The role of oscillatory brain activity in object processing and figure-ground segmentation in human vision


The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention.

Publication DOI:
Divisions: Life & Health Sciences
Life & Health Sciences > Clinical and Systems Neuroscience
Life & Health Sciences > Optometry
Life & Health Sciences > Psychology
Life & Health Sciences > Aston Brain Centre
Life & Health Sciences > Centre for Vision and Hearing Research
Additional Information: Copyright © 2010 Elsevier B.V. All rights reserved.
Uncontrolled Keywords: adult,algorithms,alpha rhythm,beta rhythm,brain,brain mapping,visual evoked potentials,female,ocular fixation,form perception,humans,magnetic resonance imaging,magnetoencephalography,male,photic stimulation,visual cortex,visual perception,wavelet analysis,Neuroscience(all),Physiology (medical),Neuropsychology and Physiological Psychology
Full Text Link: http://eprints. ... nal_%282%29.pdf
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2011-03
Published Online Date: 2010-12-29
Authors: Kinsey, K.
Anderson, S.J. ( 0000-0002-5719-2846)
Hadjipapas, A.
Holliday, I.E.

Export / Share Citation


Additional statistics for this record