Poly (D,L-Lactide) based microspheres for pulmonary delivery of proteins

Abstract

Initial work focused on the preparation, optimisation and characterisation of poly (D,L-lactide) (PLA) microspheres with the aim of optimising their formulation based on minimizing the particle size into the range suitable for pulmonary delivery to alveoli. In order to produce dry powders and to enhance their long-term physico-chemical stability, microspheres were prepared as a dry powder via freeze-drying. Optimisation studies showed that using appropriate concentrations of polymer 3% (w/v) in organic phase and emulsifier 10% (w/v) in external aqueous phase, the double solvent evaporation method produced high protein loading microspheres (72 ± 0.5%) with an appropriate particle size for pulmonary drug delivery. Combined use of trehalose and leucine as cyroprotectants (6% and 1% respectively, w/v) produced freeze-dried powders with the best aerosolisation profile among those tested. Although the freeze-dried PLA microsphere powders were not particularly respirable in dry powder inhalation, nebulisation of the rehydrated powders using an ultrasonic nebuliser resulted in improved aerosilisation performance compared to the air-jet nebuliser. When tested in vitro using a macrophage cell line, the PLA microspheres system exhibited a low cytotoxicity and the microspheres induced phagocytic activity in macrophages. However, interestingly, the addition of an immunomodulator to the microsphere formulations (4%, w/w of polymer) reduced this phagocytic activity and macrophage activation compared to microspheres formulated using PLA alone. This suggested that the addition of trehalose dibehenate may not enhance the ability of these microspheres to be used as vaccine delivery systems.

Divisions: College of Health & Life Sciences > Aston Pharmacy School
Additional Information: Department: Life and Health Sciences If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either theirs or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: microsphere,PLA,pulmonary delivery,inhalation,cellular response
Last Modified: 08 Dec 2023 08:38
Date Deposited: 07 Oct 2011 14:46
Completed Date: 2009-08
Authors: Song, Xiaosong

Download

Export / Share Citation


Statistics

Additional statistics for this record