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Experimental realization of Fourier plane filters for use in a
coherent optical deblurring system for pictures affected by space-
invariant blurs is discussed. Linear motion blur and defocusing are
the two types of blurs considered. A method of developing phase-
inverting filters as diffraction gratings is given. The amplitude
filters to go with the phase-inverting filters are developed as density
variations on photographic films. The results of deblurring both
linear motion blurred objects and out-of-fccus pictures are presented
and the degree of deblurring achieved is diccussed. It is found that
increasing the noise term in the amplitude filter results in loss of
resolution in the deblurred output. Linear motion blurred object is
then processed with an 'amplitude only' filter after subjecting the
input object to a further blur of the same nature and amcunt as the
original blur. Deblurring filters are also developed as binary
holograms and the deblurred outputs presented and discussed. LoOsS
of resolution in the"output due to coarse amplitude quantization levels
in a binary hologram filter is reduced by splitting the amplitude part
of the filter into two halves and having only one of the halves
encoded in the binary hologram filter while the other is produced as a
photographic density variation. A simple optical method of enhancing
the space-bandwidth product of the binary hologram filters helps to reduce
plotting costs while processing large objects. '
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CHAPTER 1

INTRODUCTTION



Section 1.1 General Introduction

Coherent Optical Data Processing systems are found to be capable
of achieving certain restricted class of operations such as Fourier
transforms, Fresnel Transforms and convolutions. Due to the parallel
processing capability of a lens system which incidgntally forms the
main part of an optical processing device all these operations can be
carried out in parallel at the speed of light. Utilizing such
capabilities of optical systems three major fields have come to
‘prominence : (i) Optical image deblurring (ii) Coherent side-~looking
synthetic—aperture radar and (iii) Correlative pattern recogniticnl. We

in this thesis are concentrating on the implementation of image deblurring

through coherent optical systems.

As the name implies, image deblurring entails generating from a
blurred unsharp photograph as fully sharp and enhanced a picture as
possible. Looking at a blurred photograph one is tempted to think
that most of tﬂé information from the original scene is lost forever.
But, on the contrary, most of the information is still present in the
blurred picture, only in a coded form. Deblurring is essentially a
decoding process which aims at a faithful recovery of the object scene
from the coded (blurred) picture. At this point it is worth noting
one of the limitations of any deblurring procedure: it is impossible
to achieve an ideal 100% recovery, as almost all the blurring précesses

involve irrecoverable loss of some of the information from the object



scene.*

A mathematical function which can be used to represent the impulse
response of the optical system under conditions of blur is known as the
blur function of the system. In its simplest form it represents a
blur that is space-invariant and involving only linear transformations.
(A system is said to be space-invariant if its impulse response remains
unchanged in shape on varying the position of the input). However, we
do encounter in practical situations space-variant and non-linear blurs
(a picture taken with a camera under acceleration provides an example
of non-linear blur). Powerful digital techniques are available to
correct space-variant blurs. Sawchuk3 describes a method of correcting
space-variant blurs by decomposing them to a series of space-invariant
blurs. Those class of space-variant blurs that can be reduced to a
space invariant blur by a pre-processing transformation can be dealt
with by both digital4and optical methods 5’6. We, in this thesis are
limiting our attention to space-invariant blurs which involve only

linear transformations.

In recent years we have seen a flurry of activity in the field of
image processing, with a view to evolve methods for getting high

gquality output with low costs. The various possibilities that exist

. I 7-10
can be broadly categorised under two heads : (1) digital and

(ii) Optical 11_14. The digital methods are mainly computer assisted

* However, recently it has been pointed out that there is a definite
possibility of complete recovery through the use of prolate spheroidal
wave functions. (For details see Reference 2)



and are in general done through transformation into the frequency plane.
The basic steps involved in such a decoding are (i) digitization
(microdensitometer) (ii) transformation into the frequency plane
(computer) (iii) spectrum correction (computer) (iv) retransformation
(computer) and (v) reconstruction of the output (TV screen). Digital
techniques have produced some excellent results and are highly flexible
with capabilities of producing many non-linear transformations. When
it comes to correcting space variant blurs in particular, because of the
broad range of operations possible through computer)digital methods
have proved to be superior to any optical methods that can be
envisaged. (Apart from the freguency plane correction method described
above some iterative algorithms are also in existence for use in
computer aided picture enhancement 1 - Rapidly converging algorithms
have helped reduce the computation time involved and have at the same
time produced results of comparable quality.) The 'transform-operate-
inverse transforms' process has become more attractive after the
invention of the Fast Fourier Transform algorithml7 whiéh has reduced
the computation time by a factor of N2/Nlog2N. The high level of

noise suppression achieved is another advantage of digital methods that

is worth mentioning.

In spite of all that is said above, digital methods do have some
serious disadvantages. First of all, they are very expensive and need
incredibly large storage facilities and fairly high computation times.
This is particularly obvious when processing objects with large space-
bandwidth product. Secondly, sequential mode of operation of computer
makes digital methods relatively inefficient. (Highly advanced computers

are available today which possess a limited parallel processing



capability). Also there is a certain amount of unavoidable error due

to digitization of the input picture.

An alternative approach to this problem of picture enhancement
would be, as noted earlier, by analogue (optical, both coherent and
non-coherent) means. The coherent optical implementation of a 'transform-
operate-retransform' picture processor is quite easy and inexpensive
so long as we are limiting our blur function to the space-invariant
type. For space-variant blurs coherent optical solutions have been
envisaged5 6, bug the methods are not easy and the results are not
comparable with those from digital techniques for the same blurs. For
space-invariant blurs the blurred picture is represented as a convolution
integral between the original object and the blur. Such a blurred
picture on Fourier transformation produces a speétrum which is a product
of the original object spectrum and the transfer function of the blur.
With coherent illumination Fourier transformation is easily carried out
by a lens. The effect of the blur transfer function can easily be
annulled,to a degree,by allowing the Fourier spectrum (of the blurred
picture)to pass through an appropriate filter. This filter is cesigned
after taking into account the type and amount of the blur the original
picture has undergone ,illumination wavelength and the focal length of
the lenses used in the processing system. The corrected spectrum is

recombined (again using a lens) to form the 'deblurred'image.

As mentioned before, this method is very easy and many people have
successfully generated filters for correcting various kinds of blurs.
(We defer a closer look into the various methods that are available at -

present for filter fabrication to a later paragraph of this chapter) .



As opposed to digital methods, optical systems have parallel processing
capability at the speed of light and this is by far the greatest
attraction of an optical processor. But we must point out that the
quality of outputs obtained from a coherent optical processor is not
as high as that from a digital image processor. However, coherent
deblurring can be a worthwhile first stage operation(basically to
reduce the cost involved)before the final enhancement is done through
a computer. The main drawback of a coherent system is its inherent
noise. The noise is mainly due to the following two reasons : (i) a
. 18 . .

coherent system is non-redundant and hence noise encountered in
any part of the system(e.g. a film of dust in any one of the lenses)
becomes inseparable from the output image (ii) photographic emulsions
are always used to both input information into and record the output
from a coherent system. Graininess in the emulsions causes scattering
and is another source of noise. Processing of signals in the presence
of noise has necessitated certain assumptions regarding the nature of
noise and also led to setting up of some criteria for best processing.
For example, photographic grain noise on an input recording is

: . o . .19 .
considered as a signal dependentrmultlpllcatlve noise . The Wiener

. 20 . . . s

filter which is arrived at by reguiring that the mean squared error
between the recorded image and the ideal object is minimum can be cited

as an example utilizing a convenient criterion.

Extensive work on the cause and the nature of noise in coherent
optical systems has already been done and it is not our intention in
this thesis to go into this problem in any detail. However, we would

like to note that Wiener filtering has reduced a great deal the



problem of system noise in coherent deblurring.

The main contribution of this work is developing various ways of

implementing a Wiener filter processor.

(There is another way of greatly reducing the problem of noise in
optical processors. That is by replacing coherent illumination with a
spatially noncoherent illumination. As a noncoherent processor 1is
highly redundant, local blemishes and other sources contributing to
noise only lowers the overall contrast of the output. Since a noncoherent
system deals with only intensity values the point spread function of the
system is limited to be wholly positive. This curtails the use of non-
coherent systems in cases involving complex impulse responses. However,
in recent years there has been a good number of publications that look
into the possibility of processing complex blurs by noncoherent

21-25
processors . )

As already noted)design and fabrication of a suitable filter for
modifying the object spectrum is the most important step in a coherent
deblurring experiment. 2Abbe 26 by his explanation of image formation
through diffraction has indicated the possibility of spatial filtering
for image modification as early as 1873. Subsequentl% in 1935 Zernicke2
made use of this idea in his phase-contrast microscope for imaging
phase-objects. A deblurring spatial filter in the general case, should
be able to modify both the amplitude and phase of the object spectrum
and, hence, should have in general a complex transmittance function.
Maréchal and Croce 28 generated a purely attenuating filtexr which

corrected only the amplitude part of the spectrum., With that he was



able to improve the contrast of a photographic image.
29

Tsujiuchi by sandwiching an attentuating part and a phase shifting
part fabricated a complex deblurring filter for correcting out-of-focus
pictures. The phase-shifting part was made by vacuum deposition of
aluminium in sufficient gquantities to retard light used in the experiments
by half the wavelength. The phase shifts were effected in alternate
annular regions in a good quality glass plate. The attenuating part
was made using a photomechanical technique by photographing an.
illuminated rotating mask which has a completely transmitting region
on an opaque background. The profile of the transmitting region is
so designed that it generates on rotation a desired intensity pattern.
This pattern is converted to an amplitude transmittance variation on
a photographic f£ilm by a suitable photographic process. Holladay and

30 describe a method of generating phase filterswith OO and

Gallatin
l8OO regions, using polarized light and photographic printing. Though
this filter is originally designed for matched filtering, it can well
form the phase part of a deblurring sandwich filter. Mountain 31 has
recently shown that a photoresist relief image can be used to retard
phase in a controlled fashion. He has, since then, calibrated the

phase shifts with respect to a number of experimental parameters involved

in generating the photoresist image and has generated photoresist phase

filters for out-of-focus picture correction.

Wwith the advent of holography many holographic deblurring filters

were proposed and implemented 32—36. The development of a holographic

37
spatial filter for matched filtering was first reported by Vander Lugt

Subsequently, the method was developed to a considerable extent by such



workers as Stroke38, Tsujiuchi39 and Krusos4o. Holographic technique

is applicable only if the point spread function of the blur is readily
available. If this is the case, a holographic filter for application

in image deblurring is easily constructed, starting from the image

of a blurring point spread function.

However, since the blur transfer functions have a véry large
amplitude range, photographic processes for recording the holograms
were found to be inadequate. This is due to insufficient linear range
of the photographic emulsion. Stroke and Halioua al found a method of
getting round this problem, by recording the amplitude part of the
deblurring filter separately on a combination of two photographic
emulsions which, together, gave a linear range sufficient to accommodate
the amplitude variation. Goodman 42came up with yet another solution
by modulating the input and the blur point spread function with a
transmission grating. By doing so, the corresponding Fourier spectrum
was divided into a series of Fourier coefficients, each coefficient
having a range small enough for being recorded in the linear range of
the photographic film used. By developing an exposure device controlled
by a nonlinear amplifier Minemoto 43 was able to correct the effect
of film nonlinearity. Consequently he was able to utilize the entire
dynamic range of the film, not just that portion where the characteristic
curve is linear. Ragnarsson a4 reported the fabrication of a Wiener
deblurring filter for defocusing as a single hologram. The hologram,
which was formed using a weak reference beam, was bleached and had
produced a deblurring filter with a significantly large linear response.
This filter was also found to be automatically optimum with respect to

granularity noise in the input image.



With the introduction of large computers and efficient
high resolution plotters,it was possible to generate digital holograms
through computer. Particularly interesting are binary holograms with
only two levels of amplitude transmittance, either zero or one. These
binary holograms are easy to fabricate and are a quantized (and hence
approximate) representation of a complex wavefront . Lohmann and Paris
utilized binary holograms, for fabricating filters for many optical
data processing applications. Ope of the main advantages of computer
generated holograms is the fact that any mathematically defined filter
function, not necessarily having a realizable point spread function can
be generated using a computer. Friesem and Peri46 have generated Wiener
filters, for correcting out-of-focus pictures,as Lohmann holograms.
Apart from the fact that a Lohmann hologram spatial filter is only an
approximate digital representation of a continuous function, it has
two major practicél limitations. First, when.used to process large
objects, the filters should have a space-bandwidth product at least as

large as that of the object. Consequently, production of computer-

generated filters involves very large computing and plotting time and

hence can be expensive.

A suggestion for bringing down the computing time was put forward
by Lowenthal and Chavel 47 and was made use of by Friesem and Peri
in their work described in reference ?6‘Lowenthal and Chavel's method
involves producing a high space-bandwidth product 'natural hologram'
filter by combining a reference beam at an appropriate angle with the
image produced by only the first order spectrum from the low space-band-

width product computer generated spatial filter.

e}



The second serious limitation of a Lohmann hologram is its
inability to code low amplitude values in the filter. This is due to
the limit imposed by the plotter-pen resolution on the minimum
amplitude value that can be coded. We address this problem in Chapter 6
which gives a detailed aﬁalysis of computer generated binary holograms

with special emphasis on application to spatial filtering.

As opposed to the above mentioned method of image enhancement by
what is essentially 'Fourier transform division' filtering, there
are two other methods worth mentioning not involving Fourier transformation.
The first is by performing a further convolution-on the blurred
picture; the new convolution kernal is so designed that it convolves
with the blur point spread function to give a §-function. Tsujiuchi
and Honda48 describe an interesting analogue electrical deblurring
technique for motion blurred objects. They use a scanning technique
and the scanning impulse response is derived by Fourier transforming
the inverse of the blur transfer function. For motion blur, the
scanning deconvolution is easily achieved, since the scanning impulse
response is a binary function and is readily fabricated. This idea is
utilized by Fleuret, Maitre and Cheval 49 for making a Fourier-
transform division filter for optical deblurring. The starting point
is the deblurring impulse response, which has a simpler form, and the

Fourier plane filter is produced as a Fourier transform hologram.

The second non-Fourier plane deblurring experiment is described
. _ 50 . .
in a paper by Peri and Friesem recently. Enhancement is achieved
by a space (object) plane filter. The filter is fabricated as a

volume hologram which has a selective angular diffraction efficiency.

10



Since diffraction angle in the object plane has the same meaning as
spatial frequency in the Fourier plane, a volume hologram with properly
controlled angular diffraction efficiency variation can effect the

same spectral modification as a Fourier plane inverse filter. As this
method does not require intermediate Fourier plane processing, with
short focal length imaging lens, a compact optical system is produced.
As grating filters located in the object plane do not produce dispersed
images, white light processing capability is another advantage of the

method.

The present work is mainly practical implementation of optical
Fourier plane deblurring filters for blurs due to linear motion and
defocusing. The second section of this chapter gives a brief
mathematical introduction to optical deblurring. In Chapter 2 we
describe a method of generating 'phase-filter'as a diffracting grid.
The 'amplitude' part of the deblurring filter for linear motion blur
is developed in Chapter 3. The 'amplitude' filter for correcting
out-of-focus picture is developed in Chapter 4. 1In Chapter 5 we have
deblurred a motion-blurred picture by a positive only filter after
having subjected the blurred picture to a further blur of the same nature
and amount. Chapter 6 gives a detailed analysis of binary holograms.
We look at their application to image deblurring and consider their
limitations. We summarise the main developments of this thesis and

give our concluding remarks in Chapter 7.

Section 1.2.

Mathematical Preliminaries.

The theoretical background of optical spatial filtering is well know

-

171



However, for the sake of completeness we give a brief outline of the

mathematics involved.

Formation of a blurred photograph (for that matter any photograph,
blurred or sharp) can be described, in general, by the superposition

integral

g(x,y) = ./ /' f(x',y") hix,y:x',y") dx'dy'  «ceeeeiao..n (1.1)

where g(x,y) and f(x,y) are the image and object intensity distributions

respectively and h(x,y) is the impulse response of the optical system.

For certain types of blurs, which include linear motion of the
camera and defocusing under the assumption that the picture occupies
only a limited region of the field, Egn 1.1 can be simplified to a
convolution integral

odl

g(x,y) = (/ /. £(x',y'") h (x—x',y-y') dx'dy' .........n .. (1.2)

In the Fourier plane Egn 1.2 can be written as

G(vx,vy ) = F(vx,v y H (VX,VY) ............. (1.3)

where G,F and H are the Fourier transforms of g, £ and h respectively.

By passing Eqn 1.3 through a filter with transmittance proportional

to L we can recover F(vx,vy) completely provided H

H(v ,v )
X Y

never goes to zero within the region where F(vx,vy)+ 0.

12



But unfortunately this is not the case in most of the practical
situations and the image recovered by spatial filtering is seldom

perfect. Moreover, since H(vx,vy) in almost all the cases is found
to decrease rapidly with freguency , ET;E—;—T has the undesirable
x'y

effect of enhancing high frequency noise in the image. The filter
should ideally be of infinite lateral extent, which obviously cannot
be achieved. The higher the number of lobes, the biggéer the contrast

of the filter which means higher densities in the central region of the

1

v
H(vx, y)
has infinities at cross-over points (i.e. where H(vx,vy)=O) and in

filter which pushes up the deblurring exposure time.
practice we can only have approximations to it.

These drawbacks are overcome to an extent by replacing v v )
1
X Y

by what is known as a Wiener filter 20 which has been arfived at
using a Least Mean Square Error criterion between the ideal object
and the recovered image. In the Fourier plane, the Wiener filter has
the form H*/(H2 + ¢) where H* is the complex conjugate of H and €

is the ratio betweén noise and signal (object)power spectral densities.
The Wiener filter has no infinities in it because of £ and hence there
is no need of approximations while fabricating. Also because of ¢

it is laterally self limiting. Compared with the inverse filter,

Wiener filter has a limited amplitude range.

1 2 . ,
The filter function, either T or H*¥/(H  + €) which in general
, . i¢
has a complex transmittance function, can be expressed as Hampe

where Ham is a purely amplitude modulating part (hereinafter called

amplitude filter) and el¢ a purely phase modulating part (hereinafter

12



called phase filter). In Chapters 2, 3 and 4 of this work we present
how we developed the final filter function as a sandwich between the
amplitude and phase filters which are made separately. In Chapter 6
we developed the filter as binary holbgrams representing both the

amplitude and phase parts simultaneously in the same hologram filter.

14



CHAPTER 2

THE PHASE-INVERTING GRID : ITS CONSTRUCTION



Section 2.1. Introduction

A blur transfer function can be in general complex. However, in
certain cases of blurs, with circular or line symmetric point spread
functions (e.g. linear motion blur and defocusing) the blur transfer
function is real, but not wholly positive. Hence the correcting filter
function should be able to fulfil two requirements : (i) attentuate
the object spectrum in such a way that the modulus of the blurred
object spectrum resembles as closely as possible to the modulus of
the unblurred object spectrum; (ii) effect phase inversion in those
frequency regions where the blur transfer function has negative values.
It is common practice to develop the correcting filter as a sandwich
of two parts, one a purely attenuating part (called the 'amplitude
filter') and the other a phase shifting part (called the 'phase filter').
In some of the deblurring experiments described in this work, we follow a
similar approach and fabricate the amplitude and phase filters separately.
In this chapter we describe how we develop phase filters as diffraction

gratings, for linear motion blur and defocusing.

The principle of a diffraction grating phase filter is that it
introduces phase changes by 'detour phase variation'in the diffraction
image as first pointed out by Lord Rayleigh. This detour phase ceding
is utilized by Lbhmann56for representing phase in a computer generated
hologram. As our blur transfer functions here are real (having only

positive and negative values) our correcting filters need have only two

15



phase values, O and 180°. 1In a grating phase filter, as we move from
a positive region (Oophase) to a negative region (180O phase) the lines
in the grating shift in position by half the period of the grating. The
useful image (here,the corrected picture) is observed either in the +1

or -1 order spectrum of the grating.

Stroke et al >’ generated a phase-shifting grating by using a
computer plotter to draw a master grating with appropriate phase shifts.
The performance of such a grating depends, a great deal, on the
positioning accuracy of the plotter pen and also on the uniformity of
ink-flow in the pen. Moreover, production of a large space-bandwidth
product filter using the plotter is time consuming and hence, expensive.
However, Chavel and Lowenthal47 have suggested a method of producing a
large space-bandwidth product filter from a computer generated low

frequency filter by optical heterodyning.

We here generate our grating optically on a high contrast 'switching'

film using a lenticular grid and a rectangular light source.

SECTION 2.2. A sqguare-wave grating with lenticular grid and high

contrast f£ilm.

A lenticular grid is a series of good quality perspex cylindrical
lenses placed side by side on a perspex base. The separation between
the cylindrical lenses is typically 0.3 - 0.5 mm and the overall thickness
of the grid (including the base)is about 3 mm. A diffuse source of
light set in front of the lenticular grid produces, by the cylindrical

lens effect, a series of light stripes in the image plane of the

16
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Fig.2.1.

The switching nature of the recording film is
used to.generate the black and white grid. The
packground intensity due to scattering is not
recorded.
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cylindrical lenslB. Across each Stripe there is an intensity variation
proportional to the geometrical shape of the diffuse light source

used. Using the same principle Jacobs58 produced a triangular repeated
variation of intensity, by having a triangular diffuse source in front
of the lenticular grid. By imaging the repeated intensity wvariation
through a continuous tone picture, Jacobs generated a pulse-width
modulated carrier wave picture of the same continuous tone object.

The pulse width modulated picture was produced on a 'switching' film.
The point of switching due to the triangular intensity variation (and

hence the width of the opaque line generated) depends on the optical

density variation in the original continuous tone photograph.

We have used a method similar to Jacob's pulse-width modulated
photography to generate a square wave grating. In our case, we do
not want a pulse-width variation across the grating; instead the line-
width should be as constant as possible. We have achieved this by
replacing the triangular source in Jacob's experiment by a square-
topped source. The square-topped source 1is imaged onto a high contrast
film through a lenticular grid of the same frequency as the grating
we want to generate. The width of the square-topped source is so adjusted
that the rectangular stripes of light generated by the lenticular grid

occupy exactly half the lenticular period.

When such a light distribution is recorded on a high contrast
switching film, a grating with nearly l:1 black to white ratio is
produced. The point of switching is controlled in such a way that
the scattered light forming a bias to the rectangular intensity stripes
is not recorded, while the rectangular stripes themselves are fully

recorded (see Fig.2.1l).



(b)

Fig. 2.2 Preparation of (a) the complementary grids,
(b) complementary masks and (c) the composite
grid: (1: first exposure, 2: second exposure
and F:the lithographic film)
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We have used this grating, as described in the next section, to

generate phase-shifting grids for linear motion blur and defocusing

Section 2.3. Phase-shifting grating from lenticular grid.

The squars-wave grating generated from the lenticular grid is
printed onto a lithographic film (Fig.2.2a). Both the grating and
the lithographic film are punched for a standard.registration bar and
while printing the film and the grating are registered carefully in
the same registration bar. The grating, lithographic film and the
registration bar are held in a vacuum printing frame. The lithographic
film, after processing, gives a square wave grating which is a
complement of the one produced from the lenticular grid. Thus we
are able to produce two gratings of nearly 1l:1 black-to-white ratio

with an 180° phase shift between them.

Two control masks are made on the lithographic film, one the
complement of the other, which pass between them the positive and
negative regions of the blur transfer function. The second control mask is
made from the first by printing using the punch and registraticn bar
tq ensure proper registration (see Fig.2.2b). We have made two pairs
of control masks, one for the sine functieon(which is the blur transfer
J. (x)

function for linear motion blur) and the other for B — (the blur

transfer function for defocusing, where J, is ‘the Bessel function

of the first order, first kind.

The phase-shifted gratings are then printed onto a lithographic film,
the first grating through one of the control mask and the other through

the complementary mask (See Fig.2.2c). Both the printings are done in






IIII%

i

(a)

i

(b)

Fig.2.4 Highly magnified photographs showing a part
of the junction between the positive and
negative regions of the filter. (a) linear
motion blur; (b) defocusing.
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a vacuum printing frame with the film, grating and the mask registered
well on the registration bar. The composite print so obtained forms

the master grating which when reduced onto a high resolution plate

gives the final phase filter.

Section 2.4. Experimental.

The exposure and development of the lithographic film for correct
switching are found by trial and error and they are maintained the
same in all the steps involved. The lithographic film used is Kodalith
ortho type 3 (2556). It is developed in Kodalith super developer type A
and type B, mixed in the same proportion (diluted 1:3) for 2% min at
2OOC. Great care should be taken against misalignment while taking the
composite print. The final grating is carefully checked under a

microscope for registration.

The punch and registration bar are made by Kodak, a photograph
of which is shown in Fig.2.3. For details, see Kodak Art Reference

leaflet 'GA-Ref 7°'.

In the case of linear motionblur the master grid we made is about
200 mm wide and has about 500 lines in it. The master grid for
defocusing is about 75 mm in radius with about 375 lines. The black-
to-white ratio we could get was not exactly l:1. However, since the
black-to-white ratios in the positive and negative regions of the
filter are complementary, the diffraction efficiency of the regions
is the same. An enlarged version of the part of the filters (for both

linear motion and defocusing) containing a junction between the positive

and negative regions is shown in Fig. 2.4.
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Slight non-uniformities present in the master grids were
accentuated by the high contrast nature of the Agfa 1OE75 or 1OE56
plate onto which they were reduced. We overcome this difficulty
by combining the mastergrid with its own unsharp copy made with an
average contrast of slightly less than one. (The unsharp copy was made
in Ilford Technical Orthochromatic film, using Ilford ID1ll developer) .
This corrected the low frequency drift in the master grid and the

reductions from it were found satisfactorily uniform .

The final grating for linear motion blur was about 7.7 mm across
-1 .
with a spatial frequency of about 65 lines mm ~. The corresponding

values for the defocusing filter were 8.00 mm and 63 lines mm



CHAPTER 3

THE AMPLITUDE FILTER FOR LINEAR MOTION BLUR



Section 3.1. Introduction

In Chapter 2 we discussed the construction of a 'phase filter'
which forms one part of the sandwich deblurring filter. As menfioned there,
the second half of the sandwich filter is a purely attenuating part,
which we call the 'amplitude filter'. The amplitude filter is designed
to cancel the effect of the modulus transfer function of the blur on
the object spectrum. In this chapter we describe a method of fabricating
amplitude filters for linear motion blur, as a density variation on
photographic films. The method described here is applicable only when
the blur transfer function is one dimensional. The amplitude filter for

2-d and circular symmetric blurs is developed in Chapter 4.

Stroke et allz, in their work on constructing sandwich filters
using holography, describe, among other things, a method of generating
the amplitude part of a simple ‘inverse filter'. There, it is assumed
that the impulse response of the blur is known and is easily realizable
optically. (An example is the blur due to defocusing where a
transmitting circle on an opaque background is the impulse response of
the blur). From the blur impulse response, using coherent optics, the
blur transfer function is easily realized as an amplitude distribution
in the focal plane of a lens system. By recording the resulting
intensity distribution on a photographic plate procéssed to a suitable
contrast index, Stroke et al12 generated a filter with amplitude

transmittance variation proportional to the inverse of the modulus

transfer function of the blur.



Obviously this method is limited, in its application, to only
generating simple inverse filters. For, in the case of a least-mean-
square filter (i.e.Wiener filter) the impulse response is not quite a
straight-forward function and is not easily realizable. However,

44 ) ,
Ragnarsson describes an ingenious Fourier transform method of
generating a Wiener filter, as a single hologram, using a non-linear
recording process. Way back in 1961 Tsujiuchi 29 had described a
photomechanical method of generating the inverse filter for correcting
, 57

out-of-focus pictures. Subsequently, Stroke et al adapted
the same technique for generating Wiener amplitude filters for
circular symmetric blurs. The photomechanical technique 1is quite

. . . ' 44 :
useful in that it allows, unlike Ragnarsson's method ~, generation of
Wiener filters without restriction on the value of the noise parameter €.
This means, a parameter in the hands of the experimenter, that can be

p
set for best deblurred output.

29 . .
Tsujiuchi's method is suitahle when the blur function is
circular symmetric and hence cannot be used for linear motion blur.
Here we describe a method,which has the flexibility of Tsujiuchi's

method,of generating amplitude filters for linear motion blur.

For linear motion blur the impulse response is given by a

rectangular function defined as

rect (x/a)= 1 for |x|<a/2  aeee.iiaaiiiaLl (3.1)
= O otherwise
. . . Sinx .
So the blur transfer function is proportional to < . A correcting

and the Wiener filter,

. . X
inverse filter has the form Sinx

oY~y
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Section 3.2 Cylindrical lens: Conversion of a mathematical function,

represented as a transmitting area variation, into an intensity variation

Rogers in a paper on artificial holograms gives a method of
producing continuous tone holograms of 1-d objects using a cylindrical
lens. In particular he describes an arrangement for making a hologram
for an object consisting of two wires. There, Rogers uses a cylindrical
lens imaging system to convert a transmitting area variation in an opaque
background (representing the Fresnel transform of the object) to a
corresponding intensity variation. A continuous tone hologram is

formed by recording this intensity variation.

We use a similar cylindrical lens imaging system to generate an
intensity variation proportional to the transmittance of the amplitude
filter we want to construct. The principle of the method is described
as follows : With reference to Fig.3.l a transilluminated object O,
which has a fully transmitting area between y = f£(x) and x=-axis in
an opaque background is imaged through a cylindrical lens C. Eacn of
the points in any line parallel to y-axis, say OY, is imaged by the
cylindrical lens as a line (here 0OY1l) in the output plane O,in the
same position. SO, the intensity along OY1 is proportional to the
height o£ the opening OY in the object. As a result, the intensity
variation in the output plane is proportional to the function
represented by f£(x) in the input plane. Here we assume that the

cylindrical lens has a sharp line spread function which can be
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approximated to a ¢ function. If this assumption cannot be made the
design of a black-and-white object is not straightforward and should

take into account the spread due to the finite line spread function of the

lens.

Assuming that the linespread function of the cylindrical lens is
unsharp but stationary, the intensity variation in the output
plane I(x),is related to the intensity function in the input plane, O(x)

through-
g oo

I(x) = /’ O(X')L (X=X") AX" tievternesecncensasasosscansnnaans (3.2)

where L is the line spread function of the cylindrical lens.

The nature of the function L can be determined experimentally,
to a reasonable accuracy, by imaging a point source through the
cylindrical lens. Once the line spread function and the output
intensity to be generated are known, EJdn 3.2 can be solved for O(x)l

the input plot.

A Fourier transform solution can be attempted for Egn.3.2 and
the resulting O(x) values are the new y-coordinates of the function
represented in plane I (Fig.3.l). It is possible that O(x) takes
both positive and negative values and this poses a practical problem.
Adding a uniform bias to make O(x) wholly positive is a way out. This
also helps while recording the intensity pattern, since the low
intensity regions of the signal are pﬁshed beyond the non-linear 'toe'’
of the H - D curve of the photographic emulsion used, provided the

larger intensity regions still remain in the linear range.

~
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Fig.3.2(a) The central region of the cylindrical lens line spread
function.

(b) Microdensitometer trace across the line spread function.
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Fortunately we do not have to resort to such a complicated
correction procedure, since the achromatic cylindrical lens we used
has a sharp line spread function in the central region of the lens.

The line spread function and a microdensitometer trace across it are

shown in Fig. 3.2.

The black—and—whité object I of Fig. 3.1 is made with the help
of a computer plotter. The profilé of the required function is drawn
through the plotter and the area enclosed between the curve and X-axis
is inked and the resulting pattern is photoreduced onto a high contrast

film (e.g. Kodalith Ortho type 3 (2556). ).

Corresponding to the poles of the function represented here it
is noticed that the intensitf at the output plane was not zero. This
is because the functions are not well behaved at the poles and the
steep rise on both sides of the poles results in a small amount of
light being spread into.the region of the poles. We have overcome
this by, first, slightly smcothing the curves arcund the poles and

second by enlarging the poles to either sides by a small amount.

Section 3.3. Intensity variations for different amplitude filters and

the generation of filters by photographic recording of the intensity

variations.

Three black-and-white objects are generated on Kodalith film.
. 2
S;“) (Fig.3.3a)

The first has a clear region between x-axis and y =<

This is used as the input in the set-up shown in Fig.3.l and the

. 2
. Sin x .
output intensity variation proportional to = /), 1S recorded
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with a photographic contrast index value (gamma) of one. The record
has an amplitude transmittance proportional to |x|/|Sinx| (which is
the required amplitude transmittance variation of an inverse filter)
provided we are in the linear réngé of characteristic curve of the
emulsion. However, in this case we ére well into the non-linear region
of the curve at some places and henée we can only get an amplitude

mask which approximates the modulus of the inverse filter function.

The second and third black-and-white objects are designed to give
appropriate intensity variations for producing Wiener filters with
noise ratio parameter(€) equal to 0.05 and 0.1 respectively.

Following the method described in the previous paragraph, for inverse

2
filters, we can place profiles of (H2 + g)/(H) (where (
Sinx , . . . ;
H = ——;—-) in front of the cylindrical lens and by recording the i

proportional intensity distribution in the output, with gamma equal
to one we can get Wiener filters with amplitude transmittance

, 2 2 2
proportional to |H| / (H +¢€) . But {(H +¢) / [H] } goes to
infirity when sinx = o. So we have placed in front of the cylindrical

lens{‘H!/(H2+g)}2 instead. (Fig. 3.3 b & c). This necessitates taking

a print of the 'negative' filter obtained from the cylindrical lens.

In our case the middle region of the cylindrical lens where the line
spread function is sharp, is long compared to the maximum value of y
in the input profile. Hence a substantial region in the output plane has
an intensity distribution proportional to the input profile. Great care

was taken to align the y-axis (of the input function) parallel to the

axis of the cylindrical lens.

The film we have used for recording the intensity pattern is Sp348,
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Fig.3.4. The calibration curve for Ilford Technical

Orthochromatic film (SP348) . The developer
used is Ilford PQ universal at 1:9 concentration;
development time is 3 mins.at 20°C. y = 1.
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now called the Ilford Technical Orthochromatic. It is calibrated
using a standard step-wedge and we have obtained a contrast of one
approximately when developed for three minutes in Ilford 'PQ Universal'
with 1:9 dilution at 20°C. The calibration curve which is a plot of the

intensity values in logarithmic scale, versus optical density, is

shown in Fig.3.4.

(Alternativgly, the film can be calibrated using the cylindrical
lens. By placing a binary step function with known step-ratios in
front of the cylindrical lens we obtain a range of intensity steps of
known ratios. These steps are recorded and processed and the density
values measured. Thus the H-D curve is plotted and the emulsion

calibrated).

From the amplitude transmittance values of the inverse and Wiener
filters, we calculated the corresponding optical densities. These
densities are plotted in Fig.3.5. We excluded those points corxresponding
to H(x,y) = 0.0 which would result in completely transmitting and
completely opaque regions in the inverse and Wiener filters respectively.
From Fig.3.5 we see that for a filter with three side lobes, the density
range for an inverse filter is from 0.0 to 3.8 while for Wiener
filters (€ = 0.05 & 0.1) it is only from 0.0 to 2.3. 1Ilford SP348
emulsion for the development specified in the last but one paragraph
has a linear range from 0.3 to 2.50. The film is prefogged, typically
2 - 3% of the main exposure, to push all the low density regions inta
(The high density regions in the Wiener filters still

the linear range

remain just within the linear range). So, excluding the points where
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H(xX,y) = 0.0 and their immediate neighbourhood, we see that for the

Wiener filters, we are just within the linear range of the film.

Amplitude filters are generated with £ = 0.0, 0.05 and O.l.
(%_= 0.0 gives an approximation to the lxl /Isin xl function). The

filters produced are shown in Figure 3.6. Microdensitometer traces,

taken across the filters are shown in Figure 3.7.

Section 3.4. Optical processing system and the deblurring

experiment :

Linear motion blur is simulated in the laboratory, using the
method described by Goodman 42. The blurred negative and positive
are recorded in Ilford SP348 film. Gamma, while recording and printing
is maintained at v¥2 so that the overall gamma of the positive is 2
and its amplitude transmittance is proportional to the intensity
distribution in the blurred object. SP348 developed in Ilford 'Phenisol’
diluted 1l:4 for 2% minutes at ZOOC gives a contrast of V2 approx-—
imately. The blurred object is shown in Figure 3.8. The film is
pre-fogged slightly to get all the low desnity regions of the object

recorded in the linear range of the film.

An optical processing system is set up on two optical benches,
each ém long on vibration free mounts (polystyrene foam). (See
Fig. 3.9 for a schematic representation) . One carries the laser L,
beam expander BE, a collimator C (a 178 mm lens) object I and a Fourier
transforming lens Ll. (A914mm aerial camera objective). The second
bench carries an aerial camera of 914 mm focal length, the objective

of which forms the second Fourier transforming lens (L2). The
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blurred object, immersed in a cedarwood oil gate so thét nonuniformities
in the recording film are compensated is mounted at the first focal
plane of the first Fourier transforming lens (Ll). The lens Ll
Fourier transforms the blurred object and the spectrum appears at its
second focal plane (F). The distance between the two Fourier
transforming lenses is so adjusted that the first focal plane of the
first lens coincided with the second focal plane of the second lens

and in this plane (F) we mounted the deblurring filter. The corrected

spectrum is recombined by the lens L2 to form the deblurred output.

The object shown in Figure 3.8 is deblurred using sandwich
filters formed between the phase filter, developed in Chapter 2, and
different amplitude filters. The deblurred outputs are shown in Figure

3.10.

Section 3.5. Results and discussions.

The results shown in Figure 3.10 show a considerable improvement
on the original blurred object of Figure 3.8. The spread in the
horizontal direction, the direction of the blur and the contrast
reversals suffered by the blurred object (especially noticeable
in the second and third lines) are quite sufficiently rectified. (The

contrast reversals in the blurred image are due to the negative regions

in the blur transfer function).

With € = 0.0, the deblurred output has invariably some noise in
it. This is because the inverse filter is high frequency enhancing
and the high freguency noise encountered in a coherent system

{(photographic grain noise, dust on lens surface etc) is amplified.
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With € = 0.1 the noise suppression is good but the resolution of the
output is affected by the high frequency attenuation caused by the
amplitude filter. The best result is produced with & = 0.05 when most

of the noise is suppressed with the object resolution not seriously

affected.

Even though the deblurred outputs show a great deal of enhance-
ment, we must point out that they never can be as good as the original
object. This is due to the loss of information suffered at the poles
of éhe blur transfer function and this information is not recovered
by our processing. The physical size of the filtex, which is limited
by the dimensions of the lenses used in the processing system, imposes
a limit on the space-bandwidth product of the filter. The highest
frequency allowed through the filter may fall much below the 'cut—-off'
frequency of the Fourier transforming lenses and hence the filter
can have a restricting influence on the ultimate resolution of the
output, as well as the limit set by the optics involved in the

processor.
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CHAPTER 4

THE AMPLITUDE FILTER FOR OUT-OF-FOCUS PICTURE CORRECTION



Section 4.1 Introduction

Here, as in the previous chapter, we develop the amplitude filter
as a density variation on a photographic film. The cylindrical lens
method of Chapter 3 suits very well when the blur transfer function is
line symmetric. For defocusinglthe blur transfer function is circular
symmetric and here we have adapted the rotating disc method of Tsujiuchi29
to generate an intensity variation proportional to the Wiener filter
amplitude transmittance of the blur. This intensity variation is then
converted into a proportional amplitude transmittance variation by
photographic recording with a suitable gamma provided the recording is
done entirely within the linear range of the film used. Since the
blur transfer function for defocusing has a very large range, the
intensity variation proportional to the Wiener filter amplitude
transmittance also has a very large range falling well into the nonlinear
regions of the film. So the filters generated here possess a certain
amount of error introduced due to film nonlinearities and they are only

approximate representations of the true Wiener filter amplitude

transmittance.

We have attempted to correct the effect of film nonlinearity by
employing a computer assisted method to generate the filter. We have
made use of an image processing peripheral (known as the FR80)

available at the Atlas computer Centre, Chilton (Oxfordshire) to
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produce a predetermined intensity variation. Again, we were limited
by the maximum intensity step available in the FR80 to produce the
highest density value. As a result,the low transmittance regions of
the filter suffer abrupt jumps in transmittance variation and the
filter does not accurately represent the theoretical Wiener filter

function. The details of the attempt are given in Section 4.2.

In Section 4.3 we have developed Wiener filters for circular blur
using a slightly modified version of the method first described by
Tsujiuchi (Miles62 used a similar method to generate sinusoidal zone
plates). 1In this section we have not tried to incorporate film non-

linearity correction.

A few suggestions for eliminating the errors due to film nonlinearity
while using the photo-mechanical method of Section 4.3 are given in

Section 4.4. We have not tried to implement these suggestions.

The filters developed in Section 4.3 along with the phase filter
of Chapter 2 are used to deblur out-of-focus pictures. The experimental

results are discussed in Section 4.5.

Section 4.2. Quantized amplitude filter through computer aided

design.

The image processing peripheral FR8O 1s capable of producing
256 intensity levels on its output screen. The complete plotting area

has coordinates from O to 16383 in both directions, with separate
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addressing capability for each of the coordinate points. Combined
with a 35mm camera, each point (or raster unit) recorded has a width
of 0.0000596". This high resolution in conjunction with the 256 level
grey-scale help to produce an almost smooth representation of any
continuous-tone amplitude transmittance variation that falls within

the grey-scale range of the FR8O.

For generating the Wienexr filter the fcllowing procedure is
adopted: Using all the 256 intensity levels an intensity-step function
is produced on the output screen. This step function is photographed
onto Ilford HP4 film using the 35mm camera attached to the FR80. The
film is developed in Ilford Phenisol (diluted 1:4) for 4 minutes at
ZOOC. (We choose this developer and the development time, since this
combination gives a wider range of densities for the available
intensity variation). The optical density values of the various steps
produced are measured accurately using a densitometer. The Wiener
filter is then considered to be divided up into a finiﬁe number of
annular regions and for each of these regions the average amplitude
transmittance is calculated theoretically. These amplitude transmittance
values are then converted into the corresponding optical density
values. By comparing these density values with the densities
generated in the previous calibration stage we have determined within
a certain degree of approximation the intensity steps which would
produce the various density levels. Finally, the filter is generated
by drawing annular regions of these various intensities, starting
from the smallest circle that can be drawn using the FR80 to the largest
one giving the periphery of the filter. This circularAintensity pattern

is photographed onto Ilford HP4 using exactly the same processing as
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before. Fig.4.l is a photograph of the Wiener filter thus generated.

One of the main advantages of this method is that we are not dependent

on the relation A (amplitude transmittance) = IO—Y/2

(IO is the input
intensity variation) for generating the amplitude transmittances. Hence,
we have the freedom to use the complete range of the H - D curve of the

emulsion without involving the errors the film nonlinearities would

otherwise produce.

The filter produced is essentially a quantized version of a continuous
transmittance variation. Though each annular width in the filter is
considerably small compared to the overall diameter of the filter,
quantization still introduces a certain amount of error. (The ratio of
the annular width to the diameter of the filter is about 1.28 x 10-4).
Moreover, the FR80O can only draw circles of certain finite radius and
beyond and hence a small circular area around the centre of the filter

had to be of uniform amplitude transmittance representing the average

for that region.

Finally, we come to the greatest draw-back of this method which
has actually prompted us to abandon the method altogether. We were not able
to generate a wide enough density range to accommodate all the density
values in the filter using the 256 intensity levels available in the
FR80O. We have used films of different speeds and ranges and also tried
various proceésing methods, but the range of densities we could get was

only 1-55 (from 0.05 to 1.6) . (The filter has a density range of about

4, excluding the immediate neighbourhood of the roots of the Wiener filter

function.)
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Fig.4.2. The binary input sector for the imaging
set-up shown in Fig.4.3.
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We have tried to generate higher densities by repeated drawing of the
same regions a few times over, with the highest intensity level. This
has resulted in spreading of intensity to neighbouring regions. We
understand that the intensity range in the 256 intensity levels can

be enhanced by changing the hardware of the system; but that was
something beyond our control. However, if such an enhanced intensiﬁy
range is made available the above described method can produce the
amplitude filters utilizing both .the linear and nonlinear range of

the photographic f£ilm.

Section 4.3

The photomechanical method for continuous tone filters without

compensating for film nonlinearities.

A carefully calculated and fabricated sector as shown in Fig.4.2
consisting of transmitting areas in opaque background is rotated
using a motor. When a lens system is used to image the rotating sector,
with the optical axis of the system coinciding with the axis of
rotation of the input pattern, then on the image plane we obtain a
circular-symmetric intensity variation. The nature of the intensity
variation is obviously determined by the design of the input sector.
The input pattern drawn using polar coordinates has the area enclosed
between the curve 8 = £(r) and the line § = O fully transmitting. If
6 is proportional to the Wiener filter amplitude transmittance
H(G[Jl(r)/r1,/&Jl(r)/r)2 + E] ) with r being the distance from the
centre of the filter, then the circular intensity pattern generated at
the output plane of the imaging lens will be proportional to the Wienex

filter amplitude transmittance. Finally, photographic recording of
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this intensity variation with an appropriate gamma, gives the

amplitude part of the Wiener filter.

In practice, setting up of an imaging system with a transilluminated
rotating object as the input can be quite difficult. In our work
here we have used a stationary input which was projected using an
enlarger onto a rotating film(Fig.4.3). The film which was mounted
on a motor (that was checked for vibration and wobbling) was accurately
adjusted so that the centre of rotation coincided exactly‘with the
centre of the pattern that was projected onto the film. The filter
thus produced is an enlarged version and is photoreduced to the
required size using a well corrected camera. The overall gamma of
the final record is kept at two approximately, so that within the
linear range of the film the final amplitude transmittance is

proportional to the intensity variation recorded in the first step.

Section 4.4.

Some suggestions towards overcoming the errors due to nonlinear

recording.
—_— =

The computer—-aided design of filters described in Section 4.2
has the potential for eliminating the nonlinearities introduced by
the film, though in the process a guantized version of what should
have been a continuous-tone filter results.In the previous section
we have generated continuous-tone filters by imaging a transilluminated

rotating object, wherein it is assumed that the intensity variation

generated is converted into a density variation in the linear

region of the recording film used.
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Unfortunately this condition is not satisfied, since the intensity
variation generated for the Wiener filter occupies the entire span
of the H- D curve, low intensity levels falling in the "toe™" region
and the high intensity levels going well into the “shoulder"™ region
of the curve. Hence, the amplitude transmittance of the filter generated
will be only ah approximation of the theoretical Wiener filter function.
The following are some suggestions towards offsetting the problem of

nonlinear recording when using the optical system of Section 4.3.

An obvious and easy way of minimizing nonlinear recording is
to reduce the range of the filter function (|G|) by splitting it into

1/2
two parts each having a transmittance proportional to IGI / .

Then
each component 1s recorded separately on slightly pre-fogged film so
that the low intensity regions in the filter are pushed beyocond the "toe"

region of the H - D curve.(We have actually applied this technique in

the experiments described in Chapter 5.)

Another method of compensating for the logarithmic response of
the film is by determining the H - D curve of the emulsion for the |
particular process used. This is done by recording a series of
intensity steps of known intensity values and determining exactly
the density values generated. The nature of the curve is determined
by fitting an equation into the experimentally arrived at curve.

This equation is made use of while calculating the input sector of

Section 4.3.

An optical analogy of the computer assisted method of Section 4.2

is yet another way of compensating nonlinear errors. First of all
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we generate an input pattern for the photomechanical set-up which
gives a series of annular intensity steps of known step-ratios. This
intensity pattern is then recorded on the same type of emulsion to be
used for recording the filter and the various density values are
accurately measured. From these measurements a relationship is
established between the product of the input openings (or arc-
lengths)and their distances from the centre of rotation of the pattern
and the corresponding density values generated. The densities to be
generated are calculated from the theoretical amplitude transmittance
values. Finally, the input binary pattern is designed by comparing
these theoretical density values with those generated by the intensity

steps.

This method requires that during the calibration stage and
while actually recording the filter the internal f/number of the optical

system used should remain the same.

The last two methods mentioned above involve intermediate density
measurements and hence the accuracy of the method is dependent on how
well we can measure the densities. As we go into the higher density
regions the measuring accuracy of the densitometer decreases. This

is a major limitation on the exactness of the filters produced.

Section 4.5

Deblurring experiment, results and discussion.

We have produced, using the method described in Section 4.3,

amplitude filters for enhancing out-of-focus pictures. We have not
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tried to correct nonlinear recording. The input binary pattern of
Fig.4.2 was made on a high contrast film. Two binary input patterns were
generated which produced intensity variations proportional to

lﬂl/(Hz + &) with €, the noise to signal power - spectral ratio equal to
0.05 and 0.1 (H = J,(r)}/r). Ilford Technical Orthochromatic film was

used to record the intensity variations. The gamma was maintained at

V2 .

Enlarged versions of the filters obtained from the projector were
reduced to proper size, again on Ilford Technical Orthochromatic film
with gamma kept at Y2. The overall gamma of the 'positive' is 2
and the amplitude transmittance of the filter is proportional to
!HI/(,H2 + €) within the linear range of the H - D curve of the film
used. The filters are shown in Fig.4.4. Fig.4.5 showing microdens-
itometer traces across the filter gives an idea of the density

variations in the filters.

The out-of-focus picture shown in Fig.4.6 is first deblurred with
only the phase filter developed in Chapter 2. The result is shown in
Fig.4.7a. The optical processing system used is the same as that
described in Chapter 3. Then the amplitude filters developed in
this chapter are combined with the phase filter to deblur the same

object. The deblurred outputs are shown in Fig.4.7b & c.

Fig. 4.7a shows that the contrast inversions realized by the

phase filter are very satisfactory. The results of complex filtering

point to the fact that the introduction of the amplitude filters,

which are only approximations, creates more problems than solving them.
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Still comparing the results of Fig.4.7b & c carefully, we see that
there is a fall in resolution as we increase the value of € from 0.05 to
0.1l. Though there is an overall improvement, the outputs here are

not as well deconvolved as those shown in Chapter 3 for linear motion

blur.

We believe, the drop in performance in the case of circular blur
is due to the following reasons: (i) The blur transfer function for
circular blur (Jl(r)/r) has a much larger range than the sinc¢ function
which is the transfer function for linear motion blur. Consequently
errors due to nonlinear recording are enhanced for circular deblurring
filter. (ii) Since linear motion blur is one-dimensional the correcting
filter has a fair amount of built-in redundancy while the filter for
circular blur has no redundancy at all. As a result, blemishes in the
filter will have a greater effect on the reconstructions in the case

of circular blur than the one-dimensional blur.

We notice the same sort of deterioration in the quality of the
outputs for circular blur. while using binary hologram filters for

deblurring, in Chapter 6.
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CHAPTER 5

DEBLURRING WITH A POSITIVE ONLY

FILTER AFTER FURTHER BLURRING



Chagter 5.

Section 5.1. Introduction.

In the previous chapters we have discussed at length a method
of deblurring both motion blurred and out-of-focus objects. Since
these blurs are characterized by transfer functions having both
positive and negative regions, the deblurring filters are made, for
convenience, as a combination of an amplitude modulating part and a
phase modulating part. However, there do exist certain other types
of blurs which have wholly positive transfer functions. (Gaussian
blur and triangular blur are two examples of blurs with positive
only transfer functions). Consequently, the deblurring filters for
these blurs are purely attenuating masks having only positive amplitude

transmittances.

Tt is obvious that if the blur function of an input picture is
known, by submitting the same picture to a further, exactly
equivalent blur, the resultant picture will have the autoconvolutiomn
of the original blur as its final blur function. If the original
blur function is either centre-symmetric (in the case of 2-d blur
function) or line symmetric (in the case of 1-d function)’for the
new picture, the error in the Fourier plane (or the blur transfer
function) is given by a wholly positive function. (The Fourier
transform of the autoconvolution, here, is the product of two real

functions and must be positive). So by subjecting a singly blurred

picture to a second blur, the need for a phase filter is eliminated.

We, in this chapter, describe how a linear motion blurred
’ E

object is deblurred using a 'positive only' filter. The main
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problem with this technique is that, since the new blur transfer
function is the product of two individual transfer functions, the
dynamic range of the film, recording the deblurring filter, is much
increased with consequent problems with the non-linearity of the
photographic process. We have, however, managed to overcome this
difficulty by building up the filter from a succession of photographic
films, each processed to the correct fraction of the required function.
The main problem now becomes noise, which must be met by a

corresponding adjustment of € in the Wiener filter employed.

Section 5.2 Theory

A blurred picture, g(x,y) of an original object scene, f(x,y) is

given by
gx,y) = £(x,¥) * h(X,¥) ceiiieeennnannnnn (5.1)

where h(x,y) is the impulse response of the blur and * denotes convolution.

For linear motion blur of the camera, h(x,y) is given by a

rectangular function defined as

1 for |x|<a/2

1

rect (x/a)

0 otherwise @ = ceeiiiicecncnenn (5.2)

Suppose we subject the blurred picture to another blur of exactly

rect(x/a). The resultant doubly blurred picture is given by

g'(x,y) = glx,y) * rect (x/a)

f (x,y) * rect (x/a)* rect (x/a)

£Fox N (x/a) e i (5.3)
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Diagrams illustrating the principle behind 'Positive only'
filtering. The convolution of two blur functions (here
rectangular function) in the object plane is equivalent

to the product of their respective transfer functions in the

frequency plane.
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where A (x/a)

O for lx[> a

]

1 —|§+ for |x|<a ................. (5.4)

By taking the Fourier transform of Equation 5.3 we obtain

G'(vX,vY) = F (vx,vy) H(vx) ...................... .- (5.5)

1 H
where G , F and H are the Fourier transforms of g, £ and A

respectively.

In particular H (v ) = sin Vx| §i2_3§
X v v,

(see Figure 5.1) which is a non-negative function.

From Equation 5.5 we recover F by passing G' through a Wiener

filter 20 . The corrected spectrum is again Fourier transformed to

form the deblurred picture.

Section 5.3 Development of the Wiener deblurring filter.

The Wiener filter, which is 1-d in our case is prepared using the
cylindrical lens technique described in Chapter 3. The set-up shown in

. 2
Figure 3.1 is used. The black-and-white object f£(x) has

nx

2 _ si
f(x) = H/(H + g) with H = {—/——

}2 (the new blur transfer function)
X J

and & = 0.05. The resultant image whose intensity is proportional to

f(X)2 is recorded and printed on films developed to give gamma equal to one

in both the steps. The print should ideally have an amplitude

transmittance proportional to 5 if the whole recording is

H + €

2
done in the linear range of the £ilm. Here, f(x) has a very large
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intensity range and we are well into the non-linear regions of the

H-D curve of the film used.

We overcome this difficulty by building up the filter as a

sandwich of three components, each having a transmittance proportional

H 1/3

to <: 5 ‘"‘> / . Because of this split-up the intensity
H + ¢

range involved are significantly smaller and we are in the linear

range of the film except for smaller regions around the poles of

the blur transfer function.

Section 5.4. Experimental

The linear motion blurred cbject is prepared in the laboratory
using a shadowing technique described by Goodman42. The blurred
object intensity variation is recorded on Ilford SP348 film which is
developed in Ilford PQ Universal (diluted 1:9) for three minutes at
ZOOC, to give a gamma of 1 approximately. A print is made from
this negative, again onto SpP348,. with the same development specified
above so that the overall gamma of the print is 1. The blurred
positive which is shown in Figure 5.2 is blurred again by exactly the
same amount. The object after the second blur is shown in Fig.5.3.
Doubly blurred negatives and positives are prepared on Ilford
Sp348 film, developed at each stage, to give a gamma of/2 approximately
so that the overall gamma of the print is‘2. (For a gamma of 2

SP348 was developed in Ilford Phenisol, diluted 1:4 for 2% minutes

at 20°C) .
The components which puild-up the Wiener filter are also made

68









on SP348, this time with gamma equal to ocne. Figure 5.4a shows
one part of the Wiener filter with amplitude transmittance

’ . 2
proportional to {!H[/(H + €) } 1/3. Figure 5.4b is a micro-

densitometer trace across the filter.

The optical processing system used is the same as that
described in Chapter 3 (section 3.4). Here in the absence of a
diffracting phase element the deblurred output is produced on-axis.
The doubly blurred object is deblurred using the Wiener filter built-
up as a combination of three component elements, each having an
amplitude transmittance proportional to the cubg—root of the
necessary Wiener filter transmittance. The deblurred output is
shown in Figure 5.5.

¢

Section 5.5. Results and Discussion

Examining the doubly blurred object shown in Figure 5.3 we see

that the contrast reversals noticeable in Fig.5.2 are somewhat

compensated. This is as expected, since the contrast reversals

of Figure 5.2 are due to the negative regions of the blur transfer

function, and the blur transfer function of Figure 5.3 is wholly

positive. The vertical lines of Figure 5.3 are rather badly spread

out because of the extreme high frequency attenuation caused by the

combined blur function.

The corrected picture shown in Figure 5.5 is a considerable

improvement upon the blurred object of Figure 5.2. However, we

notice that the Wiener filter is not able to rectify completely
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the horizontal spread suffered by the letters. We believe that it

is due to the following reasons:

The preparation of the doubly blurred object involves four
photographic steps, including two contact printings. In each of
the photographic steps involved one is bound to lose, at least,
some information in spite of all the efforts towards proper exposure,
linear recording etc. So the final blurred object has suffered

a cumulative loss of information, which in turn affects the quality

of reconstruction.

The filter function generated here, though made up of three
parts, still does not represent the theoretical filter function
quite accurately because of non-linear recording at some regions.
(This is so because of the high contrast nature of the final blur
function) . Sandwiching of the three pieces together requires
great care and precision since even a small amount of misalignment
can seriously affect the quality of the output. Finally, the three
films together introduce a considerable degree of phase distortion

at the Fourier plane which causes some amount of spurious noise

in the output.
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CHAPTER 6

BINARY HOLOGRAMS : AN ANALYSIS AND
THEIR APPLICATIONS FOR IMAGE-DEBLURRING



Chapter 6.

Section 6.1. Introduction

Computer-generated holograms (CGH) are a commonly used tool
to generate a wide range of complex functions. The flexibility of
these holograms has been utilized for adapting optical systems for both
linear and nonlinear processing. Image deblurring46 matched filtering53
and realization of mathematical operations like differentiation54 are
some of the many uses of CGHs. In the case of image enhancement
CGHs offer a new technique for realizing deblurring filters where the
impulse response of the blur is not physically realizable. Such
an extension of the physical process achieved by the new role of the
computer as an imaging element is, by far, the most fruitful aspect
of computer holography. We here confine ourselves to Fourier transform

holograms of only two levels of amplitude transmittance (i.e. the

binary type).

Since our aim is mainly the utilization of holographic filters
for Fourier plane filtering, restriction to Fourier transform
holograms is justified. We are prompted to the second restriction

(namely, the binary amplitude transmittance) because of the easiness

of fabrication of binary holograms.

Computer generation of holograms involves two major steps.

First, we make a mathematical model of the object (or wavefront) to

be generated (In our case, the object in the shape of a Fourier

transform is either available as a mathematically defined function,

or evaluated numerically from the known impulse response). Second,
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by some means, the wavefront (which is in general~complex) is
displayed and recorded in such a way that the record acts like an
optical hologram and reconstructs the original wavefront on
illumination with a 'reference' wave. Before going into various
ways of generating binary Fourier transform holograms, by computer,
we give, in the rest of this section, a brief account of a few

other methods of producing computer holograms.

Section 2 contains a brief description of various ways of
generating binary Fourier transform holograms. Because computer-
generated holograms are essentially digital, the reconstructions are
always affected by sampling rate limitations and quantization errors
in the hologram. These are discussed in Section 3. Section 4
describes ways of producing deblurring filters as binary holograms.
Experiments utilizing binary holograms for deblurring are described
in Section 5. There we suggest a method of overcoming the loss of
resolution in the deblurfed pictures due to coarse guantization
levels in the binary filter. Finally we show the result of
deblurring large objects with a binary hologram that is heterodyned

to a high space-bandwidth product.

After having calculated the amplitude and phase of the light-
wave distribution in the hologram plane, one of the most straight

forward methods of recording the wavefront is by generating two

transparencies, one having a density variation representing the

amplitude of the wave and the other having a thickness variation

proportional to the phase of the wavefront. The first transparency

is easily made using a display-recording device with grey-level
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capabilities. Careful exposure and controlled development produce

the required density variation on a photographic plate. The second
transparency is produced by photographing an intensity variation
proportional to the phase of the wavefront to be generated and
subsequently bleaching the record to form a relief image. The
resultant transparency will have a thickness variation approximately
proportional to the phase of the wavefront (except for a constant

term) . The two transparencies sandwiched together forms the hologram.

The necessity of making a relief image can be avoided by the use
of a reference beam to code the phase information as in an optical
55
hologram™ . To the (calculated) light wave coming from the object,
f(x,y), is added a reference beam, r(x,y),and the result is squared
to get
2
gx,y) = |£&y) +rey) |7 e (6.1)

icx
If the reference beam is assumed to be a plane wave Ae

then
42 2 ,
gx,y) = |Ex,¥) + A%+ 2 |£xy | A cCos[ ex- ¢x,v) ]
......... (6.2)
where ¢(x,y) is the phase part of the input wave f(X,y). We then
produce an intensity variation proportional to g(x,y). A film is

used to record g(x,y) and by suitable processing the resulting

transparency will have an amplitude transmittance proportional to

g(x,y) which is wholly positive.

To recomstruct the object the hologram is illuminated with a

plane wawve Aeicx. The resulting light wave contains four components

out of which one is proportional to f£(x,y), the original wave. By
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: ; . icx.
suitably selecting a value for ¢ in e cx, the information carrying

beam can be separated from the other three components.

Section 6.2 Binary Fourier transform holograms.

In this section we describe different methods of coding Fourier
| transform holograms. In the previous section, carrier wave (or
reference wave) modulation was used as a convenient method to record complex
wavefronts. In all the methods described below, without actually
using a reference beam in our calculations, the same effect is
achieved by what is known as 'phase coding' to represent complex

signals. The holograms are binary diffracting elements and are

designed to generate the required wavefront in one of the

diffraction orders.

(A) ~ Lohmann's method.

For a planar object, the light distribution at the Fourier

plane, G, is first calculated.
+c0

i.e. G(u,v) = /} g(x,y) exp -2mi (ux + vy) @xdy e ceeen- (6.3)

where g(x,y) is the object function and u and v are the spatial frequency

co-ordinates in the Fourier plane . (For Fourier-plane deblurring

filters the filter function is calculated from the impulse response

of the blur).

G(u,v) is then sampled in space. Suppose that we calculate

G(u,v) at u,v = md; m = 0, 1, 2--and d = const. The sampled

hologram is given by
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Gu,v) = 2 % Gmd, nd) §(u-md, u-nd)  ...nnrnnnn. (6.4)
m n

where 6(u,v) is a 2-d delta function .

Each sample has, in general, a complex value and cannot be
recorded on a film«with density variations only . In Lohmann's
hologram56 each sample is represented by a completely transparent
slit, the magnitude of the sample being proportional to the area
of the slit. The phase at each point is represented as a shift in
the position of the slit, proportional to the phase angle at that
point. If the shifts in position (Amn) are in the u direction then

the Lohmann hologram can be represented mathematically as

Glu,v) = = % |c(md, nd) | §(u-md-4 ., v = nd)  ...eeieean.s (6.5)
m n

where lG(md,nd)l represents a fully transmitting area proportional
to itself. Therefore Lohmann holograms are binary, each point in

the hologram having a transmittance of either O or 1.

For reconstructing the object, the hologram is illuminated with
a parallel beam of coherent light and G(u,v) is Fourier-transformed

using a lens. The Lohmann hologram can be designed to reconstruct

the original object in any one of the diffraction orders at the focal

plane of a lens. It is common practice to have the object reconstructed

in the first order, wherein the diffraction efficiency is a maxmimum.

A detailed mathematical analysis of the hologram, giving the

approximations involved, due to digitization and restrictions to
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Fig.6.l. Side-view of a part of the Lohmann hologram.
Samples 1, 2 and 4 occupy regular grid positions.
Sample 3 is shifted by A
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binary transmittance, is given by Lohmann and Paris>C. Here we give a

heuristic explanation of how the hologram works.

Figure 6.1 shows a side-view of a part of a Lohmann hologram.
Samples 1, 2 and 4 have zero phase and they occupy regular grid
positions. But sample 3 has a nonzero phase-angle (say ¢3) and hence
is shifted from the normal grid position by a distance A proportional
to ¢3. Light impinging from the left is diffracted and the far-field
pattern is essentially the same as the Fourier transform of the
hologram. Examining the far-field diffraction pattern at an angle
g = Cos—l (A/d) (A is the wavelength of the light used) we find that
the phase-differences between light from points 1,2 and 4 are muitiples
of 27. We also notice that with respect to point 3 the phase
differencesvfor light from 1, 2 and 4 are 27 plus<:§£-A. So we see
that the required phase relationship between the sample points is main-

2T

tained if we choose A to make <ET;> A = ¢3. Usually a lens is

used to cdllect the diffracted light from the hologram and the far-

field pattern coming in the 6 - direction becomes the first order

diffraction pattern.

A single cell from Lohmann's hologram is shown in Figure 6.2.
The sampling cell size is d x d and the shaded area shows complete

transmittance. With respect to the centre of the sample cell, the

centre of the shaded area is shifter by A proportional to the phase

of the wavefront at the sampling point. If G is the maximum value

of the amplitude (G) to be plotted and if pd is the penwidth of the

plotter used, then Figure 6.2 a & b show the openings for G/G_ >p

i i i ffraction efficiency of a
and G/Gg <P respectively. The maximum diffrac v
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Fig.6.3.
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Side-view of a part of the Lee hologram. Each
complex sample is represented by four equally
spaced openings Gl’ G2, G3 and G4.
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bipary hologram is 10%. Like other binary holograms Lohmann hologram is

free of stringent photographic processing.

(B) ILee's hologram and Burckhardt's modification

Another technique which utilizes detour phase variation in the
diffraction image is due to Lee63. Here, each complex valued sample
G(md,nd) is spiit up into four positive real components in the
hologram. Let Gr and Gi be the real and imaginary parts of G respectively.

Also assume that

0] if G_< O
-G if G_< O

G3 = { ............ (6.7)
(0] if 2 0
r
Gi if i > O
G2 = { ............ (6.8)
(0] if G, < O
i
-G, 1if G, < O
i i
G4={
0 if Gi 270 i e (6.9)
Then we can write G = Gl-G3 + J.G2--1G4 ............. (6.10)

where all the components Gl,G2,G3 and G4 are real and positive.

Fig.6.3 is a side-view of a part of a Lee hologram. Each

complex valued sample is described by four equally spaced slits

representing the components Gl’ G2, G3 and G4. For optical

reconstruction, as with Lohmann hologram the nologram is illuminated

with a parallel beam of light. The far-field diffraction pattern

-1 .
is observed at an angle 6 = Cos ~(A/d). We notice that the path
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Fig.6.4. (a) Resolving the complex sample into four positive real

components (Lee's method) .
(b) Burkhardt's simplification to reduce the number of
components to three.
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differences of light from Gy Gy and G, with respect to G,
are respectively A/4, A/2 and 3A\/4. The corresponding phase
differences are 7/2, m and 3m/2 respectively and exp (irn/2) = i, .

exp (im) = -1 and exp (i3n/2) = -i. So, in the first diffraction order,
this is tantamount to multiplying Gy Gz- G3 and G, by 1, i, -1 and

-i respectively and taken together they give the complete sample G of

Eg.(6.10) .

Optical density variations can be used to represent the four
positive components of each of the complex samples. In this case, gener-
ation of a Lee hologram requires grey-level plotting. Alternatively,
the amplitude can be represented as transmitting area variations
(as in the case of a Lohmann hologram) which gives a binary Lee
hologram. Like the Lohmann hologram the diffraction efficiency

of the binary Lee hologram has a maximum value of 10%.

Equation (6.10) can be interpreted as a vector resolution in

the complex-number plane, as shown in Figure 6.4a. Here, vector G is

represented using a set of four base vectors.

- S+ s _
r+ = (1L,0), ¥ = (-1,00, £ = (0,1) and i = (O, 1) .
For any vector we can write
G=Gr + G, P 3 R EEEEEREEEEEE (6.11)
2

where G G., G, and G4 are all positive. From this we see that at
1° 2" 3

most two of the four components can be non-zero. This fact has

led Burckhardt64 to make the interesting suggestion which reduces the

number of base vectors required to represent a complex vector from

a, B and Y (Figure 6.4b) employed

four to three. The base. vector,
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by Burckhardt are sufficient to represent any complex vector G as

G = 2% + BB + CY cecoccccccccccscscans(Bol2)

where a, b and c are all positive. The base vectors subtend an angle

21/3 with each other and it is seen that at most two of the components

are nonzero.

Burkhardt's suggestion reduced the number of subcells in the
hologram from four to three. Davies65 suggests a method of coding
complex values after introducing what is known as a parity vector
pair into each of the complex samples thereby splitting the sample
into two complex vectors of unit magnitude. Hsueh and Sawchuk6
developed the idea further to generate what they call double phase
holograms (DDH) of 2 - d objects. In the next sub-section we give a
brief mathematical description of the DPH without going into any
rigorous details. (A detailed analysis of the DPH with special

emphasis on noise due to phase coding errors and cell displacement

can be found in reference 60) .

(C) The Double Phase Hologram (DPH)

The DPH is a result of direct development from the spectrum

61
levelling technique first described by Chu and Goodman . Spectrum

levelling technique can be easily understood with reference to the

diagram shown in Figure 6.5, which is an Argand diagram showing a

i i transmittance function
complex vector G. G 1n our case is a complex

representing, say, a wavefront or a Fourier transform, or the transfer

function of a blur. The circle in Figure 6.5. is taken to be a

unit circle with the radius representing the maximum value of the
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function we are coding. To each complex vector G is added and

subtracted another vector P in such a way that the resultant vectors

1 G+ P
R (6.13)

have a constant (here, unit ) magnitude

Q)
il

9!
i

In other words, a complex transmittance function can be split up

into two constant magnitude vectors,oxr

+ ei(¢ - ¢1)

where . = cos T+ tlcl/2) ceeceiicnnees . (6,14b)

Since IGI lies between 0 and 1 in the case of a filter
transmittance function, ¢l takes value only between w/3 and m/2.
From this we see that ¢l ig restricted to a narroQ range of values.
This range can be enhanced by assuming that the modulus of the constant

magnitude vectors is 1/2 instead of unity. (We must bear in mind that

|Gl has a range from O to 1).

So we alter Equation (6.14) to

6] e** = % {ei(¢+¢i) v ot ¢l)} ............ (6.15b)
where ¢, = Cos T G] 1 e (6.15b)

Here ¢, has a range from 0 to m/2.
da

These two constant magnitude vectors can be represented,
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following Lohmann's cod;i.,ng’hy two constant area slits separated

hy a distance proportional to ¢l. As opposed to Lohmann hologram

~ one advantage of the DPH is its. ability to code very small
amplitude values, while a Lchmann hologram is limited by the finite
plotter pen resolution. However, the DPH is limited by the coarse
phase quantization levels in the hologram which introduces noise

in the reconstruction, at the same time adversely affecting the

resolution

We have considered here various ways of generating binary Fourier
transform holograms. 1In this chapter our aim is to explore the
possible application of binary hologram, as deblurring filters.
However, before we go into the application of binary holograms in
spatial filtering and the description of the experiments done, we would
like to discuss two important constraints on computer generated

binary holograms, namely sampling rate limitation and errors introduced

due to quantization

Section 6.3. Sampling Rate Limitation and Quantization errors.

In computer generation of holograms, the hologram space is sampled

and the amplitude and phase values of the samples are quantized to a finite

number of levels. Both sampling and gquantization affect the final

performance of the holograsi:.

(A) Sampling-rate limitation

When the Fourier transform G (u,v) of an object is recorded as a

binary hologram using ore of the methods described earlier, it can be
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shown that the reconstruction (i.e. the inverse Fourier transform
of the hologram] consists of a sum of periodically shifted terms.
Assuming that the object (or impulse response] is band-limited and
having a finite extent, it can Be expanded using a Fourier series
containing a finite number of terms. Strictly, the Fourier series
represents a repeated object distribution of certain finite
periodicity and hence any reconstruction from this discrete spectrum
is expected to exhibit the same periodicity. Or, in other words,
sampling (or discrete nature) in frequency domain produces

replication in space domain and vice versa.

When the Fourier transform of an object gi{x,y) of limited extent
(say/L x L) is sampled, the reconstruction from the sampled spectrum
resﬁlts in a replicated output. Let the sampling period for the
object spectrum G (u,v) be Au and Av. Then, using Whittaker-Shannon
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sampling theorem , the optical reconstruction from the sampled

hologram will be

N m n
glx,y) = 35 9x -7 ¥~ 55 . 6.
m n

We require that these periodically shifted versions of the object

function to be non-overlapping. For that we should have

Au €

(N
~
(0}
’_J
s

AV g

Hi e

Since the object is assumed to be band-limited the Fourier

transform hologram is of finite extent, say W x W. To avoid over-—

lapping of various reconstructions we sample the hologram at a

period Au = 1 and AV = }3 The total number of samples required
L
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for the entire hologram is then OMLEZ.

When Lohmann's or Lee's method of coding is used to represent a
Fourier transform hologram, the reconstruction again consists of a
sum of periodically shifted terms. However, these terms are not just
shifted replicas of each other. Iohmann's or Lee's hologram
reconstructs the original object faithfully only in one of the diffraction
orders, along the direction of phase-coding. Since the first
diffraction order has the maximum light availability, we usually design
the hologram to reconstruct the object in the first order. The other
terms in the reconstruction are generally related to the original
object in a complicated manner, Experimental evidence indicates
that each of these terms has the same size as the original object and
hence to avoid overlapping in the reconstruction, Equation (6.17) can

be used as a guide-line.

In binary Lohmann hologram the magnitude of a complex sample is
represented as a transmitting area in an opaque background with the
centre of the area shifted (in the u-direction, say) by an amount

proportional to the phase of the sample, from the centre of the

cell. Therefore, if we are using WL samples over the width of the

hologram then the resolution requirement in the u-direction will be
WLsm; and the resolution requirement in the v-direction will be just
WLn. Here, s, is the number of phase guantization levels we use and

m x n  the number of quantization levels for the amplitude of the

Fourier transform. In the case of Lohmann filters for correcting

linear motion blur and defocusing, since the blur transfer functions

o o .
take only two phase values, namely O and 180, s is equal to 2.
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ince we a i + : . . . .
Since re coding the phase angles in u direction, it is common

practice to code the amplitude values of the Fourier transform

entirely in the v-direction. In other words, if we use rectangular

openings to represent samples of the Blur function, then the width.
of the openings (along u direction) remains the same throughout the
filter while the height of the opening is quantized to m x n levels

to represent the amplitude variation.

In a Lee hologram we represent a complex sample by four positive
real samples (phase coded in u direction, say) and hence the resolution
requirement in u and v directions are 4WL.m and WL.n cells respectively
choosing to have m and n amplitude quantizatiom levels along u and v
directions respecpively.

In a double phase hologram, the amplitude is *epresented as a phase
variation(coded, say, along u directicn). Then, assuming that there
are only two phase angles in the filter function we are coding then

the resolution requirement in u direction is m X n.WL.2. Along v direction

the resolution requirement is WL. As before,mXn is the number of

gquantization levels of the amplitude (here, represented as a phase

angle variation). We notice that the overall resolution requirement of

the DPH remains the same as that of an ordinary Lohmann hologram.

' When using for image deblurring the binary hologram filter should

have a space bandwidth product at least as large as that of the

object, in order that the information bearing first order is well
14

separated from its adjacent neighbours. This means that for processing

large objects the filter nedsa very large plotting time. Chavel and

Lowenthal47 have suggested a method of circumventing this difficulty
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for those blurs whose impulse response is small compared to the

object. Chavel and Lowenthal's method is essentially plotting a
filter of small fpace-bandwidth product and using the image
formed by the information bearing first order spectrum from this
filter to form a 'natural hologram' with a reference beam. By
adjusting the reference bean angle the space-bandwidth product of
the natural hologram can be enhanced to be higher than that of the

object to be deblurred. Such a 'natural hologram' forms the high space-

bandwidth product deblurring filter.

(B) Quantization

When the number of quantization levels used is large’Anderson
and Huang67 modelled the quantization noise as white noise independent
of the signal being quantized and.analysed the effect -of quantizaticn
in various types of Fourier transform holograms. In a Lohmann
hologram the noise is added to the magnitude and phase of the

Fourier transform, while in the Lee hologram the noise is added to

the real and imaginary parts.

Uniform quantization of the magnitude or the real and
imaginary parts of the Fourier transform introduces white noise in
the amplitude of the reconstructed image. When recording the
intensity of the image, this noise becomes multiplicative. The
effect of uniform phase guantization is to introduce additive noise
in the amplitude of the reconstructed image whose power spectral
density is proportional to the square of the Fourier spectrum of the

original image. This noise contains largely low frequencies. (As
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is characteristic of most of the images). While considering intensity

the noise again becomes multiplicative.

When the number of quantization levels is small a more exact

analysis becomes necessary. Such an analysis in the case of phase

quantization can be found in Goodman and Silvestri'sGework, For

1-d case the result can be summarized as follows

In the Fourier transform G(u) = ]C(u)| exp &¢(u)}of g(x) we qguantize

¢ (x) alone; then the inverse Fourier transform becomes

g'(x) = Py sinc(m + %—) o (6.18)

+co
/' ] G(u) 1exp(i)(Nm + 1) ¢(w

-0

5
5
®
K
®

Q
3

!

exp(i2mu) du  ciiiieiieienn. (6.19)
and N is the number of quantizatioch levels used for ¢(u).
Note that go'(x) = g(x).

If we suppose that g(x) is a small object in a large opaque field,
then gm'(x) for m % 0 are shifted versions of go'(x). If g(x) is

i i & d 1f
diffuse then gm‘(x) is approximately the (Nm + 1) order se

convolution of go'(X)-

Section 6.4. Generation of deblurring filters :-

(A) As Lohmann's holograms : -

The blur transfer function for linear motion blur (a sine function)

and defocusing (Ji(cr)/cx) are calculated from the a priori knowledge

of the amount of blur. This information is used to calculate the

corrssponding Wiener filters. (The noise parameter, €, is fixed at

0.05). The Wiener filter is then sampled uniformly as a 80 x 8C nmatrix.
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The samples are represented using Lohmann's method. The following

procedure is adopted to generate the hologram.

The plotting area is divided into 80 x 80 square cells of equal area.
Each cell representing one of the 80 x 80 samples of the Wiener filter
function is divided into two halves. (Say, along the u direction in
which the phase is coded.) Either the left or the right half is
selected, depending on whether the phase of the filter function at that
point is OO or 1800. (Selection of the right or left half to represent
either OO or iSOO phase is arbitrarily done gt.the start and once the
selection is made the same is maintained throughout the filter) . Centred
on the half selected is drawn a rectangle with base equal to half

the width of the sampling cell (d) and height equal to the normalized
amplitude (G/GO) at that point multiplied by the length of the sampling
cell. (Figure 6.2a). The rectangle is shaded either by ink (if using

a pen plotter)or by £illing in with light (if using a picture processing
peripheral like FR80). This procedure is adopted so long as we have

< g-j> d % pd where pd is the penwidth of the plotter (or the minimum
o

resolvable distance in the cathode ray tube of the FR80) . When

( gﬁ> d < pd we slightly modify the procedure as follows. Instead
o

of drawing a rectangle we draw a line, perpendicular to the direction

G 11 .
of phase-coding, of length equal to <’§;>d' E"E- (Figure 6.2b). Thus.

the total area shaded in both the cases is proportional to the amplitude

of the filter sample at that point, the constant of proportionality

remaining the same.

We have used an image processing peripheral (FR80) attached to an

IBM 360 computer to do the plotting. The FR80 has a plotting area which

has 16384 separately addressable points (raster units) in both x and y
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directions. it i i
Each raster unit is, while using a 35mm camera, equivalent

to 0.0000596", i i
o) There are built in Programs to fill in (with light) the

required areas.

Using FR8O we have produced two Wiener filters(proportional to

H*/(LH12 + e) the first with H = Siz 2 , the second with H = iiiEEL ).
cr
€ 1s kept in both the cases at 0.05. The filters are shown in Figure 6.6.
Highly magnified versions of the filters produced on hard copy paper
are photo-reduced onto high resolution plates (Agfa 1OES56) using a
camera fixed on vibration free mounts. The final size of the filter is
determined by the amount of blur the input picture has undergone
and the focal length of the transforming lenses and the wavelength of

laser used in the optical processing system. (The optical processing

system is described in Chapter 3).

(B) Aas ppHs

We now describe how we developed deblurring filters as DPHs. In
the case of linear motion blur which is an 1-d blur, the Wiener
filter has no transmittance variation perpendicular to the direction
of the blur. In this case, the filter can be generated as a grating
with lines running perpendicular to the direction of the blur. Each
period of the grating contains two lines forming a doublet. Each of
the lines in the doublet represents one of the two constant magnitude
vectors into which the filter transmittance function at that point is
divided. The separation between the lines is proportional to ¢1(Eq.615b)
and is therefore related to the modulus of the filter transmittance
function. The width of the lines(throughout the filter) remains
constant and is not related to the amplitude value of the filter.

(However , the linewidth considerably affects the diffraction efficiency
14
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Fig.6.7. A part of the double-phase hologram filter for linear
motion blur showing one period. The doublet separation

s is proportional to ¢1 of Eq.6.15b. (See text).
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of the filter; and we are concerned about diffraction efficiency

since we get the deblurred output in the first order diffraction

spectrum of the DPH. Nevertheless we cannot choose a linewidth that

gives the maximum diffraction efficiency in the first order, because,
by doing so we will be sacrificing the space available in the cells
(or periods) to code the variation of ¢l(Eq.6.15b%We choose to
sacrifice diffraction efficiency (small diffraction efficiency only
means a larger deblurring exposure time) for a smooth;r representation
of the amplitude variation, that results in a better resolved output).
Each pericd of the DPH is divided into two halves and the doublet is
drawn on either the left or the right half of the period only,depending
on whether the filter transmittance at that point is positive or
negative. Fig.6.7 shows a part of one of the periods of the DPH filter
for linear motion blur. Here, the left half is chosen for drawing the

doublet. The separation between the lines in the doublet is

proportional to ¢l.

The blur transfer function for defocusing has no line symmetry.
(In fact, it is circular symmetric .) Consequently, while plotting, the
doublets inindividual cells, have to be plotted one after another.

The plotting of this filter ocbviously takes longer than that for linear

motion blur.

A deblurring filter has, in general, a large transmittance range

and from Eq.6.15 we see that the phase introduced by the parity terms

has only a range from O to m/2. This means that the amplitude values

undergo big jumps when moving from one sample cell to another and

hence we have a coarse amplitude gquantization in the filter. This

problem can be overcome to an extent by splitting the amplitude part
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; . 1/2
of the filter (lG[)lnto two G / s. The first Gl/2 is incorporated into

1/2
the DPH and the second G / 1s made as a density variation on a

photographic film. The two parts are sandwiched together to give the

required filter function.

Here, we have generated with the help of the FR80 four DPHs. The
first and second are Wiener filters for linear motion blur and
defocusing respectively. (The noise parameter, €, in all the cases was
kept at 0.075) They are shown in Fig.6.8. The third and fourth
DPHs are again Wiener filters for motion blur and defocusing this time
incorporating only a square-root of the respective Wiener filter

amplitude transmittance. They are shown in Fig.6.9.
Section 6.5

Experimental

Both the motion blurred and out-of-focus objects were prepared in
42
the laboratory using a simulation method described by Goodman ~. (The
details of the photographic process used to get the right gamma value

are given in Chapter 3).

The optical processing system used is the same as the one described
in Chapter 3 (Fig.3.9). The laser L, beam expander BE and the

collimator C combine to give a parallel beam of light illuminating the

blurred object, mounted in plane O which is one of the focal planes

j i i in cedarwood o0il gate to
of the lens L;. (The object is immersed in g

compensate for any phase distortions introduced by the film non-

uniformities) The Fourier spectrum of the object is formed by the
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lens Ll at its second focal plane F. The corrected spectrum is

recombined by the lens L2 to form the deblurred output at O. Since
the filters here are binary holograms desighed to give the correct
output in the first order spectrum, the deblurred pictures are

observed in the first order images from the filter.

First, the linear—ﬁotion blurred picture shown in Fig. 6.10a is
deblurred using both the Lohmann hologram filter and the DPH Wiener
filter. (incorporating full amplitude transmittance). The deblurred
outputs (Fig.6.lla & b) show a great deal of enhancement. The
résolution seems to be affected due to the coarse quantization levels
in the filter and also due to the high frequency attenuation caused
by the Wiener filter.

t

Second, the out-of-focus picture of Fig. €.10b is similaxly deblurred
using both the Lohmann filter and the DPH filter. From the outputs shown
in Figs.6.l2a & b we notice that the degree of deblurring achieved
for out-of-focus pictures is not as high as that for pictures affected
by motion blur. kThe same observation is made in Chapter 4, from
a comparison of results from Chapter 3. The reasons given in Chapter 4

for this drop in performance are applicable here as well).

Third, sandwich filters combining the DPH filters and the

1/2

photographically generated filter each contalning G of the

Wiener filter amplitude transmittance ]G] ,were used to deblur both

the linear motion blurred and out-of-focus objects. (The photographic

part of the filter for the 1 - d blur is generated using the cylindrical
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lens method as given in Chapter 3. The rotating disc method of

Chapter 4 was used in the case of 2-d blur). The deblurred outputs

(Figs.6.1llc and 6.12c) show an improvement in resolution.

The first order spectrum of the DPH filter for Gl/2 is allowed
to form an image, while the other orders are blocked. The image
recorded and shown in Fig.6.13a gives an idea of the amplitude
variation encoded in the filter. This can be compared with the

photographically generated part of the filter which is shown in

Fig.6.13b.

Finally, we describe how we have generated a large space-bandwidth
product 'natural hologram' from a low space—bandwidth product DPH
filter. The set-up shown in Fig.6.14 is the same as the optical processing
system shown in Fig.3.9 of Chapter 3, but for a beam-splliter and
mirror arrangement for providing a reference beam in the output plane O.
The input plane I has the low space-bandwidth product DPH filter |

(Here we have used the one for linear motion blur). The filter plane F

has an opaque screesn with a narrow opening to let in only the first

order spectrum from the DPH. The image formed by this first order

spectrum is combined with a reference beam R coming at an angle 8 to

the optical axis of the system. The spatial frequency content of the

hologram formed at plane O depends on 6 and hence the space-bandwidth

product of the final hologram can be enhanced as required by fixing 0

used to deblur the large object
appropriately. The natural hologram was

shown in Fig:6 10c. The lens L, of Fig. 3.9 had to be moved sideways

to admit the first order diffracted image from the natural hologram.

The deblurred output is shown in Fig.6.15.
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Section 6.6

Conclusion

We have b?iefly considered different methods of forming binary
holograms. Deblurring filters for correcting out-of-focus pictures
and linear motion blurred pictures were generated as both Lohmann
holograms and double phase holograms. The deblurred outputs show a
good deal of enhancement especially in the case of motion blurred
pictures. We found that, in general, the 2-d circular blur was more
difficult to deconvolve than the 1 - d linear motion blur and the
quality of the outputs obtained for the former case was somewhat
inferior. The output resolution seems to be affected by the coarse
amplitude gquantization in the filter function. We have reduced the
problem of poor resolution by replacing the binary hologram filter by
a combination of a photographically produced filter and another binary

hologram, each representing a square-root of the required Wiener filter

amplitude transmittance. The experimental result of deblurring shows

an improvement in output resolution in the case of a DPH filter backed

by a photographically produced amplitude component. We have increased

the space-bandwidth product of a binary hologram filter by forming a

'natural hologram' from its first order spectrum.

The enhanced pictures obtained lead us to believe that binary

holograms open up an easy way of fabricating good performance Wiener

deblurring filters.
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CHAPTER 7

CONCLUSIONS



We have discussed in this work different methods of developing

deblurring filters for use with a coherent optical processing system.

All the filters generated here work in the Fourier plane, appropriately

modifying the Fourier spectrum of the blurred object.

Of the two blurs tackledllinear motion blur and defocusing, the
first one gave better results throughout. Total lack of redundancy
and errors in the amplitude filter due to film nonlinearities are the
main reasons for the inferior deblurred outputs in the case of
defocusing. The bhase filters developed by photomechanical means gave

satisfactory phase inversions.

Straightforward inverse filtering of linear motion blurred
objects in Chapter 3, resulted in the enhancement of high frequency noise

as well and the result obtained was marred by noise. Use of a Wiener

filter with € = 0.1 suppressed all the noise, but caused high frequency

. . : « < anluti i tput. With
attenuation resulting in loss of resolution in the outp

£ = 0.05 we got a satisfactory noiseless output with the resolution not

seriously affected.

The use of phase filter 1s altogether eliminated Dy subjecting

4 a . i et.he
the blurred object to a further blur of +he same amount Sinc

. tion
resultant blur transfer function is the square of the transfer func

i ilter
for the original blur, the transmittance range of the correcting filt
we are again faced with

to be generated is very high. Consequently,

i ulsion. We
the problem nonlinearities introduced by the recording em
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met this problem by building up the filter as a sandwich of 3
components, each having a transmittance proportional to the cube root
of the transfer function for the combined blur. The output ,though

!

suffering from loss of information at certain places,shows a certain

amount of improvement.

Binary hologram deblurring filters developed in Chapter 6 gave
good results, especially in the case of linear motion blur. Because the
computer controlled plotter works in a rectangular coordinate system a
certain amount of error is unavoidable whilst plotting circular
symmetric filters for defocusing. The double-phase hologram filters,
due to coarse amplitude guantization, resulted in loss of resolution in
the deblurred output. The DPH filter encoding only a square-root
of the required Wiener filter amplitude transmittance, backed up by

the photographically generated filter gave better resolved outputs.

One of the disadvantages of binary hologram filters is the high

production costs involved, for filters meant for large objects take

a very long plotting time. The high space-bandwidth product "natural

, . B  dth
hologram" resulting from optical heterodyning of the low space-bandwi

product was found suitable for processing large objects. The guality

of the deblurred outputs from the heterodyned filter is very satisfactory

(Chapte 6). Thus heterodyning is an effective means of keeping the

plotting costs low when processing large objects.
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