The prediction and control of transients in thyristor values

Abstract

This thesis describes an investigation of methods by which both repetitive and non-repetitive electrical transients in an HVDC converter station may be controlled for minimum overall cost. Several methods of inrush control are proposed and studied. The preferred method, whose development is reported in this thesis, would utilize two magnetic materials, one of which is assumed to be lossless and the other has controlled eddy-current losses. Mathematical studies are performed to assess the optimum characteristics of these materials, such that inrush current is suitably controlled for a minimum saturation flux requirement. Subsequent evaluation of the cost of hardware and capitalized losses of the proposed inrush control, indicate that a cost reduction of approximately 50% is achieved, in comparison with the inrush control hardware for the Sellindge converter station. Further mathematical studies are carried out to prove the adequacy of the proposed inrush control characteristics for controlling voltage and current transients during both repetitive and non-repetitive operating conditions. The results of these proving studies indicate that no change in the proposed characteristics is required to ensure that integrity of the thyristors is maintained.

Divisions: Aston University (General)
Additional Information: Department: Interdisciplinary Higher Degree If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: prediction,control,transients,thyristor values
Last Modified: 08 Dec 2023 08:17
Date Deposited: 05 Apr 2011 10:18
Completed Date: 1985
Authors: Barnes, M.J.

Download

Export / Share Citation


Statistics

Additional statistics for this record