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Abstract 

Pharmacological targeting of memory reconsolidation is a promising therapeutic strategy for the 

treatment of fear memory-related disorders. However, the success of reconsolidation-based 

approaches depends upon the effective destabilisation of the fear memory by memory reactivation. 

Here, we show that the nootropic nefiracetam stimulates tone fear memory destabilisation to 

facilitate reconsolidation disruption by the glucocorticoid receptor antagonist mifepristone. 

Moreover, the enhancing effect of nefiracetam was dependent upon dopamine D1 receptor 

activation, although direct D1 receptor agonism was not sufficient to facilitate destabilisation. 

Finally, while the combined treatment with nefiracetam and mifepristone did not confer fear-

reducing effects under conditions of extinction learning, there was some evidence that mifepristone 

reduces fear expression irrespective of memory reactivation parameters. Therefore, the use of 

combination pharmacological treatment to stimulate memory destabilisation and impair 

reconsolidation has potential therapeutic benefits, without risking a maladaptive increase of fear. 

 

Introduction 

The disruption of memory reconsolidation represents a promising therapeutic approach for anxiety 

and trauma-related disorders. Pharmacological impairment of memory reconsolidation reduces 

fearful behaviour in rodents (Nader et al., 2000; Debiec et al., 2002), fear responses in experimental 

human studies (Kindt et al., 2009; Agren, 2014) and clinical symptoms in patients suffering with PTSD 

and phobias (Brunet et al., 2011; Soeter and Kindt, 2015). 

 

While the efficacy of reconsolidation impairment appears relatively robust, targeting reconsolidation 

depends upon the success of destabilising the memory behaviourally via a memory reactivation 

session, which usually takes the form of cue re-exposure (Pineyro et al., 2013; Almeida-Correa and 

Amaral, 2014). It is increasingly evident that successful reconsolidation impairment is far from 

guaranteed (Kindt and van Emmerik, 2016), especially as there are unpredictable boundary 

conditions that govern memory destabilisation (Wideman et al., 2018). For example, we recently 

demonstrated that there appears to be no reliable basis upon which to predict the behavioural 

parameters that will trigger memory destabilisation/reconsolidation (Cassini et al., 2017). In fact, 

lack of replicability of reconsolidation impairments may well be due to poorly-understood boundary 

conditions on memory destabilisation (Bos et al., 2014). 

 

This lack of reliability of memory destabilisation raises the potential that reconsolidation-disrupting 

pharmacological treatment might be applied to individuals with no chance of beneficial effect 
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(because the memory has not been destabilised and so there is no reconsolidation process to 

impair). This has motivated the exploration of pharmacological enhancement of memory 

destabilisation (Bustos et al., 2010; Lee and Flavell, 2014; Gazarini et al., 2015; Ortiz et al., 2015). 

Here we further explored the potential to enhance the destabilisation of cued fear memories. In 

spite of recent promising results (Bustos et al., 2010; Lee and Flavell, 2014; Ortiz et al., 2015), we 

elected not to focus on D-cycloserine or ACEA as potentiators of destabilisation, partly due to the 

fact that D-cycloserine can enhance reconsolidation to strengthen fear (Lee et al., 2006) and there 

remains a degree of uncertainty concerning the effects of CB1 receptor modulation on fear memory 

reconsolidation (Lin et al., 2006; Ratano et al., 2014; Lee et al., 2019). Moreover, given the potential 

use of NMDA receptor and Cannabinoid CB1 receptor antagonists for the impairment of 

reconsolidation (Stern et al., 2012; Fattore et al., 2018), separable pharmacological targets for 

destabilisation enhancement and reconsolidation impairment would be desirable. Therefore, we 

focussed on additional mechanisms that have been implicated in memory destabilisation, starting 

with the demonstration that dopaminergic signalling in the amygdala is necessary for appetitive 

pavlovian memory destabilisation (Merlo et al., 2015). As a result, we tested whether dopamine D1 

receptor agonism would enhance cued fear memory destabilisation. Moreover, we focussed on the 

use of the glucocorticoid antagonist mifepristone for the impairment of reconsolidation (Pitman et 

al., 2011), given our initial failure to replicate published findings with propranolol (Debiec and 

LeDoux, 2004). 

 

Methods 

Subjects 

188 Lister Hooded rats (Charles River, UK; 200-225 g at the start of the experiment) were housed in 

quads under a 12 h light/dark cycle (lights on at 0700) at 21oC with food and water provided ad 

libitum apart from during the behavioural sessions. The cages were individually ventilated for the 

animals contributing to the data in Figs 1-3, and were standard cages for the animals contributing to 

the data in Fig 4 (due to a facility equipment change during the course of the project). The cages 

contained aspen chip bedding and environmental enrichment was available in the form of a 

Plexiglass tunnel. Experiments took place in a behavioural laboratory between 0830 and 1300. At the 

end of the experiment, animals were humanely killed via a rising concentration of CO2; death was 

confirmed by cervical dislocation. All procedures were approved by the University of Birmingham 

Animal Welfare and Ethical Review Body and conducted in accordance to the United Kingdom 

Animals (Scientific Procedures) Act 1986, Amendment Regulations 2012 (PPLs P8B15DC34 & 

P3B19D9B2). 
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Drugs 

All drugs were administered systemically at previously-established doses and timepoints. 

Mifepristone (Generon, UK) was injected at 30 mg/kg (60 mg/ml in propylene glycol, s.c.) 

immediately after memory reactivation (Pitman et al., 2011). DL-Propranolol (Sigma, UK) was 

injected at 10 mg/kg (10 mg/ml in saline, i.p.) immediately after reactivation (Debiec and LeDoux, 

2004; Pitman et al., 2011). (+/-)-SKF38393 (Sigma, UK) was injected at 5 mg/kg (5 mg/ml in 5% DMSO 

in saline, i.p.) 5 min before reactivation (de Lima et al., 2011). Nefiracetam (Sigma, UK) was injected 

at 3 mg/kg (6 mg/ml in saline, i.p.) 1 hr before reactivation (Yoshii et al., 1997). SCH23390 (Tocris, 

UK) was injected at 0.1 mg/kg (0.1 mg/ml in saline, i.p.) 30 min before reactivation (Heath et al., 

2015). Modafinil (Sigma, UK) was injected at 5 mg/kg (10 mg/ml in 50% DMSO in Saline, i.p.) 60 min 

prior to reactivation (Shanmugasundaram et al., 2015). Allocation to drug treatment was fully 

randomised within each experimental cohort of 8 rats. 

 

Behavioural equipment 

The conditioning chambers (MedAssociates, VT) consisted of two identical illuminated boxes 

(25 cm × 32 cm × 25.5 cm), placed within sound-attenuating chambers. The box walls were 

constructed of steel, except by the ceiling and front wall, which were made of perspex. The grid floor 

consisted of 19 stainless steel rods (4.8 mm diameter; 1.6 mm centre-to-centre), connected to a 

shock generator and scrambler (MedAssociates, VT). Infrared video cameras were mounted on the 

ceiling of the chambers (Viewpoint Life Sciences, France) and used to record and quantify behaviour 

automatically. 

 

Behavioural procedures 

Rats were conditioned and tested in pairs. They were initially habituated to the conditioning 

chamber for 1 hr. On the next day, they received a further 20-min habituation, followed by a single 

presentation of a single 30-s, 1.5-kHz tone, co-terminating with a 1-s (or 0.5-s), 0.4-mA footshock. 

There was a 2-min recovery period following the footshock delivery. 24 hours after training, the tone 

fear memory was reactivated by re-presenting the tone once for 60 s (the longer duration aiming to 

maximise prediction error, (Exton-McGuinness et al., 2015; Fernandez et al., 2016)), after a 60-s pre-

CS period. 24 hrs after reactivation, conditioned freezing to the tone was assessed in a session 

identical to reactivation. 
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For the extinction experiment, all procedures were the same (with the 1-s footshock delivery) apart 

from the session 24 hours after training. Rats were exposed to ten 60-s tone presentations, after a 

60-s pre-CS period and with 60-s intervals between each tone presentation (Lee et al., 2006). 

 

Statistical analyses 

Data are presented as % time freezing (+ SEM) during the pre-CS period and tone presentation of the 

test. 9 subjects were excluded from the extinction experiment analyses due to equipment 

malfunction; 6 subjects were excluded as the primary endpoint was >2 s.d. from the group mean. 

The data were analysed in JASP (JASP Team, 2016) by repeated-measures ANOVA with Group and 

Phase (pre-CS vs. CS periods) as factors, followed by analyses of simple main effects of group at each 

phase. For the extinction experiment, the analysis used nefiracetam and mifepristone as separate 

factors in a 3-way repeated-measures ANOVA. Given the nature of the effects observed at test, 

additional analyses of the extinction session, as well as an exploratory ANCOVA (with performance 

at extinction included as the covariate) were conducted. The primary analyses were frequentist, with 

alpha=0.05 and either Cohen’s d or 2
p reported as an index of effect size, and the data were initially 

checked for normality. Significant group effects were explored with Tukey post-hoc pairwise 

comparisons. We also report BFInclusion and BF10 from parallel Bayesian analyses (Cauchy prior r = 

0.707) as an estimate of posterior probability, with post-hoc tests as appropriate. 

 

Results 

First, we showed that mifepristone, but not propranolol, was effective at impairing tone fear 

memory reconsolidation. Under weak single trial conditioning parameters (0.5-s, 0.4-mA footshock), 

immediate post-reactivation injection of mifepristone, but not propranolol impaired subsequent 

freezing to the conditioned tone at test (Fig. 1A, B). With mifepristone, there was a significant group 

x phase interaction (F(1,12)=16.0, p=0.002, 2
p=0.57, BFInc=28.0), with a simple main effect of group 

in freezing to the CS (t(12)=2.42, p=0.032, d=1.29, BF10=2.35), but not in the pre-CS period 

(t(12)=0.63, p=0.54, d=0.34, BF10=0.51). In contrast, with propranolol there no group x phase 

interaction (F(1,12)=0.66, p=0.43, 2
p=0.05, BFInc=1.74) and no main effect of group (F(1,12)=3.46, 

p=0.08, 2
p=0.22, BFInc=1.46). Moreover, planned analyses of simple main effects of group revealed 

no differences in freezing to the CS (t(12)=1.03, p=0.33, d=0.55, BF10=0.63). The disruptive effect of 

mifepristone was not replicated with stronger conditioning (1.0-s, 0.4-mA footshock, Fig. 1C, D). 

Post-reactivation injection of neither mifepristone nor propranolol had an effect on subsequent tone 

freezing. There were no group x phase interactions (mifepristone: F(1,12)=0.041, p=0.84, 2
p=0.003, 

BFInc=0.61; propranolol: F(1,12)=0.61, p=0.81, 2
p=0.005, BFInc=0.67) or main effects of group 
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(mifepristone: F(1,12)=0.066, p=0.80, 2
p=0.005, BFInc=0.61; propranolol: F(1,12)=0.73, p=0.41, 

2
p=0.06, BFInc=0.58). Planned analyses of simple main effects confirmed no group differences in 

freezing to the CS (mifepristone: t(12)=0.15, p=0.89, d=0.08, BF10=0.45; propranolol: t(12)=0.75, 

p=0.47, d=0.40, BF10=0.54). Therefore, our stronger conditioning parameters represent a boundary 

condition on tone fear memory reconsolidation, presumably under which our reactivation 

parameters were insufficient to destabilise the memory and render it vulnerable to the amnestic 

effect of mifepristone. 

 

 

Fig. 1. Systemic administration of mifepristone, but not propranolol impaired the reconsolidation of weak, 

but not strong, tone fear memory. After conditioning with a 0.5-s footshock, post-reactivation mifepristone 

(A), but not propranolol (B) impaired conditioned freezing to the tone, but not during the pre-CS period. After 

conditioning with a 1-s footshock, neither mifepristone (C) nor propranolol (D) impaired freezing during the 

pre-CS or tone periods. Data presented as mean + SEM. 

 

Next we tested whether pre-treatment with the D1R agonist SKF38393 would facilitate memory 

destabilisation and thereby render even the stronger tone fear memory vulnerable to disruption by 

mifepristone. The combination of pre-reactivation SKF38393 and post-reactivation mifepristone had 

no effect on test tone freezing compared to both SKF38393 + vehicle and vehicle + mifepristone (Fig 
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2A; group x phase: F(2,25)=0.13, p=0.88, 2
p=0.01, BFInc=0.19; group: F(2,25)=0.23, p=0.80, 2

p=0.02, 

BFInc=0.20; simple main effect of group on CS freezing: F(2,25)=0.03, p=0.97, 2
p=0.003, BFInc=0.23). 

Numerical comparison with the previous groups receiving vehicle or mifepristone alone indicates 

that neither SKF38393 nor mifepristone in isolation had a disruptive effect on subsequent tone 

freezing. 

 

Fig. 2. Enhancement of dopaminergic signalling did not stimulate fear memory destabilisation. After 

conditioning with a 1-s footshock, pre-reactivation SKF38393 (A) and modafinil (B) did not facilitate disruption 

of tone, or pre-CS, freezing by post-reactivation mifepristone, when compared to mifepristone and SKF38393 

or modafinil alone. Data presented as mean + SEM. 

 

We also tested whether the less-selective approach of pre-treatment with dopamine transporter 

blocker modafinil would facilitate memory destabilisation. The combination of pre-reactivation 

modafinil and post-reactivation mifepristone had no effect on test tone freezing compared to both 

modafinil + vehicle and vehicle + mifepristone (Fig. 2B; group x phase: F(2,19)=0.20, p=0.82, 

2
p=0.02, BFInc=0.35; group: F(2,25)=1.06, p=0.37, 2

p=0.10, BFInc=0.37; simple main effect of group 
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on CS freezing: F(2,25)=0.03, p=0.97, 2
p=0.003, BFInc=0.23). Numerical comparison with the previous 

groups receiving vehicle or mifepristone alone again indicated that neither modafinil nor 

mifepristone in isolation had a disruptive effect on subsequent tone freezing. 

 

Given that selective agonism of D1 dopamine receptors or enhancement of dopaminergic 

neurotransmission did not appear to facilitate destabilisation, we adopted a broader spectrum 

approach, using the nootropic nefiracetam, which has effects on not only monoaminergic systems 

(Luthman et al., 1994), but also cholinergic signalling (Oyaizu and Narahashi, 1999) and calcium 

channels (Yoshii and Watabe, 1994), both of which have been implicated in memory destabilisation 

(Suzuki et al., 2008; Stiver et al., 2015). The combination of pre-reactivation nefiracetam and post-

reactivation mifepristone reduced test freezing (Fig. 3A; group: F(2,18)=7.09, p=0.005, 2
p=0.44, 

BF10=6.0; phase x group: F(2,18)=1.62, p=0.23, 2
p=0.15, BFInc=2.48). Analysis of simple main effects 

confirmed reduced freezing in the nefiracetam + mifepristone group to the tone compared to both 

nefiracetam + vehicle and vehicle + mifepristone (F(2,18)=, p=0.010, 2
p=0.40, BFInc=5.6; post-hoc 

p<0.05, BF10(Nef+Mif vs Veh+Mif)=2.2, BF10(Nef+Mif vs Nef+Veh)=4.1). The latter two groups froze at test at 

numerically higher levels to the vehicle and mifepristone groups in the previous experiment 

(nef+veh=88.5±3.3; veh+mif=85.2±5.8; veh=71.1±5.9; mif=69.4±11.3), suggesting again that neither 

nefiracetam nor mifepristone in isolation had a disruptive effect on subsequent tone freezing. 

Simple main effects revealed no significant effect of group on freezing in the pre-CS period 

(F(2,18)=3.01, p=0.074, 2
p=0.25, BF10=1.4; post-hoc p=0.074, BF10(Nef+Mif vs Veh+Mif)=1.9, BF10(Nef+Mif vs 

Nef+Veh)=1.3). However, as there was no strong evidence for a selective effect on tone freezing, and 

poor evidence that nefiracetam + mifepristone did not impact upon pre-CS freezing, we conducted 

an exploratory ANCOVA, with pre-CS freezing as the covariate. This analysis confirmed the disruptive 

effect of nefiracetam + mifepristone on tone freezing (F(2,17)=4.23, p=0.032, 2
p=0.33, BFInc=4.5). 
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Fig. 3. Systemic administration of nefiracetam stimulated fear memory destabilisation in a dopamine D1 

receptor-dependent manner. After conditioning with a 1-s footshock, pre-reactivation nefiracetam facilitated 

disruption of tone, but not pre-CS, freezing by post-reactivation mifepristone, when compared to mifepristone 

and nefiracetam alone (A). When pre-reactivation treatment consisted of nefiracetam and SCH23390, 

mifepristone no longer impaired tone or pre-CS freezing (B). Data presented as mean + SEM. 

 

While the mechanism of action of nefiracetam to facilitate memory destabilisation remains unclear, 

we focussed again on signalling at D1 dopamine receptors, testing whether such signalling is 

necessary for the enhancement of memory destabilisation. Co-pre-treatment with SCH23390 and 

nefiracetam blocked the facilitation of memory destabilisation. A nefiracetam-SCH23390-

mifepristone group froze at higher levels at test relative to a nefiracetam-vehicle-mifepristone 

comparison group (Fig. 3B). There was a significant group x phase interaction (F(1,14)=5.96, p=0.029, 

2
p=0.30, BFInc=4.1), with a simple main effect of group in freezing to the CS (t(14)=2.48, p=0.026, 

d=1.24, BF10=2.7), but not in the pre-CS period (t(14)=0.88, p=0.88, d=-0.08, BF10=0.43). 

 

Given that the neurochemical mechanisms of destabilisation, reconsolidation and extinction overlap 

greatly, and that pharmacological approaches that impair reconsolidation can also disrupt extinction 
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to maintain fear (Lee et al., 2006), we tested whether nefiracetam + mifepristone, or either drug 

individually, would affect extinction learning/consolidation. Nefiracetam and mifepristone were 

administered at the same timepoints relative to the extinction session as they had been in the 

previous reconsolidation experiments. There was an effect of mifepristone to reduce freezing to the 

tone, regardless of nefiracetam administration (Fig. 4A; phase x mifepristone: F(1,28)=7.92, p=0.009, 

2
p=0.22, BFInc=10.9; phase x nefiracetam x mifepristone: F(1,14)=0.022, p=0.88, 2

p=0.001, 

BFInc=0.39). There was weak evidence that this effect of mifepristone on freezing to the tone was 

seen in both nefiracetam (phase x mifepristone: F(1,14)=4.36, p=0.056, 2
p=0.24, BFInc=1.54; 

mifepristone on tone freezing: t(14)=2.13, p=0.051, d=1.07, BF10=1.7; mifepristone on pre-CS 

freezing: (t(14)=0.10, p=0.92, d=0.05, BF10=0.43) and vehicle (phase x mifepristone: F(1,14)=3.71, 

p=0.075, 2
p=0.21, BFInc=1.88; mifepristone on tone freezing: t(14)=2.43, p=0.029, d=1.22, BF10=2.5; 

mifepristone on pre-CS freezing: (t(14)=0.086, p=0.93, d=0.04, BF10=0.43) conditions. Therefore, 

post-extinction mifepristone appears to reduce freezing to the tone CS. 
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Fig. 4. Effects of pre-extinction nefiracetam and post-extinction mifepristone. After conditioning with a 1-s 

footshock, nefiracetam was injected systemically prior to extinction and mifepristone immediately after 

extinction. At test, mifepristone reduced freezing to the tone, while nefiracetam increased freezing in both the 

pre-CS and tone periods (A). While there was no acute effect of pre-extinction nefiracetam at the extinction 

session, there was a pre-existing difference between the groups subsequently administered mifepristone 

compared to vehicle (B). Data presented as mean ± SEM. 

 

We also observed an effect of nefiracetam to increase test freezing, irrespective of mifepristone 

administration (nefiracetam: F(1,28)=7.54, p=0.010, 2
p=0.21, BFInc=3.10; phase x nefiracetam: 

F(1,28)=0.031, p=0.86, 2
p=0.001, BFInc=0.69). This effect was observed across both tone 

(F(1,28)=4.80, p=0.037, 2
p=0.15, BFInc=1.85) and pre-CS (F(1,28)= 4.75, p=0.038, 2

p=0.15, 

BFInc=4.03) periods. Further analysis suggested that the effect of nefiracetam on tone freezing was 

observed more clearly in mifepristone- (t(14)=2.27, p=0.039, d=1.14, BF10=2.05) than vehicle-

treated rats (t(14)=1.14, p=0.28, d=0.57, BF10=0.65). Moreover, the effect of nefiracetam on pre-CS 
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freezing was not obvious when the two subgroups were analysed independently (mifepristone: 

t(14)=1.50, p=0.16, d=0.75, BF10=0.89; vehicle: t(14)=1.61, p=0.13, d=0.80, BF10=0.98). Therefore, it 

remains unclear what is the major factor underpinning the elevation of freezing with nefiracetam. 

 

Because the effect of nefiracetam appeared to occur whether or not mifepristone was subsequently 

administered, we checked whether pre-extinction nefiracetam had an acute effect at the extinction 

session that might have persisted to test (Fig. 4B). Analysis of the pre-CS period at the extinction 

session revealed no effect of nefiracetam or mifepristone (nefiracetam x mifepristone: 

F(1,26)=0.049, p=0.83, 2
p=0.002, BFInc=0.14; nefiracetam: F(1,26)=0.014, p=0.91, 2

p=0.001, 

BFInc=0.26; mifepristone: F(1,26)=0.77, p=0.39, 2
p=0.029, BFInc=0.35). Analysis of freezing across the 

10 tone presentations revealed no evidence for an acute effect of nefiracetam (tone x nefiracetam: 

F(2.6,66.6)=0.96, p=0.41, 2
p=0.035, BFInc=0.02; nefiracetam: F(1,26)=0.23, p=0.64, 2

p=0.009, 

BFInc=0.15). However, the analysis also revealed that there potentially were pre-existing differences 

at the extinction session between the groups subsequently administered with mifepristone (tone x 

mifepristone: F(2.6,66.6)=2.30, p=0.095, 2
p=0.081, BFInc=0.48; mifepristone: F(1,26)=0.89, p=0.36, 

2
p=0.033, BFInc=0.30). Given that there appeared to be a small, albeit statistically non-significant, 

difference at the extinction session, we conducted an exploratory ANCOVA in order to determine 

whether the effect of mifepristone at test might be, at least in part, caused by pre-existing group 

differences. This analysis confirmed that, including freezing to the first tone at extinction as a 

covariate, there remained a significant effect of mifepristone (F(1,25)=7.06, p=0.014, 2
p=0.22, 

BFInc=5.14), as well as weaker evidence for an effect of nefiracetam (F(1,25)=4.62, p=0.041, 2
p=0.16, 

BFInc=1.85). 

 

Because the question of importance is whether the putatively-beneficial therapeutic administration 

of nefiracetam and mifepristone on destabilisation and reconsolidation might have alternative, and 

perhaps negative, effects if behavioural parameters promote extinction, we directly compared the 

nefiracetam + mifepristone group against the vehicle + vehicle group. There was weak evidence for a 

reduction in tone freezing (phase x group: F(1,14)=3.73, p=0.074, 2
p=0.21, BFInc=1.06; tone freezing: 

t(14)=0.65, p=0.53, d=0.33, BF10=0.49; pre-CS freezing: (t(14)= 1.55, p=0.14, d=0.77, BF10=1.7 

BF10=0.92). For consistency, we again conducted an exploratory ANCOVA, which confirmed no 

difference between the groups (F(1,11)=0.069, p=0.80, 2
p=0.006, BFInc=0.48). Therefore, the 

potentially beneficial effect of mifepristone and the contrasting negative effect of nefiracetam 

appear to interact with co-administration of the two drugs to result in no overall impact on freezing 

at test.  
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Discussion 

Our results show evidence that the combination of pre-reactivation systemic injection of 

nefiracetam and post-reactivation systemic mifepristone reduced fear expression to a fear 

conditioned tone. This disruptive effect was not observed following administration of either drug 

alone, or when nefiracetam was replaced by either the D1 dopamine receptor agonist SKF38393 or 

the dopamine receptor blocker modafinil. However, co-administration of the D1 dopamine receptor 

antagonist SCH23390 with nefiracetam and mifepristone eliminated the disruption of fear memory 

expression. The disruptive effect of nefiracetam and mifepristone was not replicated when an 

extinction session was used instead of memory reactivation. These results indicate that a 

combination treatment approach of nefiracetam to enhance memory destabilisation and 

mifepristone to impair reconsolidation may be effective for a reconsolidation-based treatment of 

fear memory disorders, without the risk of potentially counterproductive effects on extinction. 

 

Systemic administration of mifepristone appeared to impair the reconsolidation of cued fear 

memoires under various conditions. A single re-exposure to an auditory stimulus is commonly used 

in reconsolidation studies (Nader et al., 2000), and we have previously used our current protocol to 

demonstrate that systemic administration of the NMDA receptor antagonist MK-801 impaired cued 

fear memory reconsolidation (Lee et al., 2006). Moreover, mifepristone has previously been shown 

to impair the reconsolidation of cued fear memories (Jin et al., 2007; Pitman et al., 2011), as well as 

a number of different memory types (Taubenfeld et al., 2009; Nikzad et al., 2011; Achterberg et al., 

2014), although it has yet to be successfully translated to a human clinical setting (Wood et al., 

2015). While we did not include a formal non-reactivation control condition (Dudai, 2004), the fact 

that mifepristone only disrupted freezing to the conditioned tone under certain parametric 

conditions rules out non-specific interpretations of the amnestic effect (see also Cassini et al., 2017). 

This boundary condition of initial conditioning strength has been previously observed across a 

number of settings (Suzuki et al., 2004; Rodriguez-Ortiz et al., 2005; Morris et al., 2006; Reichelt and 

Lee, 2012; Lee and Flavell, 2014). Importantly, it is not that strongly-learned memories cannot be 

triggered to undergo reconsolidation, but that the parameters of memory destabilisation are 

changed in a manner that is not easily predictable. 

 

The failure of propranolol to impair fear memory expression at test under either of the two 

parametric conditions used here is somewhat surprising, given the previous evidence that 

propranolol does impair fear memory reconsolidation (Debiec and LeDoux, 2004; Kindt et al., 2009; 

Taherian et al., 2014; Ortiz et al., 2015; Villain et al., 2016). However, there are reports of failures to 
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replicate the disruptive effect of propranolol in fear memories (Muravieva and Alberini, 2010; 

Pitman et al., 2011; Bos et al., 2014; Thome et al., 2016; Schroyens et al., 2017), as well as evidence 

that, at least in human studies, post-reactivation propranolol is less effective than pre-reactivation 

administration in impairing fear memory reconsolidation (Thomas et al., 2017). Given that 

mifepristone and propranolol had differential effects under identical parametric conditions, it is 

unlikely that the failure of propranolol here to disrupt fear memory reconsolidation represents a 

boundary condition on memory destabilisation. Therefore, it is perhaps more likely that the post-

reactivation timing, and systemic injection nature, of propranolol administration explains the lack of 

disruptive effect. Alternatively, observations from studies of reconsolidation in other memory 

settings suggest that performance deficits following propranolol administration might be 

attributable to an attenuation of emotional value, rather than true memory impairment (Cogan et 

al., 2019), and there is a novel suggestion that b-adrenergic receptor signalling is necessary for 

destabilisation as well as reconsolidation (Lim et al., 2018). While it remains unclear why there was 

no evidence for an impairing effect of propranolol, the advantageous effect of mifepristone (see also 

Pitman et al., 2011) provided the basis for further exploration. 

 

Under the stronger fear conditioning parameters, pre-reactivation systemic injection of nefiracetam 

rendered the post-reactivation administration of mifepristone effective in disrupting fear memory 

reconsolidation. The use of pre-reactivation pharmacological adjunctive treatment to facilitate 

reconsolidation impairments by other treatment has previously been demonstrated for stronger 

contextual fear memories (Lee and Flavell, 2014) and cued fear memories under conditions of 

ethanol withdrawal (Ortiz et al., 2015) and prior stress (Bustos et al., 2010). The common 

interpretation is that the additional pharmacological treatment facilitates memory destabilisation, 

rather than having an additive amnestic effect. Indeed the use of the cannabinoid CB1 receptor 

agonist ACEA (Lee and Flavell, 2014) and the NMDA receptor partial agonist D-cycloserine (Bustos et 

al., 2010; Ortiz et al., 2015) in previous studies was predicated on prior evidence that CB1 and 

GluN2B receptors are necessary for memory destabilisation (Ben Mamou et al., 2006; Suzuki et al., 

2008; Milton et al., 2013). 

 

The mechanism of action by which nefiracetam putatively enhances fear memory destabilisation 

remains somewhat unclear. The aforementioned clear bidirectional effects of CB1 and NMDA 

(GluN2B) receptor modulation on memory destabilisation (Szapiro et al., 2000; Ben Mamou et al., 

2006; Suzuki et al., 2008; Lee and Flavell, 2014; Ortiz et al., 2015) have not been replicated here, in 

that the necessity for dopamine D1 receptor activation for cued fear memory destabilisation (Merlo 
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et al., 2015) was not complemented here by any evidence that D1 receptor activation with SKF38393 

is sufficient to enhance destabilisation. This is in spite of further evidence in the current study that 

D1 receptors are necessary for destabilisation under our experimental conditions. Co-administration 

of SCH23390 blocked the facilitative effect of nefiracetam, rendering mifepristone ineffective at 

impairing reconsolidation. This further suggests that D1 receptor activation is a necessary, but not 

the sole functional mechanism of action of nefiracetam to enhance destabilisation. It does not 

appear to be the case that the insufficiency of D1 receptor activation simply reflects the additional 

necessity of D2 receptor activation (Merlo et al., 2015), as the elevation of synaptic dopamine levels 

by modafinil-induced blockade of the dopamine transporter was similarly ineffective. This raises the 

question of whether nefiracetam acts up- or down-stream of D1 receptor activation. Acute 

administration of nefiracetam does elevate monoamine (including dopamine) levels under certain 

conditions (Luthman et al., 1994). However, nefiratecam also appears to augment intracellular 

memory-related processes to facilitate memory consolidation (Doyle et al., 1996; Nishizaki et al., 

1998), raising the possibility that nefiracetam might enhance subthreshold intracellular 

destabilisation processes under boundary conditions of reconsolidation. The effect of co-

administration of SCH23390 would then suggest that the subthreshold intracellular destabilisation 

results from an insufficient activation of D1 receptors, but this again is inconsistent with the failure 

of SKF38393 to enhance destabilisation. 

 

The lack of effect of both SKF38393 and modafinil suggests there are non-dopaminergic mechanisms 

of action of nefiracetam. One highly likely additional mechanism of action is via L-type voltage-gated 

calcium channels (LVGCCs). Blockade of LVGCCs with systemic injections of nimodipine has been 

shown to prevent contextual fear memory destabilisation (Suzuki et al., 2008; Flavell et al., 2011; De 

Oliveira Alvares et al., 2013), and nefiracetam has pharmacological effects to enhance LVGCC 

calcium currents (Yoshii and Watabe, 1994). Therefore, we would predict that co-administration of 

nimodipine would replicate the effect of SCH23390 to prevent the enhancement of destabilisation 

by nefiracetam. A further possibility is that nefiracetam acts though cholinergic receptors, via an 

elevation of extracellular acetylcholine (Sakurai et al., 1998). While cholinergic receptors have not to 

our knowledge been studied in relation to fear memory destabilisation, activation of muscarinic 

acetylcholine receptors is sufficient to enhance destabilisation of object recognition memories 

(Stiver et al., 2015). Moreover, it is possible that activation of nicotinic acetylcholine receptors also 

contributes to object memory destabilisation (Stiver et al., 2015), and so the identified action of 

nefiracetam to elevate acetylcholine-induced currents at nicotinic acetylcholine receptors (Oyaizu 

and Narahashi, 1999) may contribute to the destabilisation of cued fear memories. However, 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/564674doi: bioRxiv preprint first posted online Mar. 1, 2019; 

http://dx.doi.org/10.1101/564674
http://creativecommons.org/licenses/by-nc/4.0/


perhaps the most likely mechanism of action is via NMDA receptors, given the effect of nefiracetam 

to potentiate NMDA receptor currents via interaction with the glycine binding site (Moriguchi et al., 

2003), allied with the evidence that activation of NMDA receptors can facilitate destabilisation 

(Bustos et al., 2010; Ortiz et al., 2015). 

 

Given the complex mechanistic relationship between destabilisation, reconsolidation and extinction 

(Almeida-Correa and Amaral, 2014; Merlo et al., 2014; Cassini et al., 2017), any potential therapeutic 

strategy that targets one of these processes has the potential to result in “off-target” effects on 

another process, leading to the possibility of maintaining or even enhancing the problematic 

memory (Lee et al., 2006; Tronson et al., 2006). Therefore, if the combination of pre-reactivation 

nefiracetam and post-reactivation mifepristone is to have genuine therapeutic promise, it is 

important to rule out potential counterproductive effects. This is especially the case, due to the 

observation that the parametric determinants of destabilisation and extinction are still not well 

understood (Merlo et al., 2014; Cassini et al., 2017; Merlo et al., 2018). Our results suggest that dual 

treatment with nefiracetam and mifepristone does not disrupt or facilitate cued fear memory 

extinction. Importantly, this lack of effect was observed under conditions that are appropriate for 

engaging extinction (Lee et al., 2006), and not due to the parameters of extinction training falling 

into the “null” or “limbo” space between destabilisation and extinction (Merlo et al., 2014; Cassini et 

al., 2017). This assumption is supported by the apparent effects of mifepristone and nefiracetam 

individually. However, these individual effects of mifepristone and nefiracetam indicate the need for 

caution when considering any translational application of the combined treatment. 

 

The effect of nefiracetam to increase fear expression at test, and the suggestion that this increase in 

fear occurs even under conditions of mifepristone administration, indicates that pre-extinction 

nefiracetam disrupts extinction learning and/or consolidation. This is a novel observation, as to our 

knowledge the effects of nefiracetam on extinction of any memory have not previously been 

assessed. Such a disruption of extinction contrasts with the apparent facilitation of destabilisation, 

and as such may be inconsistent with the idea of a common labilisation system (Almeida-Correa and 

Amaral, 2014). However, it remains possible that nefiracetam modulates destabilisation and 

extinction via distinct mechanisms of action. Regardless of the mechanism of action, the fear-

enhancing effect of nefiracetam alone raises concern that the therapeutic strategy of using 

nefiracetam to facilitate destabilisation might result in counterproductive effects on extinction. 
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In contrast, the apparent effect of mifepristone to reduce fear under conditions of extinction 

training further supports its potential benefit. A treatment that reduces fear expression irrespective 

of reactivation parameters would render that treatment less dependent upon understanding the 

boundary conditions of reconsolidation and extinction. However, it should be noted that the 

beneficial impact of mifepristone on extinction was rather modest, and it remains unlikely that 

mifepristone would have any effect in the “null point” between reconsolidation and extinction. 

Moreover, while infusion of mifepristone directly into the infralimbic cortex similarly enhanced the 

extinction of cued fear (Dadkhah et al., 2018), these results contrast somewhat with previous 

observations showing that intra-amygdala infusions of mifepristone did not directly affect extinction 

of fear-potentiated startle (Yang et al., 2006) and systemic injections of mifepristone did not affect 

the extinction of contextual fear (Ninomiya et al., 2010).  

 

Ultimately, there is a need to explore the effects of mifepristone on extinction further, as well as 

determining the precise mechanisms of action of nefiracteam to enhance destabilisation and impair 

extinction. However, the present results support the premise that a strategy of enhancing 

destabilisation and impairing reconsolidation via dual drug treatment has the potential for reducing 

fear expression without risking fear potentiation. 
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