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Abstract

This paper presents a novel methodology to infer parameters of probabilistic mod-

els whose output noise is a Student-t distribution. The method is an extension

of earlier work for models that are linear in parameters to nonlinear multi-layer

perceptrons (MLPs). We used an EM algorithm combined with variational approx-

imation, the evidence procedure, and an optimisation algorithm. The technique

was tested on two regression applications. The �rst one is a synthetic dataset

and the second is gas forward contract prices data from the UK energy market.

The results showed that forecasting accuracy is signi�cantly improved by using

Student-t noise models.

Key words: Variational inference, Student-t noise, multilayer perceptrons, EM

algorithm, forecast.

1. Introduction

In forecasting models, we generally assume that the data is corrupted by noise:

yt = f(xt) + "t,

where "t is a zero-mean probability distribution. Normally, the noise is assumed

to be Gaussian distribution either because of arguments derived from the central
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limit theorem or just to simplify calculations. For example, the log likelihood

of a Gaussian noise model is a quadratic function of the output variables. This

leads to the fact that in the training process, we can easily estimate the maximum

likelihood solution using optimisation algorithms. Software and frameworks for

training machine learning models such as radial basis functions (RBF), MLP, and

linear regression (LR) with Gaussian noise can be found in [1]. Conversely, other

noise models are much less tractable. So why use the Student-t distribution?

In our previous work [2, 3], we used models with Gaussian noise to forecast

gas and electricity forward prices in the UK energy market. In these experiments,

the kurtosis, which is a measure of how outlier-prone a distribution is, of the

residuals (i.e. the di¤erent between target and output of forecasting model) is

between 16 and 17: the kurtosis of the Gaussian distribution is 3. Furthermore,

P (� � 3� < r < � + 3�) � 0:982, where � and � are the mean and standard

derivation of the residual respectively. The equivalent probability for a Gaussian

distribution is 0:997; therefore, the residual distribution has heavy tails. This

means that the residual distributions are much more outlier-prone than the Normal

distribution. The large number of outliers can make the training process unreliable

and error bar estimates inaccurate, because Gaussians are sensitive to outliers. It

is clear that this data is not modelled well by a Gaussian distribution as has often

been noted for �nancial data.

As a consequence, a Student-t distribution can be considered as a good alter-

native to a Gaussian because it is a fat-tailed distribution and is more robust.

Moreover, the Student-t distribution family contains the Normal distribution as

special case.

There are several previous studies of inference with Student-t models. Tip-

ping and Lawrence proposed a framework for training an RBF model with �xed

basis functions [4]. This study is a fully Bayesian treatment based on a varia-
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tional approximation framework. A variational inference scheme was also used

for unsupervised learning with mixture models: Bishop and Svensén presented an

algorithm for automatically determining the number of components in a mixture

of t-distribution using a Bayesian variational framework [5]. In order to obtain a

tractable solution, it was assumed that the latent variables are independent, and

thus posterior distributions of latent variables can be factorized. This means that

the algorithm does not capture correlations among the latent variables. Archam-

beau and Verleysen introduced a new variational Bayesian learning algorithm for

Student-t mixture models, in which they removed the assumption of variable in-

dependence [6]. Numerical experiments showed that their model had a greater

robustness to outliers than Bishop and Svensén�s method in [5].

This paper presents a novel methodology to infer parameters of Student-t prob-

abilistic models. This methodology for MAP estimation is an extension of the

technique introduced by Tipping and Lawrence [4], in which models are assumed

to be linear in parameters. Both approaches are based on a variational approx-

imation. The main advantage of our method is that it is not limited to models

whose output is linearly dependent on model parameters. On the other hand, our

approach provides only MAP estimates of parameters while Tipping and Lawrence

give a fully Bayesian treatment in which predictions are made by integrating out

all the parameters apart from those de�ning the t-distribution, which are opti-

mised. Thus, although our algorithm can be applied to models that are linear in

parameters, we would not expect it to outperform Tipping and Lawrence, so our

discussion focusses on the MLP.

This paper is organised as follows. In Section 2, Student-t noise models are

presented. Section 3 describes our inference technique for MLPs. Numerical results

on two datasets are given in Section 4. Section 5 discusses some conclusions.
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2. Student-t noise model

We assume that the output data is corrupted by noise with a Student-t distri-

bution.

yt = f(xt;!) + "t,

where "t is a Student-t noise process, and f(xt) is the output function of a forecast

model, which can be a multi-layer perceptron (MLP), radial basis function (RBF),

or linear regression (LR). In the case of MLP models, the output is non-linear in

the parameters. Conversely, the output is linear in parameters when the model is

LR or RBF. We are not investigating the case where the independent variables xt

are also noisy.

The Student-t distribution can be considered as a mixture of an in�nite number

of zero-mean Gaussians with di¤erent variances:

p("tjc; d) =
R1
0
p("tj�t)p(�tjc; d) d�t (1)

=
dc

�(c)

�
1

2�

�1=2 �
d+

"2t
2

��c�1=2
�(c+ 1=2),

where

p("tj�t) = N("tj0; ��1t ),

p(�tjc; d) = Gamma(�tjc; d) =
dc

�(c)
�c�1t exp(��td).

The mixture weight for a given �t is speci�ed by the Gamma distribution

p(�tjc; d). � = 2c is called the �number of degrees of freedom�and � =
p
d=c is

the scale parameter of the distribution. The degrees-of-freedom parameter � can

be considered as a robustness tuning parameter [6]. When � tends to in�nity, this

distribution converges to a Gaussian. Therefore, the Student-t noise model still

contains the Gaussian as a special case when � is very large.
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3. MAP estimation for MLPs

The aim of our approach is to �nd maximum a posterior (MAP) estimates of

network and noise model parameters. MAP estimation is not a fully Bayesian

treatment because it �nds the optimal parameters of the models instead of inte-

grating over all unknown parameters. This is equivalent to the type-II maximum

likelihood method [7].

In this paper, we will describe an EM algorithm for training a model with a

Student-t noise model. This training framework can be use for both �non-linear

in parameters�models and �linear in parameters�models.

Given a data set D = f(x1; y1); : : : ; (xT ; yT )g, our goal is to optimise parame-

ters of a predictive model (i.e. MLP, LR or RBF) using MAP. To simplify the

notation, let 
= f!; c; d; �g be the set of parameters/hyperparameters of the

model and noise. The posterior density of the parameters given a dataset D is

given by

p(
jD) = p(Dj
)p(
)
p(D)

,

where p(Dj
) is the dataset likelihood, p(
) is the prior, and p(D) is evidence.

Because the denominator does not a¤ect the MAP solution, we can ignore this

term: p(
jD) / p(Dj
)p(
): The likelihood and the prior are given by

p(Dj
) = p(Dj!;c; d) =
TQ
t=1

p(ytjxt;!;c; d)

p(ytjxt;
) =
dc

�(c)

�
1

2�

�1=2 "
d+

(yt � f(xt;!))
2

2

#�c�1=2
�(c+ 1=2)

p(
) = p(!j�)p(�)p(c; d). (2)

The weight prior p(!j�) is a Gaussian. It is helpful to generalise the hyper-

parameter � to multiple hyperparameters �1; : : : ; �M corresponding to groups of
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weightsW1; : : : ;WM . In theory, we can create groupings of the weights in any way

that we want. However, weights in an MLP are normally divided into four groups:

�rst-layer weights, �rst-layer biases, second-layer weights, and second-layer biases.

In addition, the �rst layer weights can be also divided into several groups: weights

fanning out from a input variable are associated to a separate group. The latter

grouping approach relates to automatic relevance determination (ARD) [8] and is

used in our experiments. Denote group dimensions byW1; : : : ;WM corresponding

to the groups W1; : : : ;WM . Thus the dimension of ! isW =
PM

m=1Wm.

p(!j�) =
MQ
m=1

N(Wmj0;��1m ) =
MQ
m=1

��m
2�

�Wm=2

exp

�
MP
m=1

�
��m
2

P
!2Wm

!2
��
(3)

There are many possible choices for the densities p(�) and p(c; d); but for simplicity

we assume that they are uniform distributions. Therefore, they will be ignored in

the subsequent analysis. Hence

log p(
jD) / log [p(Dj
)p(
)]

= Tc log d+ T log
�(c+ 1=2)

�(c)
�W + T

2
log 2�

�
�
c+

1

2

�
TP
t=1

log

"
d+

(yt � f(xt;!))
2

2

#

+
MP
m=1

�
Wm

2
log�m

�
�

MP
m=1

�
�m
2

P
!2Wm

!2
�
.

3.1. Variational approximation

The Student-t distribution of each observation yt can be considered as a mixture

of an in�nite number of zero-mean Gaussians with inverse variance �t. Let � =

f�1; �2; : : : ; �Tg; then

p(Dj
) =
1R
0

p(D;�j
)d� =
1R
0

p(Dj�;
)p(�j
)d�, (4)

where

p(Dj�;
) =
TQ
t=1

p(ytj�t;
) =
TQ
t=1

�
�t
2�

�1=2
exp

�
��t
2
(yt � f(xt;!))

2

�
(5)
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p(�j
) =
TQ
t=1

p(�tj
) =
TQ
t=1

Gamma(�tjc; d) =
TQ
t=1

dce�d�t�c�1t

�(c)
. (6)

It is di¢ cult to optimise p(Dj
) directly, but optimising p(D;�j
) is signi�cantly

easier. We use a variational method [9] to approximate the posterior p(Dj
)p(
)

as follows. An approximating distribution q(�) for p(�jD;
) is introduced: for

every choice of q(�), the following decompositions hold:

log [p(Dj
)p(
)] = log [p(D;�j
)p(
)]� log p(�jD;
)

log [p(Dj
)p(
)] = L(q;
) +KL(qjjp), (7)

where

L(q;
) =
1R
0

q(�) log

�
p(D;�j
)p(
)

q(�)

�
d�

=
1R
0

q(�) log p(D;�j
)p(
)d� �
1R
0

q(�) log q(�) d� (8)

KL(qjjp) = �
1R
0

q(�) log

�
p(�jD;
)
q(�)

�
d�. (9)

In equation (7), the second component KL(qjjp) is the Kullback-Leibler diver-

gence between q(�) and p(�jD;
). It is clear that KL(qjjp) � 0, with equality if

and only if q(�) = p(�jD;
). Therefore, L(q;
) � log p(Dj
), i.e. L(q;
) is a

lower bound on log [p(Dj
)p(
)].

3.2. EM for optimising the posterior

Based on the decomposition in equation (7), we use an EM algorithm to max-

imise p(Dj
) p(
). The two following steps are repeated:

� E-step: �x 
 and maximise L(q;
) with respect to q(�). The lower bound

can be seen as a negative Kullback-Leibler divergence between q(�) and a dis-

tribution which is proportional to p(D;�j
)p(
). Thus maximising L(q;
)
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is equivalent to minimising this Kullback-Leibler divergence. The lower

bound is maximised when q(�) / p(D;�j
)p(
) = p(Dj�;
)p(�j
)p(
).

Discarding terms that are independent of �, we have:

log q(�) /
TP
t=1

log fp(ytj!; �t)p(�tjc; d)g

log q(�t) / log fp(ytj!; �t)p(�tjc; d)g

/ (c� 1
2
) log �t �

�
d+

1

2
(yt � f(xt;!))

2

�
�t + const.

The above equation shows that log q(�t) is a linear combination of log �t and

�t. Therefore, q(�) is a product of Gamma distributions with the following

parameters:

q(�) =
TQ
t=1

Gamma(�tjec; edt) (10)

ec = c+
1

2
, edt = d+

1

2
(yt � f(xt;!))

2. (11)

Note that the method in [4] estimated posterior distributions of parameters

!;�; and �. In order to obtain a tractable solution for these distribu-

tions, they assumed that !;�; and � are a posteriori separable, such that

q(!;�;�) = q!(!)q�(�)q�(�). In our work, this assumption changes since

we estimate the distribution of � only; the other parameters (i.e. ! and �)

are optimised in the M-step (which is equivalent to delta function for each

parameter vector).

� M-step: �x q(�) using equations (10) and (11), and maximise L(q;
) with

respect to 
. In equation (8), the �rst component is the expectation of a

complete-data log likelihood. The second component is the entropy of q(�)
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and does not depend on 
. Therefore, we can ignore this component in the

subsequent analysis:

L(q;
) =
1R
0

q(�) log fp(D;�j
)p(
)g d� = hlog fp(D;�j
)p(
)giq(�) .(12)

We now describe how this optimisation can be done in the following section.

3.3. Optimising the lower bound of log posterior

Firstly, we have to compute the lower bound L(q;
).

log fp(D;�j
)p(
)g =
TP
t=1

log fp(ytj!; �t)p(�tjc; d)g+ log p(!j�)

+ log p(�) + log p(c; d). (13)

q(�) is de�ned by equation (10). The densities p(�) and p(c; d) are assumed to be

uniform distributions. Therefore, they will be ignored in the subsequent analysis.

L(q;
) =
TP
t=1

hlog fp(ytj!; �t)p(�tjc; d)giq(�) + hlog p(!j�)iq(�) .

From equations (3), (5), and (6), we have

hlog fp(ytj!; �t)p(�tjc; d)giq(�) =

�
c� 1

2

�
hlog �tiq(�) �

(yt � f(xt;!))
2

2
h�tiq(�)

�d h�tiq(�) + c log d� log �(c)� 1
2
log(2�)

hlog p(!j�)iq(�) =
MP
m=1

�
Wm

2
log�m

�
�W
2
log (2�)�

MP
m=1

�
�m
2

P
!2Wm

!2
�
,

where hlog �tiq(�) = hlog �tip(�tjec;edt) =  (ec) � log edt and h�tiq(�) = h�tip(�tjec;edt) =ec=edt, with  (�) the �psi�or �digamma�function, de�ned as  (x) = @=@x [log �(x)]

[10]. The lower bound is given by (constant components are ignored for simplicity):

L(q;
) =

�
c� 1

2

�
TP
t=1

�
 (ec)� log edt�� 1

2

TP
t=1

ecedt (yt � f(xt;!))
2

�d
TP
t=1

ecedt + Tc log d� T log �(c)

+
MP
m=1

�
Wm

2
log�m

�
�

MP
m=1

�
�m
2

P
!2Wm

!2
�
. (14)
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We partition the parameters into three groups fc; dg, f!g, and f�g, and opti-

mise each group in turn with the others held �xed.

3.3.1. Optimise fc; dg

We can use a nonlinear optimisation algorithm (e.g. scaled conjugate gradient

(SCG) [11]) to �nd an optimal solution for c; d. Derivatives of the lower bound

with respect to c, d are given by:

@L(q;
)
@c

=
TP
t=1

�
 (ec)� log edt�+ T log d� T (c)

@L(q;
)
@d

= �
TP
t=1

ecedt + T
c

d
,

with constraints c; d > 0: These constraints can be enforced by a substitution:

c = exp(bc); d = exp(bd). Derivatives of the lower bound with respect to bc, bd are
given by:

@L(q;
)
@bc =

@L(q;
)
@c

@c

@bc = c

�
TP
t=1

�
 (ec)� log edt�+ T log d� T (c)

�
@L(q;
)

@ bd =
@L(q;
)

@d

@d

@ bd = d

�
�

TP
t=1

ecedt + T
c

d

�
.

3.3.2. Optimise !

We now can consider optimisation of L(q;
) with respect to ! using a nonlin-

ear optimisation algorithm such as SCG. The relevant partial derivative of lower

bound L(q;
) is given by:

@L(q;
)
@!i

= �1
2

@

@!i

�
TP
t=1

ecedt (yt � f(xt;!))
2

�
� b�i!i

= �
TP
t=1

� ecedt @

@!i

�
1

2
(yt � f(xt;!))

2

��
� b�i!i,

where b� = [b�1; b�2; : : : ; b�W], b�i = �m if i 2 Wm, i = 1; : : : ;W and m = 1; : : : ;M .

The term @=@!i [(yt � f(xt;!))
2=2] is the derivative of the mean square error

function (MSE) for models with Gaussian noise. Equations for this derivative are

presented in [1].
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3.3.3. Optimise �

Our objective is to estimate the most probable value of �, in other word we

maximise p(�jD). The following procedure is derived from the standard evidence

procedure [12]. The main di¤erence is that the scalar hyperparameter � in the

standard evidence procedure is replaced by a T -dimensional vector �, to be derived

below. This vector is �xed and de�ned by equation (11) while � in the standard

evidence procedure is optimised simultaneously with �. In addition, we generalise

the hyperparameter � to multiple hyperparameters �1; : : : ; �M corresponding to

groups of weights W1; : : : ;WM , so it is consistent to the above sections.

p(�jD) = p(Dj�)p(�)
p(D)

The distribution p(Dj�) is called the evidence for �. Because the denominator

does not a¤ect the optimisation solution and p(�) is assumed to be uniform, these

terms are ignored in the subsequent analysis. This means that we have to maximise

the evidence p(Dj�) with respect to �. Firstly, we have to compute p(Dj�).

p(Dj�) =
Z 1

�1
p(Dj!)p(!j�) d!. (15)

In the E-step, L(q;
) is maximised with respect to q(�), in other word we min-

imiseKL(qjjp) with respect to q(�). In this caseKL(qjjp) � 0, thus log [p(Dj
)p(
)] �

L(q;
). Therefore, log p(Dj
) can be de�ned by equation (14) without the last

two terms (which are derived from the component log p(
)). Ignoring the compo-

nents which are independent of !, we obtain:

log p(Dj!) = �1
2

TP
t=1

ecedt (yt � f(xt;!))
2 + const. (16)

Substitute equations (3) and (16) to (15), we have:

p(Dj�) /
MQ
m=1

��m
2�

�Wm=2
Z 1

�1
exp (�S(!)) d!, (17)
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where

S(!) = �0ED(!) +�
0Ew(!), (18)

where �, �, ED(!), and Ew(!) are column vectors, �0 and �0 are the transposes

of � and � respectively, and �0ED(!) are the inner product of � and ED(!):

ED(!) =
�
E1D(!); : : : ; E

T
D(!)

�0
; EtD(!) =

1

2
(yt � f(!;xt))

2

� =

� eced1 ; : : : ; ecedT
�0

Ew(!) =
�
E1w(!); : : : ; E

M
w (!)

�0
; Emw (!) =

1

2

P
!2Wm

!2

� = [�1; : : : ; �M ]
0.

Note that in the equation of the overall error function S(!), the scalar hyperpara-

meter � in the standard evidence procedure is replaced by a T -dimensional vector

�, and hyperparameter � is generalised to multiple hyperparameters �1; : : : ; �M .

To evaluate the integral in equation (17), we do the same procedure as described

in [12]. Finally, we obtain the log evidence as follows:

log p(Dj�) =
MP
m=1

�
Wm

2
log�m

�
�1
2
log kAk��0ED(!MP )��0Ew(!MP )+const,

where !MP is local minimum of the S(!) (of course, it is the local maximum of

lower bound L(q;
) as well). MatrixA is the Hessian of the overall error function:

A =
TP
t=1

�trrEtD(!MP ) + diag(b�);
where �t = ec=edt, b� is aW-dimensional vector: b� = [b�1; b�2; : : : ; b�W], b�i = �m if

i 2 Wm, i = 1; : : : ;W and m = 1; : : : ;M . diag(b�) is a diagonal matrix with the
elements of b� on the main diagonal.
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Let us return to our main objective, which is to optimise log p(Dj�). The �rst

step is to compute its partial derivative with respect to �. The most di¢ cult

term is the log of the matrix determinant kAk. Let �1; : : : ; �W be the eigenvalues

of the data Hessian H =
PT

t=1 �trrEtD(!MP ). Then A has eigenvalues �1 +b�1; : : : ; �W + b�W, and
@

@�m
ln kAk =

@

@�m
ln

�
WQ
i=1

(�i + b�i)� = @

@�m

WP
i=1

ln (�i + b�i)
=

P
i2Wm

1

�i + �m
=

P
i2Wm

�
A�1

�
ii
, m = 1; : : : ;M .

The derivative of the log evidence with respect to �m is:

@

@�m
log p(Dj�) = �Emw (!MP )�

1

2

P
i2Wm

1

�i + �m
+
Wm

2�m
.

Equating this to zero and rearranging give an implicit equation for �m

�m =
m

2Emw (!MP )
, m = 1; : : : ;M , (19)

where

m =
P
i2Wm

�i
�i + �m

, (20)

is a measure of the number of well-determined parameters; see section 10.4 in [13].

3.4. Summary of training process

1. Chose initial values for bc, bd, and !.
2. Update parameters of distribution q(�) using equations (10) and (11).

3. Optimise the lower bound L(q;
) w.r.t f!; bc; bd; �g: partition these para-
meters into three groups

nbc; bdo, f!g, and f�g, and optimise each group
with the others held �xed:

(a) Optimise bc, bd using scaled conjugate gradient.
(b) Optimise ! using scaled conjugate gradient.
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(c) Optimise � using equation (19).

(d) Repeat steps (a), (b) and (c) until convergence.

4. Repeat steps 2 and 3 until convergence.

We chose to terminate when either none of the changes at each update to !

or log�m were greater than some threshold, here 10�6, or a maximum number of

iterations have been exceeded, depending on whichever occurs �rst.

4. Experimental results

The numerical experiments demonstrate the advantages and disadvantages of

Student-t models over Gaussian ones. We tested on two forecasting tasks. The

�rst is on a synthetic dataset which is similar to that in [4]. The second is a real life

application to forecast forward gas prices in the UK market, provided by E.ON.

4.1. Model evaluation

In order to evaluate prediction performance of models, we computed three error

measures: normalised mean squared error (NMSE), mean absolute percentage

error (MAPE), and mean absolute error (MAE) which are de�ned by

eNMSE =

PT
t=1 (yt � byt)2PT

t=1 (yt � E[y])2

eMAPE =
1

T

XT

t=1

����yt � bytyt

���� � 100%
eMAE =

1

T

XT

t=1
jyt � bytj ,

where y is the target data of test set, by is the forecast, E[y] is the mean of y, and
T is the number of observations in the test set.
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4.2. Synthetic data

We generated a dataset from the function sinc(x) = (sin(x))=x with addi-

tive Student-t noise. The dataset includes a training set (100 points at equally

spaced intervals in [�10; 10]) and a test set (80 equally spaced noise-free points in

[�10; 10]). The additive noise is drawn from a zero-mean Student-t distribution

with one degree of freedom (� = 1) and scale parameter � = 0:02.

We compared the prediction performance of four models: Gaussian MLP,

our proposal Student-t MLP, Gaussian RBF, and Student-t RBF. The Gaussian

MLP model was trained with the evidence procedure and the Student-t RBF

was trained with the Tipping and Lawrence algorithm. Software for training

Gaussian MLP/RBF can be found in [1]. Both Gaussian and Student-t RBF

models had nine centres equally spaced in [�10; 10] and �xed Gaussian basis func-

tions �m(x) = exp
�
� [(x� xm) =2:0]2

	
. Both MLP models had 5 hidden units

and tanh activation functions. In training MLP Student-t, the maximum number

of iteration for algorithms in step (3.a), (3.b), (3.c), (3.d), and (4) were 80, 40, 6,

5, and 40 respectively

Figure 1(a) shows shows the development of the log posterior log p(
jD) (ignor-

ing the constant terms) during training of the Student-t MLP, indicating that our

algorithm converges. Figure 1(b) shows the inferred noise distribution of Student-t

and Gaussian MLP, compared with the true additive noise. The inferred noise dis-

tribution of the Student-tMLP is close to the real noise while that of the Gaussian

MLP model is far from the real noise. This implies that the Student-t MLP model

is capable of successfully learning noise parameters.

Figure 2 shows prediction results of the four models. In both MLP and RBF

cases, models with Student-t noise outperform Gaussian noise. Table 1 provides

prediction accuracy information, averaged over 10 trials. The table shows that

the Student-t noise models are signi�cantly better than Gaussian models. For
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Figure 1: Results on synthetic dataset. (a) Development of negative log posterior p(
jD) (ignor-

ing the constant terms) in training Student-t MLP model. (b) The inferred noise distributions

in Student-t MLP model and Gaussian MLP model, and the true noise distribution.

example, NMSE of the Student-t MLP model is 0.00373 while the equivalent value

for the Gaussian MLP model is 0.19891. This proves the robustness to outliers of

Student-t models.

The biggest disadvantage of our presented method is that it is computationally

expensive. The average running time for Student-t MLP model for this case study

was 525 (seconds), which is much longer than the others. (We ran experiments

Models NMSE MAPE MAE Running time (s)

Gaussian MLP 0.19891 163.230% 0.10712 1.0423

Studentt  MLP 0.00373 29.544% 0.01144 545.2500

Gaussian RBF 0.19118 148.590% 0.07964 0.0078

Studentt  RBF 0.01013 41.905% 0.02777 13.5190

Table 1: Errors and running time of forecast methods for synthetic dataset.
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Figure 2: Synthetic dataset. (a) Data and predictions of the MLP models. (b) Data and

predictions of the RBF models.

with code written in Matlab on a computer with Duo Core 1.66GHz CPU, RAM

1.5GB).

4.3. Gas forward price

The second experiment was to predict prices of monthly gas forward products.

The monthly gas product is a forward contract for supplying gas in a single month

in the future. In the UK energy market, it is possible to trade gas from one to six

months ahead. There are six months of daily price data (approximately 130 data

points) for each monthly gas product. For example, the July 2006 gas product

can be traded from 03 Jan 2006 to 30 Jun 2006. To evaluate the behaviour of

our method, 72 sub-datasets were used and we computed the average prediction

results. We divided each forward product into three parts: each part was a test set

of a sub-dataset. Each test set was associated to one training set which includes

data of several forward products. Of course, all observations in a training set
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Figure 3: Allocation of training sets and test sets for gas price forecasts.

occurred before any in the associated test set. Figure 3 shows an example of how

training sets and test sets were allocated. Data of the May-08 product was divided

into three parts which were three test sets. In sub-dataset 1, the test set is the �rst

1/3 of the May-08 product, the training set includes data from Apr-08, Mar-08,

Feb-08, and Jan-08 products.

Beside electricity demand and monthly forward gas prices, we were provided

with a large number of exogenous variables which were potential candidates for in-

puts. However, only some of them are relevant. Using irrelevant variables as input

will reduce the performance of the forecasting models. Therefore, in the training

phase, automatic relevance determination (ARD) for Gaussian MLP was used to

select relevant input variables [8]. The selected variables were pt�1; pt�2; p
w
t�1; p

w
t�2

for the �rst 36 sub-datasets and pt�1; pt�2; p
s
t�1; p

s
t�2 for the remaining, where p

is the price of a monthly gas forward product, pw and ps are the price of a

one-winter-ahead and one-summer-ahead forward products respectively, which are

seasonal forward contracts for supplying gas in one winter/summer ahead. These

variables were used as inputs for both Gaussian and Student MLPs.
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Variables were normalised to zero mean and unit variance, then forecast time

series were converted back to the original domain. The errors were computed on

the original time series domain. We used MLPs with tanh activation functions and

7 hidden units. Determining the number of hidden units is based on the number

of well-determined parameters during training the model by evidence procedure;

see equation (20).

A random walk (RW) model was used as a benchmark to evaluate performance

of forecast models. A RW is given by: yt = yt�1 + "t�1, where " is a zero-mean

noise. The model predicts that tomorrow price will be equal to today price. We

also computed the improvement ratio (IR) of errors of a method compared with

corresponding errors of the benchmark model. For example, the IR of NMSE of a

model M comparing with NMSE of the RW is given by:

IRNMSE(M)=
eNMSE(RW )� eNMSE(M)

eNMSE(RW )
�100%.

Figure 4 shows the IRNMSE of Student-t/Gaussian MLP models for 72 gas

contract sub-datasets. The Student-t MLP model generally outperforms Gaussian

MLP model. It obviously shows that IRNMSE is around [�20%; 40%] except

datasets number 45, 46, 47, 62, and 65. On these irregular sub-datasets, the

Gaussian MLP had extremely bad results while the Student-t MLP provided bet-

ter performance. Figure 5 shows histograms of IRNMSE for 72 sub-datasets. The

number of these irregular sub-dataset was small, only 5 out of 72 sub-datasets.

However, they contributed signi�cantly to the overall results and make the av-

erage IRNMSE of Gaussian MLP model worse. Table 2 shows average errors for

all 72 sub-datasets. The improvement ratio of NMSE of Gaussian model is only

0.94% while the equivalent quantity of Student-t model is 10.11%. This proves

that the Student-t model is more robust to outliers. It is superior to Gaussian

models even in this real dataset where the noise is not expected to be an exact

Student-t distribution.
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Figure 4: IRNMSE of Student-t/Gaussian MLP models for 72 gas contract sub-datasets.

Figure 5: Histograms of IRNMSE of 72 gas contract sub-datasets. (a) Gaussian MLP; (b)

Student-t MLP
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Models IR(NMSE) NMSE MAPE MAE

RW 0.00% 0.17566 1.823% 0.70766

Gaussian MLP 0.94% 0.17767 1.903% 0.71375

Studentt MLP 10.11% 0.16389 1.763% 0.67884

Table 2: Average errors of forecasting models for 72 gas forward price sub-datasets.

5. Conclusions

This paper presents a novel methodology for inferring parameters of Student-t

probabilistic models. It was shown that it does not require the assum prior of a

linear dependence of the output on model parameters. Removing this assumption

leads to the fact that we can apply our framework to a large range of machine

learning models. In particular, we can solve the inference problem of Student-t

MLPmodel which cannot be solved by the previous methodologies in the literature.

It was shown experimentally that the Student-t models is less sensitive to

outliers than Gaussian models. The Student-t models provide better predictions

in both the synthetic data (where additive noise is a Student-t distribution) and

the real data of gas forward price in the UK market (where noise has a heavy-

tailed distribution but would not normally expected to be exactly a Student-t

distribution).

The limitation of our presented method is its computational expense. It takes

much longer to run than the other methods. However, in some real life applications,

such as day-ahead price/demand energy prediction, this running time is acceptable

considering the improved results.
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