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Abstract 
We present in this paper ideas to tackle the problem of analysing 

and forecasting nonstationary time series within the financial domain. 
Accepting the stochastic nature of the underlying data generator we 
assume that the evolution of the generator’s parameters is restricted on 
a deterministic manifold. Therefore we propose methods for determin- 
ing the characteristics of the time-localised distribution. Starting with 
the assumption of a static normal distribution we refine this accord- 
ing to the empirical results obtained with the methods and conclude 
with the indication of a dynamic non-Gaussian behaviour with varying 
dependency for the time series under consideration. 

1 Introduction 
Using neural networks to  predict the return of a financial asset in the future 
conditional upon past behaviour has only received limited success so far. In 
part this is due to  either assumptions of deterministic behaviour or problems 
due to  the stochastic nature and long memory effects leading to  high input 
dimensions. Consequently, a vast numbers of data points is then required to  
estimate reliable statistics about the underlying process. However, requir- 
ing a long time history is a problem as financial time series processes are 
nonst ationary. 
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In this paper we consider an alternative approach to the problem of 
analysing nonstationary financial time series. We accept the intrinsic stochas- 
tic nature of the return generating process by characterising its local distri- 
bution via the probability density function, its characteristic function as well 
as with moments and cumulants. 

Consequently, the assumption of a slowly varying structure of the distri- 
bution allows us to model the dynamics of the nonstationarity in the time 
series. This could be addressed by deterministic models which track the drift 
of the underlying parameters of the distribution and finally forecast those 
transitions. 

We will demonstrate the idea for the proposed methods using the financial 
time series of the daily Dow Jones Industrial Average (DJIA) stock price 
index for approximately the last 100 years, consisting of 27611 samples. The 
closing prices and corresponding returns, defined as the log-difference of two 
consecutive prices are shown in figure 1. From these figures it can be observed 
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Figure 1: The daily prices of the DJIA stock index (above) and the corresponding 
returns (below) for the years 1897 until 1997 

that the prices follow a nonlinear trend and that extreme returns are clustered 
indicating a changing variance of the distribution over time. 

In the following we describe the possibilities to characterise the stochastic 
properties of the time series generating process. First, we introduce the ap- 
proach and results obtained by a direct estimation of the probability density 
function. Afterwards we outline possibilities to estimate the characteristic 
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function as an alternative to the p.d.f. In the fourth section a more direct 
way of obtaining information about the distribution using moments and cu- 
mulants will be introduced. Afterwards we suggest a time-dependent mixture 
model and present evidence for varying distributional properties for the DJIA 
time series. Finally, a conclusion about the considered time series is given 
and some extensions for future work will be outlined. 

2 Density estimation 
Since we want to model financial time series within a probabilistic framework 
we need to  model the probability density function. That will finally enable 
us to produce better decision criteria than just to give an estimate for the 
mean of that distribution, very often obtained in a neural network forecasting 
solution. 

For density estimation we consider here three direct methods, an indirect 
approach will be discussed in the following section. One first direct way 
is to fit the parameters of an explicit density model such as a Gaussian or 
Laplacian one, which is known as a parametric method. A second, non- 
parametric, approach lets the data determine the form of the density where 
a model is not available. One example for this is a kernel estimator where 
the final p.d.f. is approximated as the sum of kernels around each data point 
in the sample [9]. 
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Figure 2: The empirical probability density (solid) for the DJIA returns obtained 
(a) with a single Laplacian (solid) and a Gaussian (dashed) and (b) with a mixture 
of one Laplacian and one Gaussian (superimposed with the corresponding histogram 
respectively) 

The third approach combines both methods, taking from the parametric 
model some prior knowledge about the form of the distribution as a restric- 
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tion for the empirical density, and from the kernel estimator its flexibility to 
model densities which are not covered by the chosen prior. Therefore this 
semiparametric method is also called a mixture model which adjusts its pa- 
rameters in the way to maximise the likelihood that these parameters have 
generated the data, e.g. via the EM algorithm [a]. 

Starting with fitting a single density model to our data we find that 
a Laplacian distribution is more likely to have created the returns than a 
Gaussian one. The negative average log-likelihood results are EL = 1.344 for 
the Laplacian and EG = 1.484 for the Gaussian fit. Figure 2(a) shows the 
empirical density as a histogram and the Laplacian and Gaussian fit. 

In figure 2(b) we contrast a single fit to a mixture of one Laplacian and 
three Gaussians which gives a negative average log-likelihood EM = 1.332 
(a purely Gaussian mixture gives EM = 1.333). In these pictures it can 
be observed that the empirical density of DJIA returns shows a significant 
leptocurtic behaviour (higher peak around the mean and fatter tails than the 
corresponding normal distribution). 
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Figure 3: The empirical density estimates (solid) for the DJIA returns with a 
Laplacian (solid) and a Gaussian (dashed) superimposed with the corresponding 
histogram 

In figure 3 we repeat the plot in figure 2(b) on a log scale in order to show 
the appropriateness of this configuration since it captures the double-linear 
scale of the density. 

These findings about the shape of the distribution suggest that the time 
series has not been generated by a static Gaussian. We consider here two 
possible explanations: 

First, the non-Gaussian behaviour could occur as a superposition of lo- 
cal Gaussians separated in time, which means the returns are normally dis- 
tributed but with varying mean and variance in time. In fact, we will test this 
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hypothesis in the nonstationary section by imposing a time-related constraint 
in a Gaussian mixture model. 

The second explanation is that indeed, the returns follow a non-Gaussian 
distribution, like for instance the stable Paretian distribution, a Weibull or a 
Student t distribution. Nevertheless, even with an alternative non-Gaussian 
parametric model, we cannot rule out a variation in the parameters of the 
distribution. Therefore, the stability of the non-Gaussian distribution over 
time-will be tested later as well. 

Beside using and hence determining the full density function directly, one 
might operate in the Fourier space instead and by doing this estimate the 
characteristic function, an approach we are now going to outline. 

3 Characteristic function 
The characteristic function @(w)  is defined as the expectation of ejwx under 
the distributionp(z) for w E R with j = &i, that is @ ( U )  = l-", ejwx p ( z )  dz 
[4; 101. Once the characteristic function is determined, the p.d.f. can be ap- 
proximated by the inverse transform p ( z )  = & l-", e- jWx @ ( U )  dw. 

Working with the c.f. instead of with the p.d.f. is justified by the fact 
that there are some distributions for which the p.d.f. is not defined, whereas 
the c.f. is always guaranteed to  exist, that is for instance the case for the 
family of stable Paretian distributions [6]. 

In order to estimate the characteristic function one can use a kernel es- 
timator approximating the density as p ( z )  = $ 6(z - xi) leading to 
@(w) = & ELl e jwz ;  [7]. A similar method estimates the c.f. with a neural 
network architecture where two neural networks are constructed to approxi- 
mate the real and imaginary part of the c.f. for a discrete grid of supporting 
points in the w-space and to interpolate between them [3]. 

The result for the c.f. of the DJIA returns obtained by the neural network 
approach is shown in figure 4. Since the time series is real the c.f. needs to be 
determined only for positive w. While in figure 4(a) the c.f. @ ( U )  is plotted 
against w we show in figure 4(b) the log of the characteristic function in order 
to demonstrate their diverging behaviour in the tails. 

It can be observed that the tails of the original dis!rik;tion are fatter 
than the corresponding normal distribution @(w) = e-nw + j w p  with the 
same mean p and variance 0'. Furthermore, while the normal distribution 
declines quadratically in log-space, the c.f. of the return time series seems to 
go down only linearly. This makes it difficult to obtain an accurate approx- 
imation of the corresponding p.d.f. and especially their tails by the inverse 
transformation of the characteristic function. 

An alternative to these non-parametric methods is suggested in [5] where 
the p.d.f. was obtained from a parameterised c.f., for instance the stable 
Paretian distribution, via the Fourier transform. With that it will be possible 
to  apply a maximum-likelihood approach to fit the parameters of the c.f. 
which account for non-Gaussian behaviour. 

N 

59 1 

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 17, 2009 at 05:37 from IEEE Xplore.  Restrictions apply. 



I 
0 2 4 6 8 10 

w 

(4 

Figure 4: The empirical characteristic function for the DJIA returns (bold) and 
a fitted Gaussian (thin) with their corresponding real (solid) and imaginary parts 
(dashed) 

4 Moments and Cumulants 
Another way to  characterise the distribution is to calculate the moments 
M, = J-”, x”p(z )  dx or cumulants K, = (logCr=o=, $Mk)(n)  expressed 

in terms of the moments. They are related to each other via the characteristic 
function due to M ,  = I and K, = Is=u with s = j t .  AS- 
suming that the moments and cumulants represent stable characterisations 
of the underlying stochastic generator, they can then be analysed instead of 
the full p.d.f. 

s=u 

I 

4 I 35.15 I 31.32 

Table 1: Moments and cumulants for the DJIA return time series 

In table 1 we put together the moments and cumulants statistics for the 
(static) marginal distribution of the DJIA returns. Since the skewness reflects 
the degree of asymmetry of the distribution around the mean, we recognise a 
slightly stronger negative tail for the return distribution due to  its negative 
skewness. Furthermore, the high value for the fourth moment supports the 
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findings about the leptocurtic behaviour in a previous section. 
In general, taking into account those higher-order cumulants could over- 

come the limitations of methods based on normality, like for instance princi- 
pal component analysis. Furthermore, once extended to the multidimensional 
case, they can also be used to detect local dependencies in joint distributions, 
which will be investigated as well in the next section. 

5 Nonstationarity 
We mentioned earlier that the variance of the DJIA return time series seems 
to  change over time and that this might actually explain the (aggregated) 
non-Gaussian distribution we found. Therefore we tested the stability of the 
distribution of the DJIA returns by estimating the first four moments M ,  
for non-overlapping time windows of 253 days (approximately one year). 
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Figure 5: The empirical first four moments for the DJIA returns. Note the con- 
fidence intervals for the third and fourth moment reflecting the significance of the 
estimate 

The results in figure 5 show a strong indication for varying moments 
through time. Unfortunately due to using non-overlapping windows we do 
not have enough windows to  make further analysis in terms of dependencies 
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of current from previous moments yet, but this will be considered in further 
studies. 

Nevertheless, apart from a potential varying Gaussian distribution we 
observe also significant non-zero higher order moments indicating a varying 
non-normal distribution. Thereby the significance, expressed as a 95% con- 
fidence interval, is determined by using the surrogate method [ll] based on 
100 scrambled versions of the original data with the corresponding mean and 
variance in each time window. 

Regarding the skewness we find for the first two-third of the time series 
negative values while that became less significant in the final part apart from 
a short drop (late 1980s). 
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Figure 6: The empirical second order cumulant of the two-dimensional joint dis- 
tribution of DJIA returns. Note the horizontal line indicating the significance level 
corresponding to 95% confidence 

Another experiment was performed in order to analyse varying depen- 
dency in the two-dimensional joint distribution here represented by the sec- 
ond order cumulant. Based on [l] we calculated the significance of this cor- 
relation varying in time, again using the surrogate method. The joint distri- 
bution was estimated for the time series lagged with itself by one step. In 
figure 6 we show the variation of the significance of this cumulant, a value 
higher than 1.96 leads to rejecting the null hypothesis of independence with 
95% confidence. 

Finally we focused on segmentation the time series into regimes of con- 
stant distribution. Based on the mixture of experts approach [8] we applied a 
mixture of Gaussians separated in time to the dataset. The model is given by 
p t ( z )  = xEl p ( z l j )  Pt( j )  whereby the component densities p ( z l j )  are time- 
independent and modelled as Gaussians with adapted mean and variance, 
while the prior Pt(j )  is time-dependent. This restriction is simply applied 
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by evaluating a normal Gaussian mixture and determine then the priors as 
a local average of the conditional probabilities P(jlzn) instead of averaging 
over the whole dataset. 
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Figure 7: Segmentation of the DJIA return time series (top) with a time- 
constrained Gaussian mixture model of seven components into regimes of one com- 
ponent generating the data (bottom) based on the time-varying prior (middle) 

Figure 7 shows a part of the time series together with the time-varying 
priors P,(j) and the corresponding state St as the most likely component of 
the mixture to have generated the data at time t. 

There we observe that similar behaviour in the distribution like excessive 
returns are created by states four and five while the more 'quiet' periods are 
covered by the states seven and two. It is also worth noting that it seems 
that two each of the components are highly correlated to each other in terms 
of the prior which could be interpreted as contributing together to provide a 
non-Gaussian distribution localised in time. 

6 Conclusion 

We have presented an overview of techniques which together provide a frame- 
work for analysing financial time series using both stochastic and determin- 

595 

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 17, 2009 at 05:37 from IEEE Xplore.  Restrictions apply. 



istic strategies. We have given evidence t o  support or reject various work- 
ing hypotheses for how financial time series are generated, and provided a 
non-Gaussian segmentation driven by the nonstationarity of distributional 
characteristics. 

References 
[l] G. Deco, R. Neuneier, and B. Schurmann. Non-parametric data selection for 

neural learning in non-stationary time series. Neural Networks, 10(3):401- 
407, 1997. 

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from 
incomplete data via the EM algorithm. Journal of the Royal Statistical 
Society, B, 39(1):1-38, 1977. 

[3] J. A. Dente and R. V. Mendes. Characteristic functions and process identifi- 
cation by neural networks. Neural Networks, 10(8):1465-1471, 1997. 

[4] E. Lukacs. Characteristic Functions. Griffin, London, 1970. 
[5] S. Mittnik, T. Doganoglu, and D. Chenyao. Computing the probability den- 

sity function of the stable paretian distribution. Technical Report 98, In- 
stitute of Statistics and Econometrics, Christian Albrechts University at 
Kiel, Germany, 1996. 

[6] S. Mittnik and S. T. Rachev. Alternative multivariate stable distributions and 
their applications to financial modeling. In S. Cambanis, editor, Stable 
Processes and Related Topics, pages 107-119. Birkhauser, Boston, 1991. 

[7] K. Nanbu. Fourier transform method to determine the probability density func- 
tion from a given set of random samples. Physical Review E, 52(6):5832- 
5838, December 1995. 

[8] K. Pawelzik, J. Kohlmorgen, and K.-R. Muller. Annealed competition of ex- 
perts for a segmentation and classification of switching dynamics. Neural 
Computation, 8(2):342-358, 1996. 

[9] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visual- 
ization. John Wiley, New York, 1992. 

[lo] A. Stuart and K. Ord. Distribution Theory. Kendall’s Advanced Theory of 
Statistics volume 1. Edward Arnold, sixth edition, 1994. 

[ll] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing 
for nonlinearity in time series: the method of surrogate data. Physica D, 
58:77-94, 1992. 

596 

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on September 17, 2009 at 05:37 from IEEE Xplore.  Restrictions apply. 


