An investigation of the mechanics of wire drawing with the superposition of an oscillatory drawing stress

Winsper, C. E. (1966). An investigation of the mechanics of wire drawing with the superposition of an oscillatory drawing stress. PHD thesis, Aston University.

Abstract

A number of investigators have studied the application of oscillatory energy to a metal undergoing plastic deformation. Their results have shown that oscillatory stresses reduce both the stress required to initiate plastic deformation and the friction forces between the tool and workpiece. The first two sections in this thesis discuss historically and technically the devolopment of the use of oscillatory energy techniques to aid metal forming with particular reference to wire drawing. The remainder of the thesis discusses the research undertaken to study the effect of applying longitudinal oscillations to wire drawing. Oscillations were supplied from an electric hydraulic vibrator at frequencies in the range 25 to 500 c/s., and drawing tests were performed at drawing speeds up to 50 ft/m. on a 2000 lbf. bull-block. Equipment was designed to measure the drawing force, drawing torque, amplitude of die and drum oscillation and drawing speed. Reasons are given for selecting mild steel, pure and hard aluminium, stainless steel and hard copper as the materials to be drawn, and the experimental procedure and calibration of measuring equipment arc described. Results show that when oscillatory stresses are applied at frequencies within the range investigated : (a) There is no reduction in the maximum drawing load. (b) Using sodium stearate lubricant there is a negligible reduction in the coefficient of friction between the die and wire. (c) Pure aluminium does not absorb sufficient oscillatory energy to ease the movement of dislocations. (d) Hard aluminium is not softened by oscillatory energy accelerating the diffusion process. (e) Hard copper is not cyclically softened. A vibration analysis of the bull-block and wire showed that oscillatory drawiing in this frequency range, is a mechanical process of straining; and unstraining the drawn wire, and is dependent upon the stiffness of the material being drawn and the drawing machine. Directions which further work should take are suggested.

Divisions: Engineering & Applied Sciences > Mechanical engineering & design
Additional Information: Department: Mechanical Engineering If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: wire drawing,drawing stress ,oscillatory
Completed Date: 1966-09
Authors: Winsper, C. E.

Download

Export / Share Citation


Statistics

Additional statistics for this record