Fatigue in rubber vulcanisates

Abstract

A study has been made of the effect of single extensions and continuous fatigue on the structures of various natural rubber networks. The change in network structure of a conventional vulcanisate on a single extension manifests itself as permanent set. The change in network structure has been assessed by the use of the chemical probes, propan-2-thiol/piperidine, hexane-thiol/piperidine and triphenyl phosphine, which determine the polysulphide and disulphide crosslink densities and main chain modification respectively. The permanent set induced on a single extension of a conventional sulphur vulcanisate has been shown to result from the destruction and reformation of polysulphide crosslinks. The magnitude of the effect was dependent upon the degree of extension and showed a maximum at extensions corresponding to the onset of stress-induced crystallisation. The incorporation of a reinforcing filler, HAF-carbon black, magnified the effect. Vulcanisates that possessed only mono and disulphide crosslinks did not show any significant permanent set. The continuous changes in network structure during fatigue have also been determined, and the effects of carbon black and antioxidants on these changes and the fatigue life have been assessed. During fatigue the overall crosslink density increased slightly, which resulted from the destruction of polysulphide crosslinks. and their replacement by principally disulphide crosslinks. Antioxidants reduced the rate of destruction of polysulphide crosslinks and increased the fatigue life of the rubber network. The fatigue life of the network also depended upon the concentration of free chain ends. These chain ends were incorporated into the network by masticating rubber under nitrogen in the presence of bis (diisopropyl)thiophosphoryl disulphide, which improved the fatigue resistance by up to 9%.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: Department: Chemistry If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either theirs or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: Fatigue,rubber networks,single extension,network defects,antioxidants
Last Modified: 08 Dec 2023 08:14
Date Deposited: 11 Jan 2011 14:02
Completed Date: 1982-12
Authors: Ihenyen, Gabriel A.

Download

Export / Share Citation


Statistics

Additional statistics for this record