural network with a mixture density model, has been used to
model the conditional probability distribution for problems in which the mapping to be learned
is multi-valued. Other computational approaches, namely forward and inverse modelling, and
feedback error learning have been suggested in [15, 9] for acquiring the inverse dynamics model
of the multi-valued functions. None of the recent works have considered the possibility of using
the neural network’s own estimate for error bars. In this paper we address for the first time the
use of this extra knowledge to develop a robust control method for uncertain nonlinear systems.

This paper aims to demonstrate that a promising approach to robust control can be provided by



this proposed framework.

The paper begins with a review of the principle of system model and error bar estimation.
Next, we develop a nonlinear controller architecture based on approximate dynamic inversion
and the use of error bar knowledge. This development is then employed to control a nonlinear

stochastic simulated system.

2 Adaptive Inverse Control

The classical inverse adaptive control technique is shown in figure 1. The neural network is
learning to recreate the input u(t — d), that created the current output of the plant y(¢). The
inverse controller contains adjustable parameters that control its impulse response. An adaptive
algorithm is usually used to automatically adjust the controller parameters to minimise some
function of the error (usually mean square error, though other error functions can also be used).
The error is defined as the difference between the input of the plant u(t—d), and the actual output
of the controller (¢ — d). Many such algorithms are described in the reports and textbooks by
Narendra and Parthasarathy [13] and by White and Sofge [15].

When trained, the network should be able to take the desired response y, and produce the
appropriate control signal u, which is then supposed to make the plant output y approach the
desired response y,. This control architecture however, may not be efficient since the network
may have to learn the response of the plant over a larger operational range than is actually
necessary. This problem is related to the concept of persistent excitation, which acknowledges
the importance of the inputs used to train learning systems. A preliminary discussion for this

concept can be found in [12].

4
’
’

n £ Z(t) | Delayed Plant inpu
WD Ineurl inverseg  1S(OQ | Measurdi ovipute
y(t=1)......y(t-n)

’

Plant inputs > Plant Desired pI@t outputs
u(t-d) Y ©

Figure 1: Training of an inverse controller.



3 Distribution Modelling

In classical inverse control the challenge is to build a neural network that will take past values of
the input and output of the plant 2(t) = [y(t — 1), ....,y(t —n),u(t —d —1),....,u(t — m)] and the
desired output value y,(¢) as an input, and outputs the control signals u(t—d) (assuming a relative
degree of d), which will move the plant output to the desired value. In this work the primary
goal is to model the statistical properties of the control signals, u(t—d), expressed in terms of the
conditional distribution function p(u(t — d)|s(t)). Here s(t) = [2(t), y.(t)] is the input vector to
the neural inverse model. For dynamical systems it is reasonable to assume that the output of the
system y(t) is a function f of its input u(¢ — d) and the delayed vector z(¢). Furthermore, in the
case of a one-to-one mapping, and only in this case, the inverse of the function denoted by f~!
can be introduced. In this example a feed-forward neural network trained using the sum of the
square error function (between the input of the system and the actual output of the controller)
can perform well. For this instance the distribution of the target data can be described by a
Gaussian function with an input-dependent mean (given by the outputs of the trained network),
and an input-dependent variance (given by the residual error value). However, if the inverse of
the function f cannot be defined uniquely, then the direct inverse mapping f !, found by using
the sum of the square error function between the input of the system and the actual output of
the controller, cannot be used to tell us how to choose the control signal u(t — d) so as to reach
the desired response y,(t). Therefore, the assumption of a Gaussian distribution can lead to a
very poor representation of the control signal. For this situation a more general framework for
modelling conditional probability distributions is required. This general framework is based on

the use of the mixture density network.

3.1 Gaussian Distribution Modelling

If a neural network has been used to model the adaptive inverse controller, it can also model
the conditional distribution of the target data (the control signal) by modelling the conditional
uncertainty involved in its own predictions. Different methods for estimating the uncertainty
around the predicted output of a neural network have been presented in [3, 7, 16]. In this work
the predictive error bar method will be used [7]. This approach is based on the important result
that for a network trained on minimum square error, the optimum network output approximates
the conditional mean of the target data, or f,;(s(f)) =< u(t — d)|s(t) >, and that the local
variance of the target data can be estimated as |[u(t — d) — f; (.s(t))||2. If this variance is used

as a target value for another neural network, then the optimum output of this second network



is again the conditional mean of that variance. As reported in [7], in the implementation of
predictive error bars two correlated neural neural networks are used. Each network shares the
same input and hidden nodes, but has different final layer links which are estimated to give the
approximated conditional mean of the target data in the first network, and the approximated
conditional mean of the variance in the second network. Thus the second network predicts the
noise variance of the predicted mean by the first network. This architecture is shown in figure
2. Optimisation of the weights is a two stage process. The first stage determines the weights w;
conditioning the regression on the mapping surface. Once these weights have been determined,
the network approximations to the target values are known, and hence so are the conditional
error values on the training examples. In the second stage the inputs to the networks remain
exactly as before, but now the target outputs of the network are the error values. This second

pass determines the weights wy which condition the second set of output noise to the squared

error values o2(s(t)).
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Figure 2: The architecture of the predictive error bar network.

We will demonstrate the use of this noise (in control architecture) soon, but first we discuss a

more general method for distribution modelling which we need for multimodal control problems.

3.2 Mixture Density Network

For multi-valued functions, Mixture Density Networks M DNs [3] provide a general framework
for modelling conditional probability density functions p(u(t — d)|s(t)) for the inverse mapping.
The distribution of the outputs, u(t — d), is described by a parametric model whose parameters
are determined by the output of a neural network, which takes s(¢) as inputs. The general

conditional distribution function is given by

plu(t —d)|s(t)) = Zaj (8(1))¢; (u(t — d)|s(t)) (1)
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where «;(s(t)) represents the mixing coefficients, and can be regarded as prior probabilities
(which depend on s(t)), ¢;(u(t — d)|s(t)) are the kernel distributions of the mixture model
(whose parameters are also conditioned on s(t)), and M is the number of kernels in the mixture
model. Various choices are available for the kernel functions, but in this paper the choice will be

restricted to spherical Gaussians of the form

1 | u(t — d) — py(s(2) ||?
qﬁj(u(t — d)|8(t)) = (27r)c/20]q(s(t)) exXp <_ 20]2-(8(75 ) )

(2)

where ¢ is the dimensionality of the target data u(t — d), p;(s(t)) represents the centre of
the jth kernel, with components p;;. A spherical Gaussian assumption can be relaxed in a very
straightforward way, by using a full covariance matrix for each Gaussian kernel. However, using
full covariance Gaussian is not necessary, because in principle a Gaussian Mixture Model GM M
with sufficiently many kernels of the type given by (2) can approximate any given density function
arbitrarily accurately providing that the mixing coefficients and the Gaussian parameters are
correctly chosen [3]. It follows that for any given value of s(t), the mixture model (1) provides a
general formalism for modelling the conditional density function p(u(t — d)|s(t)). To achieve this
the parameters of the mixture model, namely the mixing coefficients «;(s(t)), the means j;(s(t))
and the variance o7 (s(t)) are taken to be general continuous functions of s(t). These functions
are modelled by the outputs of a feed-forward neural network that takes s(t) as input.

The neural network element of the M DN is implemented with a standard radial basis function
network RBF of thin plate spline basis functions. The output vector from the RBF', Z, holds
the parameters that define the Gaussian mixture model. For M components in the mixture
model (1) the network will have (c 4 2) x M outputs. Namely, M outputs denoted by z§ which
determine the mixing coefficients a;, M outputs denoted by 27 which determine the kernel width
oj, and M x c outputs denoted by sz which determine the components p;;, of the kernel centres
ftj. This is compared with the usual ¢ outputs for a RBF network used with a sum-of squares
error function. The outputs of the M DN undergo some transformations to satisfy the constraints

of the mixture model. The constraints are such that

> ayls(t) =1 ©)

0 < a;(s(t) <1 (4)

The first constraint ensures that the distribution is correctly normalised, so that ([ p(u(t —
d)|s(t))du(t — d) = 1). These constraints can be satisfied by choosing «;(s(t)) to be related to



the network’s outputs by a ‘softmax’ function

R SHASTE) ”

The variances of the kernel represent scale parameters and always take positive values, so it is

convenient to represent them in terms of exponentials of the corresponding outputs of the RBF

network, z7
07 = exp(z]). (6)
The centres p; of the Gaussians represent a location in the target space and can take any value
within that space. Therefore they are taken directly from the corresponding outputs of the RBF
network, 27,
Wik = 25, (7)
In order to optimise the parameters in a M DN, an error function is required that provides an
indication of how well the model represents the underlying generating function of the training
data. The error function of the mixture density network is motivated from the principle of
maximum likelihood [3]. The likelihood of the training data set, {s(t), u(t — d)}, can be written

as

L = Hp.sn L (t — d)) (8)

where the assumption has been made that each data point has been drawn independently from
the same distribution, and so the likelihood is a product of probabilities. Generally one wishes
to maximise the likelihood function. However, in practice, it is often more convenient to consider
the negative logarithm of the likelihood function. These are equivalent procedures, since the
negative logarithm is a monotonically decreasing function. The negative log likelihood can be

regarded as an error function, £
E=—-InL=—- Zlnp un(t — d)|s,(t) Zp S (t (9)

The second term in (9) is constant because it is independent of the network parameters, so it

can be removed from the error function. The error function becomes

E=-InL=-) Inp(u,(t—d)|s,(t)). (10)



Next we substitute (1) into (10) and derive the negative log likelihood error function for the
MDN

E- —Zln{z_;axsn(t))asj(un(t—d>|sn<t>>}. (11)

In order to minimise the error function, the derivatives of the error E with respect to the weights
in the neural networks must be calculated. Providing that the derivatives can be computed with
respect to the outputs of the network, the errors at the network inputs may be calculated using
the back-propagation procedure [3]. By first defining the posterior probability of the jth kernel,

using Bayes theorem
;o
- =M

the analysis of the error derivatives with respect to the network outputs is simplified. From (12)

mi(8(1), u(t — d)) (12)

the posterior probabilities sum to unity

inj = 1. (13)

Since the error function (11) is composed of a sum of terms E = ) E”, the computation of
the error derivative can further be simplified by considering the error derivative with respect to
each training pattern, n. The total error E is then defined as a sum of the error, E", for each

training pattern
N
E=) E" (14)
n=1

Each of the derivatives of E™ are considered with respect to the outputs of the network and their

respective labels for the mixing coefficients, 27, variance parameters, 27 and centres or position

parameters sz The derivatives are as follows

OE"

— o —m 1
928 Qj — Ty (15)
oE"  mifllualt —d) —py []?
022 2 { o7 ‘ (16)
OE™ . ‘ Mjk — Uk (t - d)
5 - 2 . (1)

Once the network has been trained it can predict the conditional density function of the target
data for any given value of the input vector. This conditional density represents a complete
description of the generator of the data. More specific quantities can be calculated from this

density function which may be of interest in different applications. An example is the mean,



corresponding to the conditional average of the target data. This corresponds to the mean
computed by a standard network trained by least squares. However, in control applications
where unique solutions cannot be found, and where the distribution of the target data will
consist of different numbers of distinct branches, this is a not valid solution. In such cases one
may be interested in finding an output value corresponding to the most probable branch. Since
each component of the mixture model is normalised, [ ¢;(u(t — d)|s(t))du(t — d) = 1, the most
probable branch is given by

arg mjax{ozj (s())}. (18)

The required value of u(t — d) is then given by the corresponding centre p;. In this work the

M DN will be used to model the conditional density function in case of a multi-valued function.

4 Problem Formulation and Solution Development

Dynamic programming is a powerful tool in stochastic control problems [6, 10]. However, it
performs poorly when the order of the system increases. The algorithm proposed here is based
on incorporating the uncertainty knowledge from the neural network to avoid the computational
requirements for the dynamic programming solution for stochastic control problems. We search
for an algorithmic approach yielding numerical solutions to the minimisation problem. The
proposed method is equivalent to sampling values from the distribution of v and using the
function value alone to determine a reasonable minimisation of the objective, J(¢). Using the
gradient information of J(t), although it would be more efficient, is not exploitable here due to
the random sampling nature of the algorithm. In the proposed method we assume that we know
the set of decisions allowable at any stage which can be determined from the distribution of the
control signals, the effect of these decisions or the model of the process, and the criterion by

which we evaluate the control policy that is employed.

4.1 Neural Network Development for Incorporating Uncertainty

Once properly trained, the inverse model can be used to control the plant since it can generate
the necessary control signals to create the desired system output. Despite the fact that neural
networks have been accepted as suitable models for capturing the behaviour of nonlinear dynam-
ical systems, it is also accepted that such models should not be considered exact. The algorithm
proposed here circumvents the dynamic programming scaling problem whilst simultaneously al-

lowing for the model uncertainty by using the predicted neural network error bars to limit the



possible control solutions needing to be considered. Accepting the inaccuracy of neural networks,
the distribution of the output of the inverse control network can be approximated by a Gaussian
distribution, or more generally by a multi-component distribution as discussed previously. Using
just the mean estimate of the control in the Gaussian case and the most probable value of the
control in the multi-component distribution case is typically suboptimal in nonlinear systems.
Modelling the conditional distribution of the control signals permits the idea of implementing
importance sampling of the control signal distribution, which define the set of allowable decisions
at each stage producing a better estimate of the control law than the mean or the most probable
value. The calculated quantities from these distributions, namely the mean, the most probable
value, and the variance are nonlinear functions of previous states, thus allowing for good models

of forward and inverse plant behaviour.

4.1.1 Incorporating Uncertainty For the Gaussian Distribution Function

Based on estimates of the distribution of control signal values, we can construct the following
algorithm incorporating the uncertainty directly. The architecture of this algorithm is shown in

figure 3.

1. Based on the pre-collected input-output data, an accurate model of the process is con-
structed and trained off line. It is assumed to be described by the following neural network

model

gty = fly(t—=1),..,y(t—n),u(t —d),...,u(t—m)) (19)

where y(t) is the measured plant output, u(t) is the measured plant input, n is the maximum
delay in the output, m is the maximum delay in the input, and d is a known relative degree

of the plant.

2. An accurate inverse model of the plant should also be constructed, and trained off line
to approximate the conditional mean of the control vector and the conditional variance.

Assuming the following hidden variable of the neural network,

z(t) = f U y@),y(t—1),..,y{t—n),ult —d—1),..,ult—m)) (20)

the conditional mean of the controller is u(t — d) = z(t)w;, and the conditional variance is
VAT y((—q) = x(t)wy. Here w; is the weight matrix of the linear layer estimated to predict
the conditioned mean of the control signal, and wy is the weight matrix of the linear layer

estimated to predict the variance of the predicted control signal.

10



. At each instant of time ¢ the desired output is calculated from the reference model output,

which should be chosen to have the same relative degree, d, as that of the plant.

. Bring the control network on line and at each time ¢ estimate the appropriate control signal
from the controller and the variance of that control signal. The control signal distribution

is then assumed to be Gaussian and given by
1 (u(t —d) —a(t — d))?

p(u(t —d) | s(t)) = ————1 exp(—
(27rcrz(t_0l))é 207 _q)

) (21)

where Uz(tid) is the variance of the control signal s(t) = [y(¢),y(t — 1), ...,y(t — n),u(t —
d—1),..,u(t—m)].

. Generate a vector of samples from the control signal distribution. Since Gaussian dis-
tribution, the Matlab random number generator can be used. That vector of samples
is considered as the admissible control values at each instant of time. The number of
samples is chosen based on the value of the predicted variance of the control signal as,
number of samples = K X var,;_q. This equation determines the number of samples
based on the confidence of the controller about the predicted mean value of the control

signal. So more samples are generated for larger variance.

. Based on the effect of each sample on the output of the model, the most likely control value
is taken, which is assumed to be the value that minimises the following cost function.

J(t) = MinE[(§(t) — y,(1))°] (22)

uelU v

where U is a vector containing the sampled values from the control signal distribution, £
is the expected value of the cost function over the random noise variable v. Because we
are using a neural network to model the system, and because the neural network predicts
the mean value for the output of the model averaged over the noise on the data, the above

function can be optimised directly.

. Go to step 3.

Incorporating Uncertainty for the Mixture Density Network

Since we have discussed most of the proposed algorithm in our discussion for incorporating

uncertainty in the Gaussian distribution case, we summarise here the main differences between

the two algorithms:

11



1. The conditional distribution of the inverse model of the plant mentioned in step 2 for the

Gaussian distribution function, is assumed to be described by the M DN given by equation
(1)

2. For the non-sampling case, the value of the control signal in the M DN is assumed to be
given by the centre p; of the most probable branch, where the most probable branch is
given by

arg max{a;(s(t))}. (23)
j
The predicted value of the control signal for the Gaussian distribution function is assumed

to be equivalent to the mean of that distribution.

3. The admissible values of the control signal at each instant of time for the Gaussian distri-
bution case are assumed to be sampled from that distribution, as in step 5. The admissible
values of the control signal for the mixture density network, are assumed to be sampled
from a M DN. Since we are using Gaussian kernel functions, the samples can be generated
from each kernel function randomly. This can be done by retrieving the components 1
of the kernel centres ji;, and the kernel width o; of each kernel function. The number of
samples from each component is determined randomly with more samples generated from

the component with larger prior.

Other steps are the same as in the Gaussian distribution case.
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Figure 3: The architecture of the proposed optimisation method. The input and the output of

the plant are passed through a shift register (SR) so as to generate the required past input and

output values
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5 Simulation 1, Gaussian Distribution

5.1 Introduction

In order to illustrate the validity of the theoretical developments, we consider the liquid-level

system described by the following second order equation

y(t) = 0.9722y(t — 1) + 0.3578u(t — 1) — 0.1295u(t — 2) — 0.3103y(t — 1)u(t — 1)
— 0.04228y*(t — 2) + 0.1663y(t — 2)u(t — 2) + 0.1087y(t — 2)u(t — Vu(t — 2)
— 0.3513y(t — Du(t — 2) + 0.3084y(t — 1)y(t — 2)u(t — 2)
— oyt -yt —2). (24)

This model has been used in [1] to illustrate theoretical developments for direct adaptive control.
Because disturbances play an important part in real world processes, a stochastic component,
v, has been added to this model. This component is taken to be a Gaussian random variable
N (0.03259,0.2). The plant has been considered to be described by equation (24). Given the
prior information concerning the order of the plant, a second order input-output model described

by the following equation was chosen to identify the plant:

(1) = fly(t = 1), y(t = 2),ut = 1), u(t - 2))

where f is a Gaussian radial basis function network. This neural network model was trained
using the scaled conjugate gradient optimisation algorithm, based on noisy input output data
measurements taken from the plant with sampling time of 1s. The input to the plant and the
model was a sinc function followed by a sine wave in the interval [—1, 1] with additive Gaussian
noise N'(0,0%)(c = 0.3). Constructing an excitation signal capable of persistent excitation in
nonlinear control systems is a known problem. In example (24) we found that the suggested plant
input adequately explored the nonlinear control problem across the desired operating range. The
single optimal structure for the neural network found by applying the cross validation method
consisted of 6 Gaussian basis functions. If the order of the plant to be controlled is assumed to
be unknown, cross validation method needs to be implemented to find the optimal order of the
model.

Similarly an input-output model described by the following equation was chosen to find the

inverse model of the plant:

ﬂ(t - 1) = fﬁl(y(t - 1)7y(t - 2)7y(t)au(t - 2))

13



where f~!is a Gaussian radial basis function network. The training data was the same as in the
forward model. By cross validation, a neural network again, but coincidentally, with 6 Gaussian

basis functions was found to be the best model.

5.2 Classical Inverse Control Approach

After training the inverse controller off line, the control network is brought on line and the control
signal is calculated at each instant of time from the control neural network and by setting the

output value y(t) at time ¢ equal to the desired value y,(¢)

u(t —1) = f7 (y(t = 1),y(t = 2), 4, (1), u(t - 2))

where y,.(t) = 0.2 % r(t — 1) + 0.8 x y,(t — 1) and r is the set point. The predicted mean value
from the neural network was forwarded to the plant. After running the process for about 600
time steps the output of this classical inverse control system was found to be unstable, and the

classical inverse controller was unable to force the plant output to follow the reference output.

5.3 Proposed Control Approach

In our new approach, both the mean and the variance of the control signal were estimated.
Following the procedure presented earlier, the best control signal was found and forwarded to
the plant. This control signal was obtained from a small number of importance samples from the
Gaussian distribution, typically a maximum of 27 samples. The overall performance of the plant
under the proposed method is shown in figure 4, where it is evident that the system outputs
remain stable across the whole region, and that the proposed sampling approach managed to
stabilise the plant. The control signal is shown in figure 5, and the variance of this control law
is shown in figure 6. The error from the absolute difference between the plant output and the
desired output of the classical inverse controller and the proposed sampling approach is shown
in figure 7. More specifically, figure 7 is the plot of error = |y — ¥r|sampling — |Y — Ur|classical inverse
against time, y is the actual plant output. From this figure we can see that the sampling approach
is no worse than taking the mean in the inverse control, and in addition, the sampling method

remains stable in regions where the classical approach diverges.
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Figure 4: The desired and actual output values. The actual output of the plant (solid line) and

the desired output (dotted line) are almost coincident, which indicates accurate control.

Control Signal
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Figure 5: The Control Signal. The fluctuation in the control signal represents the stochastic
nature of the control problem.
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Figure 6: The Control Signal Variance. Compared to the variances added to the plant input
(02 = 0.09) and the plant output (02 = 0.2), the predicted variance around the control signal is

significantly smaller.
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Figure 7: The Error Difference. The difference between the absolute tracking error of the pro-
posed control method and the absolute tracking error of the classical control method. So the

classical control method has more frequent and larger errors.
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6 Simulation 2, Mixture Density Networks

6.1 Introduction

For inverse problems, the mapping can often be multi-valued and a unique solution cannot be
found. If the Gaussian distribution approximates the inverse model, it will approximate the con-
ditional average of the target data, and this will frequently lead to extremely poor performance.
Here we will overcome this problem by appropriate use of a Mixture Density Network instead. In
order to illustrate the application of the M DN with the proposed control approach we consider

a simple example of single input single output given by the following equation
y(t) = u(t) + 0.3sin(27u(t)) + € (25)

where € is a random variable with uniform distribution in the interval (—0.1,0.1), y(¢) is the out-
put variable, and u(¢) is the input variable. This example has been used in [3, 11] to demonstrate
the use of the M DN. This equation represents a static system, since no delay exists between
the input and the output variable. The plant has been considered to be given by equation (25).
In order to identify the plant, an input-output model described by the following equation was

chosen

where f is a thin plate spline radial basis function network. Figure 8 shows a data set of 300
points generated by sampling equation (25). Also shown is the mapping represented by a thin
plate spline radial basis function network after training using this data. The optimal structure
for the neural network found by applying the cross validation method consisted of 5 thin plate
spline basis functions. It was trained using the scaled conjugate gradient method. It can be seen
that the network which is approximating the conditional average of the target data, gives an

excellent representation of the underlying generator of the data.

6.2 Gaussian Distribution Model

We consider approximating the inverse mapping of the same problem and using the same training
data as in the forward model by training a thin plate spline radial basis function network using
least squares, which will lead to a Gaussian distribution assumption. Similarly an input-output

model described by the following equation was chosen to find the inverse model of the plant,
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Figure 8: The forward model of the function y(t) = u(¢)+0.3sin(27u(t))+e¢. The circles represent
the samples generated from that function. The solid curve shows the result of training a thin

plate spline radial basis function with 5 basis functions using a sum of square error function.

Again the network tries to approximate the conditional average of the target data, but now
this corresponds to a very poor representation of the process as can be seen from figure 9. The
network in this case had 15 thin plate spline basis functions and was trained using the scaled
conjugate gradient optimisation method. This network was connected in series with the plant to
generate the control signal required to cause the plant to follow the desired output. The desired
output was given by

yr(t) = r(t) + 0.3sin(27r (1))

where the input r(¢) has been chosen in such a way to generate data that have not been used in
the training stage. The result is shown in figure 10, where it can be seen that there is a large

error between the desired output and the plant output.

6.3 Mixture Density Network

In this section we apply an M DN to the same inverse problem, using the same data set as
before. The appropriate number of kernel functions and the complexity of the neural network
was decided by applying the cross validation method. It was found that the best structure for the
MDN consisted of 7 thin plate spline basis functions with 9 outputs corresponding to 3 kernel
functions . The M DN was trained using scaled conjugate gradient optimisation. Once trained
the M DN predicts the conditional probability density of the target data (regarded as the input
to the plant u(t) in the inverse model) for each value of the input to the network (regarded as

the output to the plant y(¢) in the inverse model). Having obtained a good representation for
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Figure 9: The inverse model of the function y(¢) = u(t)+0.3sin(27u(t))+€. The circles represent
the same data as in Figure 8. The solid curve shows the result of training a thin plate spline

radial basis function with 15 basis functions using a sum of square error function.
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Figure 10: The control result extracted using the classical inverse controller.
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the conditional density of the target data, we can in principle calculate any desired statistics
from that distribution. In this control problem, since the conditional mean of the target data is
a very poor approximation, we are interested in the evaluation of the centre of the most probable
kernel according to equation (23), which gives the result shown in figure 11. Again this network
has been connected in series with the plant to generate the control signal required to cause the
plant to follow the same desired output as before. The result is shown in figure 12, where it can
be seen that using the most probable value of the kernel functions has improved the performance

of the controller significantly.
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Figure 11: Plot of the central value of the most probable kernel as a function of y(¢) from the

Mixture Density Network.
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Figure 12: The control result from using most probable value of the Mixture Density Network

as a control law.
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6.4 Proposed Control Approach

The final demonstration of the utility of the approach, is to sample from the control signal
distribution (from the mixture density distribution). In this proposed control approach the best
control signal was found and forwarded to the plant, following the procedure presented earlier.
The control signal was obtained from a small number of samples, typically 20 samples in this
case. The overall performance of the plant under the proposed control approach is shown in figure
13. Tt can be seen from this figure that the proposed sampling approach is superior to finding the
most probable centre value of the kernel function. The error from the absolute difference between
the plant output and the desired output of the most probable value of the kernel function in the
mixture density network, and the proposed sampling approach is shown in figure 14. From this

figure we see that the sampling approach has reduced the error significantly.
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Figure 13: The control result from applying the proposed sampling approach from the mixture

density network.

7 Conclusions

General inverse control can be considered to be a good control strategy if the model of the
plant is invertible and accurate. We are assuming that the neural network approach allows us
to construct accurate models such that we can rely on their outputs as representing the correct
conditional mean expectations. If this is not the case then the approach discussed in this paper
can fail. Assuming accuracy of the model, the intrinsic uncertainty around the control signal can
be estimated from the conditional distribution of the control signal.

The main contribution of this paper is that it provides a systematic procedure to use this

uncertainty measure in order to improve the generalisation property of the controller. Simulation
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Figure 14: The Error Difference. The difference between the absolute tracking error of the

proposed control method and the absolute tracking error of the classical control method.

experiments demonstrated the successful application of the proposed strategy to improve the
controller performance for a class of nonlinear control dynamic and static systems. Since we are
sampling our control signal from the estimated distribution and choosing one which better fits
the model, the predicted value of the control signal in the next time step should be more accurate.
By feeding back a better value of the control signal, another benefit is that there should be no
need to change the controller parameters as long as we are dealing with stationary processes. Of
course, in this paper we have considered a problem which is inherently stochastic. This leads to a
control signal which is also stochastic. For dissipative or smoothly varying systems, the resulting
control signals would also be smoothly varying.

The examples given in this paper demonstrate the simplest representative of the conditional
density distribution (Gaussian distribution function) in addition to a whole class of density-
estimating neural networks (the Mixture Density Network) and also points out a fruitful direction
for control research: that of sampling control signals from estimated distribution functions which
can incorporate even more information on the full distribution such as higher order moments
beyond just the first two, representing the control law and the uncertainty around the control
law. This more general approach is not constrained by assumptions of invertibility and it shows

the ability to deal with multi-valued processes as well.
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