Surgical outcomes and prognostic factors of non-metastatic radiation-induced sarcoma of bone

Yusuke Tsuda, Martin Lowe, Scott Evans, Michael C. Parry, Jonathan D. Stevenson, Tomohiro Fujiwara, Youichi Kaneuchi, Louis-Romee Le Nail, Lee M. Jeys

PII: S0748-7983(19)30916-3

DOI: https://doi.org/10.1016/j.ejso.2019.10.036

Reference: YEJSO 5532

To appear in: European Journal of Surgical Oncology

Received Date: 2 June 2019

Revised Date: 13 October 2019

Accepted Date: 28 October 2019

Please cite this article as: Tsuda Y, Lowe M, Evans S, Parry MC, Stevenson JD, Fujiwara T, Kaneuchi Y, Le Nail L-R, Jeys LM, Surgical outcomes and prognostic factors of non-metastatic radiationinduced sarcoma of bone, *European Journal of Surgical Oncology* (2019), doi: https://doi.org/10.1016/ j.ejso.2019.10.036.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

1	Original article
2	
3	Surgical outcomes and prognostic factors of non-metastatic radiation-induced
4	sarcoma of bone
5	
6	Yusuke Tsuda*, Matrin Lowe, Scott Evans, Michael Parry, Jonathan Stevenson,
7	Tomohiro Fujiwara, Youichi Kaneuchi, Louis-Romee Le Nail, Lee Jeys
8	
9	Oncology department, Royal Orthopaedic Hospital, Birmingham, United Kingdom
10	
11	Declarations of interest: none
12	
13	
14	
15	* Corresponding author: Yusuke Tsuda
16	Oncology department, Royal Orthopaedic Hospital
17	The Woodlands, Bristol Rd S, Birmingham B31 2AP
18	Tel: 0121 685 4000
19	E-mail: ytsuda-tuk@umin.ac.jp

20	Qualifications and appointments
21	Yusuke Tsuda, MD, PhD, Orthopaedic Surgeon, Royal Orthopaedic Hospital, The
22	Woodlands, Bristol Road South, Birmingham B31 2AP, UK
23	
24	Martin Lowe, BSc, MBBS, FRCS, Orthopaedic Surgeon, The Royal Orthopaedic
25	Hospital NHS Foundation Trust, Birmingham, UK
26	
27	Scott Evans, MB ChB, FRCS (Tr&Orth), Consultant Orthopaedic Oncology and
28	Arthroplasty Surgeon & Honorary Lecturer, Royal Orthopaedic Hospital, The
29	Woodlands, Bristol Road South, Birmingham B31 2AP, UK
30	
31	Jonathan D Stevenson, MBChB BMedSci FRCS (Tr&Orth), Consultant Orthopaedic
32	Oncology and Arthroplasty Surgeon & Honorary Senior Lecturer
33	1. Royal Orthopaedic Hospital, The Woodlands, Bristol Road South, Birmingham B31
34	2AP, UK
35	2. Honorary Senior Lecturer, Aston University Medical School, Aston Express Way,
36	Birmingham, B4 7ET
37	

$\mathbf{2}$

38	Michael C Parry, BSc, MBChS, MD, FRCS, Consultant Orthopaedic Oncology and
39	Arthroplasty Surgeon & Honorary Senior Lecturer
40	1. Royal Orthopaedic Hospital, The Woodlands, Bristol Road South, Birmingham B31
41	2AP, UK
42	2. Honorary Senior Lecturer, Aston University Medical School, Aston Express Way,
43	Birmingham, B4 7ET
44	
45	Tomohiro Fujiwara, MD, PhD, Orthopaedic Surgeon, Royal Orthopaedic Hospital, The
46	Woodlands, Bristol Road South, Birmingham B31 2AP, UK
47	
48	Youichi Kaneuchi, MD, PhD, Orthopaedic Surgeon, Royal Orthopaedic Hospital, The
49	Woodlands, Bristol Road South, Birmingham B31 2AP, UK
50	
51	Louis-Romee Le Nail, MD, PhD, Orthopaedic Surgeon
52	1, Royal Orthopaedic Hospital, The Woodlands, Bristol Road South, Birmingham B31
53	2AP, UK
54	2, Orthopaedic Department University Hospital of Tours, 37044 cedex 9 Tours, France
55	

- 56Lee M Jeys, MBChB MSc FRCS (Tr&Orth)
- Professor, Consultant Orthopaedic Oncology and Arthroplasty Surgeon 57
- 1. Royal Orthopaedic Hospital, The Woodlands, Bristol Road South, Birmingham B31 58
- 2AP, UK 59
- 2. Life & Health Sciences at University of Aston, Aston Expressway, Birmingham, B4 60
- 7ET 61

, Aston Expr

- 1 Original articles
- $\mathbf{2}$
- 3 Surgical outcomes and prognostic factors of non-metastatic radiation-induced
- 4 sarcoma of bone
- $\mathbf{5}$

Journal Prevention

6 Abstract:

Background: The survival and prognostic factors in non-metastatic, radiation-induced
bone sarcomas of bone have not been described. Moreover, the quantitative data about
surgical outcomes and complications after limb-salvage surgery versus amputation are
quite limited.

Methods: Twenty-five patients with non-metastatic, radiation-induced sarcoma of bone who underwent definitive surgery were analysed. Histological diagnosis was osteosarcoma in 19 and undifferentiated pleomorphic sarcoma in six. The definitive surgery was limb-salvage surgery in 15 patients and an amputation in 10.

Results: The 5-year overall survival rate (OS) and the 5-year event-free survival rate 15(EFS) were 53% (95% CI 31% to 70%) and 40% (21% to 59%), respectively. Patients 16 with wide or radical surgical margins (n = 13) showed significantly better OS compared 17with those with marginal (n = 8) or intralesional (n = 2) margins (5-year OS, radical or 18wide = 74%, marginal = 17%, intralesional = 0%, p = 0.044). The risk of local recurrence 19was significantly higher in the limb-salvage group compared to the amputation group 20(49% vs 0%, p = 0.011). OS and EFS were not significantly different between 2122limb-salvage group and an amputation group (p = 0.188 and 0.912, respectively).

23 **Conclusions:** We believe non-metastatic, radiation-induced sarcoma of bone should be

24	resected with the aim of achieving wide or radical margins. Although limb-salvage
25	surgery was related to higher rates of local recurrence compared with those of the
26	amputation group, OS and EFS were not different among two groups. Surgeons need to
27	discuss the higher risk of local recurrence in limb-salvage surgery.
28	
29	Keywords: Radiation-induced sarcoma of bone, Surgical outcomes, Prognosis
30	

1. Introduction

32	Radiation-induced sarcoma of bone is a rare sarcoma that develops in a previously
33	irradiated field after median latency of 10 years [1-5]. The link between radiation and
34	bone sarcomas was first established by Martland et al. [6] in 1929.
35	We have previously reported a poor prognosis in radiation-induced bone
36	sarcomas, especially for patients with metastasis at presentation [7], which has been
37	substantiated by several authors [3, 8]. However, the survival and prognostic factors in
38	non-metastatic, radiation-induced bone sarcomas of bone have not been described.
39	It has been suggested that pre-operative chemotherapy followed by surgery
40	may improve survival [9-11]. Surgery for these patients is frequently challenging due to
41	the effects of previous irradiation on surrounding tissues causing, a loss of clear
42	distinction between anatomical planes, which can compromise cross sectional imaging
43	and complicate surgical margins [12, 13]. Irradiation also reduces the proliferative
44	capacity of normal tissues leading to poor wound healing and wound site infection [14,
45	15]. As a result, primary amputation was favoured for patients with radiation-induced
46	bone sarcoma in several reports [3,4,13,16,17]. However, the quantitative data about
47	surgical outcomes and complications after limb-salvage surgery versus amputation are
48	quite limited.

49	We therefore aimed to determine surgical and oncological outcomes and
50	prognostic factors of non-metastatic, radiation-induced sarcoma of bone. Surgical and
51	oncological outcomes were also compared between those patients that underwent
52	limb-salvage and amputation. This data can guide clinicians when deciding on an
53	optimal surgical treatment strategy in non-metastatic, resectable, radiation-induced
54	sarcoma.
55	
56	2. Patients and Methods
57	We identified 47 patients with a radiation-induced bone sarcoma from our oncology
58	database between 1987 and 2017. Inclusion criteria required patients to be free of
59	metastatic disease at initial presentation and to have undergone definitive surgery.
60	Twenty-two patients were excluded due to: metastasis at diagnosis ($n = 8$), received
61	only chemotherapy because of local tumour progression ($n = 5$), treatments at other
62	hospitals (n = 5), only palliative care (n = 2), died during pre-operative chemotherapy (n
63	= 1) or follow-up elsewhere $(n = 1)$. The remaining 25 patients were included. We
64	retrospectively reviewed the clinical records and imaging for these patients. The
65	diagnosis was made following a review of the histopathology and radiology at the
66	multidisciplinary discussion. The diagnostic criteria for radiation-induced sarcoma of

67	bone was according to previous reports by Arlen et al. [1] and Cahan et al. [2]. All
68	tumours were resected with the aim of achieving clear margins. An amputation was
69	performed if it was not possible to obtain clear margins with limb-salvage surgery after
70	careful review of the pre-operative imaging. The decision for pre-operative
71	chemotherapy was made in consultation with medical oncologists and patients, taking
72	into account the chemotherapy previously received and patients' comorbidities. Margins
73	were evaluated according to Enneking's criteria [18]. Any patient with
74	intralesional/marginal margins were assessed for further radiotherapy based on local
75	tissue toxicities from previous radiotherapy doses on a case-by-case basis following
76	discussion with clinical oncologists as part of the multidisciplinary team. Currently we a
77	use a 3 Tesla MRI scanner as our cross-sectional imaging of choice.
78	Kaplan-Meier analysis was used to estimate overall survival (OS), event-free
79	survival (EFS), metastasis-free survival (MFS) and local recurrence-free survival
80	(LRFS). OS was defined as the time from the diagnosis to death by any cause and was
81	censored at the date of the latest follow-up. EFS was defined as the time from diagnosis
82	to either the date of the death or recurrence (local or distant) and was censored at the
83	date of the latest follow-up. LRFS and MFS were defined as the time from the surgical
84	procedure to local recurrence or metastasis and were censored at the date of the latest

follow-up or death. Prognostic factors were assessed using log-rank test. Categorical
variables were compared between groups using chi-square tests; numerical variables
were compared using Mann-Whitney U tests. A two-tailed probability (P) value of
<0.05 was considered to be statistically significant. Statistical analyses were performed

89 using SPSS version 22.0 (IBM, Armonk, NY). e.eroó

90

85

86

87

88

913. Results

3.1 Patient demographics 92

93Table 1 shows patients' previous tumours for which radiation therapy was performed. The most frequent previous tumour in this series was Ewing's sarcoma (n = 5, 20%). 94Radiation-induced sarcoma of bone occurred after a median 16 years (interquartile 95range [IQR], 11 to 20 years) following radiation therapy for previous tumours. 96 Radiation doses were not available because of the length of the study period. There 97 were 10 males and 15 females (Table 2). The median age at diagnosis of a 98 radiation-induced sarcoma of bone was 42 years (IQR, 23 to 63 years). The most 99 common site was the pelvis (n = 7, 28%). Histological diagnoses were osteosarcoma in 100101 19 patients and undifferentiated pleomorphic sarcoma in six, all categorized as high grade. Definitive surgical resection achieved limb-salvage surgery in 15 patients and 102

necessitated amputation in ten. The surgical margins achieved were radical in three
patients, wide in ten, marginal in eight, intralesional in two patients and unavailable in
two patients.

106 Fourteen patients received (neo-)adjuvant chemotherapy. The chemotherapy-induced necrosis was $\geq 90\%$ in three patients, < 90% in eight and 107 unavailable in three. The regimens varied: doxorubicin and cisplatin (n = 3), high dose 108methotrexate (HD-MTX), ifosfamide and etoposide (n = 2), HD-MTX, doxorubicin and 109cisplatin (n = 1), doxorubicin and ifosfamide (n = 1), vincristine, ifosfamide, 110 111 doxorubicin and etoposide (n = 1) or no information (n = 6). Predisposing genetic diseases, such as Li-Fraumeni syndrome or bilateral retinoblastoma, were not detected 112in this study group. No patient underwent further radiation therapy after surgery. 113

114

115 **3.2 Oncological outcomes**

116 The median follow-up time for all patients was 40 months (IQR, 14 to 192 months). The

- 117 5-year OS, 5-year EFS and 5-year LRFS for all patients were 53% (95% CI 31% to
- 118 70%), 40% (95% CI 21% to 59%) and 68% (95% CI 45% to 84%), respectively.
- 119 Fourteen (56%) of 25 patients died at last follow-up.

120 Eleven patients (44%) developed distant metastases after surgery with the most

121	frequent location being lung (82%). Of the 11 patients, nine died from metastases, one
122	patient was alive with disease at final follow-up, while one patient underwent excision
123	of two lung metastases after two months from initial definitive surgery and survived for
124	218 months.
125	Seven patients (28%) developed a local recurrence. Four of these patients had
126	multiple lung metastases at the time of local recurrence and therefore did not undergo
127	local treatments. Three patients did not have distant metastasis at the time of local
128	recurrence and underwent a re-excision. The risk of local recurrence was 0% (0 of 3)
129	with radical margins, 30% with wide margins (3 of 10), 38% with marginal margins (3
130	of 8) and 50% (1 of 2) in intralesional margins.

132 3.3 Prognostic factors

Patients with wide or radical surgical margins (n = 13) showed significantly better OS compared with those with marginal (n = 8) or intralesional (n = 2) margins (5-year OS, radical or wide = 74%, marginal = 17%, intralesional = 0%, p = 0.044, Table 3 and Fig. 1a). Local recurrences were significantly associated with worse OS (p = 0.006). Patients who received neo-adjuvant chemotherapy showed significantly better MFS (p = 0.040). However, preoperative chemotherapy or chemotherapy-induced necrosis of \geq 90% was

not significantly associated with better OS (p = 0.747, p = 0.659, respectively). 139

140

3.4 Comparison of surgical and oncological outcomes between the limb-salvage 141

- 142group and the amputation group
- Table 4 shows patients demographics and outcomes in the limb-salvage group and the 143

144amputation group.

145

Local recurrence: 146

147Local recurrence was the most common complication. Of the 15 patients who underwent limb-salvage surgery, seven (47%) patients developed local recurrence. 148149Local recurrence occurred in 60% (3 of 5) of the pelvic cases, 75% (3 of 4) of the scapula cases and 17% (1 of 6) in long bone cases. The risk of local recurrence in the 150limb-salvage group was significantly higher compared to that of the amputation group 151152(47% vs 0%, p = 0.011). The LRFS was significantly better in the amputation group compared to that of the limb-salvage group (5-year = 100% vs 49%, p = 0.017, Fig. 1b). 153In the limb-salvage group, risk of local recurrence was 50% (3 of 6) in patients with 154155wide margin, 43% (3 of 7) in patients with marginal margin and 100% (1 of 1) in a patient with an intralesional margin. For local recurrence without distant metastasis, two 156

157	pelvic recur	rences unc	lerwent sec	ondary hindquar	ter amput	ation; o	one scapu	la recu	rrence
158	underwent r	e-excision	. Four pati	ents with pulmo	nary meta	stases	at restagi	ng witl	h local
159	recurrence	received	palliative	chemotherapy	without	local	control	after	MDT
160	discussion.								

162 Surgical site infection:

No patients who underwent a primary amputation suffered surgical site infection. Three patients developed infection after limb-salvage surgery: one distal tibial endoprosthetic replacement was successfully treated with debridement and implant retention. One scapulectomy patient developed chronic infection necessitating secondary forequarter amputation. One distal femoral endoprosthetic replacement developed a superficial infection and was successfully treated with antibiotics alone.

169

170 Overall complications and additional surgeries for complications:

171 Of the 15 patients who underwent limb-salvage surgery, 11 (73%) developed at least 172 one complication, which was significantly higher than the amputation group (10%, p =173 0.002). Similarly, the risk of additional surgeries for the management of complications 174 was significantly higher in the limb-salvage group than that of the amputation group 175 (33% vs 0%, p = 0.041).

176

111 Oncological oulcomes.	177	Oncological	l outcomes:
---------------------------	-----	-------------	-------------

The 5-year OS and EFS were 37% and 37% in the limb-salvage group and 78% and 45% in the amputation group, respectively. These were not significantly different (p =0.188 and p = 0.912, respectively). The 5-year MFS was 56% in the limb-salvage group

181 and 45% in the amputation group (p = 0.452).

182

183 **4. Discussion**

We have reported the surgical and oncological outcomes and prognostic factors for 184non-metastatic, radiation-induced sarcoma of bone. Because many previous reports 185concerning radiation-induced sarcoma of bone are small case series often combined 186 with radiation-induced soft-tissue sarcomas, it is difficult to compare our results 187[1-5,19-23]. There are three reports that mainly focused on radiation-induced sarcoma 188 of bone (Table 5). Tabone et al. [9] and Shaheen et al. [10] reported five-year OS as 189 between 50% and 69% respectively, which is similar to our result (five-year OS, 53%). 190By contrast, Lewis et al. [11] reported very poor five-year OS (24%) with high rate of 191 metastatic recurrences (73%). 192

193	In our analysis, wide or radical surgical margins were associated with
194	improved survival outcomes. However, multivariate analyses were not performed
195	because of the limited number in our study. Confounding factors as well as selection
196	bias might have an effect on our results. Larger studies are needed to possibly gain a
197	more valid conclusion. Our study also showed local recurrence was significantly
198	associated with worse OS. Like other reports on conventional osteosarcoma [24-26], it
199	is difficult to determine whether local recurrence causes a poor outcome or is simply an
200	indicator of aggressive tumour biology. In our experience, 57% of patients had
201	synchronous distant metastases at the time of restaging after local recurrence.
202	The main surgical challenge in radiation-induced sarcoma of bone is the
203	difficulty of obtaining a clear margin. Our experience showed that the local recurrence
204	rate was 47% in the limb-salvage group, which was higher than that previously report
205	by Shaheen et al [10] (25%). Local recurrence in our study occurred in 60% (3 of 5) in
206	pelvic cases, 75% (3 of 4) in scapula cases and 17% (1 of 6) in long bone cases. This
207	high local recurrence rate in our analysis is presumably related to the location of the
208	tumours. Indeed, 60% of tumours are located in the pelvis and scapula in our series,
209	while only 35% of tumours were located in the axial skeleton in the study by Shaheen et
210	al. [10] Thijssens et al [16] also reported a high local recurrence rate (54%) after surgery,

211	including amputation and excision, for radiation-induced bone or soft tissue sarcomas.
212	These high rates of local recurrence are possibly explained by the difficulty of
213	identifying tumour planes using MRI due to tissue alteration following radiotherapy
214	[27]. In our experience, MRI highlighted the difficulty of detecting clear tumour
215	margins due to the combination of scarring and radiotherapy changes. Although we
216	evaluated the tumours using a combination of MRI, CT and PET, there remains an
217	inherent difficulty to detect clear tumour margins in tissues following radiation therapy.
218	It is hoped that advancement in imaging modalities may provide clearer anatomical
219	relationships in tissues exposed to radiotherapy. Radiation-induced fibrosis also makes
220	it difficult for surgeons to palpably detect the true tumour margin. Furthermore,
221	dissection of normal vessels and/or nerves away from the tumour during resection is
222	also challenging post radiotherapy.

Our experience showed that 20% of patients in the limb-salvage group developed infection, while no patients developed an infection in the amputation group. The wound complication rate, including infection, has been reported to be 17% (2 of 12) after limb-salvage surgery for radiation-induced sarcoma of bone [10]. High rates (30%) of wound problems associated with excisions of soft tissue sarcomas after preoperative radiation therapy are well documented [28]. Radiation damage leads to

229	defective collagen deposition by the irradiated fibroblasts [12-14], which hinders repair
230	of the wound. Moreover, the resection of normal fat or muscle, to obtain a margin,
231	during surgery can impair the blood supply of skin over the surgical site. This would
232	explain the high risk of infection in the limb-salvage group, compared to the amputation
233	group where skin closure uses normal tissue with an abundant blood supply.
234	Surgeons and patients need to make complex decisions in the surgical
235	treatment of non-metastatic radiation-induced sarcoma of bone. Although limb-salvage
236	surgery was significantly associated with high rates of local recurrence and
237	postoperative complications, OS and EFS were not significantly different between the
238	limb-salvage group and the amputation group. However, even if a wide margin was
239	obtained, 50% of the patients subsequently developed local recurrence after
240	limb-salvage surgery. We recommend careful discussion about the high risks of local
241	recurrence and complications when choosing limb-salvage surgery. This study is the
242	first to report comparative, quantitate data about the rates of local recurrence,
243	postoperative complications, including additional surgeries for complications, between
244	limb-salvage and amputation in this subset of patients. Our data can help the surgeon
245	and patient to select a surgical procedure based on predicted risks for non-metastatic,
246	radiation-induced sarcoma of bone.

247	It is difficult to discuss the benefit of preoperative chemotherapy because a
248	variety of regimens were used in our study. This is because chemotherapy protocols for
249	radiation-induced sarcoma of bone are not standardized and are affected by previous
250	chemotherapy treatment. Tabone et al [9] concluded patients with resectable
251	radiation-induced osteosarcoma can be cured with surgery and intensive neo-adjuvant
252	chemotherapy based on their experience in 16 patients. Bielack et al [23] also reported
253	that the treatment of secondary osteosarcoma, including radiation-induced osteosarcoma,
254	with neoadjuvant chemotherapy and surgery had a prognosis which approaches that of
255	primary osteosarcoma. In our study, preoperative chemotherapy was related to better
256	MFS. However, chemotherapy-induced necrosis did not have a significant correlation
257	with OS and MFS, which is comparable with the previous report by Lewis et al [11].
258	Our current first choice of chemotherapeutic drugs for patients with radiation-induced
259	sarcoma of bone is methotrexate, doxorubicin and cisplatin (MAP)
260	neo-adjuvant/adjuvant chemotherapy. However, each patient needs to be assessed
261	carefully by a specialist oncologist within a multidisciplinary team to determine the
262	potential risks and benefits of neo-adjuvant/adjuvant chemotherapy, paying particular
263	attention to the previous treatment regimes used to manage past malignancies.

There are several limitations in our study including small sample size and

265	retrospective nature of the study. However this is one of the largest series to report
266	non-metastatic, radiation-induced sarcoma of bone.
267	
268	5. Conclusion
269	We believe that non-metastatic, radiation-induced sarcoma of bone should be resected
270	aiming to achieve wide or radical surgical margins. Limb-salvage surgery showed
271	higher local recurrence and postoperative complication rates compared to amputation.
272	However, OS and EFS were not significantly different between two groups.
273	
274	Conflict of interest statement
275	No conflicts of interest to declare.
276	

Figure legend 278

279Figure 1.

- a) Kaplan-Meier curves of overall survival for all patients stratified by surgical 280
- 281margins.
- b) Kaplan-Meier curves of local recurrence-free survival comparing limb-salvage 282
- ournal prever group and an amputation group. 283

284

285 **6. References**

286	1.	Arlen M, Higinbotham NL, Huvos AG, Marcove RC, Miller T, Shah IC.
287		Radiation-induced sarcoma of bone. Cancer. 28 (1971) 1087–99.
288	2.	Cahan WG, Woodard HQ, Higinbotham NL, Stewart FW, Coley BL. Sarcoma
289		arising in irradiated bone: report of eleven cases. Cancer 82 (1998) 8-34.
290	3.	Amendola BE, Amendola MA, McClatchey KD, Miller CH Jr.
291		Radiation-associated sarcoma: a review of 23 patients with postradiation sarcoma
292		over a 50-year period. Am J Clin Oncol. 12 (1989) 411–5.
293	4.	Inoue YZ, Frassica FJ, Sim FH, Unni KK, Petersen IA, McLeod RA.
294		Clinicopathologic features and treatment of postirradiation sarcoma of bone and
295		soft tissue. J Surg Oncol. 75 (2000) 42–50.
296	5.	Mark RJ, Poen J, Tran LM, Fu YS, Selch MT, Parker RG. Postirradiation
297		sarcomas. A single-institution study and review of the literature. Cancer. 73 (1994)
298		2653–62.
299	6.	Martland H, Humphries RE. Osteogenic sarcoma in dial painters using luminous
300		paint. Archives of Pathology. 7 (1929) 406–17.
301	7.	Kalra S, Grimer RJ, Spooner D, Carter SR, Tillman RM, Abudu A.
302		Radiation-induced sarcomas of bone: factors that affect outcome. J Bone Joint

303		Surg Br. 89 (2007) 808–13.
304	8.	Wiklund TA, Blomqvist CP, Räty J, Elomaa I, Rissanen P, Miettinen M.
305		Postirradiation sarcoma. Analysis of a nationwide cancer registry material. Cancer.
306		68 (1991) 524–31.
307	9.	Tabone MD, Terrier P, Pacquement H, et al. Outcome of radiation-related
308		osteosarcoma after treatment of childhood and adolescent cancer: a study of 23
309		cases. J Clin Oncol.17 (1999) 2789–95.
310	10.	Shaheen M, Deheshi BM, Riad S, et al. Prognosis of radiation-induced bone
311		sarcoma is similar to primary osteosarcoma. Clin Orthop Relat Res. 450 (2006)
312		76–81.
313	11.	Lewis VO, Raymond K, Mirza AN, Lin P, Yasko AW. Outcome of postradiation
314		osteosarcoma does not correlate with chemotherapy response. Clin Orthop Relat
315		Res. 450 (2006) 60–6.
316	12.	Denham JW, Hauer-Jensen M. The radiotherapeutic injury: a complex 'wound'.
317		Radiother Oncol. 63 (2002)129–45.
318	13.	Thijssens KM, van Ginkel RJ, Suurmeijer AJ, et al. Radiation-induced sarcoma: a
319		challenge for the surgeon. Ann Surg Oncol. 12 (2005) 237–45.
320	14.	Akudugu JM, Bell RS, Catton C, et al. Wound healing morbidity in STS patients

		D		
U	սող		·рг	\mathbf{O}

321		treated with preoperative radiotherapy in relation to in vitro skin fibroblast
322		radiosensitivity, proliferative capacity and TGF-beta activity. Radiother Oncol. 78
323		(2006) 17–26.
324	15.	Drake DB, Oishi SN. Wound healing considerations in chemotherapy and
325		radiation therapy. Clin Plast Surg 22 (1995) 31–7.
326	16.	Cha C, Antonescu CR, Quan ML, Maru S, Brennan MF. Long-term results with
327		resection of radiation-induced soft tissue sarcomas. Ann Surg. 239 (2004) 903–9.
328	17.	Wiklund TA, Blomqvist CP, Räty J, Elomaa I, Rissanen P, Miettinen M.
329		Postirradiation sarcoma. Analysis of a nationwide cancer registry material. Cancer.
330		68 (1991) 524–31.
331	18.	Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of
332		musculoskeletal sarcoma. Clin Orthop Relat Res.153 (1980) 106–20.
333	19.	Chapelier AR, Bacha EA, de Montpreville VT, et al. Radical resection of
334		radiation-induced sarcoma of the chest wall: report of 15 cases. Ann Thorac Surg.
335		63 (1997) 214–9.
336	20.	Healey JH, Buss D. Radiation and pagetic osteogenic sarcomas. Clin Orthop Relat
337		Res. 270 (1991) 128–34.
338	21.	Huvos AG, Woodard HQ, Cahan WG, Higinbotham NL, Stewart FW, Butler A,

339		Bretsky SS. Postradiation osteogenic sarcoma of bone and soft tissues. A
340		clinicopathologic study of 66 patients. Cancer. 55 (1985) 1244-55.
341	22.	Pitcher ME, Davidson TI, Fisher C, Thomas JM. Post irradiation sarcoma of soft
342		tissue and bone. Eur J Surg Oncol. 20 (1994) 53-6.
343	23.	Bielack SS, Kempf-Bielack B, Heise U, Schwenzer D, Winkler K. Combined
344		modality treatment for osteosarcoma occurring as a second malignant disease.
345		Cooperative German-Austrian-Swiss Osteosarcoma Study Group. J Clin Oncol. 17
346		(1999) 1164.
347	24.	Weeden S, Grimer RJ, Cannon SR, Taminiau AH, Uscinska BM; European
348		Osteosarcoma Intergroup. The effect of local recurrence on survival in resected
349		osteosarcoma. Eur J Cancer. 37 (2001) 39–46.
350	25.	Rodriguez-Galindo C, Shah N, McCarville MB, et al. Outcome after local
351		recurrence of osteosarcoma: the St. Jude Children's Research Hospital experience
352		(1970-2000). Cancer. 100 (2004) 1928–35.
353	26.	Grimer RJ, Sommerville S, Warnock D, et al. Management and outcome after
354		local recurrence of osteosarcoma. Eur J Cancer. 41 (2005) 578-83.
355	27.	Varoquaux A, Rager O, Dulguerov P, Burkhardt K, Ailianou A, Becker M.
356		Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant

- Head and Neck Tumors. Radiographics. 35 (2015) 1502-27. 357
- 28. Griffin AM, Dickie CI, Catton CN, et al. The influence of time interval between 358
- preoperative radiation and surgical resection on the development of wound healing 359
- . Surg O. complications in extremity soft tissue sarcoma. Ann Surg Oncol. 22 (2015) 2824-360

30.

363 Table 1. Previous tumours

Total	Ν	%	
Ewing's sarcoma	5	20	
Breast cancer	4	16	
Non Hodgkin lymphoma	4	16	
Rhabdomyosarcoma	3	12	
Osteosarcoma	2	8	
Cervix cancer	2	8	
Prostate cancer	1	4	
Undifferentiated pleomorphic sarcoma	1	4	
Giant cell tumour of bone	1	4	
Ovarian teratoma	1	4	
Not available	1	4	

366 Table 2. Patient demographics

		Ν	%
Total		25	
Median age (years, IQR)		42 (23 to 63)	
Sex	Male	10	40
	Female	15	60
Median size (cm, IQR)		11 (7.5 to 15)	
Pathological diagnosis	Osteosarcoma	19	76
	Undifferentiated pleomorphic sarcoma	6	24
Part of tumour	Pelvis	7	28
	Femur	5	20
	Humeurs	5	20
	Tibia	4	16
	Scapula	4	16
Procedure	Excision	7	28
	Excision + endoprosthesis	8	32
	Hindquarter amputation	3	12
	Above knee amputation	5	20
	Forequarter amputation	2	8
Margin	Radical	3	12
	Wide	10	40
	Marginal	8	32
	Intralesional	2	8
	Not available	2	8
Preoperative chemotherapy		14	56
Necrosis after chemotherapy	≥90%	3	21
	<90%	8	58
	Not available	3	21
Local recurrence		7	28
Status at last follow-up	Continuously disease-free	9	36
	No evidence of disease	1	4
	Alive with disease	1	4
	Death of sarcoma	11	44
	Death of unknown cause	2	8
	Death of heart disease	1	4
Median follow-up (months, IQ	R)	40 (14 to192)	

IQR, Interquartile range

		Ν	5-year OS (%)	p value	5-year LRFS (%)	p value
Age (years)	≤40	12	56	0.775	64	0.908
	>40	13	50		75	
Sex	Male	10	36	0.143	80	0.351
	Female	15	80		58	
Size (cm)	≤ 8	6	60	0.618	80	0.958
	>8	12	53		80	
	Not available	7				
Site	Pelvis	7	43	0.368	51	0.407
	Others	18	58		77	
Preoperative chemotherapy	Yes	14	57	0.747	70	0.802
	No	11	48		69	
Chemotherapy-induced necrosis (%)	<90	9	56	0.659	64	0.296
	≥90	3	67		100	
	Not available	13				
Limb salvage	No	10	69	0.188	100	0.017
	Yes	15	38		49	
Latency period (years)	<15	9	44	0.100	70	0.454
	≥15	11	80		90	
	Not available	5				
Local recurrence	Yes	7	0	0.006	Not available	
	No	18	71		Not available	
Margin	Radical or wide	13	74	0.044	75	0.707
	Marginal	8	38		60	
	Intralesional	2	0		0	
	Not available	2				

Table 3. Prognostic factors for overall survival (OS) and local recurrence-free survival (LRFS)

		Total	Limb salvage	%	Amputation	%	p value
Total		25	15		10		
Gender	Male	10	5	33	5	50	0.405
	Female	15	10	67	5	50	
Median size (cm)		11	10		15		0.139
Site	Pelvis	7	5	33	2	20	0.162
	Femur	5	1	7	4	40	
	Humeurs	5	3	20	2	20	
	Tibia	4	2	13	2	20	
	Scapula	4	4	27	0	0	
Margin	Radical	3	0	0	3	30	0.067
	Wide	10	6	40	4	40	
	Marginal	8	7	46	1	10	
	Intralesional	2	1	7	1	10	
	Not available	2	1	7	1	10	
Complications	Local recurrence	7	7	47	0	0	0.011
	Infection	3	3	20	0	0	0.132
	Dislocation	1	1	7	0	0	0.405
	Delayed wound healing	1	0	0	1	10	0.211
	Aseptic loosening	1	1	7	0	0	0.405
	At least one complication	12	11	73	1	10	0.002

368 Table 4. Comparison of patient demographics and outcomes between the limb-salvage group and the amputation group

Surgery for complication	Secondary amputation	3	3	20	0	0	0.132
	Debridement	1	1	7	0	0	0.405
	Revision for aseptic loosening	1	1	7	0	0	0.405
	At least one surgery for complication	5	5	33	0	0	0.041
5-year overall survival (%)			37		78		0.188
5-year event-free survival (%)			37		45		0.912
5-year metastasis-free survival (%)			56		45		0.452
5-year local recurrence-free survival (%)			49		100		0.017

369

370

source for the source of the s

Authors	Years	Ν	Histology (N)	Non-metastatic cases (%)	Received surgery (%)	Preoperative chemotherapy (%)	LSS (%)	LR after LSS (%)	SSI (%)	Metastatic recurrence	Overall survival	Prognostic factors
Tabone et al ⁹	1999	23	OS (23)	20 (87)	16 (70)	14 (61)	14 (61)	NA	NA	NA	8yr, 50%	NA
Shaheen et al ¹⁰	2006	24	OS (17), UPS (4), CS (1), FS (1), LMS (1)	18 (75)	20 (83)	14 (58)	12 (50)	3 (25)	2 (10)	50%	5yr, 69%*	NA
Lewis et al ¹¹	2006	27	OS (27)	26 (96)	27 (100)	22 (81)	21 (78)	NA	NA	73%	5yr, 24%	Long latency period
Current paper	2018	25	OS (19), UPS (6)	25 (100)	25 (100)	14 (56)	15 (60)	7 (47)	3 (12)	44%	5yr, 53%	Wide or radical margin

Table 5. Summary of the comparative literature

* Ten patients with non-metastatic tumour who received chemotherapy and surgery

OS, osteosarcoma; UPS, undifferentiated pleomorphic sarcoma; CS, Chondrosarcoma; FS, fibrosarcoma; LMS, leiomyosarcoma; LSS, limb-salvage surgery; LR, local recurrence; SSI, surgical site infection; NA, not available

Months

JournalPre

