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tWe introdu
e a novel inversion-based neuro
ontroller for solving 
ontrol problems in-volving un
ertain nonlinear systems whi
h 
ould also 
ompensate for multi-valued systems.The approa
h uses re
ent developments in neural networks, espe
ially in the 
ontext ofmodelling statisti
al distributions, whi
h are applied to forward and inverse plant models.Provided that 
ertain 
onditions are met, an estimate of the intrinsi
 un
ertainty for theoutputs of neural networks 
an be obtained using the statisti
al properties of networks.More generally, multi
omponent distributions 
an be modelled by the mixture density net-work. In this work a novel robust inverse 
ontrol approa
h is obtained based on importan
esampling from these distributions. This importan
e sampling provides a stru
tured andprin
ipled approa
h to 
onstrain the 
omplexity of the sear
h spa
e for the ideal 
ontrollaw. The performan
e of the new algorithm is illustrated through simulations with examplesystems.1 Introdu
tionIn nonlinear sto
hasti
 
ontrol problems, on
e the obje
tive fun
tional is de�ned we would ideallyseek a dynami
 programming solution. This however, is pra
ti
ally unfeasible, not least be
auseof the unbounded sear
h spa
e in whi
h we need to maintain possible solution traje
tories.The method of approximation we 
hoose is to 
onstru
t nonlinear neural network models for theforward and inverse plant dynami
s. However we are interested in intrinsi
ally sto
hasti
 systems.Sin
e standard neural network approa
hes produ
e deterministi
 system approximations, we need1



a way to allow for sampling from the (unknown) distribution of 
ontrol signals whi
h wouldbe generated by the real sto
hasti
 system. We a
hieve this by employing the same neuralnetworks to estimate error varian
es around the predi
ted mean values of the 
ontrol values,thus 
hara
terising the distribution of the 
ontrol signals as Gaussian. For inverse problems, themapping 
an be often multi-valued, with values of the inputs (tra
king signal) for whi
h thereare several valid values for the outputs (
ontrol signals). In this 
ase, mixture density networks
an be implemented to model the more general distribution of the 
ontrol signal.In re
ent years, neural network models have evolved into favourite 
andidates in the �eld ofnonlinear system identi�
ation and 
ontrol, due to their ability to approximate multi-variablenonlinear mappings. In addition to having nonlinear features, dynami
 systems may have noiseevents a�e
ting their inputs and outputs, and usually are time-variant. Be
ause arti�
ial neuralnetworks 
an be adapted on line [15, 4, 13℄, usually they are 
apable of good approximation insu
h situations. However for most real 
ontrol problems where disturban
es play an importantpart and where a relatively big sampling interval is used, the predi
ted output of the neuralnetwork is inherently un
ertain. Neural networks now have the ability to model general distri-butions rather than just produ
ing point estimates, and in parti
ular 
an produ
e an estimateof the un
ertainty involved in the predi
tions [3, 7, 16℄. Re
ent resear
h interest has been togo beyond the 
lassi
al methods for identi�
ation and 
ontrol by a

ounting for model and sys-tem un
ertainty expli
itly in the modelling pro
ess. As examples, in [2℄ a systemati
 pro
edurethat a

ounts for the stru
tured un
ertainty when a neural network model is integrated in anapproximate feedba
k linearisation 
ontrol s
heme has been developed. The use of an adaptive
riti
 
ontroller when there is input un
ertainty has been dis
ussed in [5℄. The appli
ation ofre
ently developed minimal resour
e allo
ating network (MRAN) in a robust manner underfaulty 
onditions has been demonstrated in [14℄. A robust adaptive nonlinear 
ontrol method for
ontrolling a 
lass of nonlinear systems in the presen
e of both unknown nonlinearities and un-modelled dynami
s has been illustrated in [8℄. In [3, 11℄ a new 
lass of network models obtainedby 
ombining a 
onventional neural network with a mixture density model, has been used tomodel the 
onditional probability distribution for problems in whi
h the mapping to be learnedis multi-valued. Other 
omputational approa
hes, namely forward and inverse modelling, andfeedba
k error learning have been suggested in [15, 9℄ for a
quiring the inverse dynami
s modelof the multi-valued fun
tions. None of the re
ent works have 
onsidered the possibility of usingthe neural network's own estimate for error bars. In this paper we address for the �rst time theuse of this extra knowledge to develop a robust 
ontrol method for un
ertain nonlinear systems.This paper aims to demonstrate that a promising approa
h to robust 
ontrol 
an be provided by2



this proposed framework.The paper begins with a review of the prin
iple of system model and error bar estimation.Next, we develop a nonlinear 
ontroller ar
hite
ture based on approximate dynami
 inversionand the use of error bar knowledge. This development is then employed to 
ontrol a nonlinearsto
hasti
 simulated system.2 Adaptive Inverse ControlThe 
lassi
al inverse adaptive 
ontrol te
hnique is shown in �gure 1. The neural network islearning to re
reate the input u(t � d), that 
reated the 
urrent output of the plant y(t). Theinverse 
ontroller 
ontains adjustable parameters that 
ontrol its impulse response. An adaptivealgorithm is usually used to automati
ally adjust the 
ontroller parameters to minimise somefun
tion of the error (usually mean square error, though other error fun
tions 
an also be used).The error is de�ned as the di�eren
e between the input of the plant u(t�d), and the a
tual outputof the 
ontroller û(t � d). Many su
h algorithms are des
ribed in the reports and textbooks byNarendra and Parthasarathy [13℄ and by White and Sofge [15℄.When trained, the network should be able to take the desired response yr and produ
e theappropriate 
ontrol signal u, whi
h is then supposed to make the plant output y approa
h thedesired response yr. This 
ontrol ar
hite
ture however, may not be eÆ
ient sin
e the networkmay have to learn the response of the plant over a larger operational range than is a
tuallyne
essary. This problem is related to the 
on
ept of persistent ex
itation, whi
h a
knowledgesthe importan
e of the inputs used to train learning systems. A preliminary dis
ussion for this
on
ept 
an be found in [12℄.
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Figure 1: Training of an inverse 
ontroller.
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3 Distribution ModellingIn 
lassi
al inverse 
ontrol the 
hallenge is to build a neural network that will take past values ofthe input and output of the plant zzz(t) = [y(t� 1); ::::; y(t�n); u(t� d� 1); ::::; u(t�m)℄ and thedesired output value yr(t) as an input, and outputs the 
ontrol signals u(t�d) (assuming a relativedegree of d), whi
h will move the plant output to the desired value. In this work the primarygoal is to model the statisti
al properties of the 
ontrol signals, u(t�d), expressed in terms of the
onditional distribution fun
tion p(u(t� d)jsss(t)). Here sss(t) = [zzz(t); yr(t)℄ is the input ve
tor tothe neural inverse model. For dynami
al systems it is reasonable to assume that the output of thesystem y(t) is a fun
tion f of its input u(t� d) and the delayed ve
tor zzz(t). Furthermore, in the
ase of a one-to-one mapping, and only in this 
ase, the inverse of the fun
tion denoted by f�1
an be introdu
ed. In this example a feed-forward neural network trained using the sum of thesquare error fun
tion (between the input of the system and the a
tual output of the 
ontroller)
an perform well. For this instan
e the distribution of the target data 
an be des
ribed by aGaussian fun
tion with an input-dependent mean (given by the outputs of the trained network),and an input-dependent varian
e (given by the residual error value). However, if the inverse ofthe fun
tion f 
annot be de�ned uniquely, then the dire
t inverse mapping f�1, found by usingthe sum of the square error fun
tion between the input of the system and the a
tual output ofthe 
ontroller, 
annot be used to tell us how to 
hoose the 
ontrol signal u(t� d) so as to rea
hthe desired response yr(t). Therefore, the assumption of a Gaussian distribution 
an lead to avery poor representation of the 
ontrol signal. For this situation a more general framework formodelling 
onditional probability distributions is required. This general framework is based onthe use of the mixture density network.3.1 Gaussian Distribution ModellingIf a neural network has been used to model the adaptive inverse 
ontroller, it 
an also modelthe 
onditional distribution of the target data (the 
ontrol signal) by modelling the 
onditionalun
ertainty involved in its own predi
tions. Di�erent methods for estimating the un
ertaintyaround the predi
ted output of a neural network have been presented in [3, 7, 16℄. In this workthe predi
tive error bar method will be used [7℄. This approa
h is based on the important resultthat for a network trained on minimum square error, the optimum network output approximatesthe 
onditional mean of the target data, or f�1opt(sss(t)) =< u(t � d)jsss(t) >, and that the lo
alvarian
e of the target data 
an be estimated as ku(t� d)� f�1opt(sss(t))k2. If this varian
e is usedas a target value for another neural network, then the optimum output of this se
ond network4



is again the 
onditional mean of that varian
e. As reported in [7℄, in the implementation ofpredi
tive error bars two 
orrelated neural neural networks are used. Ea
h network shares thesame input and hidden nodes, but has di�erent �nal layer links whi
h are estimated to give theapproximated 
onditional mean of the target data in the �rst network, and the approximated
onditional mean of the varian
e in the se
ond network. Thus the se
ond network predi
ts thenoise varian
e of the predi
ted mean by the �rst network. This ar
hite
ture is shown in �gure2. Optimisation of the weights is a two stage pro
ess. The �rst stage determines the weights w1
onditioning the regression on the mapping surfa
e. On
e these weights have been determined,the network approximations to the target values are known, and hen
e so are the 
onditionalerror values on the training examples. In the se
ond stage the inputs to the networks remainexa
tly as before, but now the target outputs of the network are the error values. This se
ondpass determines the weights w2 whi
h 
ondition the se
ond set of output noise to the squarederror values �2(sss(t)).
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hite
ture of the predi
tive error bar network.We will demonstrate the use of this noise (in 
ontrol ar
hite
ture) soon, but �rst we dis
uss amore general method for distribution modelling whi
h we need for multimodal 
ontrol problems.3.2 Mixture Density NetworkFor multi-valued fun
tions, Mixture Density Networks MDNs [3℄ provide a general frameworkfor modelling 
onditional probability density fun
tions p(u(t� d)jsss(t)) for the inverse mapping.The distribution of the outputs, u(t� d), is des
ribed by a parametri
 model whose parametersare determined by the output of a neural network, whi
h takes sss(t) as inputs. The general
onditional distribution fun
tion is given byp(u(t� d)jsss(t)) = MXj=1 �j(sss(t))�j(u(t� d)jsss(t)) (1)5



where �j(sss(t)) represents the mixing 
oeÆ
ients, and 
an be regarded as prior probabilities(whi
h depend on sss(t)), �j(u(t � d)jsss(t)) are the kernel distributions of the mixture model(whose parameters are also 
onditioned on sss(t)), and M is the number of kernels in the mixturemodel. Various 
hoi
es are available for the kernel fun
tions, but in this paper the 
hoi
e will berestri
ted to spheri
al Gaussians of the form�j(u(t� d)jsss(t)) = 1(2�)
=2�
j(sss(t)) exp��k u(t� d)� �j(sss(t)) k22�2j (sss(t)) � (2)where 
 is the dimensionality of the target data u(t � d), �j(sss(t)) represents the 
entre ofthe jth kernel, with 
omponents �jk. A spheri
al Gaussian assumption 
an be relaxed in a verystraightforward way, by using a full 
ovarian
e matrix for ea
h Gaussian kernel. However, usingfull 
ovarian
e Gaussian is not ne
essary, be
ause in prin
iple a Gaussian Mixture Model GMMwith suÆ
iently many kernels of the type given by (2) 
an approximate any given density fun
tionarbitrarily a

urately providing that the mixing 
oeÆ
ients and the Gaussian parameters are
orre
tly 
hosen [3℄. It follows that for any given value of sss(t), the mixture model (1) provides ageneral formalism for modelling the 
onditional density fun
tion p(u(t�d)jsss(t)). To a
hieve thisthe parameters of the mixture model, namely the mixing 
oeÆ
ients �j(sss(t)), the means �j(sss(t))and the varian
e �2j (sss(t)) are taken to be general 
ontinuous fun
tions of sss(t). These fun
tionsare modelled by the outputs of a feed-forward neural network that takes sss(t) as input.The neural network element of theMDN is implemented with a standard radial basis fun
tionnetwork RBF of thin plate spline basis fun
tions. The output ve
tor from the RBF , Z, holdsthe parameters that de�ne the Gaussian mixture model. For M 
omponents in the mixturemodel (1) the network will have (
+ 2)�M outputs. Namely, M outputs denoted by z�j whi
hdetermine the mixing 
oeÆ
ients �j, M outputs denoted by z�j whi
h determine the kernel width�j, and M � 
 outputs denoted by z�jk whi
h determine the 
omponents �jk of the kernel 
entres�j. This is 
ompared with the usual 
 outputs for a RBF network used with a sum-of squareserror fun
tion. The outputs of theMDN undergo some transformations to satisfy the 
onstraintsof the mixture model. The 
onstraints are su
h thatMXj=1 �j(sss(t)) = 1 (3)0 � �j(sss(t)) � 1 (4)The �rst 
onstraint ensures that the distribution is 
orre
tly normalised, so that (R p(u(t �d)jsss(t))du(t � d) = 1). These 
onstraints 
an be satis�ed by 
hoosing �j(sss(t)) to be related to6



the network's outputs by a `softmax' fun
tion�j(sss(t)) = exp(z�j )PMl=1 exp(z�l ) : (5)The varian
es of the kernel represent s
ale parameters and always take positive values, so it is
onvenient to represent them in terms of exponentials of the 
orresponding outputs of the RBFnetwork, z�j �2j = exp(z�j ): (6)The 
entres �j of the Gaussians represent a lo
ation in the target spa
e and 
an take any valuewithin that spa
e. Therefore they are taken dire
tly from the 
orresponding outputs of the RBFnetwork, z�jk �jk = z�jk: (7)In order to optimise the parameters in a MDN , an error fun
tion is required that provides anindi
ation of how well the model represents the underlying generating fun
tion of the trainingdata. The error fun
tion of the mixture density network is motivated from the prin
iple ofmaximum likelihood [3℄. The likelihood of the training data set, fsss(t); u(t� d)g, 
an be writtenas L = Yn p(sssn(t); un(t� d)) (8)= Yn p(un(t� d)jsssn(t))p(sssn(t))where the assumption has been made that ea
h data point has been drawn independently fromthe same distribution, and so the likelihood is a produ
t of probabilities. Generally one wishesto maximise the likelihood fun
tion. However, in pra
ti
e, it is often more 
onvenient to 
onsiderthe negative logarithm of the likelihood fun
tion. These are equivalent pro
edures, sin
e thenegative logarithm is a monotoni
ally de
reasing fun
tion. The negative log likelihood 
an beregarded as an error fun
tion, EE = � lnL = �Xn ln p(un(t� d)jsssn(t))�Xn p(sssn(t)): (9)The se
ond term in (9) is 
onstant be
ause it is independent of the network parameters, so it
an be removed from the error fun
tion. The error fun
tion be
omesE = � lnL = �Xn ln p(un(t� d)jsssn(t)): (10)7



Next we substitute (1) into (10) and derive the negative log likelihood error fun
tion for theMDN E = �Xn ln� MXj=1 �j(sssn(t))�j(un(t� d)jsssn(t))�: (11)In order to minimise the error fun
tion, the derivatives of the error E with respe
t to the weightsin the neural networks must be 
al
ulated. Providing that the derivatives 
an be 
omputed withrespe
t to the outputs of the network, the errors at the network inputs may be 
al
ulated usingthe ba
k-propagation pro
edure [3℄. By �rst de�ning the posterior probability of the jth kernel,using Bayes theorem �j(sss(t); u(t� d)) = �j�jPMl=1 �l�l (12)the analysis of the error derivatives with respe
t to the network outputs is simpli�ed. From (12)the posterior probabilities sum to unity MXj=1 �j = 1: (13)Sin
e the error fun
tion (11) is 
omposed of a sum of terms E = PnEn, the 
omputation ofthe error derivative 
an further be simpli�ed by 
onsidering the error derivative with respe
t toea
h training pattern, n. The total error E is then de�ned as a sum of the error, En, for ea
htraining pattern E = NXn=1 En: (14)Ea
h of the derivatives of En are 
onsidered with respe
t to the outputs of the network and theirrespe
tive labels for the mixing 
oeÆ
ients, z�j , varian
e parameters, z�j and 
entres or positionparameters z�jk. The derivatives are as follows�En�z�j = �j � �j (15)�En�z�j = ��j2 �k un(t� d)� �j k2�2j � 
� (16)�En�z�jk = �j��jk � uk(t� d)�2j � (17)On
e the network has been trained it 
an predi
t the 
onditional density fun
tion of the targetdata for any given value of the input ve
tor. This 
onditional density represents a 
ompletedes
ription of the generator of the data. More spe
i�
 quantities 
an be 
al
ulated from thisdensity fun
tion whi
h may be of interest in di�erent appli
ations. An example is the mean,8




orresponding to the 
onditional average of the target data. This 
orresponds to the mean
omputed by a standard network trained by least squares. However, in 
ontrol appli
ationswhere unique solutions 
annot be found, and where the distribution of the target data will
onsist of di�erent numbers of distin
t bran
hes, this is a not valid solution. In su
h 
ases onemay be interested in �nding an output value 
orresponding to the most probable bran
h. Sin
eea
h 
omponent of the mixture model is normalised, R �j(u(t� d)jsss(t))du(t� d) = 1, the mostprobable bran
h is given by arg maxj f�j(sss(t))g: (18)The required value of u(t � d) is then given by the 
orresponding 
entre �j. In this work theMDN will be used to model the 
onditional density fun
tion in 
ase of a multi-valued fun
tion.4 Problem Formulation and Solution DevelopmentDynami
 programming is a powerful tool in sto
hasti
 
ontrol problems [6, 10℄. However, itperforms poorly when the order of the system in
reases. The algorithm proposed here is basedon in
orporating the un
ertainty knowledge from the neural network to avoid the 
omputationalrequirements for the dynami
 programming solution for sto
hasti
 
ontrol problems. We sear
hfor an algorithmi
 approa
h yielding numeri
al solutions to the minimisation problem. Theproposed method is equivalent to sampling values from the distribution of u and using thefun
tion value alone to determine a reasonable minimisation of the obje
tive, J(t). Using thegradient information of J(t), although it would be more eÆ
ient, is not exploitable here due tothe random sampling nature of the algorithm. In the proposed method we assume that we knowthe set of de
isions allowable at any stage whi
h 
an be determined from the distribution of the
ontrol signals, the e�e
t of these de
isions or the model of the pro
ess, and the 
riterion bywhi
h we evaluate the 
ontrol poli
y that is employed.4.1 Neural Network Development for In
orporating Un
ertaintyOn
e properly trained, the inverse model 
an be used to 
ontrol the plant sin
e it 
an generatethe ne
essary 
ontrol signals to 
reate the desired system output. Despite the fa
t that neuralnetworks have been a

epted as suitable models for 
apturing the behaviour of nonlinear dynam-i
al systems, it is also a

epted that su
h models should not be 
onsidered exa
t. The algorithmproposed here 
ir
umvents the dynami
 programming s
aling problem whilst simultaneously al-lowing for the model un
ertainty by using the predi
ted neural network error bars to limit the9



possible 
ontrol solutions needing to be 
onsidered. A

epting the ina

ura
y of neural networks,the distribution of the output of the inverse 
ontrol network 
an be approximated by a Gaussiandistribution, or more generally by a multi-
omponent distribution as dis
ussed previously. Usingjust the mean estimate of the 
ontrol in the Gaussian 
ase and the most probable value of the
ontrol in the multi-
omponent distribution 
ase is typi
ally suboptimal in nonlinear systems.Modelling the 
onditional distribution of the 
ontrol signals permits the idea of implementingimportan
e sampling of the 
ontrol signal distribution, whi
h de�ne the set of allowable de
isionsat ea
h stage produ
ing a better estimate of the 
ontrol law than the mean or the most probablevalue. The 
al
ulated quantities from these distributions, namely the mean, the most probablevalue, and the varian
e are nonlinear fun
tions of previous states, thus allowing for good modelsof forward and inverse plant behaviour.4.1.1 In
orporating Un
ertainty For the Gaussian Distribution Fun
tionBased on estimates of the distribution of 
ontrol signal values, we 
an 
onstru
t the followingalgorithm in
orporating the un
ertainty dire
tly. The ar
hite
ture of this algorithm is shown in�gure 3.1. Based on the pre-
olle
ted input-output data, an a

urate model of the pro
ess is 
on-stru
ted and trained o� line. It is assumed to be des
ribed by the following neural networkmodel ŷ(t) = f(y(t� 1); :::; y(t� n); u(t� d); :::; u(t�m)) (19)where y(t) is the measured plant output, u(t) is the measured plant input, n is the maximumdelay in the output, m is the maximum delay in the input, and d is a known relative degreeof the plant.2. An a

urate inverse model of the plant should also be 
onstru
ted, and trained o� lineto approximate the 
onditional mean of the 
ontrol ve
tor and the 
onditional varian
e.Assuming the following hidden variable of the neural network,x(t) = f�1(y(t); y(t� 1); :::; y(t� n); u(t� d� 1); :::; u(t�m)) (20)the 
onditional mean of the 
ontroller is û(t� d) = x(t)w1, and the 
onditional varian
e isvaru(t�d) = x(t)w2. Here w1 is the weight matrix of the linear layer estimated to predi
tthe 
onditioned mean of the 
ontrol signal, and w2 is the weight matrix of the linear layerestimated to predi
t the varian
e of the predi
ted 
ontrol signal.10



3. At ea
h instant of time t the desired output is 
al
ulated from the referen
e model output,whi
h should be 
hosen to have the same relative degree, d, as that of the plant.4. Bring the 
ontrol network on line and at ea
h time t estimate the appropriate 
ontrol signalfrom the 
ontroller and the varian
e of that 
ontrol signal. The 
ontrol signal distributionis then assumed to be Gaussian and given byp(u(t� d) j sss(t)) = 1(2��2u(t�d)) 12 exp(�(u(t� d)� û(t� d))22�2u(t�d) ) (21)where �2u(t�d) is the varian
e of the 
ontrol signal sss(t) = [y(t); y(t � 1); :::; y(t � n); u(t �d� 1); :::; u(t�m)℄.5. Generate a ve
tor of samples from the 
ontrol signal distribution. Sin
e Gaussian dis-tribution, the Matlab random number generator 
an be used. That ve
tor of samplesis 
onsidered as the admissible 
ontrol values at ea
h instant of time. The number ofsamples is 
hosen based on the value of the predi
ted varian
e of the 
ontrol signal as,number of samples = K � varu(t�d). This equation determines the number of samplesbased on the 
on�den
e of the 
ontroller about the predi
ted mean value of the 
ontrolsignal. So more samples are generated for larger varian
e.6. Based on the e�e
t of ea
h sample on the output of the model, the most likely 
ontrol valueis taken, whi
h is assumed to be the value that minimises the following 
ost fun
tion.J(t) =Minu2U Ev [(ŷ(t)� yr(t))2℄ (22)where U is a ve
tor 
ontaining the sampled values from the 
ontrol signal distribution, Eis the expe
ted value of the 
ost fun
tion over the random noise variable v. Be
ause weare using a neural network to model the system, and be
ause the neural network predi
tsthe mean value for the output of the model averaged over the noise on the data, the abovefun
tion 
an be optimised dire
tly.7. Go to step 3.4.1.2 In
orporating Un
ertainty for the Mixture Density NetworkSin
e we have dis
ussed most of the proposed algorithm in our dis
ussion for in
orporatingun
ertainty in the Gaussian distribution 
ase, we summarise here the main di�eren
es betweenthe two algorithms: 11



1. The 
onditional distribution of the inverse model of the plant mentioned in step 2 for theGaussian distribution fun
tion, is assumed to be des
ribed by the MDN given by equation(1).2. For the non-sampling 
ase, the value of the 
ontrol signal in the MDN is assumed to begiven by the 
entre �j of the most probable bran
h, where the most probable bran
h isgiven by arg maxj f�j(sss(t))g: (23)The predi
ted value of the 
ontrol signal for the Gaussian distribution fun
tion is assumedto be equivalent to the mean of that distribution.3. The admissible values of the 
ontrol signal at ea
h instant of time for the Gaussian distri-bution 
ase are assumed to be sampled from that distribution, as in step 5. The admissiblevalues of the 
ontrol signal for the mixture density network, are assumed to be sampledfrom a MDN . Sin
e we are using Gaussian kernel fun
tions, the samples 
an be generatedfrom ea
h kernel fun
tion randomly. This 
an be done by retrieving the 
omponents �jkof the kernel 
entres �j, and the kernel width �j of ea
h kernel fun
tion. The number ofsamples from ea
h 
omponent is determined randomly with more samples generated fromthe 
omponent with larger prior.Other steps are the same as in the Gaussian distribution 
ase.
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5 Simulation 1, Gaussian Distribution5.1 Introdu
tionIn order to illustrate the validity of the theoreti
al developments, we 
onsider the liquid-levelsystem des
ribed by the following se
ond order equationy(t) = 0:9722y(t� 1) + 0:3578u(t� 1)� 0:1295u(t� 2)� 0:3103y(t� 1)u(t� 1)� 0:04228y2(t� 2) + 0:1663y(t� 2)u(t� 2) + 0:1087y(t� 2)u(t� 1)u(t� 2)� 0:3513y2(t� 1)u(t� 2) + 0:3084y(t� 1)y(t� 2)u(t� 2)� �vy2(t� 1)y(t� 2): (24)This model has been used in [1℄ to illustrate theoreti
al developments for dire
t adaptive 
ontrol.Be
ause disturban
es play an important part in real world pro
esses, a sto
hasti
 
omponent,�v, has been added to this model. This 
omponent is taken to be a Gaussian random variableN (0:03259; 0:2). The plant has been 
onsidered to be des
ribed by equation (24). Given theprior information 
on
erning the order of the plant, a se
ond order input-output model des
ribedby the following equation was 
hosen to identify the plant:ŷ(t) = f(y(t� 1); y(t� 2); u(t� 1); u(t� 2))where f is a Gaussian radial basis fun
tion network. This neural network model was trainedusing the s
aled 
onjugate gradient optimisation algorithm, based on noisy input output datameasurements taken from the plant with sampling time of 1s. The input to the plant and themodel was a sin
 fun
tion followed by a sine wave in the interval [�1; 1℄ with additive Gaussiannoise N (0; �2)(� = 0:3). Constru
ting an ex
itation signal 
apable of persistent ex
itation innonlinear 
ontrol systems is a known problem. In example (24) we found that the suggested plantinput adequately explored the nonlinear 
ontrol problem a
ross the desired operating range. Thesingle optimal stru
ture for the neural network found by applying the 
ross validation method
onsisted of 6 Gaussian basis fun
tions. If the order of the plant to be 
ontrolled is assumed tobe unknown, 
ross validation method needs to be implemented to �nd the optimal order of themodel.Similarly an input-output model des
ribed by the following equation was 
hosen to �nd theinverse model of the plant:û(t� 1) = f�1(y(t� 1); y(t� 2); y(t); u(t� 2))13



where f�1 is a Gaussian radial basis fun
tion network. The training data was the same as in theforward model. By 
ross validation, a neural network again, but 
oin
identally, with 6 Gaussianbasis fun
tions was found to be the best model.5.2 Classi
al Inverse Control Approa
hAfter training the inverse 
ontroller o� line, the 
ontrol network is brought on line and the 
ontrolsignal is 
al
ulated at ea
h instant of time from the 
ontrol neural network and by setting theoutput value y(t) at time t equal to the desired value yr(t)u(t� 1) = f�1(y(t� 1); y(t� 2); yr(t); u(t� 2))where yr(t) = 0:2 � r(t � 1) + 0:8 � yr(t � 1) and r is the set point. The predi
ted mean valuefrom the neural network was forwarded to the plant. After running the pro
ess for about 600time steps the output of this 
lassi
al inverse 
ontrol system was found to be unstable, and the
lassi
al inverse 
ontroller was unable to for
e the plant output to follow the referen
e output.5.3 Proposed Control Approa
hIn our new approa
h, both the mean and the varian
e of the 
ontrol signal were estimated.Following the pro
edure presented earlier, the best 
ontrol signal was found and forwarded tothe plant. This 
ontrol signal was obtained from a small number of importan
e samples from theGaussian distribution, typi
ally a maximum of 27 samples. The overall performan
e of the plantunder the proposed method is shown in �gure 4, where it is evident that the system outputsremain stable a
ross the whole region, and that the proposed sampling approa
h managed tostabilise the plant. The 
ontrol signal is shown in �gure 5, and the varian
e of this 
ontrol lawis shown in �gure 6. The error from the absolute di�eren
e between the plant output and thedesired output of the 
lassi
al inverse 
ontroller and the proposed sampling approa
h is shownin �gure 7. More spe
i�
ally, �gure 7 is the plot of error = jy � yrjsampling � jy � yrj
lassi
al inverseagainst time, y is the a
tual plant output. From this �gure we 
an see that the sampling approa
his no worse than taking the mean in the inverse 
ontrol, and in addition, the sampling methodremains stable in regions where the 
lassi
al approa
h diverges.
14
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Figure 4: The desired and a
tual output values. The a
tual output of the plant (solid line) andthe desired output (dotted line) are almost 
oin
ident, whi
h indi
ates a

urate 
ontrol.
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Figure 5: The Control Signal. The 
u
tuation in the 
ontrol signal represents the sto
hasti
nature of the 
ontrol problem.
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Figure 6: The Control Signal Varian
e. Compared to the varian
es added to the plant input(�2 = 0:09) and the plant output (�2 = 0:2), the predi
ted varian
e around the 
ontrol signal issigni�
antly smaller.
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Figure 7: The Error Di�eren
e. The di�eren
e between the absolute tra
king error of the pro-posed 
ontrol method and the absolute tra
king error of the 
lassi
al 
ontrol method. So the
lassi
al 
ontrol method has more frequent and larger errors.
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6 Simulation 2, Mixture Density Networks6.1 Introdu
tionFor inverse problems, the mapping 
an often be multi-valued and a unique solution 
annot befound. If the Gaussian distribution approximates the inverse model, it will approximate the 
on-ditional average of the target data, and this will frequently lead to extremely poor performan
e.Here we will over
ome this problem by appropriate use of a Mixture Density Network instead. Inorder to illustrate the appli
ation of the MDN with the proposed 
ontrol approa
h we 
onsidera simple example of single input single output given by the following equationy(t) = u(t) + 0:3 sin(2�u(t)) + � (25)where � is a random variable with uniform distribution in the interval (�0:1; 0:1), y(t) is the out-put variable, and u(t) is the input variable. This example has been used in [3, 11℄ to demonstratethe use of the MDN . This equation represents a stati
 system, sin
e no delay exists betweenthe input and the output variable. The plant has been 
onsidered to be given by equation (25).In order to identify the plant, an input-output model des
ribed by the following equation was
hosen ŷ(t) = f(u(t))where f is a thin plate spline radial basis fun
tion network. Figure 8 shows a data set of 300points generated by sampling equation (25). Also shown is the mapping represented by a thinplate spline radial basis fun
tion network after training using this data. The optimal stru
turefor the neural network found by applying the 
ross validation method 
onsisted of 5 thin platespline basis fun
tions. It was trained using the s
aled 
onjugate gradient method. It 
an be seenthat the network whi
h is approximating the 
onditional average of the target data, gives anex
ellent representation of the underlying generator of the data.6.2 Gaussian Distribution ModelWe 
onsider approximating the inverse mapping of the same problem and using the same trainingdata as in the forward model by training a thin plate spline radial basis fun
tion network usingleast squares, whi
h will lead to a Gaussian distribution assumption. Similarly an input-outputmodel des
ribed by the following equation was 
hosen to �nd the inverse model of the plant,û(t) = f�1(y(t)):17
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Figure 8: The forward model of the fun
tion y(t) = u(t)+0:3 sin(2�u(t))+�. The 
ir
les representthe samples generated from that fun
tion. The solid 
urve shows the result of training a thinplate spline radial basis fun
tion with 5 basis fun
tions using a sum of square error fun
tion.Again the network tries to approximate the 
onditional average of the target data, but nowthis 
orresponds to a very poor representation of the pro
ess as 
an be seen from �gure 9. Thenetwork in this 
ase had 15 thin plate spline basis fun
tions and was trained using the s
aled
onjugate gradient optimisation method. This network was 
onne
ted in series with the plant togenerate the 
ontrol signal required to 
ause the plant to follow the desired output. The desiredoutput was given by yr(t) = r(t) + 0:3 sin(2�r(t))where the input r(t) has been 
hosen in su
h a way to generate data that have not been used inthe training stage. The result is shown in �gure 10, where it 
an be seen that there is a largeerror between the desired output and the plant output.6.3 Mixture Density NetworkIn this se
tion we apply an MDN to the same inverse problem, using the same data set asbefore. The appropriate number of kernel fun
tions and the 
omplexity of the neural networkwas de
ided by applying the 
ross validation method. It was found that the best stru
ture for theMDN 
onsisted of 7 thin plate spline basis fun
tions with 9 outputs 
orresponding to 3 kernelfun
tions . The MDN was trained using s
aled 
onjugate gradient optimisation. On
e trainedthe MDN predi
ts the 
onditional probability density of the target data (regarded as the inputto the plant u(t) in the inverse model) for ea
h value of the input to the network (regarded asthe output to the plant y(t) in the inverse model). Having obtained a good representation for18
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Figure 9: The inverse model of the fun
tion y(t) = u(t)+0:3 sin(2�u(t))+�. The 
ir
les representthe same data as in Figure 8. The solid 
urve shows the result of training a thin plate splineradial basis fun
tion with 15 basis fun
tions using a sum of square error fun
tion.

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

O
ut

pu
ts

Reference Output
System Output

Figure 10: The 
ontrol result extra
ted using the 
lassi
al inverse 
ontroller.
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the 
onditional density of the target data, we 
an in prin
iple 
al
ulate any desired statisti
sfrom that distribution. In this 
ontrol problem, sin
e the 
onditional mean of the target data isa very poor approximation, we are interested in the evaluation of the 
entre of the most probablekernel a

ording to equation (23), whi
h gives the result shown in �gure 11. Again this networkhas been 
onne
ted in series with the plant to generate the 
ontrol signal required to 
ause theplant to follow the same desired output as before. The result is shown in �gure 12, where it 
anbe seen that using the most probable value of the kernel fun
tions has improved the performan
eof the 
ontroller signi�
antly.
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Figure 11: Plot of the 
entral value of the most probable kernel as a fun
tion of y(t) from theMixture Density Network.
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Figure 12: The 
ontrol result from using most probable value of the Mixture Density Networkas a 
ontrol law.
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6.4 Proposed Control Approa
hThe �nal demonstration of the utility of the approa
h, is to sample from the 
ontrol signaldistribution (from the mixture density distribution). In this proposed 
ontrol approa
h the best
ontrol signal was found and forwarded to the plant, following the pro
edure presented earlier.The 
ontrol signal was obtained from a small number of samples, typi
ally 20 samples in this
ase. The overall performan
e of the plant under the proposed 
ontrol approa
h is shown in �gure13. It 
an be seen from this �gure that the proposed sampling approa
h is superior to �nding themost probable 
entre value of the kernel fun
tion. The error from the absolute di�eren
e betweenthe plant output and the desired output of the most probable value of the kernel fun
tion in themixture density network, and the proposed sampling approa
h is shown in �gure 14. From this�gure we see that the sampling approa
h has redu
ed the error signi�
antly.
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Figure 13: The 
ontrol result from applying the proposed sampling approa
h from the mixturedensity network.7 Con
lusionsGeneral inverse 
ontrol 
an be 
onsidered to be a good 
ontrol strategy if the model of theplant is invertible and a

urate. We are assuming that the neural network approa
h allows usto 
onstru
t a

urate models su
h that we 
an rely on their outputs as representing the 
orre
t
onditional mean expe
tations. If this is not the 
ase then the approa
h dis
ussed in this paper
an fail. Assuming a

ura
y of the model, the intrinsi
 un
ertainty around the 
ontrol signal 
anbe estimated from the 
onditional distribution of the 
ontrol signal.The main 
ontribution of this paper is that it provides a systemati
 pro
edure to use thisun
ertainty measure in order to improve the generalisation property of the 
ontroller. Simulation21
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e. The di�eren
e between the absolute tra
king error of theproposed 
ontrol method and the absolute tra
king error of the 
lassi
al 
ontrol method.experiments demonstrated the su

essful appli
ation of the proposed strategy to improve the
ontroller performan
e for a 
lass of nonlinear 
ontrol dynami
 and stati
 systems. Sin
e we aresampling our 
ontrol signal from the estimated distribution and 
hoosing one whi
h better �tsthe model, the predi
ted value of the 
ontrol signal in the next time step should be more a

urate.By feeding ba
k a better value of the 
ontrol signal, another bene�t is that there should be noneed to 
hange the 
ontroller parameters as long as we are dealing with stationary pro
esses. Of
ourse, in this paper we have 
onsidered a problem whi
h is inherently sto
hasti
. This leads to a
ontrol signal whi
h is also sto
hasti
. For dissipative or smoothly varying systems, the resulting
ontrol signals would also be smoothly varying.The examples given in this paper demonstrate the simplest representative of the 
onditionaldensity distribution (Gaussian distribution fun
tion) in addition to a whole 
lass of density-estimating neural networks (the Mixture Density Network) and also points out a fruitful dire
tionfor 
ontrol resear
h: that of sampling 
ontrol signals from estimated distribution fun
tions whi
h
an in
orporate even more information on the full distribution su
h as higher order momentsbeyond just the �rst two, representing the 
ontrol law and the un
ertainty around the 
ontrollaw. This more general approa
h is not 
onstrained by assumptions of invertibility and it showsthe ability to deal with multi-valued pro
esses as well.Referen
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