Phase change microcapsules in thermal Energy applications:A critical review

Abstract

Phase change microcapsules can carry large amounts of heat and be dispersed into other mediums either as a solid composite or as slurry fluids without changes to their appearance or fluidity. These two standout features make phase change microcapsules ideal for use in thermal energy applications to enhance the efficiency of energy utilisation. This review paper includes methods used for the encapsulation of phase change materials, especially the method suitable for large scale productions, the trends of phase change microcapsule development and their use in thermal energy applications in static and dynamic conditions. The effect of phase change microcapsules on convective heat transfer through addition to thermal fluids as slurries is critically reviewed. The review highlighted that so far the phase change microcapsules used mainly have polymeric shells, which has very low thermal conductivities. Their enhancement in convective heat transfer was demonstrated in locations where the phase change material experiences phase change. The phase change results in the slurries having higher apparent local specific heat capacities and thus higher local heat transfer coefficients. Out of the phase change region, no enhancement is observed from the solid microcapsule particles due to the low specific heat capacity and thermal conductivity of the phase change microcapsules compared to that of water, which is normally used as slurry media in the test. To further the research in this area, phase change microcapsules with higher specific heat capacity, higher thermal conductivity and better shape stability need to be applied.

Publication DOI: https://doi.org/10.12028/j.issn.2095-4239.2017.0076
Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
College of Engineering & Physical Sciences > Aston Institute of Materials Research (AIMR)
College of Engineering & Physical Sciences > Energy and Bioproducts Research Institute (EBRI)
Additional Information: Copyright © Editorial Board of Energy Storage Science and Technology
Uncontrolled Keywords: phase change microcapsule ,complex microencapsulation ,slurry,phase change patterns ,convective heat transfer enhancement
Last Modified: 08 Dec 2023 10:31
Date Deposited: 26 Apr 2018 11:05
Full Text Link:
Related URLs: http://energyst ... stract502.shtml (Publisher URL)
PURE Output Type: Review article
Published Date: 2017-06-13
Accepted Date: 2017-05-15
Authors: Xiao, Anna
Yuan, Qingchun (ORCID Profile 0000-0001-5982-3819)

Download

[img]

Version: Accepted Version

Access Restriction: Restricted to Repository staff only


Export / Share Citation


Statistics

Additional statistics for this record