Energy-led retrofitting of solid wall dwellings–technical and user perspectives on airtightness


Purpose – Mechanical ventilation with heat recovery (MVHR) is increasingly being promoted in the UK as a means of reducing the CO2 emissions from dwellings, and installers report growing activity in the retrofit market. However, the airtightness of a dwelling is a crucially important factor governing the achievement of CO2 reductions, and the purpose of this paper is to understand the technical implications of airtightness levels in an experimental dwelling, purpose built to typical 1930s standards, at the same time as gaining the users’ perspectives on airtightness and ventilation in their homes. Design/methodology/approach – In‐depth interviews were carried out with 20 households to collect information on their retrofit and improvement strategies, attitudes to energy saving and their living practices as they impinge on ventilation. The experimental house was sealed in a series of interventions, leading to successive reductions in the air permeability as measured by a 50 Pa pressurisation test. The behaviour of a whole‐house MVHR system installed in the experimental house, was simulated using IES Virtual Environment, using a range of air permeability values corresponding to those achieved in the retrofit upgrading process. Findings – In the house considered, air permeability must be reduced below 5 m3/m2h for MVHR to make an overall energy and CO2 saving. However, to achieve this required a level of disruption that, on the basis of the views expressed, would be unlikely to be tolerated by owners of solid wall dwellings. Originality/value – The paper is the first to combine results from a user‐centred approach to exploring the existing practices of householders with a simulation of the energy and CO2 performance at different levels of airtightness of an experimental house in which MVHR has been installed.

Publication DOI:
Divisions: Engineering & Applied Sciences > Aston STEM Education Centre
Engineering & Applied Sciences
Full Text Link: https://dspace. ... vey%20final.pdf
Related URLs: https://www.eme ... 630801211241829 (Publisher URL)
PURE Output Type: Article
Published Date: 2012
Authors: Banfill, Phil
Simpson, Sophie
Haines, Victoria
Mallaband, Becky ( 0000-0003-3370-7486)

Export / Share Citation


Additional statistics for this record