

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown policy and contact the service immediately (openaccess@aston.ac.uk)

ORGANOTELLURIUM COMPOUNDS FOR METAL ORGANIC VAPOUR PHASE EPITAXY

by

MARTIN ROBERT GREAVES

A thesis submitted for the Degree of Doctor of Philosophy

at

THE UNIVERSITY OF ASTON IN BIRMINGHAM

OCTOBER 1991

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

DECLARATION

The work described herein was carried out at the University of Aston in Birmingham between October 1988 and October 1991. It has been done independently and submitted for no other degree.

Martin Greaves.

Martin R. Greaves

October 1991

Professor W. R. McWhinnie

ORGANOTELLURIUM COMPOUNDS FOR METAL ORGANIC VAPOUR PHASE EPITAXY

By MARTIN ROBERT GREAVES

A thesis submitted for the degree of Doctor of Philosophy at the University of Aston in Birmingham.

October 1991.

SUMMARY

The infra-red detector material cadmium mercury telluride can be grown by the technique of Metal Organic Vapour Phase Epitaxy using simple alkyl telluride compounds as the source of tellurium. New tellurium precursors are required in order to overcome handling and toxicity problems and to reduce the growth temperature in preparing the material.

A range of diaryltellurium(IV) dicarboxylates and some 2-(2'-pyridyl)phenyltellurium(II) and tellurium(IV) monocarboxylates have been synthesised and characterised by infra-red, ¹³C N.M.R. and mass spectroscopy. Infra-red spectroscopy has been used to determine the mode of bonding of the carboxylate ligand to tellurium.

Synthetic methods have been devised for the preparation of diorganotritellurides (R_2Te_3) and mixed diorganotetrachalcogenides (RTeSeSeTeR). A mechanism for the formation of the tritellurides based on aerobic conditions is proposed.

The reaction of ArTe- with $(ClCH_2CH_2)_3N$ leads to tripod-like multidentate ligands $(ArTeCH_2CH_2)_3N$ which form complexes with the ions Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II). Synthetic routes to aryltelluroalkylamines and arylselenoalkylamines are also reported.

The crystal structure of 2-(2'-pyridyl)phenyltellurium(II) bromide has been solved in which there are six molecules present within the unit cell. There are no close intermolecular Te---Te interactions and the molecules are stabilised by short Te---N intramolecular contacts. The crystal structure of 2-(2'-pyridyl)phenylselenium(II)-tribromomercurate(II) is also presented.

A study of the Raman vibrational spectra of some tellurated azobenzenes and 2-phenyl pyridines shows spectra of remarkably far superior quality to those obtained using infra-red spectroscopy.

Key Words:-

Metal Organic Vapour Phase Epitaxy Organotellurium Carboxylates Polytellurides Raman To My Family

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor W. R. McWhinnie for the many useful discussions and comments during the course of this work. I have benefited a great deal from his knowledge on this subject.

May I thank Professor J. B. Mullin and Dr. J. Hails at the Royal Signals and Radar Establishment for the useful discussions on MOVPE and for giving me the opportunity of spending time at the research centre in Malvern.

I am also very grateful to Dr. T. A. Hamor at the University of Birmingham for his dedication in assisting to obtain X-ray crystallographic data. May I also thank Dr. S. McWhinnie at Brunel University for collaborating in measuring Raman spectra.

I am grateful to Dr. M. Perry for his co-operation in obtaining N.M.R data. I would like to thank the members of the technical staff and also members within the research group past and present for their support and for making my time at Aston a pleasant one.

I would like to thank Claire Ashcroft for her assistance in helping me to prepare this thesis. Finally I would like to express my many thanks to my family and friends for all their support during the course of this work.

CONTENTS

	Title Page	1
	Declaration	2
	Summary	3
	Acknowledgements	5
	Contents	6
	List of Tables	14
	List of Figures	15
	List of Schemes	16
	CHAPTER ONE -	
	INTRODUCTION.	
1.1	General Introduction	18
1.2	Cadmium Mercury Telluride	19
1.3	Metal Organic Vapour Phase Epitaxy	20
1.4	Reactor Design	21
1.5	Growth of HgTe, CdTe and Cd _x Hg _{1-x} Te by	25
	thermal MOVPE	
1.6	Mechanisms of pyrolytic film growth	33
1.7	The Inter Diffused Multilayer Process (IMP)	37
1.8	Photo-MOVPE	40
1.9	Photo-MOVPE of HgTe, CdTe and CMT	43
1.10	Reaction Mechanisms of Photo-MOVPE	44
1.11	Mechanism to epitaxial growth of HgTe in	46
	the system Et ₂ Te/Hg/H ₂	

1.12	Mechanisms to the epitaxial growth of CdTe and	48
	Cd _x Hg _{1-x} Te in the system Me ₂ Cd/Et ₂ Te/Hg (H ₂ or He)	
1.13	Synthesis and Purification of Organometallics for MOVPE	52
	of II-VI compounds	
	CHAPTER TWO -	
	GENERAL EXPERIMENTAL TECHNIQUES.	
2.1	Chemicals and Solvents	61
2.2	Elemental Analysis	61
2.3	Melting Points	61
2.4	Conductivity Measurements	61
2.5	Infra-red Spectroscopy	62
2.6	Nuclear Magnetic Resonance Spectroscopy	62
2.7	Mass Spectroscopy	62
2.8	Ultra-violet, visible and near infra-red spectroscopy	62
2.9	X-ray Crystallography	63
2.10	Raman Spectroscopy	63
	CHAPTER THREE -	
	ORGANOTELLURIUM CARBOXYLATES.	
3.1	Introduction	65
3.2	Experimental	66
3.2.1	Synthesis of Bis(p-methoxyphenyl)tellurium(IV)-	66
	dibenzoate	
3.2.2	Synthesis of Bis(p-ethoxyphenyl)tellurium(IV)dibenzoate	67

3.2.3	Synthesis of Bis(p-methoxyphenyl)tellurium(IV)-	68
	dipicolinate	
3.2.4	Synthesis of Bis(p-ethoxyphenyl)tellurium(IV)dipicolinate	68
3.2.5	Synthesis of Diphenyltellurium(IV)di(p-iodobenzoate)	69
3.2.6	Synthesis of Diphenyltellurium(IV)di(2-chlorobenzoate)	69
3.2.7	Synthesis of Bis(3,4-dimethoxyphenyl)tellurium(IV)-	70
	dibenzoate	
3.2.8	Synthesis of Diphenyl-hydroxy-tellurium(IV)-	70
	picolinate. 0.5 1,4-dioxane	
3.2.9	Synthesis of p-ethoxyphenyl-hydroxy-methoxytellurium-	71
	picolinate	
3.2.10	Reaction of p-ethoxyphenyltellurium(IV)trichloride and	71
	potassium picolinate	
3.2.11	Synthesis of p-ethoxyphenyl-dihydroxytellurium(IV)-	72
	benzoate	
3.2.12	Synthesis of 2-(2'-pyridyl)phenyltellurium(II)benzoate	72
3.2.13	Synthesis of 2-(2'-pyridyl)phenyltellurium(II)picolinate	73
3.2.14	Synthesis of 2-(2'-pyridyl)phenyldichlorotellurium(IV)-	73
	picolinate	
3.2.15	Synthesis of 2-(2'-pyridyl)phenyldibromotellurium(IV)-	74
	benzoate	
3.2.16	Synthesis of 2-(2'-pyridyl)phenyl-bromo-hydroxy-	74
	tellurium(IV)picolinate	
3.2.17	Reaction of 1,3-dimethoxybenzene and TeCl ₄	75
3.2.18	Synthesis of Bis(2,4-dimethoxyphenyl)tellurium(IV)-	76

	dibromide	
3.2.19	Synthesis of <u>Bis(p-methoxyphenyl)tellurium(IV)-</u>	76
	dibromide	
3.3.1	Characterisation of Diaryltellurium(IV)dicarboxylates	77
3.3.2	Attempts to form Aryltellurium(IV)tricarboxylates	101
3.3.4	Characterisation of 2-(2'-pyridyl)phenyltellurium(II)-	103
	and tellurium(IV) carboxylates	
3.3.5	Attempts to characterise (L ₂ TeCl ⁺)(LTeCl ₂ ⁻)	105
3.3.6	Attempts to characterise L ₂ TeCl ₂ .2HCl	110
3.4	Organotellurium carboxylates for MOVPE	112
	CONCLUSIONS	113
	CHAPTER FOUR -	
	ORGANOPOLYCHALCOGENIDE AND	
	CYCLIC TELLURIUM COMPOUNDS.	
4.1	Introduction	116
4.2	Experimental	123
4.2.1	Synthesis of <u>Bis(2-(2'-pyridyl)phenyl)tritelluride</u>	123
4.2.2	Synthesis of <u>Bis(2-(2'-quinolinyl)phenyl)</u> tritelluride	125
4.2.3	Generation of the ditelluride anion (Te ₂ ²⁻)	126
4.2.4	Attempted synthesis of Bis(2-(2'-pyridyl)phenyl-	127
	tetratelluride	
4.2.5	Attempted synthesis of Bis(2-(2'-quinolinyl)phenyl-	128
	tetratelluride	
4.2.6	Synthesis of <u>Bis(2-(2'-pyridyl)phenyltelluro)</u> diselenide	129

4.2.7	Synthesis of <u>Bis</u> (2-(2'-quinolinyl)phenyltelluro)diselenide	130
4.2.8	Attempted synthesis of Bis(phenylazophenyl-C,N)-	130
	tetratelluride	
4.2.9	Attempts to synthesise 1,2-Ditellurane	131
	Synthesis of 1,1'-dibromo-1-tellurocyclopentane	
4.2.10	Attempts to synthesise 1,2-Ditellurane	131
	Synthesis of 1,1'-diiodo-1-tellurocyclopentane	
4.2.11	Attempted synthesis of tellurrocyclopentane	132
	Synthesis of Cyclotellurapentane-1-oxide	
4.2.12	Synthesis of 3,4-benzo-1-telluracyclopentane	132
4.3	RESULTS AND DISCUSSION	133
4.3.1	Characterisation of Diorganotritellurides (R ₂ Te ₃)	133
4.3.2	Attempts to form diorganotetratellurides (R ₂ Te ₄)	138
4.3.3	Characterisation of Bis(organyltellurenyl)diselenides	141
4.3.4	Mass Spectroscopy - The appearance of Polytelluride	143
	species	
4.3.5	Characterisation of 1,1'-dibromo-1-telluracyclopentane	145
4.3.6	Characterisation of 1,1'-diiodo-1-telluracyclopentane	147
4.3.7	Characterisation of cyclotellurapentane-1-oxide	147
4.3.8	Characterisation of 3,4-benzo-telluracyclopentane	149
	CONCLUSIONS	150

CHAPTER FIVE -

NITROGEN CONTAINING ORGANOTELLURIUM LIGANDS AND THEIR COMPLEXES.

5.1	Introduction	153
5.2	Experimental	158
5.2.1	Generation of RTe ⁻ and RSe ⁻	158
5.2.2	Synthesis of 2-(p-methoxyphenyltelluro)ethylamine	158
5.2.3	Synthesis of 3-(phenyltelluro)propylamine	159
5.2.4	Synthesis of 3-(p-methoxyphenyltelluro)propylamine	159
5.2.5	Synthesis of 3-(p-ethoxyphenyltelluro)propylamine-	160
	hydrochloride	
5.2.6	Synthesis of 3-(p-tolyltelluro)propylamine hydrochloride	160
5.2.7	Synthesis of 2-(phenylseleno)ethylamine	160
5.2.8	Synthesis of 3-(phenylseleno)propylamine hydrochloride	161
5.2.9	Synthesis of <u>Tris(2-(phenyltelluro)ethyl)amine Ligand L</u> ¹	161
5.2.10	Synthesis of <u>Tris(p-methoxyphenyltelluro)ethylamine</u>	162
	Ligand L ²	
5.2.11	Synthesis of Tris(p-ethoxyphenyltelluro)ethylamine	162
	Ligand L ³	
5.2.12	2 Synthesis of <u>Tris(phenylseleno)ethylamine Ligand L⁴</u>	163
5.2.13	Synthesis of Tris(p-ethoxyphenylseleno)ethylamine	163
	Ligand L ⁵	
5.2.14	Preparation of the Mercury(II) complex of L ²	163
5.2.15	5 Preparation of the Cadmium(II) complex of L ²	164
5.2.10	6 Preparation of the Platinum(II) complex of L ²	164

5.2.17	Preparation of the Palladium(II) complex of L ²	165
5.2.18	Preparation of the Copper(I) complex of L ²	165
5.2.19	Preparation of the Mercury(II) complex of L ³	165
5.2.20	Preparation of the Cadmium(II) complex of L ³	166
5.2.21	Preparation of the Platinum(II) complex of L ³	166
5.2.22	Preparation of the Palladium(II) complex of L ³	166
5.2.23	Preparation of the Copper(I) complex of L ³	167
5.2.24	Preparation of the Mercury(II) complex of L ⁴	167
5.2.25	Preparation of the Mercury(II) complex of L ⁵	167
5.2.26	Preparation of the Platinum(II) complex of L ⁵	168
5.3	RESULTS AND DISCUSSION	
5.3.1	Characterisation of Aryltelluroalkylamines and	169
	Arylselenoalkylamines or their hydrochloride derivatives	
5.3.2	Characterisation of <u>Tris(2-aryltelluroethyl)amines</u> ,	192
	tris(2-arylselenoethyl)amines and their complexes	
5.3.3	Characterisation of the Hg(II) complexes of L ² and L ³	201
5.3.4	Characterisation of the Cd(II) complexes of L ² and L ³	208
5.3.5	Characterisation of the Cu(I) complexes of L ² and L ³	212
5.3.6	Characterisation of the Pt(II) complexes of L ² and L ³	219
5.3.7	Characterisation of the Pd(II) complexes of L ² and L ³	224
5.3.8	Characterisation of the Hg(II) complexes of the selenium	230
	ligands L ⁴ and L ⁵	
5.3.9	Characterisation of the Pt(II) complex of L ⁵	233
5.4	Tellurium(125) N.M.R. spectroscopy	236

5.5	Precursors for MOVPE	240
5.6	Summary	242
	CHAPTER SIX -	
	CRYSTALLOGRAPHY	
6.1	Introduction	245
6.2	Experimental and Results	246
	Crystallographic Analysis of 2-(2'-pyridyl)phenyl-	246
	tellurium(II)bromide (RTeBr)	
6.3	Discussion	248
6.4	Crystallographic Analysis of 2-(2'-pyridyl)phenyl-	271
	selenium(II) tribromomercurate(II)	
6.5	Discussion	273
6.6	Crystallographic Analysis of Bis(p-methoxyphenyl)-	284
	tellurium(IV)dibenzoate	
	CHAPTER SEVEN -	
	RAMAN SPECTROSCOPY	
7.1	Introduction	286
7.2	Experimental	287
7.3	Results	288
7.4	Discussion	298
	REFERENCES	304

List of Tables

Table	Page	Table	Page
1.1	29	6.1	247
1.2	32	6.2	252
1.3	55	6.3	254
		6.4	256
3.1	78	6.5	257
3.2	80	6.6	260
3.3	86	6.7	262
3.4	90	6.8	267
		6.9	272
4.1	134	6.10	274
		6.11	275
5.1	171	6.12	276
5.2	174	6.13	277
5.3	177		
5.4	183	7.1	301
5.5	229	7.2	302
		7.3	303

List of Figures

Figure	Page	Figure	Page
1.1	23	5.20	217
1.2	39	5.2	219
1.3	42	5.3	221
1.4	56	5.21	222
1.5	56	5.22	223
1.6	57	5.23	226
		5.4	227
3.1	96	5.24	231
3.2	107	5.25	232
3.3	109	5.26	234
		5.27	235
4.1	146	5.28	237
4.2	148	5.29	238
		5.30	239
5.6	195		
5.7	196	6.1	249
5.8	197	6.2	250
5.9	198	6.3	251
5.10	199	6.4	269
5.11	203	6.5	279
5.12	204	6.6	280
5.13	205		
5.14	206	7.1	289
5.1	207	7.2	290
5.15	210	7.3	291
5.16	211	7.4	292
5.17	214	7.5	293
5.18	215	7.6	294
5.19	216	7.7	295
		7.8	296
	•	7.9	297
		1.2	

List of Schemes

Scheme	Page
1.1	24
1.2	54
4.1	144
5.1	194

16

Chapter One INTRODUCTION

1.1 General Introduction

For many years silicon semiconductor technology dominated solid state material science. A whole range of devices based on silicon have been developed and are now used worldwide. It is possible by combining elements from groups III and V or from groups II and VI to produce isoelectronic materials having a variety of semiconductor and optoelectronic qualities, similar but in a number of ways far superior to those produced with silicon. For example the use of gallium arsenide to produce integrated circuits or discrete devices in place of silicon gives two significant advantages. Firstly they operate at eight times the speed and secondly they are more resistant to radiation. The disadvantage at present is the very high cost compared to silicon and hence uses in these military applications. space and have concentrated on areas Optoelectronic devices based on III-V and II-VI materials have generated the most commercial interest. As alloy semiconductors have a direct band gap, they are much more efficient emitters of photons than silicon which has an indirect band structure. If the composition of the alloys is varied, the wavelength emission can be varied. There are many applications illustrating this property, for example:-

- (i) Photocathodes for night vision (AlGaAs)
- (ii) Solar cells for space applications (AlGaAs)

- (iii) Solid state lasers for compact disc reading (AlGaAs)
- (iv) Emitters and detectors for optical fibre reading (InGaAsP)
- (v) Infra-red detectors (CdHgTe)

The recognition of the potential of III-V and II-VI materials as electronic and optoelectronic devices has resulted in a change in direction and thrust in semiconductor growth technology.

1.2 Cadmium Mercury Telluride

In 1958, W.D.Lawson and co-workers at the Royal Signals and Radar Establishment, Malvern, discovered that $Hg_xCd_{1-x}Te$ alloys were semiconductors with band gaps that could be varied from 0.0 to 1.605eV as x increased from 0.17 to 1.0. The demonstration of longwavelength photoconductivity in these alloys led the way for subsequent development of infra-red detectors. By 1965, cadmium mercury telluride (CMT) photoconductive infra-red technology had advanced sufficiently so that prototype detectors could be made for thermal imaging systems. During the past two decades CMT alloys have found applications as infra-red detectors which are vital in a number of military, space and industrial applications. Civilian applications of CMT explored including imaging systems are also being thermal thermography for early detection of breast cancer. Today CMT ranks as one of the most thoroughly studied semiconductors and from an investment point of view is only out-ranked by silicon and gallium arsenide.

1.3 Metal Organic Vapour Phase Epitaxy

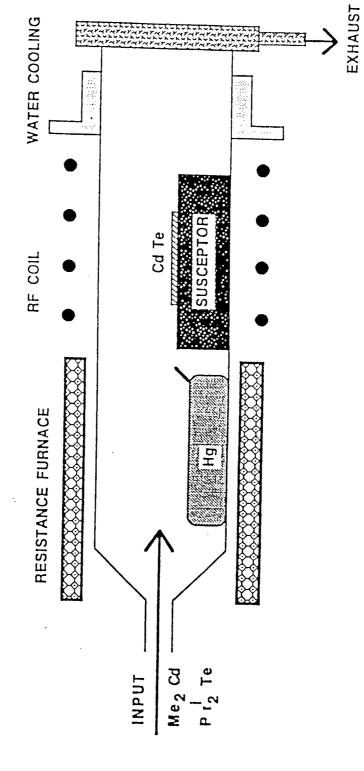
Traditionally the method of forming thin layers of semiconductor material in the silicon industry is by Chemical Vapour Deposition. This enables large areas to be produced and is the basis for low cost integrated circuits. Simplistically, the method requires the decomposition of silane at high temperatures generating silicon films and hydrogen.

$$SiH_4 - ^{1100^{\circ}C} \longrightarrow Si + 2H_2$$
 (1)

This crude bulk fabrication technology in which high growth temperatures are required can not be employed in the growth of CMT and related materials. Modern semiconductor technology requires the growth of high quality epitaxial layers of material. Epitaxial quality is a particular concern for high performance infra-red detectors. This is often achieved by the co-decomposition of organometallic compounds in the gas phase over a suitable substrate on which the film is to develop. If the deposited material is amorphous or polycrystalline the process is generally referred to as Metal Organic Chemical Vapour Deposition (MOCVD), whereas a process producing single crystalline material is Metal Organic Vapour Phase Epitaxy (MOVPE). In MOVPE a substrate

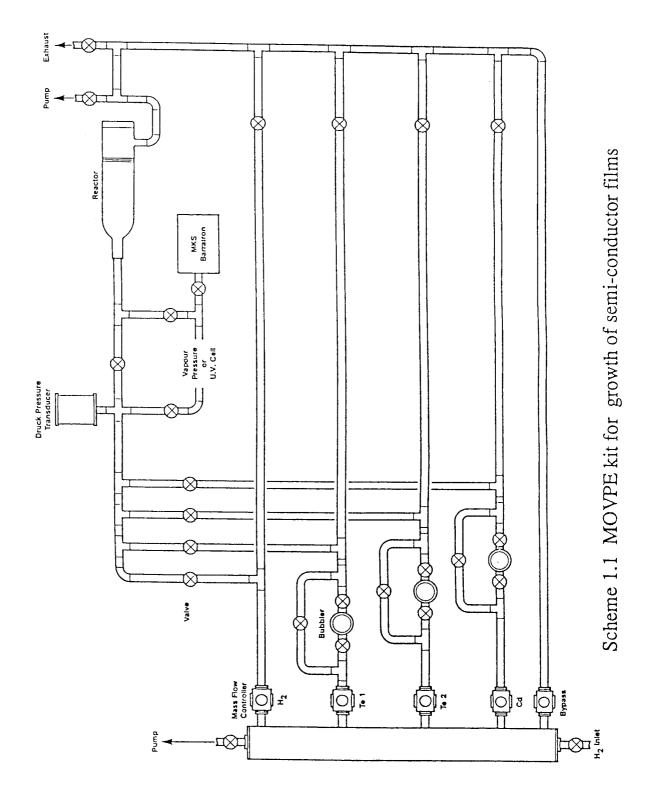
crystal is used to orientate the growing layer so that it adopts the same structure as the substrate. The material grown may contain up to fifty different layers.

The use of organometallics and hydrides in chemical vapour deposition processes for the production of single crystal layers of III-V semiconductor compounds was first demonstrated in 1968 by Manasevit^(1,2). Gallium arsenide was formed on gallium arsenide and germanium substrates by reacting triethylgallium or trimethylgallium and arsine in a carrier gas of hydrogen.


$$(C_2H_5)_3Ga + AsH_3 - GaAs + 3C_2H_6$$
 (2)

In 1971, the first epitaxial layers of a II-VI compound $ZnSe^{(3)}$ were grown. Since then the use of the technique has been extended to many other II-VI compounds including $Cd_xHg_{1-x}Te$, HgTe, CdTe, CdSe, ZnTe, ZnS, ZnS_xSe_{1-x} , ZnO and CdS. This information has been reviewed relatively recently⁽⁴⁻⁶⁾.

1.4 Reactor Design


The status of the II-VI materials is not as mature as that of the III-V's and reactor designs for II-VI compounds have followed closely developments in III-V compound growth. Two basic reactor designs have been used. A vertical type originated by Manasevit and Simpson⁽³⁾

and a horizontal version described by Irvine and Mullin⁽⁷⁾. Schematic representations of the horizontal design are shown in schemes 1.1 and figure 1.1. The main advantage of the horizontal version is considered to be the slightly angled susceptor (10°) which leads to uniform deposition as the reactants are depleted from the gas stream. The reactor shown in scheme 1.1 consists of a water cooled silica vessel containing a SiC coated graphite substrate pedestal which is heated by high frequency induction. Prior to use, the reactor is evacuated to normal rotary pump pressures and the graphite is baked at high temperatures (~1100°C). This baking process removes any unwanted organic impurities within the reactor. The reactant gases are controlled by mass flow controllers and conveyed to the reactor through the system manufactured entirely from stainless steel. Carrier gases of hydrogen and helium are purified by Pd/Ag membranes and molecular sieves respectively. Substrates are polished prior to use and etched in acid before loading into the reactor. The most important feature in the growth of II-VI compounds is the arrangement for mixing the gases in order to inhibit any prereaction between the constituent gas streams. Most reactor designs have concentrated on introducing the gases to the reactor separately usually by admitting the group VI source at the end of the reactor and the metal alkyl through a delivery tube much closer to the heated substrate⁽⁸⁾. The use of some group VI sources which eliminate the pre-reaction(9) enables good mixing to take place and allows efficient gas mixer designed for GaAs growth to be utilised.

MOVPE REACTOR

Figure 1.1 Typical reactor cell for pyrolytic growth of CMT.

1.5 Growth of HgTe, CdTe and Cd_xHg_{1-x}Te by Thermal MOVPE

The first reported growth of HgTe was by Kuech and McCaldin⁽¹⁰⁾ who reacted $(CH_3)_2$ Te and Hg vapour (from a liquid source) in H_2 . They found that growth rates of the epitaxial layers in the temperature range 325-350°C to be very low ie. 0.3-0.6 μ mh⁻¹. In contrast Irvine *et al* ⁽¹¹⁾ and Bhat and Ghandi⁽¹²⁾ used $(C_2H_5)_2$ Te. Under similar conditions Irvine recorded growth rates of ~25 μ mh⁻¹ at 410°C and Bhat and Ghandi noted growth rates of ~10 μ mh⁻¹ at a temperature of 440°C. The use of diethyl- rather than dimethyltelluride and higher substrate temperatures clearly resulted in more efficient pyrolysis of the alkyls and was responsible for significantly higher growth rates than those found by Kuech and McCaldin.

Temperature understandably plays a crucial role in these pyrolysis processes. Mullin showed that the decomposition of $Et_2Te^{(4)}$ in H_2 requires a temperature of ~450°C to achieve 100% yield of Te, using a flow rate of ~20cms⁻¹. At 400°C the molecule is 50% decomposed and at 350°C the yield of Te is only 0.1%. However dimethyltelluride is much more stable; the corresponding temperatures for 100% and 50% decomposition being 510 and 475°C - an increase in stability of 60-75°C. Czerniak and Easton⁽¹³⁾ in a mass spectroscopic study have shown that the pyrolysis of $(C_2H_5)_2$ Te began abruptly in a clean system at 410°C and was complete by 510°C. Additionally and more importantly

the decomposition was autocatalytic. Thus the onset of pyrolysis could occur at 350° C in the presence of Te. The pyrolysis of $(CH_3)_2$ Cd has been studied extensively in the literature⁽¹⁴⁾ and has been shown to be less stable than $(C_2H_5)_2$ Te by $\sim 60^{\circ}$ C under similar flow conditions.

The effect of these decomposition constraints can be seen in the epitaxial growth of HgTe, CdTe and Cd_xHg_{1-x}Te. In the case of HgTe grown on CdTe substrates, by reacting (C₂H₅)₂Te and mercury vapour in a suitable MOVPE reactor, the growth rate is found to fall off dramatically below 410°C. This contrasts with the epitaxial growth of CdTe which is achieved by replacing Me₂Cd with Hg in the above system. Here deposition temperatures can be reduced to as low as 350°C for similar epitaxial film growth rates. Evidently, the reaction between Me₂Cd and Et₂Te is a cooperative one and does not require separate decomposition of Et₂Te. Mullin⁽⁴⁾ originally suggested that adduct formation (ie Me₂Cd<—TeEt₂) may provide an easier activation route for thermal decomposition (see later).

The growth of Cd_xHg_{1-x}Te exhibits the characteristics of both HgTe and CdTe growth. Thus when the substrate temperature is below 380°C, CdTe and not Cd_xHg_{1-x}Te is grown⁽¹⁵⁾. This indicates not only the cooperative interaction of Me₂Cd and Et₂Te in the low temperature formation of CdTe, but also the need for separate decomposition of Et₂Te in the formation of HgTe. The problem that results is of finding matching growth conditions for the formation of HgTe and CdTe since

the value of x that results in the growth of $Cd_xHg_{1-x}Te$ is very sensitive to temperature and flow conditions. By using compromise conditions growth rates of 3-4 μ mh⁻¹ can be obtained using a substrate temperature of 415°C.

CMT films are adversely affected by the relatively high growth temperatures of $400\text{-}450^{\circ}\text{C}$ using Et_2Te , Me_2Cd and Hg as precursor sources. At these high temperatures, diffusional processes broaden heterojunction interfaces (CdTe/CMT) . Furthermore, the equilibrium density of mercury vacancies increases with temperature and these act as sites for impurities (the equilibrium mercury vacancy concentration can only be controlled at < 400°C). This results in a poor performance in the films electrical properties.

Attempts to grow superior films by modifying the growth conditions are the subject of worldwide interest. The thrust is towards lower temperature technologies. In conventional thermal MOVPE of CMT, using Et₂Te, Me₂Cd and Hg precursors, the growth temperature is controlled by the more stable organotellurium compound. Efforts have been directed to finding more suitable less stable organotellurium sources.

There are several important factors to consider when selecting an alternative precursor source. Firstly it must be stable at room temperature under an inert atmosphere if necessary, for at least several

months or preferably indefinitely. Secondly it must also be sufficietly volatile ideally with a vapour pressure >1 torr at room temperature enabling it to be transported around the system "freely". Furthermore, and alternative organometallic source should not undergo any undesirable reactions such as premature vapour phase reactions and polymerisations. Finally it must be obtainable chemically pure.

An alternative to Et_2Te in CMT growth is i- $Pr_2Te^{(16-18)}$ whereby the growth temperature has been reduced to 350°C. To date i- Pr_2Te is still the most popular organotellurium precursor in CMT growth.

Table 1.1 lists the organotellurium precursors which have been used to grow films of CdTe, HgTe and Cd_xHg_{1-x}Te. As well as Me₂Te, Et₂Te and i-Pr₂Te other tellurium precursors have been successfully used. Ditertiarybutyltelluride^(28,31,38) and diallyltelluride⁽³⁷⁾ have been used to grow HgTe and CdTe at low temperatures (250-350°C). A disadvantage of these compounds are the low vapour pressures, which necessitates the use of heated bubblers and lines to transport sufficient amounts of the organotellurium source to the reactor. Recently, methylallyltelluride⁽³⁴⁾ has been used to grow HgTe at about 320°C using dimethylmercury. This organotellurium source has a relatively high vapour pressure (6.2 Torr at 20°C) so that it can be transported readily to the reactor zone. Ghandi *et al* ⁽³⁵⁻³⁶⁾ have used it to grow epitaxial layers of HgTe and Cd_xHg_{1-x}Te at 320°C. The superior morphology of the layers grown using methylallyltelluride rather than

Table 1.1 Organotellurium sources used in II-VI growth.

Precursor	Material Grown	Substrate Temp °C	Grown Method	Ref
Me ₂ Te	СМТ			10
Me ₂ Te	CMT	150	Photolytic (parallel)	19
Et ₂ Te	CdTe HgTe	165 165	Photolytic (parallel)	20
Et ₂ Te	CdTe	100-150	Photolytic (parallel)	21
Et ₂ Te	CMT	200-300	Photolytic (perpendicular)	22
Et ₂ Te	CdTe	250-300	Photolytic (perpendicular)	23
Et ₂ Te	CMT	410	Conventional	24
Et ₂ Te	НgТе		Conventional	11
Et ₂ Te	HgTe CdTe CMT	250 250 250	Photolytic	25
Et ₂ Te	CMT	250	Photolytic (perpendicular)	26
Et ₂ Te	HgTe	200-300	Photolytic (perpendicular)	27
n -Pr ₂ Te	НgТе	390-410	Conventional	28

i-Pr ₂ Te	СМТ	350	Conventional	29
i-Pr ₂ Te	CMT	350	(IMP) Conventional	16
i- Pr ₂ Te	CdTe	350	Conventional	16
t-Bu ₂ Te	НgТе	230	Conventional	30
2	CdTe	230		
t-Bu ₂ Te	CdTe	220	Conventional	31
	HgTe	230		
Me_2Te_2	CdTe	250-500	Conventional	32
C_4H_6	CdTe	250	Conventional	33
allylTeMe	CdTe HgTe	290 325	Conventional	34
allylTeMe	HgTe CMT	250-320 250-320	Conventional	35
allylTeMe	HgTe CMT	240-320 250-320	Conventional	36
(allyl) ₂ Te	HgTe CdTe	180 180	Conventional	37

Table 1.1

di-isopropyltelluride is due to the lower growth temperatures used.

One can rationalise the low growth temperatures in terms of an alkyl stability model. The stability of organotellurium compounds is determined by the strength of the weakest bonds which are the carbontellurium bonds. The breaking of the first carbon-tellurium bond forming two free radicals is the rate determining step for pyrolysis. Consequently the activation energy for free radical formation will determine the stability of the molecule. An important mechanism for reducing the activation energy is delocalisation of the free radical unpaired electronic charge by neighbouring organic groups. Simplistically, the greater the delocalisation of charge, the lower the activation energy for carbon-tellurium bond dissociation and therefore the less stable the molecule. Table 1.2 shows the effect of delocalisation on activation energy using methane as a reference. As illustrated the stability order for alkyl hydrocarbon radicals is :-

Using this model and referring to the growth temperatures in table 1.1, the same stability order is seen for the organotellurium compounds,

$$Me_2Te > Et_2Te > n-Pr_2Te > i-Pr_2Te > t-Bu_2Te$$

Compounds of stability lower than tertiary molecules can be obtained if the free radical electron is delocalised in certain double bonded systems. Such a configuration exists in the allyl radical where

Radical Order	Radical Name	Chemical Equation (Kcal	EACT (Kcal/mole)	Reduction in EACT by Delocalisation
0	Methyl	$CH_4 \longrightarrow CH_3 + H$	104	0
1.	Ethyl	CH_3CH_3 > C_2H_5 + H	86	9
1 °	n-propyl	$C_3H_8 - C_3H_7 + H^2$	86	9
1 °	n-butyl	C_4H_{10} \longrightarrow C_4H_{9} + H·	86	9
2°	i-propyl	$(CH_3)_2CH_2$ > $(CH_3)_2CH^2 + H^2$	95	6
ů	t-butyl	$(CH_3)_3CH$ > $(CH_3)_3C$ + H·-	92	12
	allyl	CH_2CHCH_3 ——> CH_2CHCH_2 + H·	87	17

Activation Energies for alkyl radical formation. Table 1.2

two equal stability configurations can be represented:-

$$CH_2$$
= CH - CH_2 · <----> · CH_2 - CH = CH_2

Using the stability model diallyltelluride should be even less stable than ditertiarybutyltelluride. Indeed for comparable growth rates of HgTe a lower growth temperature of 180°C is required for diallyltelluride compared to 230°C for ditertiarybutyltelluride⁽³⁷⁾. Hence one can expand the stability order model as follows:-

$$0^{\circ} > 1^{\circ} > 2^{\circ} > 3^{\circ} > \text{allyl}.$$

1.6 Mechanisms of pyrolytic film growth.

It is well known that many group II alkyls are Lewis acids (electron acceptors) where the acceptor strength follows the series Zn > Cd > Hg. Conversely the group VI alkyls can act as Lewis bases (electron pair donors) where the donor strength is O > S > Se > Te. There are many examples illustrating the reaction between strong donor and acceptor alkyls, for example $(CH_3)_2Zn < O(CH_3)_2^{(38)}$.

In the formation of CdTe in the system $(CH_3)_2Cd/(C_2H_5)_2Te/H_2$ (discussed in section 1.5), Mullin⁽⁴⁾ explained the low temperature growth in terms of an adduct formation, $(CH_3)_2Cd < -Te(C_2H_5)_2$ that would decompose efficiently down to 350°C. At this temperature $(C_2H_5)_2Te$ alone shows no significant decomposition. Mullin⁽⁴⁾ obtained evidence to support his idea by the pyrolysis of $(C_2H_5)_2Te$ and $(CH_3)_2Cd$

in a flow of H_2 in a heated silica tube in the <u>absence of substrate</u>. The atomic proportion of Cd:Te were found to be 1:1 in the deposits down to 310°C, the minimum temperature investigated. This is some 80°C below which $(C_2H_5)_2$ Te will decompose alone in the absence of $(CH_3)_2$ Cd under equivalent conditions. One would not have expected such a close 1:1 correlation without a unique reaction between the alkyls.

Mass spectroscopic studies by Czerniak and Easton⁽¹³⁾ could also support Mullin's theory. They investigated the thermal decomposition of dimethylcadmium in the presence of diethyltelluride by *in-situ* gas sampling in a MOVPE growth reactor. Spectral peaks were identified from the reaction products as being CH₃CdC₂H₅+ and CH₃TeC₂H₅+. There are two possible explanations for this result. Firstly an adduct may form which dissociates and/or that exchange reactions are occurring between the alkyls. Both of these explanations would be expected to include reactions of the kind

$$(CH_3)_2Cd + (C_2H_5)_2Te \rightleftharpoons CH_3TeC_2H_5 + CH_3CdC_2H_5$$

Studies by Sritharan and Jones^(39,40) on the MOVCD growth of ZnSe using a mixture of Me₂Zn, Et₂Se and H₂Se in H₂, cast doubt on the formation of an adduct Me₂Zn.SeEt₂ between the alkyls in their reactor. They showed that the infra-red spectra of the individual alkyls are similar to the spectra of a mixture of the alkyls. Since Me₂Cd.TeEt₂ is likely to be a weaker adduct than Me₂Zn.SeEt₂, its' existence must also

be questioned too.

Hails *et al* have recently used G.C. mass spectroscopy to study "exhaust" gases in an MOVPE process⁽⁴¹⁾. In one experiment, isopropyltelluride was passed over a mercury source (heated to 170° C) and the vapours passed over a graphite susceptor heated to 370° C. The products detected were propene and propane together with unreacted isopropyltelluride. This decomposition arises without any interaction with mercury and could be explained by β -hydride elimination to yield propene followed by reductive elimination of propane to yield a deposit of tellurium.

$$(CH_3)_2CH$$
-Te- $CH(CH_3)_2$ \longrightarrow CH_3 - CH -Te- $CH(CH_3)_2$ (A) CH_2 - H

A
$$\longrightarrow$$
 CH₃CHCH₂ + HTeCH(CH₃)₂ \longrightarrow CH₃CH₂CH₃ + Te

Under the same experimental conditions but substituting isopropyl telluride for dimethylcadmium, methane, ethane and dimethylmercury were observed as mass spectral peaks. No dimethylcadmium was observed. There must therefore be some interaction of mercury with dimethycadmium. This reaction is known⁽⁴²⁾

$$R_2Cd + Hg \rightleftharpoons R_2Hg + Cd$$
 (3)

Dimethylcadmium has successfully been used to grow CdTe on GaAs substrates at 250°C using a purely thermal process. Here Steigerwald *et al* have suggested a more complicated mechanism than

Mullin's adduct theory. Based on the intrinsic reactivity of ditellurides⁽⁴³⁾, two mechanisms were proposed. It is well known that dimethylcadmium decomposes to give elemental cadmium^(13,34). Steigerwald suggests that the ditelluride reacts with the dispersed cadmium to give an intermediate (A) in equation (4).

$$RTe-TeR + Cd \longrightarrow RTeCdTeR (A) \longrightarrow CdTe + R_2Te (4)$$

Subsequent decomposition of (A) gives CdTe and an alkyl telluride as a volatile by-product. The vital step in the proposed mechanism is the insertion of cadmium into the Te-Te bond. Similar insertion reactions are known to occur at low temperatures⁽⁴⁴⁾. Another possible mechanism is related to the direct pyrolysis of dimethylditelluride. Such decomposition reactions of ditellurides have been the subject of some study^(45,46); however the mechanism has not been unambigously established. Based on the related decomposition of disulphides⁽⁴⁷⁾ the route shown in equation (5) is proposed. It is suggested that (B) is a

$$RTe-TeR \longrightarrow R_2Te=Te (B) \longrightarrow R_2Te + Te$$
 (5)

very reactive species which can react with the organocadmium compound as in (6) or with the pyrolytically generated cadmium atoms as in (7).

$$R_2$$
Te=Te + Me₂Cd -----> R_2 Te + MeTeCdMe -----> CdTe + 2CH₃ (6)

$$R_2 Te = Te + Cd \longrightarrow CdTe + R_2 Te \tag{7}$$

1.7 The Inter diffused Multilayer process (IMP).

Conventional thermal MOVPE of cadmium mercury telluride suffers from poor compositional uniformity throughout the layers. For the fabrication of arrays of infra-red detectors the lateral composition uniformity x in Cd_xHg_{1-x}Te must not vary by more than 0.5% over 1cm. Typically thermal growth techniques produce Cd_xHg_{1-x}Te layers with x varying by more than 5% over 1cm:- an order of magnitude worse than the required specification. The Interdiffused Multilayer Process (IMP)⁽⁴⁸⁾ developed by Irvine *et al* overcomes problems with compositional uniformity.

In the thermal MOVPE of Cd_x Hg_{1-x} Te using $Et_2Te/Me_2Cd/Hg$ in a stream of H_2 gas, the breakdown characteristics of Et_2Te and Me_2Cd are different. A basic problem with designing an MOVPE technique is finding anion and cation precursors having similar or compatable characteristics. For example CdTe is quite a stable compound (ΔH_f° = -102.6kJ/mole) whereas HgTe is much less stable (ΔH_f° = -33.9kJ/mole). (N.B. ΔH_f° = standard molar heat of formation). This stability disparity, coupled with the greater reactivity of Et_2Te with Me_2Cd compared to with mercury, means that the optimum growth conditions of CdTe are different to that of HgTe. Experimentally, HgTe formation requires the individual breakdown of Et_2Te (~410°C) whereas CdTe formation which can occur at ~350°C is promoted by the presence of Me_2Cd either through adduct formation or alternatively as a breakdown characteristic of Me_2Cd . The control of the reactor wall temperature and also the

mercury temperature is also critical. If the reactor wall temperature is too low, mercury vapour condenses out. But a high reactor wall temperature results in premature pyrolysis of the Me₂Cd.TeEt₂ adduct depositing CdTe and hence altering the concentration of adduct reaching the substrate. A compromise temperature is required which also maintains a high enough mercury vapour pressure over the substrate to avoid mercury depletion from the growing layer.

The IMP technique overcomes these problems by growing successive individual layers of CdTe and HgTe each under its own optimum conditions of growth. Very thin layers of HgTe and CdTe (combined thickness of ~0.2µm) are grown by switching the Me₂Cd and dilution flows on and off for predetermined times (usually less than 1 min). Most of the layers will completely interdiffuse during the period of growth (~30 mins). An additional anneal of a few minutes is used to homogenise the last layers of growth. The anneal is immediately after the growth period and is carried out at the growth temperature with a flow of H₂ and Hg vapour over the layer.

The technique relies on the fast interdiffusion between the main components but because the layers are very thin, good interfaces can be maintained between the substrate and the film. The IMP is shown diagrammatically in figure 1.2 with the individual layer thicknesses for HgTe and CdTe shown as ti and to respectively. As the lattice parameters for HgTe and CdTe are similar, the composition of the CMT layer is

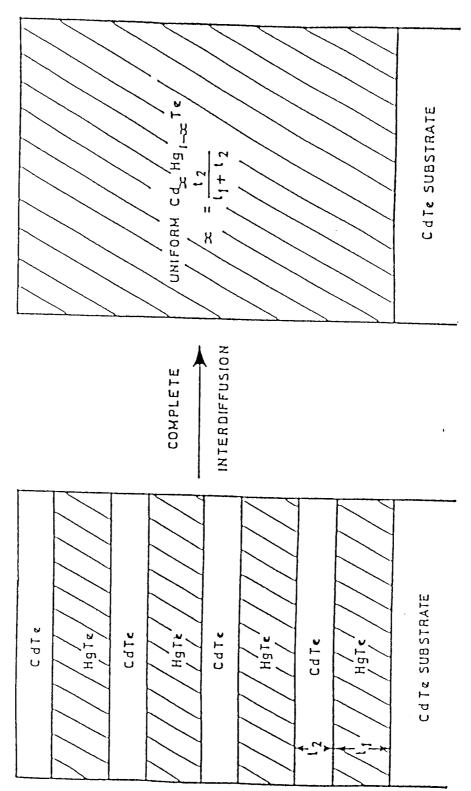


Figure 1.2 The Interlayer Multidiffusion Process.

given by the expression,

$$x = \underline{t_2}$$
$$t_1 + t_2$$

Hence the CMT composition can be controlled by changing the growth times of the HgTe and CdTe layers. The IMP technique could have applications in the growth of other ternaries or complex multicomponent systems where cation and anion precursors have different stability and breakdown characteristics.

1.8 PHOTO-MOVPE

Epitaxial growth of thin films of the II-VI semi-conductor compounds CdTe, HgTe, and Cd_xHg_{1-x} Te suffer from the relatively high growth temperatures needed. In conventional thermal MOVPE, the thrust has been directed to lower temperature growth by using less stable organotellurium sources. The reasons for reducing the epitaxial growth temperature are

- a) to reduce defect concentrations
- b) to reduce mercury vacancy concentrations
- c) to reduce heterostructure abruptness.

Photo-MOVPE has been used for depositing a range of II-VI compounds and alloys at low temperatures. Some examples are listed in table 1.1 whereby u.v. radiation has been used to decompose the precursors at temperatures below the normal pyrolysis temperature. Cadmium mercury telluride has been grown down to below 200°C with significant improvement in the quality of the materials grown.

Two basic requirements must be met for photochemical decomposition. Firstly the incident radiation must be sufficiently energetic to effect decomposition; secondly the compound in question must have a sufficiently high absorption coefficient at the incident radiation for significant decomposition to occur. Typically a metal-carbon bond energy in dimethylcadmium and dimethyltelluride is ~250kJ/mole which corresponds to an incident wavelength of 480nm. Since these compounds have absorption maxima in the region 200-250nm, photolysis is most efficient for incident radiation near these wavelengths. Whilst conceptually simple and elegant, the use of photons eliminates the activation energy constraints imposed by thermal processes.

Epitaxial growth experiments have been carried out in a horizontal flow system, similar to the thermal apparatus, operating at one atmosphere pressure. A reactor cell is shown diagrammatically in figure 1.3 for HgTe growth. The u.v. source is generally placed perpendicular to the reactor wall with the beam centered on the substrate. The ultra-violet window is kept clear of deposits by maintaining a flow of hydrogen or helium gas in the top half of the reactor. In the bottom half, the metal-organics flow over the mercury reservoir and are mixed with the mercury vapour before passing over the substrate. There are potential hazards with photo-MOVPE. The use of photons to disintegrate organometallic molecules although elegant is a potential recipe for unwanted dust and non-epitaxial growth. Attempts

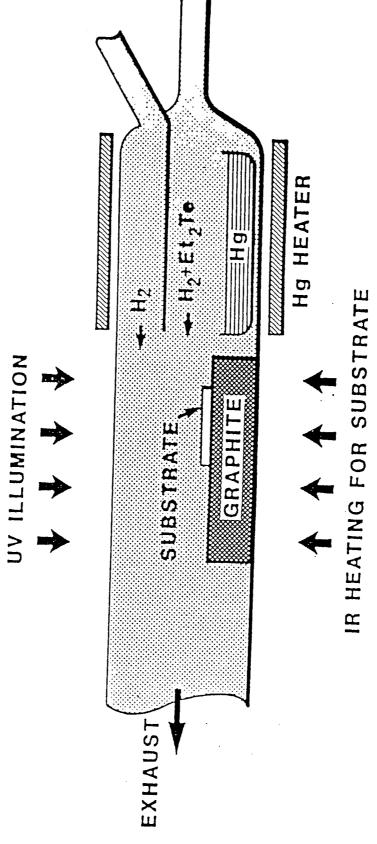


Figure 1.3 Typical reactor cell for photolytic growth of HgTe.

to bring about surface controlled reactions are important.

1.9 Photo-MOVPE of HgTe, CdTe and CMT.

The chemistries of the growth of the above semiconductor compounds and the reaction processes involved will be discussed in the next section. Significant aspects of the growth processes of the individual materials will be briefly discussed here.

The first reported photo-epitaxial growth of a II-VI compound was that of HgTe by Irvine^(27,49) in 1984, using a mercury arc lamp source. High quality epitaxial films were grown onto GaAs and InSb substrates⁽⁴⁹⁾. Since then a number of reports using both arc lamps and more recently u.v. lasers have been made⁵⁰⁻⁵⁴⁾. In HgTe growth studied by Irvine⁽²⁷⁾, vapours of Et₂Te in H₂ in the presence of mercury vapour at a pressure of ~0.05 atmosphere were passed over a CdTe substrate illuminated by u.v. photons from a 3kw mercury high pressure lamp. The high quality of the films was remarkable as well as the achievement of growing the film at 200°C. The previous lower limit using Et₂Te being 400°C⁽⁴⁾. It was found that the growth rate became insignificant below a critical cut off pressure of 0.01 atmosphere mercury. The mechanism of this growth, which requires breakdown of Et₂Te (thermally stable at 200°C) has not been established unequivocably. However the proposed mechanism considers that a photosensitisation process is involved (to be discussed).

Whilst the photolysis of Et₂Te in the presence of mercury and hydrogen leads to epitaxial deposition of HgTe on CdTe substrates, the introduction of Me₂Cd into the system, additionally or as an alternative to mercury brings about the decomposition of Me₂Cd as the premature deposition of CdTe or Cd_xHg_{1-x}Te as a dust. By substituting helium for hydrogen as the carrier gas Irvine *et al* ^(51,52) has overcome the problem of premature reaction. The high quality epitaxial films were free from dust in the region of high u.v. intensity. This discovery has enabled CdTe and Cd_xHg_{1-x}Te to be grown epitaxially on CdTe by surface controlled processes. Kisker and Feldman⁽⁵⁰⁾ using a similar system but choosing a low pressure mercury lamp as their source of u.v. radiation were able to grow epitaxial quality CdTe dust free using hydrogen as the carrier gas. No mechanistic information can be given for this phenomenon.

1.10 REACTION MECHANISMS OF PHOTO-MOVPE A) Photolysis of Me₂Cd and Et₂Te

The u.v. absorption spectrum of Et₂Te shows bands centered at ~218 and ~246nm whereas Me₂Cd shows a simple absorption peak at 215nm. Both compounds can be photolytically decomposed at room temperature in a flow of hydrogen using a high pressure mercury lamp. Both yield fine powders of the elements. Unexpectedly Et₂Te did not deposit tellurium in the region of high u.v. intensity but deposits were found downstream, following absorption of radiation at lower intensity. Thus the decomposition of Et₂Te to yield tellurium is more than a

simple one step process. Mullin and Irvine⁽²⁵⁾ have calculated the mean bond dissociation enthalpy D(Te-Et) to be 235kJ/mole.

$$(C_2H_5)_2Te \longrightarrow Te + 2C_2H_5$$
 (8)

Since the photon energy available from the 253.7nm line (470kJ/mole) is identical to the enthalpy of dissociation for the above reaction (ΔH°_{dis}), then thermodynamically it is possible for complete dissociation of Et₂Te by absorption of a single photon of energy. There is no evidence to support this in the literature although the photolysis of the closely related Me₂Te (ΔH°_{dis} = 483kJ/mole) suggests the chemistry is not simple⁽⁵⁵⁾. Flash photoysis revealed the presence of CH₃Te· radicals and tellurium atoms. Furthermore the reaction between tellurium atoms and Me₂Te gave Te₂ species and two methyl radicals at virtually every collision. If comparisons can be made between the photolysis of Me₂Te and Et₂Te it is not unreasonable to predict that Et₂Te would yield EtTe· radicals together with a smaller concentration of Te₂ and Te·

The photolysis of Me₂Cd is chemically simpler. It has been shown that absorption of a u.v. photon brings about the loss of one methyl radical⁽⁵⁶⁾, followed almost immediately by a second (eqns. 9 and 10).

$$(CH3)2Cd \longrightarrow CH3Cd \cdot + CH3.$$
 (9)

$$CH_3Cd$$
· \longrightarrow CH_3 · + Cd (10)

The mean bond dissociation energy D[Cd-CH₃] was calculated to be

144kJ/mole from the enthalpy of dissociation for the reaction (ΔH°_{dis} = 288kJ/mole).

1.11 Mechanism to epitaxial growth of HgTe in the system Et, Te/Hg/H,

The epitaxial growth of HgTe can be achieved by photo-MOVPE at temperatures as low as 200°C. Since thermal decomposition of Et₂Te does not occur at these temperatures, u.v. absorption of the organometallic must be bringing about decomposition of the molecules. The proposed mechanism by Irvine and Mullin^(25,27,51) considers that photosensitisation reactions are occuring. Initially, ground state ¹S₀ Hg atoms absorb u.v. radiation generating 6³P₁ Hg atoms. These excited atoms provide a well known route to energy transfer to other atoms and molecules.

$$Hg6^{1}S_{0} + hv(253.7nm) \longrightarrow Hg6^{3}P_{1}$$
 (11)

$$Hg6^{3}P_{1} \longrightarrow Hg6^{3}P_{0} \text{ (or } Hg^{*})$$
 (12)

Equation (12) occurs by spin-orbit relaxation: Hg* is metastable.

Assuming that Et₂Te and Hg species are present on the surface, the following reactions may occur.

$$Hg^*_{ad} + (C_2H_5)_2Te_{ad}$$
 ----> C_2H_5 -Te $Hg_{ad} + C_2H_5$. (13)

$$C_2H_5$$
-TeHg_{ad} ----> HgTe_{ad} + C_2H_5 . (14)

$$C_2H_5$$
-TeHg_{ad} + H· \longrightarrow C_2H_6 + HgTe_{ad} (15)

Hydrogen atoms in equation (15) can be generated from (16)

$$Hg^* + H_2 \longrightarrow Hg + 2H$$
 (16)

Furthermore, hydrogen atoms could be effective in bringing about decomposition of Et_2 Te as indicated in (17) and (18).

$$(C_2H_5)_2Te + H - > C_2H_6 + C_2H_5Te -$$
 (17)

$$C_2H_5Te^{\cdot} + H_2 \longrightarrow Te + C_2H_6 + H^{\cdot}$$
 (18)

The production of hydrogen atoms and ethyl radicals is capable of triggering a propagation reaction. However this likelihood diminishes in the region of the surface due to ease of deactivation and recombination processes here.

An alternative model for a surface selected reaction is one involving surface absorbed mercury reacting with Te or Te radicals, generated in the vapour by u.v. absorption of Et₂Te discussed earlier. Even though these reactions are thermodynamically favourable, the competing reaction would be a premature vapour phase reaction, thus precipitating HgTe on the surface as a dust. Dust formation, however is not observed in HgTe growth.

A potential problem with the surface controlled model involves the absorption of the 253.7nm mercury radiation. Theoretically, most of the photon energy will be absorbed within a millimetre of entering the mercury vapour. However since the emission line from the mercury lamp is broadened, wavelengths of ± 2 nm of 253.7nm will reach the

substrate. Mercury atoms chemisorped onto the surface could absorb this perturbed wavelength at a lower energy than 253.7nm due to the bonding energy of absorption. Therefore there is opportunity for photosensitisation to occur on the surface.

1.12 <u>Mechanisms to the epitaxial growth of CdTe and</u> <u>Cd_xHg_{1-x}Te in the system Me₂Cd/Et₂Te/Hg/(H₂ or He).</u>

In section 1.10 it was interesting to note that epitaxial films of CdTe and Cd_xHg_{1-x}Te could not be grown by using hydrogen as a carrier gas. Problems with CdTe and CMT precipitating out of the vapour as a dust were apparent. However substituting helium for hydrogen resulted in good quality epitaxial films. The chemistry of the two processes were therefore different. One important difference between CdTe and HgTe is the strength of the metal-tellurium bond. The bond dissociation energy for CdTe is 405.5kJmole⁻¹ compared to 299kJmole⁻¹ for HgTe. Hence the scope for u.v. bond dissociation is much less for CdTe than it is for HgTe. As a consequence of the strong bond energy between cadmium and tellurium, there is great difficulty in maximising high concentrations of Cd, Te and Te₂ vapours as a homogeneous mixture without precipitation of CdTe as a dust.

Both helium and hydrogen vapour must play roles in the surface and vapour phase reactions involved. Two arguements can be forwarded to explain the avoidance of premature reaction; (a) the decomposition of one or both organometallic compounds is surface controlled; (b) The Cd and Te atoms liberated in the vapour are not free to react due to thermodynamic constraints. Comparison between helium and hydrogen experiments suggests hydrogen is an active species in the reaction.

In the decomposition of Me₂Cd, two methyl radicals are generated.

$$(CH_3)_2Cd + hv \longrightarrow 2CH_3 + Cd$$
 (19)

The active methyl radicals can interact with hydrogen molecules generating hydrogen atoms which further react with more Me₂Cd molecules with release of a further methyl radical

$$CH_3$$
 + H_2 ----> CH_4 + H (20)

$$(CH_3)_2Cd + H \cdot \longrightarrow CH_4 + CH_3 \cdot + Cd$$
 (21)

Equations (19)-(21) represent a chain reaction in which one u.v. photon can result in the decomposition of more than one Me_2Cd molecule. This chain reaction is clearly a recipe for generating a supersaturation of cadmium atoms. Moreover, H_2 , through the formation of hydrogen atoms can bring about the decomposition of Et_2Te (equations 22 -24) with the formation of Te_2 and Te atoms.

$$(C_2H_5)_2\text{Te} + \text{H}$$
 \longrightarrow $\text{Te} + C_2H_6 + C_2H_5$ (22)

$$C_2H_5$$
 + H_2 -----> C_2H_6 + H (23)

$$(C_2H_5)_2Te + Te \longrightarrow Te_2 + 2C_2H_5$$
 (24)

It is not surprising from, the above network of reactions, why premature dust formation of CdTe occurs. Under conditions of CMT growth, the u.v. absorption of mercury atoms causes photosensitisation to Hg* (equations 11-12), which on reaction with hydrogen is a further

$$Hg^* + H_2 \longrightarrow Hg + 2H^*$$
 (25)

route to hydrogen atoms (25). This further enhances the problem of supersaturation of Cd and Te atoms and leads to precipitation of CMT dust.

It is immediately evident then why substituting helium for hydrogen can suppress premature reaction. Helium is effectively inert to radicals and hence would prevent the chain reaction and limit the supersaturation conditions. Helium could thus create a thermodynamic constraint noted earlier. Using these ideas, Mullin and Irvine postulated a free radical model⁽²⁵⁾ which avoids premature reaction. Initially u.v. radiation is absorbed by the organometallic creating an atom radical atmosphere (equations 26-29).

$$Me_2Cd \rightleftharpoons MeCd + Me$$
 (26)

$$MeCd \rightleftharpoons Cd + Me$$
 (27)

$$(C_2H_5)_2\text{Te} \rightleftharpoons C_2H_5\text{Te.} + C_2H_5.$$
 (28)

$$C_2H_5Te \rightleftharpoons Te + C_2H_5$$
 (29)

A pseudoequilibrium would be set up with Cd and Te atoms formed at a rate dependent on the radical lifetimes. Radical recombination could occur at the substrate or walls of the reaction vessel (equations 30-32)

$$CH_3$$
 + S + CH_3 -----> CH_3SCH_3 -----> C_2H_6 + S (30)

$$C_2H_5$$
 + S + CH₃ · ----> $C_2H_5SCH_3$ ----> C_3H_8 + S (31)

$$C_2H_5$$
 + S + C_2H_5 -----> $C_2H_5SC_2H_5$ -----> C_4H_{10} + S (32)

Paneth *et al*⁽⁵⁸⁾ have recorded half lives of 0.1 seconds for methyl radicals. This order of magnitude would probably be adequate to account for the lack of premature reaction in the epitaxial deposition using helium. Using a linear velocity of helium carrier gas of 10cms^{-1} would enable radicals to be removed from the region of high u.v. intensity before they could recombine in the vapour. A surface controlled reaction can then be postulated where the deposition process is rate controlled by surface deactivation and recombination of radicals. Therefore it is probable that Et_2Te with its lone pairs of electrons, can chemisorb onto the substrate surface. Methyl radicals generated from the decomposition of Me_2Cd could readily bring about the formation of epitaxial CdTe or $\text{Cd}_x\text{Hg}_{1-x}\text{Te}$ by the reactions below (equations 33-39)

$$(CH3)2Cd \longrightarrow CdCH3 + CH3$$
 (33)

$$CH_3Cd \cdot \longrightarrow Cd + CH_3 \cdot \tag{34}$$

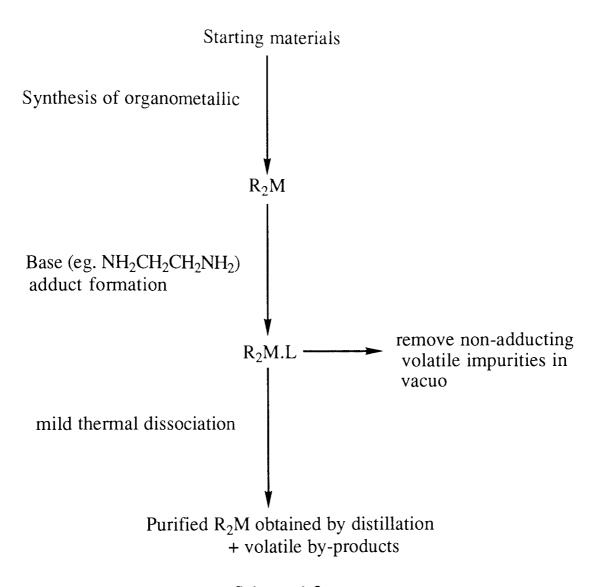
$$(C_2H_5)_2Te_{ad} \longrightarrow C_3H_8 + C_2H_5Te_{ad}$$
 (35)

$$C_2H_5Te_{ad} + CH_3$$
 ----> $C_3H_8 + Te_{ad}$ (36)

$$Cd(v) + Text > CdTe$$
 (37)

$$Hg_{(c)} + Te_{ad} \longrightarrow HgTe$$
 (38)

CdTe would form preferentially because of its stronger bond. Excess Te in the region depleted of Cd would then be able to recombine with Hg which is present in excess. Using these ideas, it is not difficult to see why epitaxial growth of CdTe and Cd_xHg_{1-x}Te can occur in helium and not in hydrogen. These propositions, although speculative, do provide a framework for discussion.


1.13 Synthesis and Purification of Organometallics for MOVPE of II-VI compounds

The growth of CdTe, HgTe and Cd_xHg_{1-x}Te has generally featured the group II and VI alkyl compounds. The compounds have been known for a long time and although they are often pyrophoric, explosive and toxic, they can be synthesised in high yield from readily available starting materials. The main problem to the synthetic organometallic chemist is not the synthesis but obtaining high purity compounds to the required degree of purity. Generally, for organometallic compounds, purity of about 99% is acceptable. However this is not sufficient in semiconductor technology. The electrical properties of the layer can be completely destroyed if levels of undesirable impurity are greater than one part in 107. Extensive studies have shown that the purity of a semiconductor layer is often determined by the purity of the precursors.

Most metal alkyls required for MOVPE are volatile liquids for which the classical methods of purification are fractional distillation and low temperature crystallisation. One problem with these classical methods is that for metal alkyls which are highly reactive, large amounts often have to be discarded to obtain the highest purity. Since metal alkyls attract high commercial prices, it is clearly wise to maximise their recovery after purification. Chemical purification methods have overcome these problems and metal alkyls can now be synthesised to a high degree of purity.

The basic method used is adduct purification which was developed independently at two U.K. centres, Liverpool University⁽⁵³⁾ and Queen Mary College⁽⁵⁴⁾. The basic process is illustrated in scheme 1.2 below.

Since group II alkyls behave as Lewis acids, adducts can be formed by careful selection and reaction with Lewis bases. The lewis base and adduct must have well defined properties to be effective for the purification process. Neither must be volatile, but the adduct must dissociate to give the free metal alkyl and the lewis base at temperatures of ~50-150°C. Often the adduct is crystalline and hence crystallisation techniques can be removed to remove gross impurities. Volatile impurities and solvents can be removed by placing the adduct in a

Scheme 1.2

dynamic vacuum. Once the volatile impurities are removed, the adduct is heated to above its dissociation temperature where the metal alkyl distils and is collected in a cold trap. Involatile impurities, including the lewis base are left behind.

Table 1.3 lists some adducts that have been used to purify the group II metal alkyls [the zinc analogues have been included for comparison since these are useful for the epitaxial growth of ZnSe, ZnTe and ZnS_xSe_{1-x}]. As a result of the weaker electron acceptor

Metal alkyl (M)	Lewis base (L)	Adduct :L ratio
Dimethylcadmium	1,2- <u>bis(</u> dimethylamino)ethane	1:1
	4-dimethylaminopyridine	1:1
	3,3'-bipyridyl	1:1
	4.4'-bipyridyl	1:1
	1,4-bis(dimethylamino)benzene	3:2
Dimethylzinc	3,3'-bipyridyl	1:1
	4,4'-bipyridyl	1:1
	4-dimethylaminopyridine	1:1
	4-dimethylaminopyridine	1:1

Table 1.3

character of cadmium alkyls very few coordinate complexes between R₂Cd and donor ligands are known. Dimethylcadmium does form a series of complexes with chelating diamine and diethers. For example, dimethylcadmium can readily be prepared from CdCl₂ and MeMgI in diethylether⁽⁵⁵⁾ and addition of 2,2'-bipyridyl forms a 1:1 adduct from which Me₂Cd can be released on heating. This has been known for some time. The adduct (Me₂Cd).dioxane has been synthesised by simply adding Me₂Cd to 1,4-dioxane. It is likely to possess a chelate structure shown in figure 1.4.

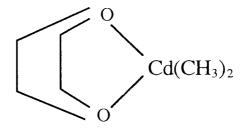


Figure 1.4

Cole-Hamilton *et al* have shown that adducts containing nitrogen can be prepared with zinc and cadmium alkyls. If an unstrained chelate ring is formed eg. 1,2-bis[dimethylamino]ethane the adduct sublimes without dissociation. However if two nitrogen atoms can not bind to the same metal for geometrical reasons, they bridge metal atoms and involatile dissociable adducts are formed. In most cases, eg. 3,3'-bipyridyl or 4-dimethylaminopyridine, the adduct has the stoichiometry, Me₂Cd.L and are believed to be polymeric with a structure shown in figure 1.5

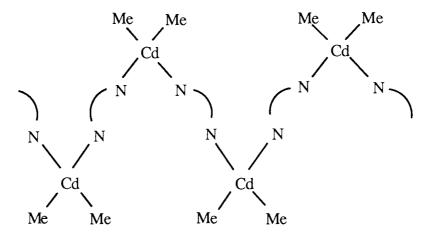


Figure 1.5

On the other hand for L= 1,4-bis(dimethylamino)benzene an adduct of

stoichiometry (Me₂Cd)₂.L₃ is formed which may have the structure shown in figure 1.6. All these adducts dissociate on heating yielding Me₂Cd

Figure 1.6

and so may be suitable for purification of Me₂Cd. The adducts are considerably safer to handle than the parent alkyl, being only mildly air sensitive and not pyrophoric

Synthetic methods can now be outlined for the group VI sources used in MOVPE. The main literature route to dialkyltellurides involves the reaction of sodium telluride with a bromoalkane. For example Cole-Hamilton $et\ al^{(62)}$ has recently used this reaction to synthesise diethyltelluride and diisopropyltelluride.

$$C_2H_5Br + Na_2Te \longrightarrow (C_2H_5)_2Te + 2NaBr$$
 (40)

The same research group obtained good yields of high purity mixed alkyl tellurides $(RR'Te)^{(63)}$ by reaction of R_2Te with R'_2Te_2 (R,R'= alkyl, allyl)

$$R_2 Te + R'_2 Te_2 \rightleftharpoons RTeR' + RTeTeR'$$
 (41)

The reaction relies on selecting a ditelluride with shorter chain alkyl groups than the alkyl telluride. The most most volatile component of the mixture RTeR' can be distilled from the mixture at reduced pressure. The equilibrium is then shifted to the right and on heating, RTeTeR' breaks down to yield tellurium and more RTeR'. Mixed ditellurides have been

$$RTeTeR' \longrightarrow RTeR' + Te$$
 (42)

observed before⁽⁶⁴⁾ although their existence in the solid state is unknown.

Harris and Higa have synthesised diallyltelluride⁽⁶⁵⁾ in a reaction similar to (40) above.

$$2CH_2=CHCH_2Br + Na_2Te \longrightarrow (CH_2=CHCH_2)_2Te + 2NaBr$$
 (43)

Using a Grignard method they have also been successful in synthesising allylmethyltelluride for example,

$$CH_2$$
= $CHCH_2Br + Mg$ \longrightarrow CH_2 = $CHCH_2MgBr$ \longrightarrow $>$ $CH_2CHCH_2TeMgBr$ \longrightarrow $>$ CH_2 = $CHCH_2TeCH_3I$ \longrightarrow $>$ CH_2 = $CHCH_2TeCH_3$ + $MgBrI$ (44)

In section 1.5, emphasis was placed on reducing CMT growth temperature by careful selection of the organotellurium source. Using diisopropyltelluride currently the most popular tellurium source, growth temperatures of $\sim 370^{\circ}\text{C}$ are employed. High quality films were possible since Me₂Cd and i-Pr₂Te both were compatable (similar decomposition temperatures). In all the growth systems highlighted,

Me₂Cd was used as the cadmium source. However if lower growth temperatures are sought, for example using diallyltelluride, then new organocadmium compounds having similar compatabilities to the tellurium source are required. Recently Et₂Cd has been formed, by the reaction of a Grignard reagent with CdCl₂.

$$2C_2H_5MgX + CdCl_2 \longrightarrow (C_2H_5)_2Cd + 2MgXCl$$
 (45)

The crude product which is extremely light sensitive was stabilised by the formation of a <u>bis</u>-amine adduct. Trial runs in the system $\rm Et_2Cd/Pr_2Te/Hg$ have shown that $\rm Et_2Cd$ is a viable alternative to $\rm Me_2Cd$ for the lower temperature growth of CdTe and $\rm Cd_xHg_{1-x}Te^{(66)}$.

Chapter Two GENERAL EXPERIMENTAL

PHYSICAL MEASUREMENTS / CHEMICAL TECHNIQUES

2.1 Chemicals and Solvents

Most chemicals used were obtained from either the Aldrich Chemical Company, British Drug Houses (BDH) or Fluka Chemicals. Tellurium powder and tellurium tetrachloride were used as sources of tellurium. Platinum and palladium compounds were obtained from Johnson and Matthey. Common solvents were supplied by the Chemistry Department and were dried where necessary and stored over molecular sieves. Analytically pure solvents were used without further purification.

2.2 <u>Elemental Analysis</u>

Micro-elemental analysis for carbon, hydrogen and nitrogen were carried out either by Elemental Micro-Analysis Ltd, Okehampton, Devon or Medac Ltd, Department of Chemistry, Brunel University.

2.3 Melting points

A Gallenkamp electrically heated melting point apparatus with a mercury thermometer was used to determine all melting points.

2.4 Conductivity Measurements

Molar conductivity measurements were carried out on dilute solutions (10⁻³M) of the compounds using a standard Mullard conductivity bridge and immersion type bright platinum electrodes (type E 7591/B) with a cell constant of 1.46.

2.5 <u>Infra-red spectroscopy</u>

Infra-red spectra were recorded on a Perkin-Elmer FTIR 1710 spectrophotometer equipped with a D.6300 data station. Spectra for the range 4000-220cm⁻¹ were recorded using KBr discs. For some compounds the low wavenumber region (400-220cm⁻¹) was recorded using polyethylene discs.

2.6 <u>Nuclear Magnetic Resonance Spectroscopy</u>

N.M.R spectra (¹³C and ¹H solution) were recorded within the Chemistry Department using a Bruker AC-300 MHz instrument. Tetramethylsilane was used as the internal reference. Tellurium (125) solution data were collected using <u>bis(p-ethoxyphenyl)ditelluride</u> as the reference.

2.7 Mass Spectroscopy

The electron impact, chemical ionisation and fast atom bombardment mass spectra of some compounds were recorded at Birmingham University and *via* the SERC mass spectroscopy service, University College, Swansea.

2.8 Ultra-violet, visible and near infra-red spectroscopy

Ultra-violet and visible measurements were carried out on a Unicam SP800 spectrophotometer using 1cm quartz cells. Near infra-red spectra were recorded on a Lamda 9 UV/VIS/NIR instrument at Brunel University.

2.9 X-ray Crystallography

Suitable crystals for the X-ray crystallography technique were obtained by recrystallisation from high purity solvents. Accurate cell dimensions reflection and intensities were measured with graphitemonochromated Mo- K_{α} radiation Enraf-Nonius CAD-4 on a diffractometer operating in the ω - 2θ scan mode. The structures were solved by Patterson and Fourier difference synthesis methods. Structure refinement was carried out by the least squares method. Computations were performed on the University of Birmingham Honeywell Multics computer with SHELX76 and SHELX86 suite of programs. Diagrams were drawn using PLUTO at the University of Manchester Regional Computer Centre.

2.10 Raman Spectroscopy

Raman spectra were recorded at Brunel University using a Perkin-Elmer FT-Raman 1700 instrument and using a NdYag laser operating at 1064nm. For colourless compounds, laser powers of 300mW were used. Coloured compounds required lower power outputs down to 50mW.

Chapter Three ORGANOTELLURIUM CARBOXYLATES

3.1 Introduction

Diaryltellurium dicarboxylates are a well known class of compound and their synthesis and chemistry are well documented in the literature⁽⁶⁶⁻⁶⁸⁾. However the tricarboxylates have often proved to be difficult synthetic targets and very few compounds are known. One recently reported example is p-methoxyphenyltrifluoroacetate⁽⁶⁹⁾. Apart from their uses as intermediates in synthetic chemistry, organotellurium carboxylate compounds have found very few applications.

One attraction may be as precursors in the MOVPE process. Conceptually, one may suggest that the thermal breakdown characteristics of the carboxylates under MOVPE conditions proceeds *via* loss of a stable carbon dioxide molecule releasing the organotellurium moiety as a volatile species. Thus for example, if a diaryltellurium dicarboxylate were to be heated, it may decompose with the loss of carbon dioxide *via* an unstable telluride intermediate according to the reaction scheme below.

$$R_2 Te(OOCR')_2$$
 \longrightarrow $[R_2 TeR'_2]$ \longrightarrow $R_2 Te + R'_2$ Indeed related organometallics, for example dimethylgold(III) acetylacetone⁽⁷⁰⁾ and copper hexafluoroacetylacetone⁽⁷¹⁾ have been used as volatile sources of gold and copper in chemical vapour deposition systems. Although their decomposition products have not been studied, they may breakdown *via* the loss of carbon monoxide as a stable species.

In this chapter we decided to synthesise a range of diaryltellurium(IV) dicarboxylates and study their decomposition by mass spectroscopy. Since organotellurenyl compounds RTeX [eg. X=Cl, Br and $(CH_3)_2NCS_2$] are now easily accesible and are stable solids at room temperature, we decided to synthesise some organotellurium(II) carboxylates and also study their decomposition by mass spectroscopy.

3.2 Experimental

The preparations of organotellurium(IV)trichlorides $(ArTeX_3)^{(72)}$, organotellurium(IV) dichlorides $(Ar_2TeCl_2)^{(73)}$ and $(2\text{-phpy})TeX^{(74)}$ [2-Phpy = 2-(2'-pyridyl)phenyl and X= Cl, Br] were carried out according to the literature. Silver picolinate was prepared by the reaction of silver carbonate with picolinic acid (2-pyridine carboxylic acid). Potassium picolinate, potassium (2-chlorobenzoate) and sodium (4-iodobenzoate) were prepared by the alkaline addition of potassium hydroxide or sodium hydroxide to picolinic acid, 2-chlorobenzoic acid and 4-iodobenzoic acid.

3.2.1 Synthesis of Bis(p-methoxyphenyl)tellurium dibenzoate

Silver benzoate (3.44g, 0.015 mole) was suspended in warm 1,4-dioxane (80 cm³). To this suspension was added a solution of

bis(p-methoxyphenyl)tellurium(IV) dichloride (3.09g, 0.0075 mole) in 1,4-dioxane (40 cm³). The mixture was refluxed for twelve hours, allowed to cool to room temperature and filtered. The residue consisted of a purple coloured solid (from mass balance calculations it is suggested this compound is AgCl; the purple colour probably arises from the tendency of silver salts to be light sensitive). The filtrate was concentrated using a rotary evaporator whereupon a white solid separated out, which on recrystallisation from ethanol yielded a white crystalline material. Yield 95%.

3.2.2 Synthesis of Bis(p-ethoxyphenyl)tellurium dibenzoate

Silver benzoate (2.29g, 0.01 mole) was suspended in warm 1,4-dioxane (60 cm³). To this suspension was added a mixture of bis(p-ethoxyphenyl)tellurium(IV) dichloride (2.20g, 0.005 mole) in 1,4-dioxane (20 cm³). The mixture was refluxed for twelve hours, allowed to cool to room temperature and filtered. The residue consisted of a purple coloured solid (AgCl). The filtrate was concentrated using a rotary evaporator whereupon a white solid separated out, which on recrystallisation from methanol yielded a white crystalline material. Yield 100%.

67

3.2.3 Synthesis of Bis(p-methoxyphenyl)tellurium dipicolinate

Silver picolinate (2.30g, 0.01 mole) was suspended in 1,4-dioxane (80 cm³). To this suspension was added a solution of bis(p-methoxyphenyl)tellurium(IV) dichloride (2.06g, 0.005 mole) in 1,4-dioxane (20 cm³). The mixture was refluxed for eighteen hours, allowed to cool to room temperature and filtered. The residue consisted of a purple coloured solid (AgCl). The filtrate was concentrated using a rotary evaporator whereupon a white solid separated out which on recrystallisation from benzene yielded a white crystalline material. Yield 90%.

3.2.4 Synthesis of Bis(p-ethoxyphenyl)tellurium dipicolinate

Silver picolinate (2.30g, 0.01 mole) was suspended in warm 1,4-dioxane (80 cm³). To this suspension was added a solution of bis(p-ethoxyphenyl)tellurium(IV) dichloride in 1,4-dioxane (20 cm³). The mixture was refluxed for 18 hours, allowed to cool to room temperature and filtered. The residue consisted of a purple coloured solid (AgCl). The filtrate was concentrated using a rotary evaporator whereupon an off-white solid formed. Recrystallisation from benzene using decolourising charcoal yielded a white crystalline material. Yield 85%.

3.2.5 Synthesis of Diphenyltellurium(IV) di(p-iodobenzoate)

Sodium (4-iodobenzoate) (2.70g, 0.01 mole) in hot methanol (20 cm³) was added to a solution of diphenyltellurium(IV) dichloride (1.76g, 0.005 mole) in hot methanol (60 cm³). The mixture was refluxed for six hours and allowed to cool to room temperature. The yellow solution was concentrated on a rotary evaporator yielding a pale yellow solid. On recrystallisation from nitromethane, a pale yellow crystalline material formed. Yield 90%.

3.2.6 Synthesis of diphenyltellurium(IV) di(2-chlorobenzoate)

Potassium (2-chlorobenzoate) (1.95g, 0.01 mole) in hot methanol (20 cm³) was added to a solution of diphenyltellurium(IV) dichloride (1.76g, 0.005 mole) in hot methanol (60 cm³). The mixture was refluxed for six hours and allowed to cool to room temperature. The colourless solution was concentrated using a rotary evaporator yielding a white solid. On recrystallisation from nitromethane a white crystalline material formed. Yield 80%.

3.2.7 Synthesis of Bis(3,4-dimethoxyphenyl)tellurium(IV) dibenzoate.

Silver benzoate (2.29g, 0.01 mole) was suspended in 1,4-dioxane (80 cm³). To this suspension was added (3,4-dimethoxyphenyl)tellurium dichloride (2.37g, 0.005 mole) in 1,4-dioxane (20 cm³). The mixture was refluxed for twelve hours, allowed to cool to room temperature and filtered. A purple residue was separated off (AgCl). The filtrate was concentrated using a rotary evaporator yielding a pale brown solid. Recrysallisation from benzene gave a brown crystalline material. Yield 70%.

3.2.8 Synthesis of Diphenylhydroxytellurium(IV) picolinate 0.5 1,4-dioxane

A solution of diphenyltellurium(IV) dichloride (1.76g, 0.005 mole) in 1,4-dioxane (20 cm³) was added to a suspension of silver picolinate (2.30g, 0.01 mole) in 1,4-dioxane (80 cm³). The mixture was refluxed for six hours, allowed to cool to room temperature and filtered. A purple residue was separated off (AgCl). The filtrate was concentrated using a rotary evaporator yielding a white crystalline solid which was recrystallised from ethanol. Yield 70%.

3.2.9 Synthesis of p-ethoxyphenyl-hydroxy-methoxytellurium picolinate

A solution of p-ethoxyphenyltellurium(IV) trichloride (1.775, 0.005 mole) in methanol (50 cm³) was added to a solution of potassium picolinate (2.42g, 0.015 mole) in methanol (100 cm³). The mixture was refluxed for eight hours and allowed to cool to room temperature. A white solid separated out which on filtration was recrystallised from chloroform. Yield 60%.

3.2.10 Reaction of p-ethoxyphenyltellurium(IV) trichloride and potassium picolinate

A solution of p-ethoxyphenyltellurium(IV) trichloride (1.42g, 0.004 mole) in 1,4-dioxane (40 cm³) was added to a suspension of silver picolinate (2.77g, 0.012 mole) in 1,4-dioxane (40 cm³). The reaction was carried out under dinitrogen (oxygen free atmosphere). The mixture was refluxed for six hours and allowed to cool to room temperature whereupon it was filtered. From the filtrate a white crystalline material formed which was recrystallised from methanol. Analytical data:- C= 48.68%, N= 3.43%, H= 6.62%.

3.2.11 Synthesis of p-ethoxyphenyl-dihyroxy-tellurium(IV) benzoate

A solution of p-ethoxyphenyltellurium(IV) trichloride (1.42g, 0.004 mole) in 1,4-dioxane (20 cm³) was added to a suspension of silver benzoate (2.75g, 0.012 mole) in 1,4-dioxane (80 cm³). The mixture was refluxed for six hours and allowed to cool to room temperature. On filtration a purple residue was isolated (AgCl) and a colourless solution retained. From the filtrate a white solid separated out which was washed in absolute ethanol. This material was found to be insoluble in common organic solvents. Yield 65%.

3.2.12 Synthesis of 2-(2-pyridyl)phenyltellurium(II) benzoate

2-(2'-pyridyl)phenyltellurium(II) chloride (1.59g, 0.005 mole) in 1,4-dioxane (30 cm³) was added to a suspension of silver benzoate (1.15g, 0.005 mole) in 1,4-dioxane (70 cm³). The mixture was refluxed for six hours, allowed to cool to room temperature and filtered. A purple residue was collected (AgCl). The filtrate was concentrated on a rotary evaporator whereupon a yellow solid separated out. On recrystallisation from benzene a pale yellow solid formed. Yield 50%.

3.2.13 Synthesis of 2-(2'-pyridyl)phenyltellurium(II) picolinate.

2-(2'-pyridyl)phenyltellurium(II) chloride (1.59g, 0.005 mole) in 1,4-dioxane (30 cm³) was added to a suspension of silver picolinate (1.14g, 0.005 mole) in 1,4-dioxane (70 cm³). The mixture was refluxed for six hours allowed to cool to room temperature and filtered. A purple residue was collected (AgCl). From the filtrate a yellow solid separated out which was recrystallised from nitromethane. Yield 60%.

3.2.14 Synthesis of 2-(2'-pyridyl)phenyldichlorotellurium(IV) picolinate

To a solution of 2-(2'-pyridyl)phenyltellurium(IV) trichloride (0.78g, 0.002 mole) in methanol (50 cm³) was added to a solution of potassium picolinate (0.97g, 0.006 mole) in methanol (80 cm³). The mixture was refluxed for twenty four hours and allowed to cool to room temperature. The pale yellow solution was concentrated on a rotary evaporator whereupon a yellow solid formed. This was recrystallised from toluene yielding a pale yellow solid. Yield 60%.

73

3.2.15 Synthesis of 2-(2'-pyridyl)phenyldibromotellurium(IV) benzoate.

A solution of 2-(2'-pyridyl)phenyltellurium(IV) tribromide (1.04g, 0.002 mole) in hot acetonitrile (40 cm³) was added to a suspension of silver benzoate (0.46g, 0.002 mole) in 1,4-dioxane (50 cm³). The mixture was refluxed for twelve hours under nitrogen, allowed to cool to room temperature and filtered. From the filtrate a yellow solid separated out which was recrystallised from nitromethane. Yield 55%.

3.2.16 Synthesis of 2-(2'-pyridyl)bromohydroxytellurium(IV) picolinate

To a solution of 2-(2'-pyridyl)phenyltellurium(II) bromide (0.36g, 0.001 mole) in hot acetonitrile (30 cm³) was added a solution of potassium picolinate (0.16g, 0.001 mole) in hot methanol (20 cm³). The mixture was refluxed for six hours under dinitrogen and allowed to cool to room temperature, whereupon a yellow solid formed. This was filtered off and recrystallised from nitromethane. Yield 60%.

3.2.17. Reaction of 1,3-dimethoxybenzene and TeCl₄

- A) Tellurium tetrachloride (21.55g, 0.008 mole) in 1,4-dioxane (70 cm³) was added to 1,3-dimethoxybenzene (11.05g, 0.08 mole). The mixture was stirred at room temperature and after 15 mins turned deep red. It was then refluxed for six hours and allowed to cool to room temperature. The deep red solution was concentrated on a rotary evaporator yielding a deep red coloured viscous oil. Addition of a 1:1 mixture of acetonitrile and ethanol to the oil produced a dark precipitate in a red solution. On filtration a green residue X was isolated which was found to be insoluble in common organic solvents. On evaporation of the filtrate a red solid formed Y which was recrystallised from acetonitrile. Yield 70%.
- B) Tellurium tetrachloride (21.55g, 0.008 mole) in 1,4-dioxane (70 cm³) was added to a solution of 1,3-dimethoxybenzene (22.10g, 0.16 mole). The reaction was worked up as in (A). A deep red viscous oil formed which on addition of a 1:1 mix of ethanol and acetonitrile gave a red solution. On evaporation, a red solid formed (Z) which was recrystallised from nitromethane. Yield 80%.

3.2.18 Synthesis of Bis(2,4-dimethoxy)phenyltellurium(IV) dibromide

To a solution of compound Y (0.5g) in acetonitrile was added dropwise an excess of bromine. The solution was stirred for two hours and allowed to evaporate in air yielding a pale orange solid. Recrystallisation from cyclohexane gave a white crystalline material.

3.2.19 Synthesis of Bis(p-methoxyphenyl)tellurium dibromide

To a solution of compound Z (0.5g) in acetonitrile was added dropwise an excess of bromine. The solution was stirred for two hours and allowed to evaporate in air yielding a pale orange solid. Recrystallisation from cyclohexane gave a white crystalline material.

RESULTS AND DISCUSSION

3.1 Characterisation of Diarytellurium(IV) dicarboxylates

Diaryltellurium(IV) dicarboxylates can be prepared routinely by the stoichiometric addition of diaryltellurium(IV) dihalides to either silver carboxylate or sodium and potassium carboxylate salts in refluxing dioxane or alcoholic solvents.

$$R_2$$
TeCl₂ + 2AgOOCPh ----> R_2 Te(OOCPh)₂ + 2AgCl

Reactions of this type are not new and other synthetic pathways to diaryltellurium(IV) dicarboxylates have been studied one notable example being the reaction of lead tetraacetate with diaryltelluride.

$$R_2$$
Te + Pb(OOCCH₃)₄ ----> R_2 Te(OOCCH₃)₂ + Pb(OOCCH₃)₂

In the reactions involving the silver salts, purple residues were isolated which on mass balance calculations agree in all cases with the formation of silver chloride. The dicarboxylates formed here were found to be soluble in ethanol, methanol and benzene solvents.

Analytical, infra-red, N.M.R and mass spectroscopic data are collected in tables 1-4. In all cases the analytical data support the formation of diaryltellurium(IV) dicarboxylates with the exception of diphenyltellurium(IV) hydroxy-picolinate (0.5 dioxane), in which only one carboxylate group appears present (low % nitrogen value).

ANALYTICAL DATA

COMPOUND	M.Pt	FOUN	D(REQU	J ired)
	(⁰ C)	%C	%Н	% N
R_2 Te(benzoate) ₂	209-210	56.8 (57.6)	3.92 (4.11)	
R' ₂ Te(benzoate) ₂	195-196	58.6 (58.9)	4.55	
R_2 Te(picolinate) ₂	185-186	53.3 (53.3)	3.80	4.51 (4.78)
R' ₂ Te(picolinate) ₂	150-152	54.4 (54.8)	4.20 (4.24)	4.00 (4.56)
Ph ₂ Te(4-iodobenzoate) ₂	96-98	40.2 (40.2)	2.39 (2.34)	
Ph ₂ Te(2-chlorobenzoate) ₂	95-97	52.4 (52.6)	3.02 (3.04)	
Ar ₂ Te(benzoate) ₂	180-183	56.0 (55.9)	4.58 (4.35)	
Ph ₂ Te(OH)picolinate.0.5 diox	119-121	51.4 (51.4)	3.61 (3.57)	3.27 (3.33)
R'Te(OH)(OCH ₃)picolinate	125-127	45.1 (44.7)		
R'Te(OH) ₂ benzoate	241-243	44.6 (44.6)		
(2-phpy)Tebenzoate	170-172	53.1 (53.3)		3.39 (3.45)
(2-phpy)Tepicolinate	83-85	49.9 (50.5)		6.85 (6.94)

(2-phpy)TeCl ₂ .picolinate	257-259	42.8 (43.0)	2.60 (2.53)	5.54 (5.90)
(2-phpy)TeBr ₂ .benzoate	232-235	38.5 (38.4)	2.47 (2.33)	2.67 (2.49)
(2-phpy)Te(OH)(Br).picolinate	170-172	40.7 (40.8)	2.82 (2.60)	5.64 (5.59)
$(L_2 \text{TeCl}^+)(L \text{TeCl}_2^-)$ (X green)	235-237	37.5 (37.3)		
$(L_2 \text{TeCl}^+)(L \text{TeCl}_2^-)$ (Y red)	152(d)	37.3 (37.3)	3.41 (3.49)	
L_2 TeCl ₂ .2HCl (Z)	180(d)	35.2 (35.2)	3.47 (3.66)	
L_2 TeBr $_2$		34.2 (34.2)	2.68 (3.21)	
R_2 TeBr $_2$		33.4 (33.5)	2.81 (2.79)	

R = p-methoxyphenyl-

R'= p-ethoxyphenyl-

Ar = 3,4-dimethoxybenzene-

2-phpy = 2-(2'-pyridyl)phenyl-

L = 2,4-dimethoxybenzene-

Table 3.1 Analytical Data.

COMPOUND	vas(OCO)	v _{as} (OCO) v _{sym} (OCO) Δv	Vγ	δ(C-H)
Silver benzoate	1519	1387	132	836 718 678
Silver picolinate	1612	1391	221	839 751 743 699
Potassium (2-chlorobenzoate)	1576	1397	179	841 747 712 694 647
Sodium (4-iodobenzoate)	1539	1397	143	847 746 691 638

COMPOUND	v _{as} (OCO)	v _{as} (OCO) v _{sym} (OCO)	$\Delta { m V}_{ m max}$	Te-O	δ(C-H)
R_2 Te $(OOCPh)_2$	1637	1321 1320	317	552	825 712 678
R' ₂ Te(OOCPh) ₂	1637	1319	319	551	833 814 716 678
R_2 Te(OOCPy) $_2$	1656 1630	1350 1324	332	553	827 790 747 712 697

COMPOUND	v _{as} (OCO)	v _{as} (OCO) v _{sym} (OCO)	VΩ	Te-0	δ(C-H)
R' ₂ Te(OOCPy) ₂	1667	1335 1320	347	553	834 820 806 752 710 696
$Ph_2Te(OOCC_6H_4I-p)_2$	1634	1305	329	561	843 739 687
Ph ₂ Te(OOCC ₆ H ₄ Cl-2) ₂	1636	1311	325	565	848 744 722 687 649

COMPOUND	v _{as} (OCO)	v _{as} (OCO) v _{sym} (OCO) Δv	Δv	Te-O	δ(C-H) Others
Ar ₂ Te(OOCPh) ₂	1637	1298	339	548	855 842 808 783 766 711 678
Ph ₂ Te(OH)(OOCPy). 0.5 diox	1611	1376	235	570 525	872 3139 851 v (OH) 832 739 697
R'Te(OH) ₂ OOCPh	1650	1320	320	627 558	824 799 710 681

COMPOUND	v _{as} (OCO)	v _{as} (OCO) v _{sym} (OCO)	Δv	Te-0	δ(C-H)	δ(C-H) Others
R'Te(OH)(OCH ₃)(OOCPy)	1625	1366	254	625	823 754 697	3431 v(OH)
2-PhpyTeOOCPh	1624	1320	301	551	756 737 712 676	1605,1581 υ(C=N)
2-PhpyTeOOCPy	1630	1346	284	515	843 1 751 724 696	1604,1584 v(C=N)
2-PhpyTeCl ₂ OOCPy	1561	1375	186	601	798 762 745 712 700	312 v(Te-Cl) 1600,1580 v(C=N)

COMPOUND	v _{as} (OCO)	v _{as} (OCO) v _{sym} (OCO) Δv	Δv	Te-O	8(C-H)	Te-O $\delta(C-H)$ Others
2-PhpyTeBr ₂ (OOCPh)	1687	1326	361	631	753 708 685 668	1601,1580 v(C=N)
2-PhpyTe(OH)Br(OOCPy)	1562	1366	194	597 519	845 763 749 700	3397 v(OH) 1599,1580 v(C=N)

R= p-methoxyphenyl-R'= p-ethoxyphenyl-Ar = 3,4-dimethoxybenzene-2-Phpy = 2-(2'-pyridyl)phenyl-

Table 3.2 Infra-red Spectroscopic Data.

Mass Spectroscopy Data

Compound	Fragmentation Ion	m/e
R_2 Te(benzoate) ₂	Ph+	78
	CHO-C ₆ H ₄ +	105
Chemical Ionisation	(PhCOOH)+	122
	RTe+	237
	RTe(OH)+	254
	RTe(OH) ₂ +	271
	R ₂ Te+	344
	RTeOOCPh+	361
	R ₂ TeOOCPh+	465
	R ₃ Te ₂ +	577
R' ₂ Te(benzoate) ₂	Ph+	78
1. 7. 6 (861.234.65)2	CHO-C ₆ H ₄ +	105
Chemical Ionisation	$(R'H)^+$	122
Chemical following	(Ph-COOH)+	122
	R'Te+	251
	RTe(OH)+	268
	R'Te(OH) ₂ +	285
	R'TeOOCPh+	372
	R' ₂ Te+	372
	R' ₂ TeOOCPh+	493
	R' ₃ Te ₂ +	619
R_2 Te(OOCPy) ₂	R ₂ TeOOCPy+	466
1210(0001 3/2	R_2 Te ⁺	344
Electron Impact	R ₂ re RTe ⁺	237
Electron Impact	PyCOO+	124
	Py+	79

Compound	Fragmentation Ion	m/e
R' ₂ Te(OOCPy) ₂	Py+	79
	(PyCOOH)+	124
Electron Impact	R'2+	242
	R' ₂ Te+	372
	R' ₂ Te ₂ +	498
Ar ₂ Te(OOCPh) ₂	Ph+	78
2	CHO-C ₆ H ₄ +	122
Chemical Ionisation	(PhCOOH)+	122
	R ⁺	105
	Ar+	138
	PhCOO+	244
	ArTe+	267
	Ar ₂ +	274
	Ar ₂ Te+	404
	Ar ₂ TeOOCPh+	525
Ph ₂ Te(OH)(OOCPy).0.5 diox	Ph+	77
2	Py+	79
Electron Impact	Ph ₂ +	154
-	PhTe+	207
	Ph ₂ Te+	284
	Ph ₂ Te(OH)+	301
R'Te(OH) ₂ OOCPh	Ph+	77
11 10(011)/20001 11	R'+	121
Chemical Ionisation	PhCOO+	121
Chemical foliaments	R'Te+	251
	$R'Te(OH)^+$	268
	$R'Te(OH)_2^+$	285
	$(R'_{2}Te + H)^{+}$	373

Compound	Fragmentation Ion	m/e
2-phpyTeOOCPh	(Phpy) ₂ Te+	565
	$[(Phpy)_2 Te + H]^+$	439
Chemical Ionisation	$[(Phpy)_2 + H]^+$	309
	RTe+	284
	$(R + 2H)^+$	156
	$(Py - H)^+$	78
	$(PyCOO + H)^+$	124
2-phpyTeOOCPy	(Phpy) ₂ Te ₂ +	565
	$(Phpy)_2^- Te^+$	438
Chemical Ionisation	(Phpy)Te+	284
	Phpy+	154
	$(PyCOO + H)^+$	124
	Py ⁺	79
$(L_2\text{TeCl}^+)(L\text{TeCl}_2^-)$ (X green)	(L -2H)+	135
	LCl+	171
Fast Atom Bombardment	L_2^+	274
	LTeCl+	302
	L ₂ Te ⁺	404
	L_2Te_2+	528
	$L_2Te_2Cl^+$	562

Compound	Fragmentation Ion	m/e
$(L_2\text{TeCl}^+)(L\text{TeCl}_2^-)$ (Y red)	(L-H)+	136
	LTe+	267
Chemical Ionisation	Ph_2Te_2	284
	LTeCl+	303
	L ₂ Te+	404
	L ₂ TeCl+	439
	$L_2Te_2Cl^+$	565
	L ₃ Te ₂ +	667
L_2 TeCl ₂ .2HCl (Z)	(L-H)+	136
L_2 reci ₂ . Errer (2)	L ₂ +	274
Fast Atom Bombardment	LTeCl+	302
1 ast 7 tom Domoardment	LTeCl ₂ +	337
	L_2 Te ⁺	404
	L ₂ TeCl+	439
	L_2 TeCl ₂ +	473
	$L_2 Te_2 Cl^+$	561
	1210201	
	L_2Te_3+	656

Based on ¹H, ¹²C, ¹⁶O, ³⁵Cl, ¹³⁰Te (correct isotope patterns were observed for Teⁿ⁺)

R = p-methoxyphenyl-

R'= p-ethoxyphenyl-

Ar = 3,4-dimethoxybenzene-

2-phpy = 2-(2'-pyridyl)phenyl-

L = 2,4-dimethoxybenzene-

Table 3.3 Mass Spectroscopic Data.

			CI	C2	C3	C4	CS	90
	Compound	Solvent	<i>C</i> 2	C8	62	C10	C11	C12
	1 3 4 8 9	CDCI	55.3	161.8	115.3	135.1	124.2	171.7
	(CH O-) Te-(OOC-) 10	3	132.0	128.1	129.8	132.2		
l	1 2 4 5		14.7	63.6	161.2	115.8	135.1	125.7
	$(CH_3CH_2O^{-3}(1))_{2}$ Te- $(OOC^{78}(1))_{2}$	CDC1 ₃	171.1	132.1	128.0	129.8	132.2	
90	$\frac{1}{1} = 2 \frac{3}{1} + \frac{4}{5} = \frac{6}{1} \frac{8}{10} = \frac{9}{10}$, DAD	55.2	161.7	115.2	134.9	127.4	169.6
	$(CH_3O - \sqrt{1})^{2-1}e^{-(OOC_1^{\prime})^2}$		149.3	137.1	126.2	125.1	149.1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E C	14.5	63.4	161.0	115.6	134.9	126.1
	$(CH_3CH_2O - (1))_2$ Te- $(OOC - (1))_2$	CDC13	169.5	149.3	125.5	136.8	125.1	149.1
Ţ								

Table 3.4 ¹³C solution N.M.R

		5	ς)	63	C4	5	Ç	77
Compound	Solvent		5	C10	C111	~)		C14
			ì	;) 			
$\operatorname{CH}_{3}\operatorname{O}_{4}$		55.1	55.6	111.8	116.3	149.6	149.6 151.4 132.4	132.4
$(CH_3^{-5})^{-5}$	DMSO-D ₆	127.6 170.7	70.7	132.0	132.0 127.6 129.2	129.2	126.2	
3 2 7 8		129.6 12	128.1	128.6	136.4	171.8	137.8	137.8 133.3
$(4)^{L}$ Te- $(000^{\frac{1}{2}})^{2}$ I) ₂	DMSO-D6	133.8 13	136.4					
	C C C C C C C C C C C C C C C C C C C	129.8 126.4		129.7	131.8	171.3	133.1	133.1 135.0
$\frac{1}{2} \frac{3}{3} \frac{1}{3} \frac{1}$	7 Car	130.6 13.	133.7 1	131.5	131.4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		129.6 13	133.1	128.6	140.7	169.8	152.5 124.1	124.1
0H N 10 diox.	DMSO-D ₆	136.7 124.9		149.0	66.4			
CH_CH_O-2 (10 10 10 10 10 10 10 10 10 10 10 10 10 1	DMSO-D,	14.6 63	63.3		115.7	137.0		52.7
		160.6		125.0	132.7 126.7	126.7	149.7	

Table 3.4 (continued) 13C N.M.R data.

	Colvent	C1	C2	C3	C4	C5	90	C.1	RS	60
Compound	Solvelin	C10	C11	C12	C13	C14	C15	C16	C17	C18
14 15	ייי	133.1		132.9 128.0	131.3	131.3 130.7	134.3	155.0		120.7 137.9
RTe-OOC	CDC13	122.0	142.5	142.5 171.6 131.2 126.1	131.2	126.1	129.7			
14 15	Day	133.0	137.9	137.9 120.2	138.1	124.8	133.5	150.3	121.0	142.1
$RTe-OOC\sqrt[4]{\sqrt{N}}$		125.5	149.3	169.8	154.8	136.1	138.3	132.7	148.3	
RTeBr ₂ -OOC- $\left\langle \begin{array}{c} 14 & 15 \\ \hline \end{array} \right\rangle$ 16	CDCI ₃	130.7	139.6	128.5	133.4	124.0	134.2	153.0	121.0	143.7
		123.7	144.7 167.3	167.3		127.7	129.2	132.2		

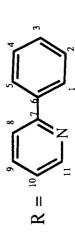


Table 3.4 (continued) 13C N.M.R solution data.

		C1	C2	C3	C4	C5	92	C7	C8	60
Compound	Solvent	C10	C111	C12	C13	C13 C14 C15	C15	C16	C17	C18
DT-C1 OC12A-15	DMSO-D.	:		120.4	120.4 137.0 124.8 135.2	124.8	135.2	;	124.1	124.1 140.8
NIECL2 OOC-N))	125.1	147.6	125.1 147.6 166.3	151.9 130.5	130.5	1 1 1	130.0	145.1	
14 15			137.1	137.1 129.9		124.7	135.1	146.5	120.4	140.8
RTeBr(OH)OOC- \sqrt{N} \sqrt{N} 16	DMSO-D ₆	125.3	145.0	125.3 145.0 168.4 151.9 130.4	151.9	130.4	1	124.1	147.3	

$$R = \frac{9}{10} \sum_{j=1}^{8} \frac{1}{2} \left(\sum_{j=1}^{3} \frac{1}{2} \right)^{4}$$

Table 3.4 (continued) 13C solution N.M.R

	C1	C2	C3	C4	C5	9 2	C7	C8
Compound	ව	C10	C11	C12	C13	C14	C15	C16
1	57.2	55.9	115.7	134.6	134.6 108.7	164.0	99.4	160.0
	57.2	55.9	100.0	134.3	134.3 109.6	161.0	9.66	165.0
$(CH_3O^{\frac{5}{4}} - \int_{7}^{4} -1_2 - TeCl_2 - 2HCI \qquad (Z)$	57.2	57.2 56.0	99.0	134.3	109.6	134.3 109.6 161.0 99.6		165.0
$(CH_3O^{-6}\sqrt{\sum_{7}^{4}})_{-7}^{-7}FBr_2$ $(Y + Br_2)$	56.5	56.5	101.2	134.7	132.1	155.4	98.8	156.0
$(CH_3O^2 \left(\bigcap_{j=1}^3 \right)^{\frac{4}{2}} \right)^2 TeBr_2$ $(Z + Br_2)$	56.7	156.0 98.7	98.7	134.8	101.2			

Table 3.4 (continued) 13C N.M.R data.

From infra-red spectroscopic data solid state bonding features can be predicted. Carboxylate ligands may interact in a number of ways to metal centres (see Fig 3.1). Curtis⁽⁷⁵⁾ has shown that for acetato-complexes of tin, it is possible to distinguish ionic, unidentate, bidentate or bridging acetato-groups from the separation of the asymmetric and symmetric carboxylate (OCO) stretching vibrations. Thus $\Delta v(OCO)$ will be greater for the monodentate group than for the free ion, whereas for the bidentate group, $\Delta v(OCO)$ is generally less than for the free ion. For a bridging group the value of $\Delta v(OCO)$ is comparable to that of the free ion. Although in our case we are not comparing "like with like", the model can help to predict important solid state structural features.

Examination of of the infra-red spectra the diorganyltellurium(IV) dibenzoates R₂Te(OOCPh)₂, R'₂Te(OOCPh)₂ and $Ar_2Te(OOCPh)_2$ [R= p-methoxyphenyl, R'= p-ethoxyphenyl- and Ar= 3,4-dimethoxyphenyl-] shows Δv separations of 317, 319 and 339cm⁻¹ respectively. Comparing these values with that of the free ion ($\Delta v =$ 132cm⁻¹) suggests that the carboxylate groups are bonding in a unidentate mode. On close inspection of the spectra of R₂Te(OOCPh)₂ and R'2Te(OOCPh)2, the asymmetric and symmetric vibrations actually exist as doublets. This detail either suggests there is coupling of the vibrations or their is a slight inequivalence of carboxylate ligands bonded to tellurium. An explanation of this may come from the packing of the molecules in the crystal lattice. If one regards the molecules as being four coordinate pseudo-trigonal bipyramidal, one carboxylate group may

UNIDENTATE BRIDGING M—O C—R O M—O C—R M—O C—R IONIC CHELATE

Figure 3.1 Types of structures the carboxylate ligand can adopt when interacting with a metal centre.

lie in the equatorial plane whilst the other lies in an axial position. Conversely and more likely, each ligand may have both equatorial and axial Te-O bonds. Using these models, axial Te-O bonds may be longer than equatorial Te-O bonds and hence their bonding to tellurium slightly weaker. Attempts to solve the crystal structure of R₂Te(OOCPh)₂ failed due to, we believe, a highly disordered packing arrangement of the molecules in the crystal lattice. Unit cell dimensions are quoted in chapter six.

In the case of the carboxylates formed from potassium and silver picolinate salts ($\Delta v = 221 \text{cm}^{-1}$), the same pattern is observed. Thus $R_2 \text{Te}(\text{OOCPy})_2$ and $R'_2 \text{Te}(\text{OOCPy})_2$ ($\Delta v_{\text{max}} = 332$ and 347 cm⁻¹ respectively) have inequivalent carboxylate groups bonding in a unidentate mode. Unidentate bonding of the carboxylate groups to tellurium is also found in $Ph_2\text{Te}(4\text{-iodobenzoate})_2$ and $Ph_2\text{Te}(2\text{-chlorobenzoate})_2$ but in these molecules no inequivalence of the ligands is observed.

INFORMATION SCHVICES

In the reaction of diphenyltellurium(IV) dichloride and silver picolinate the dicarboxylate was not isolated. Instead, a white crystalline material, bearing only one picolinate group was formed (low % nitrogen). In the infra-red spectrum, the separation of the symmetric and asymmetric vibrations is Δv =235cm⁻¹. In this compound the carboxylate ligand probably interacts in an asymmetrical bidentate fashion. The broad band centered at 3139cm⁻¹ is evidence for an O-H stretching

vibration. This broad feature may imply hydrogen bonding. The occurrence of broad bands centered at 570 and 525cm⁻¹, are assigned as Te-O vibrations and from this evidence it is likely that partial hydrolysis of the reactant has occurred at the tellurium site with the formation of a Te-OH bond. A common feature in the infra-red spectra of these compounds is the appearance of strong bands centered at around 500-600cm⁻¹. These bands are often broad in shape and are characteristic of Te-O vibrations in for example organotelluroximes⁽⁷⁶⁾.

Table 3.4 shows ¹³C N.M.R data for the diaryItellurium(IV) dicarboxylate compounds. Assignments are based on comparison with model componds and in some cases by considering peak intensities (see later). Substituted carbons [e.g Te-C(aryl) and O-C(aryl)] also helped in the assignment. The most striking feature of each of the spectra is the appearance of a signal at ~170 ppm attributed to a carbonyl resonance. For comparison, the carbonyl signals in acetone and acetaldehyde are found at 203.8 and 199.3 ppm. In all the diaryItellurium(IV) dicarboxylate compounds, only one carbonyl signal is observed, implying equivalence of both carboxylate groups in solution under the conditions of the N.M.R experiment.

The chemical shift value for the signal from the *ipso*-carbon bonded to tellurium is unpredictable. In the compounds $R_2\text{Te}(\text{OOCPh})_2$, $R'_2\text{Te}(\text{OOCPh})_2$, $R'_2\text{Te}(\text{OOCPy})_2$, $R'_2\text{Te}(\text{OOCPy})_2$ and $Ar_2\text{Te}(\text{OOCPh})_2$ the signals are consistent at ~126 ppm. The small shift relative to benzene

 $(\delta = 128.5 \text{ ppm})$ has been attributed to the "heavy atom effect" causing screening of the carbon nucleus. However downfield shifts to 131.8 ppm and 136.4 ppm are found in $Ph_2Te(2-chlorobenzoate)_2$ and $Ph_2Te(iodobenzoate)_2$.

Signals in the aliphatic region at ~ 15 ppm and ~ 63 ppm are assigned as methyl (CH₃) and methylene (CH₂) signals. The methylene carbon is deshielded somewhat due to the electron withdrawing effects of the electronegative oxygen atom deshielding the carbon nucleus.

The ¹³C N.M.R spectrum of Ph₂Te(OH)(OOCPy).0.5 dioxane is useful in the characterisation of the compound. Assignment of the three quaternary carbon resonances is straight forward. Signals for the phenyl and the pyridyl groups could be distinguished from the 2:1 intensity differences. The signal at 66.4 ppm is assigned as 1,4-dioxane (all four carbons equivalent). This molecule could only have arisen from the solvent in the reaction. The proton N.M.R spectrum of this compound reveals a complex pattern in the aromatic region as expected. The dioxane signal is evident at 3.56 ppm. The presence of an O-H signal from the compound is not clear and may be masked in the aromatic region. Alternatively there may be rapid exchange with the small amount of water present in the N.M.R solvent.

Mass spectroscopic data for some of the diaryltellurium(IV) dicarboxylates are shown in table 3.4. As well as helping in the

characterisation of these compounds, a number of important observations are made. Firstly the chemical ionisation spectra provide more information than the electron impact mass spectra. In no cases was the molecular ion observed. However the compounds fragment *via* the loss of one carboxylate ligand followed by a second loss and in all cases the R₂Te+ ion was detected. It is therefore not surprising to find that the fragmentation ions RTe+, PhCOO+, PyCOO+, Py+ and Ph+ are also noted. In the chemical ionisation spectra some of the ions often appear protonated. For example the compound R₂Te(OOCPh)₂ shows the ions PhCOOH+, RTe(OH)+ and RTe(OH)₂+. Ions pertaining to tellurium clusters are also observed in some cases and probably arise from thermolysis of the sample.

In the context of MOVPE, the most important result from this work comes from the mass spectroscopic study. Clearly there is evidence from this work that diarytellurium(IV) dicarboxylates decompose either thermally or *via* fragmentation with the initial loss of carboxylate groups. Although these compounds are non-volatile solids, their decomposition could release R₂Te or RTe species as volatile components within the MOVPE system. However the point must be made that the conditions of the mass spectroscopy experiment by no means match those used in MOVPE.

3.3.2 Attempts to form Aryltellurium(IV) tricarboxylates

Attempts to form aryltellurium(IV) tricarboxylates have been unsuccessful. Problems with alcolysis and hydrolysis were apparent despite efforts to dry solvents thoroughly.

In the reaction of p-ethoxyphenyltellurium(IV) trichloride and potassium picolinate a white solid was isolated. Analytical data support the presence of only one picolinate ligand in the molecule. The infra-red spectrum confirms the presence of picolinate with the separation of the asymmetric and symmetric (OCO) vibrations being 254cm^{-1} (c.f. Δv = 221cm^{-1} for potassium picolinate). Since the value is neither in the unidentate or bidentate regions, it is suggested that the bonding of the picolinate ligand to tellurium is almost certainly asymmetrical bidentate. A broad band at 3431cm^{-1} can be assigned to an O-H group.

On examination of the 13 C N.M.R spectrum the carbonyl signal is found at 160.6 ppm. Other signals are assigned similarly to those of the diaryltellurium(IV) dicarboxylate compounds. Interestingly, the signal at δ =52.7 ppm is assigned to a methoxy group and could only be explained by invoking methanolysis of the organometallic forming a Te-OCH₃ bond.

In a similar reaction but using an oxygen free atmosphere, a white unidentifiable crystalline material was formed. The high nitrogen

INVOCATION SCHUICES

value in the analytical data suggests three picolinate moieties are present. Close inspection of the infra-red spectrum confirmed the presence of a number of a number of carbonyl environments. Furthermore, a broad feature in the region 3000-2000cm⁻¹, implies the presence of free acid in the compound. The ¹³C N.M.R. spectrum is not simple and although the paraethoxyphenyl group could be identified, along with at least one carbonyl resonance, the aromatic region was too complicated to confidently assign individual signals. Significant ions in the mass spectrum are Py⁺ (m/e=79), Ph⁺ (m/e=78), R'₂⁺ (m/e=242) and R'₂Te⁺ (m/e=372) [or R'Te(OOCPh)⁺].

In the reaction of p-ethoxyphenyltelluruim(IV) trichloride with silver benzoate a white insoluble material was isolated. The analytical data, fits the formulation R'Te(OH)₂(OOCPh). Evidence for the benzoate ligand comes from the infra-red spectrum in which $\Delta v=320 \text{cm}^{-1}$ (c.f silver benzoate $\delta=132 \text{cm}^{-1}$) implying unidentate bonding of the carboxylate ligand to tellurium. Whilst no N.M.R data could be obtained due to the compound's insolubility, mass spectroscopy data (table 3.3.) is helpful in the characterisation. No molecular ion is observed but the ions R'₂Te⁺, R'Te(OH)₂+, R'Te(OH)⁺ and R'Te⁺ are prominent. The presence of these ions suggests that fragmentation occurs by loss of the benzoate ligand. Since the compound is insoluble in a range of organic solvents, it is likely that it exists in a polymeric form, with propagation through Te-O bonds.

3.3.4 <u>Characterisation of 2-(2'pyridyl)phenyltellurium(II)</u> and tellurium(IV) carboxylates.

The reaction of equimolar solutions of 2-(2'-pyridyl)phenyl-tellurium(II) halide (2-phpyTeX) with either silver benzoate or silver picolinate affords both 2-(2'-pyridyl)phenyltellurium(II) benzoate and picolinate derivatives. The only other organotellurium(II)carboxylate reported is acetato(2-phenyl-C,N)tellurium(II) in which the crystal and molecular structure has been solved⁽⁷⁷⁾. In a similar reaction but using 2-(2'-pyridyl)phenyltellurium(IV)trihalide (2-phpyTeX₃), the related 2-(2'-pyridyl)phenyltellurium(IV)dihalocarboxylates are formed. Analytical, infra-red, N.M.R and some mass spectroscopic results are tabulated in tables 3.1-3.4. Some spectra are also included.

The analytical data fit the formulations $C_{18}H_{13}NO_2Te$ (ie. 2-PhpyTeOOCPh) and $C_{17}H_{12}N_2O_2Te$ (ie. 2-PhpyTeOOCPy). In the infra-red spectrum of 2-(2'-pyridyl)phenyltellurium(II)benzoate a doublet for both asymmetric and symmetric vibrations are observed. The separation Δv =337cm⁻¹ suggests that the ligands bond in a unidentate mode. The doublet for both vibrations is not unique and as described earlier may arise from coupling of carboxylate vibrations of different molecules within the crystal lattice. A similar observation is found in 2-(2'-pyridyl)phenyltellurium(II) picolinate where Δv =310cm⁻¹ and again unidentate bonding of the ligand to tellurium is invoked.

Structural bonding features can also be obtained for the organo-

tellurium(IV)dihalocaboxylates. Thus 2-phpyTeBr₂(OOCPh) (Δv = 361cm⁻¹) shows unidentate bonding while 2-phpyTeCl₂(OOCPy) and 2-phpyTe(OH)Br(OOCPy) (Δv = 186 and 194cm⁻¹ respectively) are likely to exist in bidentate co-ordination. In the latter compound a broad band at 3397cm⁻¹ supports the view that an O-H functionality is present in the compound, bonded to tellurium.

On careful inspection of the C=N vibrations of the pyridyl ring, it is seen that the organotellurium(II) carboxylates bands appear at a slightly higher wavenumber (1604-1605cm⁻¹) than the organotellurium(IV) carboxylates (1599-1601cm⁻¹). If this difference is real then the tellurium-nitrogen contact is probably slighty stronger in the case of the tellurium(II) compounds. This observation can also be observed in the 2-(2'-pyridyl)phenyltellurium(II) and Te(IV) halides.

The ¹³C N.M.R results are tabulated in table 3.4. Both the carboxylate and the 2-phenylpyridine signals are observed in all the compounds. The furthest downfield signals found are assigned to carbonyl carbons. These signals are found slightly further downfield in the tellurium(II) than those of the tellurium(IV) compounds. The ring carbons are assigned relative to model compounds particularly the useful bank of compounds based on 2-phenylpyridine characterised by Al-Salim⁽⁷⁴⁾.

There are similarities in the mass spectra of both the

organotellurium(II) carboxylates. Both spectra show the ions $R_2Te_2^+$ as the highest m/e fragments, along with R_2Te^+ and RTe^+ species. The molecular ions are not observed. The carboxylate ions PhCOO+ and PyCOO+ are also prominent along with their fragmentation ions Ph+ and Py+. In the compound RTeOOCPh, the biaryl species R_2^+ is also noted.

The stability of organotellurenyl compounds involving 2-phenylpyridine has been attributed to the strong intra-molecular Te-N coordination⁽⁷⁷⁾. It is felt that the stability of these organotellurium(II) carboxylates are no exception. We may speculate that when these compounds are heated, they breakdown *via* the elimination of carbon dioxide releasing the unsymmetrical telluride. This in turn may be a volatile source of tellurium.

RTeOOCR'
$$\longrightarrow$$
 RTeR' + CO₂

However mass spectroscopy does not detect any of the telluride species (RTeR') but nethertheless this does not mean it is not present. The experimental conditions here are more forceful that those used in the MOVPE process where the solids are simply heated and therefore we may not be seeing the real decomposition products (e.g. RTeR')

A programme of work in which the benzoate and picolinate moieties are substituted with for example acetate, seems a worthy route for further investigations. The chances of forming solids at room temperature which may be a source of volatile compounds (eg. RTeCH₃), are likely to be in our favour. As mentioned earlier the compound

acetato(2-(2'-pyridyl)phenyl-C,N)tellurium(II) has been reported and so other similar compounds should be realistic possibilities.

3.3.5 Attempts to characterise $(L_2\text{TeCl}^+)(L\text{TeCl}_2^-)$.

[Bis(2,4-dimethoxyphenyl)tellurium(IV) chloride|[2,4-dimethoxytellurium(II) chloride,]

In an attempt to form <u>bis(2,4-dimethoxyphenyl)tellurium(IV)</u> dichloride (as a reactant for dicarboxylate synthesis), green (X) and red (Y) solids were isolated from the reaction of 1,3-dimethoxybenzene and tellurium tetrachloride in 1,4-dioxane. A fit for L₃Te₂Cl₃ can be obtained from the analytical figures for both compounds which may imply the formulation (L₂TeCl⁺)(LTeCl₂⁻). The red (Y) solid was found to be a 1:1 electrolyte in acetonitrile (Λ = 92 ohm⁻¹cm²mole⁻¹). The green solid (X) is insoluble in common organic solvents and hence its solution conductivity could not be recorded. The infra-red spectra of both compounds confirm the presence of the organic groups. The ¹³C N.M.R. spectrum of Y (table 3.4) was recorded in DMSO and is complex. On first impression there appears to be two sets of signals with one set of double intensity relative to the other. The two signals at δ =108.2 and 100.0 ppm are assigned as Te-C(aryl) resonances. These carbons appear strongly shielded due to the "heavy atom effect" discussed earlier. This observation implies there are two positions on the ring which have been tellurated or two rings have been tellurated. Since there are fourteen signals present in the spectrum it is more likely that two rings have been

tellurated. The position of telluration can be determined by considering electronic and steric effects (see figure 3.2).

$$CH_3O$$
 3
 4
 OCH_3

Figure 3.2

Electronically the positions likely to be tellurated are those ortho (or para) to the methoxy groups (eg. carbons 2 and 3). For steric reasons carbon (2) is an unlikely possibility. Carbon (4) which is sterically the most favourable position is electronically unlikely to be tellurated. Therefore the most likely position of telluration is at carbon (3). If this is so, six signals should be observed in the aromatic region. There are actually twelve and this leads us to the conclusion that there are two ortho-tellurated groups of different chemical constitution. Since the compound is an electrolyte in solution, it is likely to be dissociated in DMSO (the N.M.R solvent) and therefore a formulation based on $(L_2\text{TeCl}^+)(L\text{TeCl}_2^-)$ (L= 2,4-dimethoxybenzene) may be proposed. The set of signals of greater intensity belong to the ligand in the cationic moiety. Conversely the weaker set correspond to the ligand in the anionic moiety. This formulation suggests both Te(IV) and Te(II) species are present. The signal at δ = 100 ppm in the ¹³C N.M.R spectrum lends support for the presence of the tellurium(II) species since the corresponding *ipso* signals in other tellurium(II) compounds

have been observed in this region⁽⁷⁸⁾. The Te(IV)-C(aryl) signal is further downfield as expected for organotellurium(IV) found compounds. The red colour of the compound in the solid state and in solution may also be explained by the presence of tellurium(II) species. The visible absorption spectrum in acetonitrile showed a broad band at 515nm (e= 60 mole-1dm3cm-1). An anomaly of the 13C N.M.R spectrum lies in the aliphatic region. Whilst methoxy signals are present there are only two resonances. In theory and using the formulation (L₂TeCl⁺)(LTeCl₂⁻), one might expect four signals since both ligand groups are in different chemical environments. One can only surmise that there are overlapping resonances in this region.

The chemical ionisation mass spectrum for Y shows ions for L_2 TeCl+, L_2 Te+, LTeCl+ and LTe+. Tellurium clusters are also noted at m/e=565 (L_2 Te₂Cl+) and m/e=667 (L_3 Te₂+). The fast atom bombardment mass spectrum of X shows the ions LTeCl+, L_2 Te+ and tellurium clusters at m/e=528 (L_2 Te₂+) and m/e=562 (L_2 Te₂Cl+). Both X and Y are believed to be isomeric forms of the same compound.

The analytical figures for the green compound X are very similar to Y and we may have the same formulation $(L_2\text{TeCl}^+)(L\text{TeCl}^-)$. The insolubility of X suggests that it may exist in a polymeric form. For example the cation may be polymeric with propagation through Te-Cl bonds eg.

$$\begin{array}{c|c}
Cl & Cl & Cl \\
Te & Te & Te
\end{array}$$

Figure 3.3

This type of species [ie. $(L_2Te_2Cl^+)_n$] is present in the mass spectrum and is isoelectronic to $(RTeSTeR)_n$.

On bromination of Y white crystals of <u>bis(2,4-dimethoxyphenyl)</u>-tellurium(IV) dibromide were obtained (characterised from analytical and ¹³C N.M.R) as the only reaction product.

$$2(L_2\text{TeCl}^+)(L\text{TeCl}_2^-)$$
 = ex Br₂, CH₃CN => $3L_2\text{TeBr}_2$ + 6Cl^-

The tellurium chloride bonds are cleaved and replaced by tellurium bromide bond formation. The eight signals observed in the ¹³C N.M.R spectrum supports the idea that telluration of 1,3-dimethoxybenzene occurs at the ortho position which is the least sterically hindered.

In conclusion, analytical, infra-red, conductivity, N.M.R and mass spectroscopy support the ionic formulation $(L_2\text{TeCl}^+)(L\text{TeCl}^-)$ for Y. Only limited data were collected for X and it's characterisation is more speculative. It is believed to be polymeric.

3.3.6 Attempts to characterise L_2 TeCl₂.2HCl (L= 2,4-dimethoxybenzene).

In a similar reaction to the above but using a two fold molar excess of 1,3-dimethoxybenzene, a red solid Z was isolated as the only reaction product. A fit for L₂TeCl₂.2HCl was found from the analytical data. A broad feature in the infra-red spectrum at 3449cm⁻¹ implies strong hydrogen bonding within the molecule attributed to either O-H or H-Cl bonding (the latter seems unlikely in view of the heavier mass of chlorine). The conductivity in acetonitrile (10-3M solution) gave a value of Λ = 115ohm⁻¹cm²mole⁻¹ based on the formulation L₂TeCl₂.2HCl slightly lower than expected for a 2:1 electrolyte. The ¹³C N.M.R (table 3.4) shows eight signals. On comparison of these signals with those of the RTeCl₂- moiety (Y), it is found that both sets have almost identical chemical shifts. As concluded for compound Y, telluration occurs at the hindered ortho position. An alternative formulation L₂TeCl₂.2HCl can be made; for example (LH⁺)₂TeCl₄ in which protonation of a methoxy group is invoked. The broad band at $v=3449 \text{cm}^{-1}$ in the infra-red spectrum would explain the presence of an O-H functionality. However the ¹³C N.M.R data does not support this idea since there is no evidence for further deshielding of any of the methoxy carbons. Therefore the ¹³C N.M.R and infra-red data are not consistent.

The fast atom bombardment mass spectrum of Z gives numerous

tellurium cluster fragments for example, L_2Te^+ , L_2TeCl^+ and $L_2TeCl_2^+$ (see table 3.3). Of particular interest is the fragment at m/e=656 ($L_2Te_3^+$) which is a rare example of a cluster containing three tellurium atoms. The spectrum only serves to confirm the presence of organic and tellurium moieties.

In an attempt to probe the formulation of Z further, its reaction with bromine was investigated. White crystals were isolated which from analytical, infra-red and ¹³C N.M.R data, undoubtedly support the formation of <u>bis(p-methoxyphenyl)tellurium(IV)</u> dibromide. The interesting chemical point to note is the cleaving of the C-O bond with the loss of a methoxy group ortho to tellurium. The diagram below illustrates this.

$$2 \text{CH}_{3}\text{O} \longrightarrow + \text{TeCl}_{4} \xrightarrow{1,4-\text{diox}} (\text{CH}_{3}\text{O} - \bigcirc)_{2} \text{TeCl}_{2} \text{2HCl} \quad (\mathbf{Z})$$

$$O\text{CH}_{3}$$

$$Br_{2} / \text{CH}_{3}\text{CN}$$

$$(\text{CH}_{3}\text{O} - \bigcirc)_{2} \text{-TeBr}_{2}$$

No definitive mechanistic explanation can be given at this stage. However one may propose that Z exists in the form L_2 TeCl $_2$.2HCl and when brominated in acetonitrile, the acidic protons (H+Cl-) attack the site of the ortho-methoxy group yielding methanol and protonating the

aromatic ring. The bromine appears only to attack the tellurium atom with Te-Cl bond cleavage and Te-Br bond formation.

In summary, the analytical data support the formulation L₂TeCl₂.2HCl. The compound is an electrolyte in solution. The ¹³C N.M.R supports this formulation with telluration of the organic group occuring at the least sterically hindered ortho position. In contrast the infra-red spectrum supports the view that protonation of at least one of the methoxy groups has occured from the presence of a broad band at high wavenumber in the spectrum (O-H). Therefore infra-red supports the formulation (LH)₂+TeCl₄²-. Clearly more information is needed for complete characterisation.

3.4 Organotellurium carboxylates for MOVPE.

The compounds synthesised and characterised in this work are high molecular weight non-volatile solids. Conventional MOVPE requires compounds of vapour pressure >1 torr at room temperature and realistically our compounds are of little use in this respect. Nethertheless some important conclusions and suggestions can be made

An important observation from the mass spectroscopy study is that these compounds breakdown via Te-O bond cleavage and the loss of carboxylate ligands. In all cases either RTe⁺ and/or R₂Te⁺ are observed and in some cases the carboxylate ion (eg. PhCOO⁺). This in turn

decomposes with loss of carbon dioxide (not detected). Emphasis must be placed on the fact that the mass spectroscopy technique does not model the conditions in the MOVPE system but there are similarities. Along with tellurium and carboxylate species, biaryl ions are also prominent in some cases. From an MOVPE point of view, this is an important observation indicating that on breakdown of these compounds volatile by-products are produced which would be carried away in the MOVPE process and lead to less carbon contamination in the growing layer.

Whilst no efforts were made to optimise the design of this type of precursor, it is felt that by replacing the aromatic groups with alkyls say, therefore using lower molecular weight molecules, this class of compound must be worthy of further investigations.

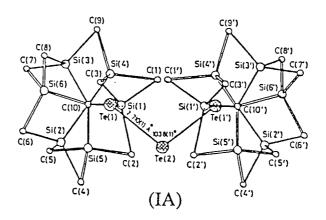
CONCLUSIONS

Diaryltellurium(IV) dicarboxylates can be synthesised routinely and in high yield by the reaction of diaryltellurium(IV)dihalide with silver and potassium carboxylate salts. Attempts to form organotellurium(IV) tricarboxylates were unsuccessful. Problems with solvolysis were apparent leading to monocarboxylate compounds. Two organotellurium(II) carboxylates have been prepared and are believed to be stabilised by intra-molecular Te-N coordination.

In all the carboxylate compounds, structural bonding features of the carboxylate ligands to tellurium have been predicted using infra-red measurements. In the mass spectra of all of the compounds studied, fragmentation occurs with the loss of the carboxylate ligands releasing organotellurium ions (eg. RTe+). Although the compounds are non-volatile high molecular weight solids they are stable in air and therefore easy to handle making them attractive for MOVPE purposes. They may decompose thermally *via* the loss of carbon dioxide to yield volatile telluride intermediates (eg. RTeR').

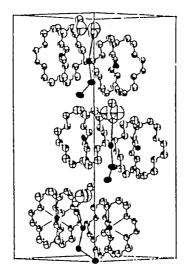
Chapter Four ORGANOPOLYCHALCOGENIDE AND CYCLIC TELLURIUM COMPOUNDS

4.1 INTRODUCTION


Most tellurium sources explored to date for the growth of cadmium mercury telluride have featured the simple alkyl telluride precursors (eg. R₂Te). These are attractive compounds since they may be readily sythesised and offer suitable volatilities for film growth. However not only are these materials highly toxic and therefore present handling difficulties, they also require high temperatures for good quality film growth for reasons explained in chapter one.

We became interested in designing alternative tellurium precursors. There are many classes of organotellurium compounds which are worthy of investigation but for this programme of work we decided to select two types; organopolytellurides and cyclic tellurides. Cyclic tellurium compounds are a well known class of compound and there are numerous reports throughout the literature. On the contrary reports on organopolytellurides are rare. A major impetus for studying polytelluride compounds is the hope that they would be rich sources of tellurium. The prediction is that compounds of the type R₂Te_n decompose thermally *via* successive release of elemental tellurium, thus:-

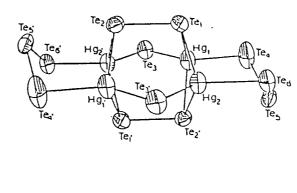
$$R_2Te_n \longrightarrow R_2Te_{n-1} \longrightarrow R_2Te_{n-2} \cdots > R_2Te$$


The propensity for catenation to form oligomeric E_n chains declines in the order S>Se>> Te. Organopolyselenium compounds,

for example tri- and tetraselenium dimorpholide⁽⁷⁹⁾ are quite common. However it is not surprising to note that compounds involving chains of tellurium atoms are scarce. Diorganylditellurides are well known but only two diorganyltritellurides have been reported. The bulky ligand tris(trimethylsilyl)methyl has been used to stabilise the tritelluride (IA) below⁽⁸⁰⁾.

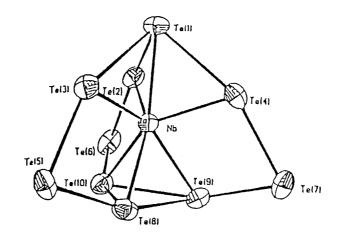
Recently in our laboratory, <u>bis(2-(2'pyridyl)phenyl)tritelluride</u> (IB) was synthesised by the reduction of 2-(2'-pyridyl)phenyl-tellurium(IV) tribromide with sodium borohydride. The compound has been crystallographically characterised (Te-Te= 2.776(1) Å) and is believed to be stabilised by intra-molecular Te-N coordination⁽⁸⁰⁾.

Despite only two diorganotritellurides being reported, there has been a handful of inorganic polytellurides reported in the last ten years. Very recently a comprehensive review by Ibers⁽⁸¹⁾ highlights the progress made in synthesising inorganic polychalcogenide materials. A salt containing the tritelluride ion has been synthesised by using a crytand to sequester the alkali metal counterion⁽⁸²⁾. Thus (4,7,13,16,21,24-hexa-oxa-1,10diazobicyclo[8.8.8] hexacosane)-potassium tritelluride ethylenediamine (II) [(KCrypt)₂Te₃.en] contains a cryptate complexed potassium ion, ethylenediamine and the Te₃²⁻ anion (where Te-Te = 2.692 and 2.720 Å).

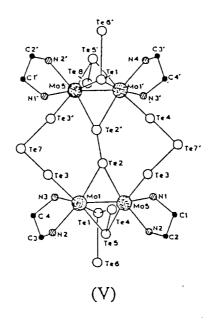


Tellurium and potassium atoms are darkened.

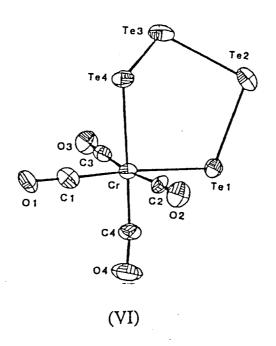
(II)


Polytelluride and polyselenide anions prepared from the elements and an alkali metal in liquid ammonia have been shown to be convenient reagents for the generation of a variety of metal polychalcogenides⁽⁸³⁾. Haushalter and co-workers found that the ethylenediamine extraction of certain ternary melts of composition $(M^1)_x(M^2)_y Te_2$ [M¹= alkali metal, M²= Hg, Au,] provides a convenient

preparative route to a variety of structurally diverse polytelluride clusters such as $[Hg_4Te_{12}^{4-}]^{(84)}$ (III) $[Hg_2Te_5^{4-}]^{(84)}$, $[KAu_9Te_7^{4-}]^{(85)}$ and $[Au_2Te_4^{2-}]^{(85)}$.


(III)

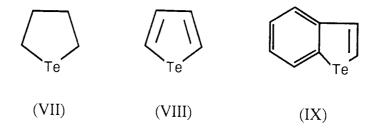
The solubility of polytelluride ions such as Te^{2-} , Te^{3-} and Te_4^{2-} in DMF and ethylenediamine has been used to form transition metal polytelluride clusters. Kolis and Flomer have reported the anion NbTe₁₀^{3- (86)} in which the Nb atom is encapsulated by a bird-like sheath (IV).



(IV)

The anion $Mo_4Te_{16}(en)_4^{2-(87)}$ has also been reported and comprises of two d^3 - d^3 Mo_2^{6+} units linked by a central Te_2^{2-} ligand and two Te_3^{2-} chains (V).

Anions containing chains of four tellurium atoms have also been reported eg. $Cr(CO)Te_4^{2-(83)}$ (VI).



These results inspired us to believe that organopolytelluride compounds should also be realistic possibilities. Due to constraints in our laboratory, the molecules targeted were based on high molecular weight aromatics (believed to be easier to handle). Recently in our laboratory, others have demonstrated that organotellurenyl halides (RTeX) (for example R= 2-phenylpyridine and 2-phenylquinoline) can be routinely synthesised⁽⁷⁸⁾ and are believed to be stable due to intramolecular Te---N coordination. We believe that bis(2-(2'pyridyl)-phenyl)tritelluride can be considered as a bis(organotellurenyl)-telluride, ie. (RTe)₂Te and that by reacting RTeX with polytelluride anions (Te_n²⁻⁾ other higher polytellurides (RTe)₂Te_n should be viable compounds.

The choice of studying cyclic tellurium compounds as MOVPE precursors continues the theme of exploring molecules which readily release tellurium under thermal conditions. The key to decomposition lies in the ring strain effects in these organometallics.

$$(CH_2)_n$$
 Te $\xrightarrow{\Delta}$ Te $+ (CH_2)_n$

There are numerous reports in the literature of cyclic tellurium compounds stretching back to the beginning of the century⁽⁸⁸⁾. Examples are telluracyclopentane (VII), tellurophene (VIII) and benzotellurophene (IX).

1,2-Ditellurane has been synthesised by Singh and is an example of a six membered alicyclic ditelluride in which the Te-Te bond is believed to be highly reactive⁽⁸⁹⁾ due to ring strain effects. This type of precursor may be useful since on heating, tellurium extrusion may readily occur with the formation of telluracyclopentane (which in turn may yield a further source of tellurium).

Extrusion of tellurium does occur from some dihydrotellurophenes at temperatures of 500°C. This method has been used to synthesise cyclobutenes for example,

In the work reported here, some modified synthetic procedures are noted for some cyclic tellurium compounds. Their thermochemistry has not been studied as yet but may be the subject of future work.

4.2 **EXPERIMENTAL**

The compounds RTeBr₃, RTeBr (R= 2-(2'-pyridyl)phenyl-) R'TeBr₃ and R'TeBr (R'= 2-(2'-quinolinyl)phenyl-) were prepared according to the literature methods⁽⁷⁸⁾. The analogous chloride compounds were similarly prepared but substituting $TeCl_4$ for $TeBr_4$. The compounds (pap) $TeCl_3^{(90)}$ and (pap) $TeCl_9^{(90)}$ (pap= 2-phenylazobenzene) were also prepared by the literature methods.

4.2.1 Synthesis of Bis(2-(2'-pyridyl)phenyl)tritelluride

- 1) The same method was used here to that given by Al-Salim⁽⁷⁴⁾.
- 2-(2'-pyridyl)phenyltellurium(IV) tribromide (1.30g, 0.015 mole) was suspended in absolute ethanol (60 cm³) and treated dropwise with a solution of sodium borohydride (0.55g, 0.015 mole) in absolute ethanol (10 cm³). The solid dissolved with the evolution of a gas and black tellurium was noticed. After completion of addition, the tellurium redissolved and the solution appeared deep red. It was heated gently for 30 minutes and filtered whilst hot. On standing in air at room temperature a brown solid formed which partially decomposed to tellurium. The solid was filtered off, washed in ethanol (20 cm³) and recrystallised from benzene. Yield 30%, m.p.= 166-167°C (lit. 165-166°C).
- 2) The same method was used as in (1) except the reaction was carried out under dinitrogen. The reaction proceeded smoothly until the

red solution was observed when almost immediately the solution decomposed to black tellurium and a colourless solution. The reaction was repeated several times with the same observation.

- Tellurium powder (0.319g, 0.0025 mole) was suspended in DMF 3) (40 cm³) and the mixture stirred for one hour under argon gas. Sodium (0.115g, 0.005 mole) in small pieces was carefully added and the mixture stirred under gentle heat for one hour. The tellurium dissolved with the formation of a pale yellow solution. A solution of 2-(2'pyridyl)phenyltellurium(II) bromide (1.085g, 0.005 mole) in DMF (20 cm3) was added dropwise and the mixture heated at 60°C for three hours during which time the solution appeared pale orange. On cooling to room temperature, a black solid (tellurium) formed in an orange solution. The solution was filtered and the filtrate collected, concentrated to a small volume on a rotary evaporator, whereupon an orange solid formed. This solid was recrystallised from benzene. Yield 40%, m.p.= 166-167°C (lit.=165-166°C).
- Rongalite (sodium formaldehyde sulfoxylate) (0.46g, 0.003 mole) was dissolved in an aqueous solution of sodium hydroxide (30 cm³, 10%). To this solution was added tellurium powder (0.38g, 0.003 mole) and the mixture gently heated (~60°C) for three hours during which time the tellurium dissolved and a pale pink solution formed. A solution of 2-(2'-pyridyl)phenyltellurium(II) bromide (0.217g, 0.006 mole) in DMF (30 cm³) was added dropwise whereupon a pale yellow coloured

solid formed. The mixture was gently heated for two hours and allowed to cool to room temperature. The yellow solid was filtered off and washed in DMF (50 cm³). This solid was found to be insoluble in common organic solvents (characterised as RTe(O)Br - see later). Yield 80%, m.p.= 145°C(d).

4.2.2 Synthesis of Bis(2-(2'-Quinolinyl)phenyl)tritelluride.

Two methods were used. The first, method (A) was the same procedure as that used by Al-Salim⁽⁷⁴⁾.

- A) 2-(2'-Quinolinyl)phenyltellurium(IV) tribromide (1.14g, 0.002 mole) was suspended in absolute ethanol (25 cm³). Tellurium powder (0.13g, 0.001 mole) was added and the mixture stirred under argon gas. Sodium borohydride in ethanol (15 cm³) was added dropwise until all the tellurium disappeared. During borohydride addition a red solution formed and a gas was evolved. The red solution was refluxed for 30 minutes and then allowed to cool to room temperature whereupon an orange solid formed which was filtered off and recrystallised from benzene. Yield 50%, m.p= 206-207°C (lit= 211-212°C).
- B) Tellurium powder (0.319g, 0.0025 mole) was suspended in DMF (50 cm³). Sodium (0.115g, 0.005 mole) was carefully added in small pieces and the mixture was heated to 60°C and stirred under argon for one hour during which time the tellurium redissolved and a pale orange coloured solution formed. A solution of 2-(2'-quinolinyl)phenyl-

tellurium(II) bromide (2.07g, 0.005 mole) in DMF (10 cm³) was added dropwise and the orange solution stirred at 60°C for three hours. On cooling to room temperature a black solid (tellurium) appeared in an orange solution. The solid was filtered off and from the filtrate an orange solid formed which was recrystallised from benzene. Yield 30%, m.p.= 208-209°C.

4.2.3 Generation of the ditelluride anion (Te₂²-)

In some of the following syntheses the ditelluride (Te_2^{2-}) anion is used. Three methods of generating this ion by reduction of tellurium have been devised and are given here.

(i) Rongalite (HOHCH₂SO₂Na.2H₂O) method.

Rongalite (0.92g, 0.006 mole) in aqueous solution (20 cm 3) was added to a solution of sodium hydroxide (30 cm 3 , 10%) in which tellurium powder (1.52g, 0.012 mole) was suspended. The mixture was gently heated under dinitrogen for one hour. Most of the tellurium dissolved and a red solution developed (Na $_2$ Te $_2$).

(ii) Super-hydride (LiB(Et)₃H) Method.

Tellurium powder (1.02g, 0.008 mole) was suspended in THF (40 cm³) and stirred under dinitrogen at room temperature. Superhydride (8 cm³, 0.008 mole of a 1M THF solution) was added dropwise *via* a syringe and septum. During the addition a gas was evolved. The mixture

was gently heated for one hour. Most of the tellurium dissolved and a deep red solution developed (Li₂Te₂).

(iii) Sodium Method

Tellurium powder (0.638g, 0.005 mole) was suspended in DMF (40 cm^3) and stirred under argon gas for one hour at room temperature. Sodium (0.115g, 0.005 mole) was carefully added in small pieces. On completion of addition the mixture was gently heated whereupon most of the tellurium dissolved and a deep red solution developed (Na_2Te_2) .

4.2.4 Attempted synthesis of Bis(2-(2'-Pyridyl)phenyl)-tetratelluride.

A) A solution of Na₂Te₂ (0.002 mole) was generated by the sodium reduction of tellurium using method (iii) above. To this solution was added a solution of 2-(2'-pyridyl)phenyltellurium(II) bromide (1.44g, 0.004 mole) in DMF (20 cm³). The red solution was gently heated at ~60°C under argon for three hours. The solution was allowed to cool to room temperature and filtered. On filtration the red solution decomposed immediately to tellurium in 100% yield.

The reaction was also carried out using a five fold molar excess of Na₂Te₂ and the same observations noted. Also RTeCl (in 1,4-dioxane) was substituted for RTeBr but without success.

B) A solution of Li₂Te₂ was generated by the super-hydride reduction of tellurium in THF according to method (ii) above. To this solution was added a solution of 2-(2'-pyridyl)phenyltellurium(II) (2.88g, 0.008 mole) in THF (30 cm³). The red coloured solution was gently refluxed for three hours and then allowed to cool to room temperature. On filtration in air the red solution decomposed immediately to yield tellurium in 100% yield.

The reaction was also carried out using a five fold molar excess of Li_2Te_2 and the same observations were noted. Also RTeCl (in 1,4-dioxane) was also substituted for RTeBr but without success.

4.2.5 <u>Attempted synthesis of Bis(2-(2'-Quinolinyl)phenyl)</u>-tetratelluride.

Two methods were used.

A) A solution of Na₂Te₂ (0.002 mole) was generated by the sodium reduction of tellurium in DMF solution using method (iii) above. To this solution was added a solution of 2-(2'-quinolinyl)phenyl tellurium(II) bromide (1.646g, 0.004 mole) in THF (20 cm³). The deep red solution was heated at 60°C for two hours. It was allowed to cool to room temperature and then filtered. On filtration the red solution immediately decomposed to tellurium in 100% yield.

The reaction was also carried out using a five fold molar excess of Na₂Te₂. The same observations were noted.

B) A solution of Li₂Te₂ (0.002 mole) was generated by the superhydride reduction of tellurium in THF using method (ii) above. To this solution was added a solution of 2-(2'-quinolinyl)phenyltellurium(II) bromide (1.646g, 0.004 mole) in THF (20 cm³). The deep red solution was gently refluxed under dinitrogen for two hours. It was then allowed to cool to room temperature and then filtered. On filtration in air the red solution decomposed immediately to tellurium in 100% yield.

The reaction was also carried out using a five fold molar excess of Na₂Te₂. The same observations were noted.

4.2.6 Synthesis of Bis(2-(2'-Pyridyl)phenyltelluro)diselenide

Selenium powder (0.395g, 0.005 mole) was suspended in warm toluene (30 cm³). Super-hydride (6 cm³ of a 1M solution in THF) was added dropwise and the mixture stirred under dinitrogen for 1 hour. On completion of super-hydride addition, a red solution formed and then an orange coloured suspension. A solution of 2-(2'-pyridyl)phenyltellurium(II) chloride (1.59g, 0.005 mole) in warm toluene (30 cm³) was added dropwise. The mixture was gently refluxed for three hours and then the orange coloured solution allowed to cool to room temperature whereupon it was filtered. From the filtrate a bright red coloured solid formed possessing an obnoxious odour. It was found to be insoluble in common organic solvents and decomposed in hot benzene and hot nitromethane. Yield 80%, m.p = 230°C(d).

4.2.7 <u>Synthesis of Bis(2-(2'-Quinolinyl)phenyltelluro)</u>-diselenide.

Selenium powder (0.395g, 0.005 mole) was suspended in warm 1,4-dioxane (30 cm³). Super-hydride (6 cm³ of a 1M solution in THF) was added dropwise and the mixture stirred under dinitrogen for one hour. On completion of super-hydide addition, a red solution formed. A solution of 2-(2'-quinolinyl)phenyltellurium(II) chloride (1.84g, 0.005 mole) in warm 1,4-dioxane (30 cm³) was added dropwise. The mixture was gently heated for three hours and then allowed to cool to room temperature. The orange coloured solution was filtered and from the filtrate a red solid possessing an obnoxious odour formed. This solid was found to be insoluble in common organic solvents and decomposed in hot nitromethane. Yield 80%, m.p.= 150°C

4.2.8 <u>Attempts to synthesise Bis(phenylazophenyl-C,N')</u>-tetratelluride.

A solution of Na₂Te₂ (0.002 mole) was generated by the sodium reduction of tellurium in DMF according to method (iii) above. To this solution was added a solution of (2-Phenylazophenyl-C,N')tellurium(II) chloride (1.37g, 0.004 mole) in DMF (10 cm³). The red coloured solution was gently heated at 60°C for two hours and allowed to cool to room temperature. On filtration the red solution decomposed immediately to tellurium in 100% yield.

CYCLIC ORGANOTELLURIUM COMPOUNDS.

4.2.9 <u>Attempts to synthesise 1,2-Ditellurane</u> <u>Synthesis of 1,1'-Dibromo-1-telluracyclopentane</u>

A solution of Na₂Te₂ (0.05 mole) was generated by the sodium reduction of tellurium in DMF according to method (iii) above.1,4-Dibromobutane (4.75 cm³, 0.04 mole) was added dropwise and the red solution gently heated for four hours and stirred under argon. The solution was allowed to cool to room temperature and then filtered. On standing in air the filtrate gradually decomposed yielding tellurium and a cloudy solution. The tellurium was filtered off and the filtrate concentrated to small volume whereupon a colourless solid separated out. This solid was recrystallised from chloroform to give a colourless crystalline solid. Yield 70%, m.p.= 124-125°C.

4.2.10 <u>Attempts to synthesise 1,2-Ditellurane</u>. <u>Synthesis of 1,1'-Diiodo-1-telluracyclopentane</u>.

A solution of Na_2Te_2 (0.05 mole) was generated by the sodium reduction of tellurium in DMF solution according to method (iii) above. 1,4-Diiodobutane (0.04 mole) was added dropwise and the red solution was gently heated for 3 hours under argon. On cooling to room temperature a black solid in a red solution appeared. The solution was filtered and from the filtrate a red solid formed which was recrystallised from ethanol. Yield 75%, m.p = 149-150°C (lit= 149-150°C).

4.2.11 <u>Attempted synthesis of Telluracyclopentane.</u> Synthesis of Cyclotellurapentane-1-oxide.

1,1-Diiodo-1-telluracyclopentane (5g) was dissolved in hot ethanol (80 cm³) and stirred under dinitrogen. Sodium borohydride in ethanol was added dropwise to the red solution. During the addition a gas was released and the solution gradually became colourless when the addition was stopped. The solution was allowed to cool to room temperature whereupon an oil separated out. On attempting to separate this oil a repulsive odour persisted. Therefore the solution was allowed to evaporate in air in a fume cupboard and a white coloured solid formed. The solid was filtered off and washed in water and ethanol. Yield 90%, m.p.= 180-182°C (lit.= 241°C(d)).

4.2.12 Synthesis of 3,4-benzo-1-telluracyclopentane.

1-1'-Diiodo-1-tellura-3,4-benzocyclopentane (1.0g) was dissolved in hot ethanol (80 cm³) and the solution stirred under dinitrogen. To this red solution was added dropwise a solution of sodium borohydride in ethanol until the solution became colourless. During the addition a gas was evolved. The solution was allowed to cool to room temperature and filtered. The filtrate was concentrated using a rotary evaporator whereupon a yellow solid formed. The solid was filtered off and washed in water and ethanol. Yield 90%, m.p.= 130-132°C

4.3 RESULTS AND DISCUSSION

In this section the results of the attempts to form organopolytellurides and mixed organopolychalcogenide (Se,Te) compounds will be discussed.

4.3.1 Characterisation of Diorganotritellurides.

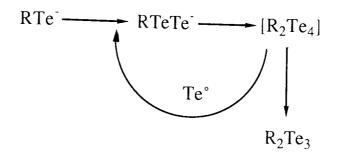
Attempts to form bis(2-(2'-pyridyl)phenyl)tritelluride via literature method did not altogether proceed as expected. Two reactions were carried out. The first was carried out according to the literature method in which oxygen was not excluded in the reaction. In the second reaction oxygen was excluded using a nitrogen atmosphere. In the presence of nitrogen the reaction proceeded smoothly until the red solution (reported in the literature) formed which almost immediately decomposed to yield tellurium (100%). However using aerobic conditions the red solution persisted until it was filtered whereupon partial dissociation to tellurium occurred and the tritelluride was isolated in much lower yield (30%) than reported in the literature (90%). The analytical data support a fit for $C_{22}H_{18}N_2Te_3$. The melting point and infra-red data agree with the literature data. The electron impact mass spectrum did not show the molecular ion. The highest ion detected was R_2Te^+ (m/e= 438). The other major ions detected were RTe+ (m/e= 284), R+ (m/e= 154) and (R-HCN)+ (m/e= 127). Nitrogen heterocyclic containing compounds often lose HCN as a stable molecule during fragmentation.

ANALYTICAL DATA Table 4.1

COMPOUND	Found (Required)		
	%C	%H	%N
$C_{22}H_{16}N_2Te_3*$	38.3	2.18	4.12
	(38.2)	(2.33)	(4.05)
C ₂₂ H ₁₆ N ₂ Te ₃ **	38.4	2.56	3.86
	(38.2)	(2.33)	(4.05)
$C_{30}H_{20}N_2Te_3*$	45.4	2.55	3.51
	(45.5)	(2.53)	(3.54)
$C_{30}H_{20}N_2Te_3**$	45.2	2.67	3.43
	(45.5)	(2.53)	(3.54)
C ₁₁ H ₈ NOTeBr	34.0	2.17	3.62
	(35.0)	(2.12)	(3.17)
$C_{22}H_{16}N_2Se_2Te_2$	35.9	2.54	3.42
	(36.6)	(2.24)	(3.88)
$C_{30}H_{20}N_2Se_2Te_2$	44.2	2.51	3.49
	(43.9)	(2.45)	(3.41)
$C_4H_8TeBr_2$	14.2	2.12	
	(14.0)	(2.33)	
$C_4H_8TeI_2$	12.2	2.83	
	(11.0)	(2.53)	
C ₄ H ₈ OTe	25.0	4.32	
	(24.1)	(4.04)	
C ₈ H ₈ Te	40.8	3.54	
	(41.5)	(3.48)	

^{*} Synthesised using the literature method.

** Synthesised by the reaction of RTeX (or R'TeX) with Te².


The experimental observations noted may provide a clue to the mechanism for tritelluride formation. Al-Salim⁽⁷⁴⁾ proposed two mechanisms below:-

RTeBr₃
$$\xrightarrow{BH_4^-}$$
 2RTeBr + Te²⁻ $\xrightarrow{}$ R₂Te₃ + 2Br⁻ (1)
$$\downarrow BH_4^-$$
Te

$$RTeBr_3 \xrightarrow{BH_4} RTe^{-} + Te \xrightarrow{} RTeTe^{-} \xrightarrow{O_2} R_2Te_3 \qquad (2)$$

He noted in his experiments (as indeed is reported here) that during borohydride addition tellurium was released. In a similar reaction but using 2-(2'-quinolinyl)phenyl- as the organic moiety, Al-Salim noted no tellurium was released and the ditelluride formed. In a separate reaction but adding tellurium to the reactants, the tritelluride was obtained. On these findings Al-Salim proposed mechanism (1).

In the reaction carried out under nitrogen (absence of oxygen), the tritelluride failed to be isolated although it's existence in solution may be likely. On the contrary aerobic conditions lead to tritelluride formation. It appears that oxygen is responsible, in part, for tritelluride formation. In the light of these observations Al-Salim's initial proposal may have to be revised and mechanism (2) is now favoured. The last step in this proposal may occur *via* a tetratelluride intermediate for example:-

Using Al-Salim's method only small yields of this tritelluride could be obtained. For this reason new synthetic routes were devised in which the telluride anion (Te2-) was reacted with an organotellurenyl halide (RTeX). Two methods were employed to generate Te2-(polytelluride (Te_n²-) anion formation is discussed furtheron). In the first, rongalite (HOCH₂SO₂Na.2H₂O) was used to reduce tellurium in an alkaline solution. Reaction with RTeBr did not lead to the expected tritelluride but an insoluble cream coloured solid. The analytical data supports a fit based on C₁₁H₈BrNOTe. The infra-red spectrum confirms the presence of the organic group. Bands in the range v=580-514cm⁻¹ are evidence for Te-O vibrational modes. The N.M.R spectrum could not be recorded since the compound was insoluble in common organic solvents. Using this data it is proposed that the compound formed is the organotellurium(IV)oxybromide derivative (RTeOBr) whose insolubility may be due to a polymeric structure. It is not surprising that oxidation from Te(II) to Te(IV) has occurred since aqueous alkaline conditions were used.

The telluride anion can also be generated by reducing tellurium with sodium (in the ratio 1:2) in a DMF solution. On reacting with

RTeBr, the tritelluride compound is formed. Analytical, infra-red,

$$2RTeBr + Na_2Te \longrightarrow N_2 \longrightarrow R_2Te_3 + 2NaBr$$

melting point and mass spectroscopic data agree with that already reported and with the literature data. In this reaction in which oxygen was excluded, mechanism (1) is favoured. It appears that two separate mechanisms are in operation in both types of reaction.

Bis(2-(2'quinolinyl)phenyl)tritelluride has been synthesised by two methods. In the first, the literature method was employed in which a suspension of R'TeBr₃ and tellurium were reduced and the reaction worked up accordingly. In the second, the reaction of R'TeBr with the telluride anion (Te^{2-}) was used. The reaction yields are smaller (50% and 30% respectively) than those obtained by Al-Salim (80%). The analytical data for both products support a fit for $C_{30}H_{20}N_2Te_3$. The melting point and infra-red are consistent with that reported in the literature. In the electron impact mass spectrum the molecular ion was not detected. The highest ion found was R'₂Te⁺, (m/e=538) with other ions found at R'Te⁺ (m/e=334) and R'+ (m/e=204). It is suggested that in both the mass spectra of R_2Te_3 and R'_2Te_3 , it is the central tellurium which is released in the initial fragmentation step which might explain the absence of the molecular ions.

In summary, two methods can be used to synthesise the diorganotritellurides of 2-phenylpyridine and 2-phenylquinoline. One route is to reduce the organotellurium(IV) tribromides (RTeBr₃ and

R'TeBr₃) with sodium borohydride (in the case of R'TeBr₃, tellurium is also required as a reactant). Yields are lower than reported in the literature. The second method involves reacting an organotellurenyl halide (RTeX) with the telluride anion (Te²⁻). It appears two different mechanisms lead to their formations involving aerobic and anaerobic conditions.

4.3.2 Attempt to form diorganotetratellurides (R₂Te₄)

No diorganotetratellurides have been reported to date. Given the knowledge that organotellurenyl halides (RTeX) can be stabilised by intra-molecular (Te-N) coordination, we attempted the synthesis of diorganyltetratellurides with the rationale that they exist as bis(organotellurenyl)ditellurides.

The ditelluride anion (Te₂²⁻) was generated by reduction of tellurium using rongalite, elemental sodium and super-hydride reducing reagents. Deep red solutions formed in all cases. There are numerous examples in the literature of the reduction of tellurium using sodium in liquid ammonia. This method was not used in our reactions because other methods provided much simpler routes to Na₂Te and Na₂Te₂. Hugot in 1899 reported Na₂Te to be a colourless precipitate in liquid ammonia when he reacted sodium and tellurium in the molar ratio 2:1. A more comprehensive investigation by Kraus and Chiu⁽⁹¹⁾ established the identities of the species sequentially formed in ammonia solution to be Na₂Te (yellow solution, white precipitate), Na₂Te₂ and

Na₂Te₄ (deep red solution). In 1931 Zintl, Goubeau and Dullenkopf⁽⁹²⁾ also investigated the sequential reactions of tellurium with sodium in liquid ammonia and reported the compounds formed to be Na₂Te (white precipitate, yellow solution), Na₂Te₂ (violet solution) and Na₂Te₃ (red solution). These authors questioned the formation of Na₂Te₄. Although there is general agreement as to the species formed in solution, there is still disagreement as to the identity of the highest sodium polytelluride. The reported products were based on reactant stoichiometries which is a questionable assumption. Very recently Schulz and Koehler⁽⁹³⁾ used U.V spectroscopy to study the species formed in solution. The species Na₂Te₂ (blue solution) and Na₂Te₃ (red solution) were found to be distinctive spectroscopically identifiable species. The proposed species Na₂Te₄ was found to be a 1:1 molar mixture of Na₂Te₃ and insoluble excess tellurium.

Super-hydride [LiB(Et)₃H] has recently become a popular reducing agent in organometallic chemistry. In the reaction of a 1:1 molar ratio of super-hydride and tellurium a dark red coloured solution formed characteristic of the ditelluride anion (Te₂²-). The reaction may occur according to equation (1).

$$2\text{LiB(Et)}_3\text{H} + 2\text{Te} \longrightarrow \text{Li}_2\text{Te}_2 + \text{H}_2 + 2\text{BEt}_3$$
 (1)

Of the three methods used in this work to reduce tellurium, the superhydride method was undoubtedly the most effective and efficient. However for precursor design it may be the least favoured since boron contamination might lead to purification problems. Reduction of tellurium using rongalite (sodium formaldehyde sulfoxide) in aqueous alkali has been continuously employed over the years for the generation of Na₂Te and Na₂Te₂. By varying the ratio of rongalite to tellurium, the ditelluride ion (deep red solution) and the monotelluride (pale pink solution) can be formed. Bergson⁽⁹⁴⁾ found that tellurium with rongalite in a 2:1 molar ratio produces predominantly the ditelluride ion with the monotelluride and polytelluride species being present as impurities. Several reactions have been proposed for the formation of these species in solution. Thus:-

$$3\text{Te} + \text{NaOH} \longrightarrow 2\text{Na}_2\text{Te} + \text{Na}_2\text{TeO}_3 3\text{H}_2\text{O} (2)$$

$$Na_2Te + Te \longrightarrow Na_2Te_2$$
 (3)

$$Na_2Te_2 + HOCH_2SO_2Na + 3NaOH \longrightarrow 2Na_2Te + CH_2O + Na_2SO_3 + 2H_2O$$
 (5)

Irgolic has suggested an alternative route thus:-

$$HOCH_2SO_2-Na$$
 — Te — $HOCH_2SO_2TeNa$ — $NaOH$ — Na_2Te + $CH_2O + Na_2SO_3$ (6)

The ditelluride anion may be formed by the further insertion into a S-Te bond, for example,

$$HOCH_2SO_2TeTeNa \longrightarrow Na_2Te_2 + CH_2O + Na_2SO_3$$
 (7)

Sandman⁽⁹⁵⁾ has shown that direct reduction of tellurium using

sodium (in a DMF solution under an inert atmosphere) is a useful method of forming both Na_2Te and Na_2Te_2 ions. However Zingaro et al have shown that Na_2Te_2 reacts with the solvent under long reaction times and the compound $\underline{bis}(N,N-dimethylaminoformylditelluride)$ can be isolated whose crystal structure has been solved⁽⁹⁶⁾.

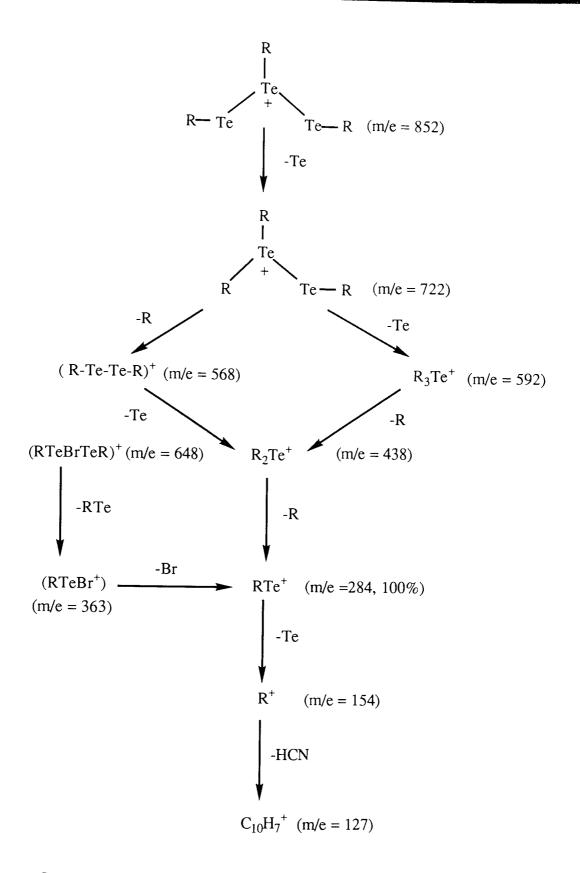
We believed diorganyltetratellurides could be synthesised by the reaction of an organotellurenyl halide (RTeX) and Te_2^{2-} . These reactions were attempted using R= 2-phenylpyridine, 2-phenylquinoline and 2-phenylazobenzene. In all these reactions a deep red coloured solution persisted throughout the reaction work-up until the solution was filtered in air whereupon decomposition to tellurium occurred. The existence of the tetratellurides under an inert atmosphere is a possibility but in air they may be unstable leading to decomposition.

4.3.3 Characterisation of Bis(Organyltellurenyl)diselenides

Although no success was achieved in synthesising diorganotetratelluride compounds we were still driven by the belief that the organotellurenyl moiety could help stabilise similar compounds. Mixed organopolychalcogenide compounds are known. For example Zingaro $^{(97)}et$ al have reported the formation of bis(4methoxyphenyltellurenyl)selenide (X).

The same authors also reported <u>bis</u>(2-ethylcarboxyphenyltellurenyl)-selenide (XI)⁽⁹⁷⁾ which involves intra-molecular Te---O coordination with a Te---O bond length of 2.658 Å.

$$C_2H_5O-C$$
 C_2H_5O-C
 C_2H


The compounds $(ArTe)_2Se$ $(Ar= 2-C_6H_4CHO and 2-C_6H_4COOH)$ have also been reported in the literature⁽⁹⁸⁾ and are further examples mixed organopolychalcogenide compounds.

In the reactions of RTeCl and R'TeCl with Li_2Se_2 (generated by the super-hydride reduction of selenium), red solids were isolated in both cases possessing repulsive odours. The analytical data (table 4.1) support fits for $\text{C}_{22}\text{H}_{16}\text{N}_2\text{Se}_2\text{Te}_2$ (ie. $\text{R}_2\text{Te}_2\text{Se}_2$) and $\text{C}_{30}\text{H}_{20}\text{N}_2\text{Se}_2\text{Te}_2$ (ie. $\text{R'}_2\text{Te}_2\text{Se}_2$). The infra-red spectra confirm the presence of organic groups. In the fast atom bombardment mass spectrum of $\text{R}_2\text{Te}_2\text{Se}_2$, the only ions detected were RTe+ (m/e= 284) and R+ (m/e= 154). Similarly in the mass spectrum of R' $_2\text{Te}_2\text{Se}_2$ the only ions found were R'Te+

(m/e= 334) and R'+ (m/e= 204). Evidence for the presence of selenium in both compounds was obtained from the scanning electron microscopy technique in which selenium and tellurium were detected in a 1:1 ratio. Due to the insolubility of these compounds, the N.M.R spectra could not be recorded. Using these results it is plausible to assign the red solids as RTeSeSeTeR and R'TeSeSeTeR'.

4.3.4 <u>Mass Spectroscopy - The appearance of Polytelluride species.</u>

During the routine examination of the mass spectrum of RTeBr (R= 2-(2'-pyridyl)phenyl-) (which was used as a precursor for polychalcogenide synthesis), species of higher m/e than the parent ion (RTeBr+) were detected. The fragmentation process is illustrated in scheme 4.1. The most notable species is the ion at m/e= 848 which has been identified as R₃Te₃+ (having the correct isotopic pattern for three telluriums). Species of this type are not common although a trace of Ph₂Te₃+ has been identified in the mass spectrum of Ph₂Te₂⁽⁹⁹⁾. In the mass spectrum of L₂TeCl₂.2HCl (L= 3,4-dimethoxybenzene) (see chapter three) a species identified as L₂Te₃+ is also another rare example of an ion containing three telluriums. The mass spectrum of RTeBr also reveals an ion at m/e= 648, identified as RTeBrTeR+. Interestingly this species happens to be isoelectronic with RTeSeTeR. Clusters of this type are common. On recording the mass spectrum of RTeCl, the related species RTeClTeR+ was also identified. This species is isoelectronic with RTeSTeR.

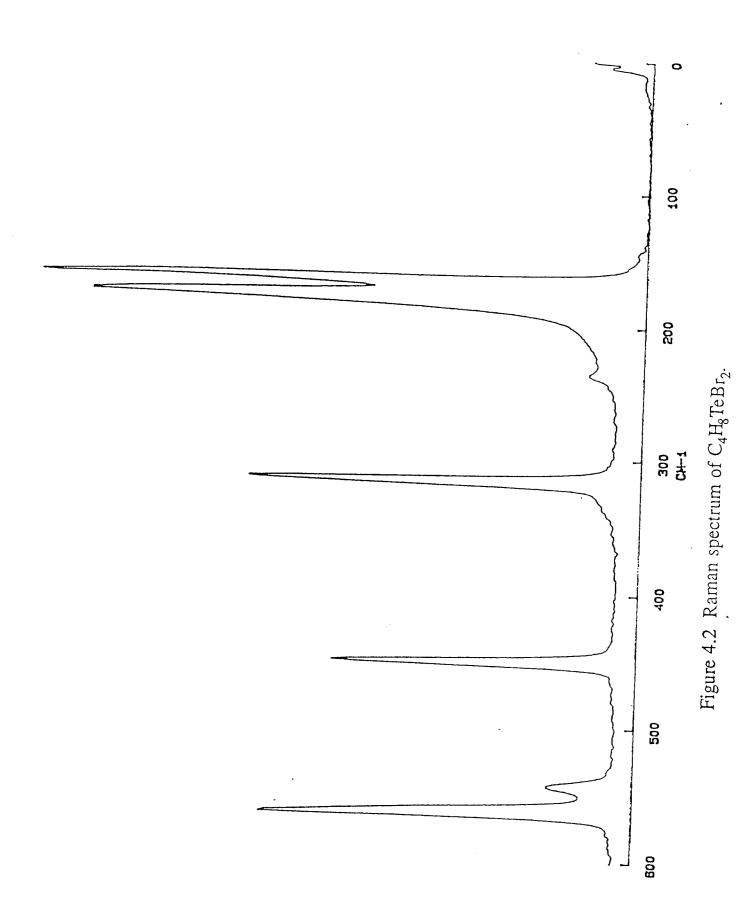
Scheme 4.1 Major fragments in the Electron Impact Mass Spectrum of RTeBr (cited values of m/e based on ¹³⁰Te, ⁷⁹Br, ¹²C, ¹H, ¹⁴N. The observed isotope patterns were in exact agreement with those calculated for the indicated ions).

A common feature of both the spectra of RTeCl and RTeBr and indeed other 2-(2'-pyridyl)phenyltellurium compounds is the appearance of RTe+ as the most abundant ion. The stability of this ion, which is isoelectronic with dibenzotellurophene, a well known stable compound, is probably due to resonance stabilisation of the positive charge.

4.3.5 Characterisation of 1,1'-dibromo-1-telluracyclopentane

In an attempt to form 1,2-ditellurane by the reaction of Na_2Te_2 and 1,4-dibromobutane, a white crystalline material was isolated. The analytical data fit the formulation $C_4H_8TeBr_2$. The compound was found to be a non-electrolyte in DMSO. In the electron impact mass spectrum the highest ion detected was $C_4H_8TeBr^+$ (m/e= 265). Other ions at m/e= 209 (TeBr⁺) and m/e= 186 ($C_4H_8Te^+$) were also noted. The ^{13}C N.M.R spectrum was recorded in CDCl $_3$ and is shown in figure 4.1. Only two signals were observed. The resonance at δ = 32.3 ppm is assigned as the β -methylene carbon. The α methylene carbon signal is found at δ = 47.3 ppm. Interestingly this signal shows satelites due to carbon-tellurium coupling, with $J(^{125}Te^{-13}C)$ = 79Hz and $J(^{123}Te^{-13}C)$ = 69Hz. The ^{1}H N.M.R spectrum was recorded in DMSO-d 6 and two signals were observed. The protons on the β -carbons are found at

Figure 4.1 ¹³C N. M. R. spectrum of C₄H₈TeBr₂.


 δ = 3.43 ppm. The α -carbon signals are seen at δ = 2.65 ppm. The infra-red spectrum confirmed the presence of the organic group but the Te-Br vibrations were not observed since the spectrum could only be recorded down to 220cm⁻¹. However the Raman spectrum was measured and was of outstanding quality (see fig 4.2) with Te-Br vibrations located at ν = 181 and 167cm⁻¹.

4.3.6 Characterisation of 1-1'-Diiodo-1-telluracyclopentane.

In an attempt to form 1,2-Ditellurane by the reaction of Na_2Te_2 and 1,4-diiodobutane, a red solid was isolated. The analytical data fit the formulation $C_4H_8TeI_2$. The ^{13}C N.M.R spectrum shows only two signals with the α and β methylene carbons resonating at δ = 46.0 and 31.2 ppm respectively. The compound has been synthesised by other methods and is an excellent source of tellurocyclopentane; for example,

4.2.7 Characterisation of cyclotellurapentane-1-oxide

The compound telluracyclopentane has been reported in the literature as a reddish-yellow oil⁽¹⁰⁰⁾. The synthesis of this material was attempted since we felt it would be a useful precursor to try on an MOVPE test kit. The reduction of 1-1'-diiodo-1-telluracyclopentane using sodium borohydride proceeded according to the literature with

the formation of an oil. However the oil gave off an extremely strong and repulsive odour leading to handling difficulties and for this reason it was decided not to isolate this material. Instead the oil was left to stand in air whereupon oxidation occurred leading to the formation of a white crystalline material. The analytical data support a fit based on C_4H_8OTe (table 4.1). The infra-red spectrum confirms the presence of the organic group and bands at $\upsilon=640$ and 540cm^{-1} are assigned as a Te-O vibration modes. The ¹H N.M.R spectrum was recorded in DMSO-d⁶. Partially resolved triplets are found at $\delta=2.7$ ppm and 3.1 ppm assigned as the α and β methylene signals respectively. The ¹³C N.M.R spectrum shows signals at $\delta=47.3$ ppm (β -CH₂) and $\delta=31.0$ ppm (α -CH₂).

4.3.8 Characterisation of 3,4-benzo-1-telluracyclopentane

In the reaction of 1,1'-diiodo-1-tellura-3,4-benzocyclopentane with sodium borohydride a pale yellow solid was isolated. The analytical data fit the formulation C_8H_8 Te. The infra-red spectrum confirms the presence of organic groups. The ^{13}C N.M.R spectrum was recorded in DMSO-d⁶ and shows four signals as expected.

$$\begin{array}{c|c}
4 & 3 & 2 & 1 \\
\hline
\end{array}$$
Te

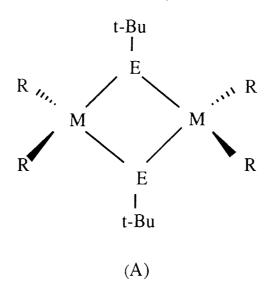
The α carbon (C1) is found at highest field (δ = 9.35 ppm) shielded by the large tellurium atom. The *ipso* carbon C(2) is found at δ = 139.5

ppm. Carbons C(3) and C(4) are located at δ = 130.1 and 127.1 ppm respectively. In the ¹H N.M.R spectrum a complex multiplet centered at δ = 7.2 ppm is assigned as the aromatic proton signals. The resonance at δ = 4.5 ppm is assigned as the methylene protons.

CONCLUSIONS

Two methods for the syntheses of the diorganyltritellurides R₂Te₃ and R'₂Te₃ (R= 2-phenylpyridine and 2-phenylquinoline) are presented. Reduction of RTeBr₃ with sodium borohydride leads directly to R₂Te₃. The related tritelluride R'₂Te₃ can be similarly prepared by reduction of R'TeBr₃ in the presence of tellurium. A mechanism has been proposed involving aerobic conditions which is contrary to the view of Al-Salim. The reaction of RTeX (and R'TeX) with the telluride ion (Te²-) also leads to the tritelluride derivatives. An alternative mechanism involving anaerobic conditions is proposed. The compounds are stable in air and are non-volatile. Under mass spectroscopic conditions, the parent ions are not observed which may imply that the central tellurium is released as an initial step during the fragmentation process. This suggests that if other higher polytellurides can be synthesised they would be rich sources of tellurium and useful for MOVPE purposes.

Attempts to form diorganyltetratellurides (R_2Te_4) failed although their existence in solution is a possibility. However mixed diorganyltetra-chalcogenides (RTeSeSeTeR and R'TeSeSeTeR') can be


synthesised by the reaction of RTeCl (and R'TeCl) with Li_2Se_2 . In the mass spectra of RTeBr and RTeCl, the species RTeBrTeR+ and RTeClTeR+ are observed which happen to be isoelectronic with RTeSeTeR and RTeSTeR respectively.

New synthetic methods have been devised for some cyclic organotellurium(IV) compounds. These materials are excellent sources of cyclic tellurides which, due to ring strain effects, may be useful sources of tellurium.

Chapter Five NITROGEN CONTAINING ORGANOTELLURIUM COMPOUNDS AND THEIR COMPLEXES

5.1 Introduction

There are many reports of complexes involving now organotellurium ligands, particularly those of RTe-, R₂Te and R₂Te₂. Notable examples are complexes formed with Hg(II), Pd(II) and Pt(II)(101-104). Mercuric(II) complexes are well known but those of cadmium(II) are rare. Since these complexes contain both groups II and VI atoms, we decided to explore related compounds which may be candidates as single source precursors in the MOVPE growth of cadmium mercury telluride. To date there are only a few examples of precursors of this type which have been used in II-VI semiconductor growth. For example the compound (t-butyl)HgTe(t-butyl) has been used to grow films of HgTe⁽¹⁰⁵⁾. Adducts of the type Me₃In.PEt₃ have been explored for InP film growth. They are easy to handle and purify and are relatively stable in air. Cowley and co-workers have found that compounds of the type (A) below are also excellent single source precursors for the preparation of III-V compounds(106).

R = Me; M = Al, Ga, In; E = As, P

In the last ten years research within our laboratory has investigated the chemistry of nitrogen containing tellurium ligands. We decided continue this theme since nitrogen containing organotellurium compounds could be useful as MOVPE precursors for at least two reasons. Firstly, decomposition of organometallic sources often leads to carbon contamination within the growing layer. Nitrogen contamination is less of a problem. Secondly incorporating nitrogen into organotellurium compounds can lead to bi- and multidentate ligands which offer more sites for coordination with metal ions. The challenge to the synthetic chemist is to design compounds whereby the II-VI bond is as strong or stronger than other bonds in the molecule, such that under film growth conditions, the II-VI bond remains intact while the other bonds are broken.

Very few bidentate and polydentate ligands containing tellurium (and hence their complexes) are known. It has been shown that among the nitrogen donors, azobenzene, (107) Schiff bases (108-109) and substituted pyridines, (110) can be tellurated. These ligands have two centres of lewis basicity (Te,N). McWhinnie *et al* have shown that the ligand 1,6-bis-2-butyltellurophenyl-2,5-diaza-hexa-1,5-diene forms a 1:1 complex with mercury(II) [see (B) below], whose crystal structure shows only the tellurium atoms are coordinating (111). The short Hg-Te distances (2.819 and 2.769 Å) indicate a strong interaction. Similar distances have also been observed in (Ph₂Te)(HgL₂)(112) (2.753 and 2.818 Å).

McWhinnie and co-workers⁽¹¹³⁾ also investigated the reaction of 2-(2'-pyridyl)phenyl.p-ethoxyphenyltellurium(II) (RR'Te) with HgCl₂. At room temperature a white solid (RR'Te)(HgCl₂) formed but on warming a new solid compound [R'HgCl.(RTeCl)₂] was isolated in which an organic group had migrated from tellurium to a mercury centre. The lability of organic groups has been observed before and in the context of MOVPE may have significant mechanistic implications.

Singh and Srivastava⁽¹¹⁴⁾ have recently shown that 2-aryltelluroethylamines form complexes with mercury(II) in which both donor atoms (Te,N) are coordinated. This observation has led us in part, to synthesise a range of bidentate (Te,N) ligands along with some related (Se,N) ligands.

The same authors have reported novel potentially tripodal tetradentate (Te,N) ligands⁽¹¹⁵⁾ such as (C). Interestingly, they have low melting points and although they have high molecular weights they may have the required volatility for MOVPE purposes.

Te Te Te Ar I Ar Ar

(C)

$$Ar = p-CH_3OC_6H_4- \text{ or } p-C_2H_5OC_6H_4-$$

In their reaction with mercury(II) salts they form 1:1 complexes. We have decided to elaborate on this work and probe the ligands further by studying their complexes with other metal ions. Some selenium ligands are also noted.

Tripod-like tetradentate ligands generally favour five coordination in transition metal chemistry⁽¹¹⁶⁾. However different geometries can be allowed depending on the nature of the metal centre and the ancillary ligand. For example palladium complexes of tris(2-diphenylphosphinoethyl)amine (tdpea) have been synthesised⁽¹¹⁷⁾ and the phosphine in turn acts as a tetra-, ter or bidentate ligand. Apart from the work of Singh and Srivastava, there are no reports of tripod-like tellurium (Te,N) ligands in the literature and so their coordination with metal ions, if any, will be attractive from an MOVPE viewpoint and for studying a class of compound hitherto unresearched.

In this chapter the synthesis of a number of bidentate and tetradentate (Te,N) and (Se,N) ligands are reported. Some of the tetradentate ligands have been explored by complexing with the metal

ions Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II). The potential use of these ligands and their complexes with Hg(II) and Cd(II) as precursors for the MOVPE growth of cadmium mercury telluride is discussed.

5.2 EXPERIMENTAL.

<u>Bis(p-methoxyphenyl)</u>ditelluride, <u>bis(p-ethoxyphenyl)</u>ditelluride, diphenylditelluride and <u>bis(p-tolyl)</u>ditelluride were prepared by published methods⁽¹¹⁸⁾. Diphenyldiselenide and <u>bis(p-ethoxyphenyl)</u>-diselenide were obtained from the Aldrich Chemical Company.

5.2.1 Generation of RTe and RSe

Diarylditelluride (0.002 mole) or diaryldiselenide (0.002 mole) was dissolved in warm ethanol (50 cm³) under an oxygen free dinitrogen atmosphere. Sodium borohydride (~0.5g) dissolved in 1M sodium hydroxide was added dropwise *via* a syringe and septum. The generation of RTe- was complete once the solution colour had changed from red to colourless. Similarly, the generation of RSe- was complete once the solution had changed colour from yellow to colourless.

5.2.2 Synthesis of 2-(p-methoxyphenyltelluro)ethylamine.

To a solution of RTe (0.004 mole) in ethanol (50 cm³) was added dropwise a solution of 2-chloroethylamine hydrochloride (0.463g, 0.004 mole) in 5 cm³ distilled water. The colourless solution was refluxed for 5 hours under a brisk flow of dinitrogen. On cooling to room temperature, 10% sodium hydroxide solution was added to neutralise it whereupon a yellow oil separated out. This oil was extracted into chloroform and dried on sodium sulphate. On filtration the filtrate

yielded a pale orange solid which was recrystallised from benzene. Yield 85%.

5.2.3 Synthesis of 3-(phenyltelluro)propylamine

To a solution of PhTe⁻ (0.004 mole) in ethanol / benzene (70/5 cm³) was added dropwise a solution of 3-chloropropylamine hydrochloride (0.520g, 0.004 mole) in water (5 cm³). The mixture was refluxed for 6 hours under dinitrogen, allowed to cool to room temperature and then 10% sodium hydroxide solution added to neutralise the mixture. A pale yellow oil formed which was extracted into chloroform. The extract was dried on magnesium sulphate and filtered whereupon a pale orange solid formed which was recrystallised from ethanol. Yield 75%.

5.2.4 Synthesis of 3-(p-methoxyphenyltelluro)propylamine

A solution of RTe- (0.002 mole) in ethanol (50 cm³) was added dropwise to a solution of 3-chloroethylamine hydrochloride (0.260g, 0.002 mole) in water (5 cm³). During the addition the solution developed a pale yellow colour. The solution was refluxed for 4 hours under a brisk dinitrogen flow and then allowed to cool to room temperature. On filtration the filtrate was collected and allowed to evaporate in air. A brown solid formed which was washed in ethanol and dried in *vacuo*. Yield 60%.

5.2.5 Synthesis of 3-(p-ethoxyphenyltelluro)propylamine hydrochloride

To a solution of RTe⁻ (0.002 mole) in ethanol/benzene (50/5 cm³) was added dropwise a solution of 3-chloropropylamine hydrochloride (0.260g, 0.002 mole) in water (5 cm³). A yellow solution formed during the addition. The mixture was refluxed for 4 hours and then allowed to cool to room temperature. On filtration the filtrate was allowed to evaporate in air. A brown solid formed which was filtered off, washed in ethanol and dried in *vacuo*. Yield 70%.

5.2.6 Synthesis of 3-(p-tolyltelluro)propylamine hydrochloride

To a solution of RTe⁻ (0.002 mole) in ethanol (50 cm³) was added dropwise a solution of 3-chloropropylamine hydrochloride (0.26g, 0.004 mole) in water (5 cm³). The mixture was refluxed for 6 hours under dinitrogen and allowed to cool to room temperature whereupon it was filtered. From the filtrate a pale yellow solid formed which was washed in ethanol. Yield 50%.

5.2.7 Synthesis of 2-(phenylseleno)ethylamine.

To a solution of PhSe (0.004 mole) in ethanol (50 cm³) was added dropwise a solution of 2-chloroethylamine hydrochloride (0.463g, 0.004 mole) in water (5 cm³). During the addition a pale yellow solution

formed, which was refluxed for 5 hours and allowed to cool to room temperature. Sodium hydroxide (10%, 10 cm³) was added to neutralise the solution whereupon an orange oil separated out. The oil was extracted into chloroform and dried on magnesium sulphate. On filtration the filtrate was collected from which a yellow solid formed. This was washed in diethylether and recrystallised from methanol. Yield 90%.

5.2.8 Synthesis of 3-(phenylseleno)propylaminehydrochloride

To a solution of PhSe (0.004 mole) in ethanol (60 cm³) was added a solution of 3-chloroethylamine hydrochloride (0.520g, 0.004 mole) in water (5 cm³). The colourless solution was refluxed for 4 hours and allowed to cool to room temperature. The solution was filtered and from the filtrate pale yellow platelet crystals formed which were recrystallised from methanol. Yield 90%.

5.2.9 Synthesis of Tris[2-(phenyltelluro)ethyl]amine Ligand L¹

To a solution of PhTe- (0.004 mole) in ethanol (50 cm³) was added dropwise a solution of <u>tris</u>(2-chloroethylamine) hydrochloride (0.321g, 0.00133 mole) dissolved in an equimolar concentration of NaOH solution (to liberate the free amine). The mixture was refluxed for 3 hours under dinitrogen and allowed to cool to room temperature where a colourless oil separated out. The oil was separated off and stirred with

hot ethanol (10 cm³) for 1 hour. On filtration colourless crystals formed. Yield 85%.

5.2.10 Synthesis of Tris[(p-methoxyphenyltelluro)ethyl]amine Ligand L²

To a solution of RTe (0.004 mole) in ethanol (50 cm³) was added a solution of tris(2-chloroethyl)amine hydrochloride (0.321g, 0.00133 mole) dissolved in a stoichiometric equivalent of 10% NaOH. The mixture was refluxed for 2 hours and allowed to cool to room temperature whereupon a colourless oil formed. The oil was separated off and stirred with hot ethanol (10 cm³). On filtration a white solid formed. Yield 95%.

5.2.11 Synthesis of Tris[(p-ethoxyphenyltelluro)ethyllamine Ligand L³

To a solution of RTe⁻ (0.004 mole) in ethanol (50 cm³) was added dropwise a solution of <u>tris</u>(2-chloroethylamine) hydrochloride (0.321g, 0.00133 mole) dissolved in a stoichiometric equivalence of NaOH. The mixture was refluxed for 2 hours under nitrogen and allowed to cool to room temperature. An oil formed which was separated off and stirred in 10 cm³ of hot ethanol. On filtration a white solid formed. Yield 95%.

5.2.12 <u>Synthesis of Tris[(phenylseleno)ethyl]amine</u> <u>Ligand L⁴</u>

To a solution of PhSe⁻ (0.008 mole) in ethanol (50 cm³) was added dropwise a solution of tris(2-chloroethyl)amine hydrochloride (0.642g, 0.00266 mole) dissolved in a stoichiometric equivalence of NaOH. The mixture was refluxed for 4 hours and allowed to cool to room temperature. An oil formed which was separated off and stirred in hot ethanol. On filtration a white solid formed. Yield 95%.

5.2.13 <u>Synthesis of Tris[(p-ethoxyphenylseleno)ethyllamine</u> <u>Ligand L</u>⁵

To a solution of RSe (0.008 mole) in ethanol (70 cm³) was added dropwise a solution of <u>tris</u>(2-chloroethyl)amine hydrochloride (0.642g, 0.00266 mole) in a stoichiometric equivalence of 10% NaOH. The mixture was refluxed under dinitrogen for 4 hours and allowed to cool to room temperature. A colourless oil formed which was separated off and stirred in hot ethanol (20 cm³). On filtration a white solid formed from the filtrate. Yield 95%.

5.2.14 Preparation of the Mercury(II) complex of L².

Mercuric chloride (0.136g, 0.0005 mole) was dissolved in acetone (5 cm³) and added to a solution of L² (0.401g, 0.0005 mole) in chloroform (20 cm³). The colourless solution was stirred at room temperature under dinitrogen for 1 hour. On addition of n-hexane (20

cm³), a white solid separated out which was filtered off and washed in n-hexane and chloroform. Yield 90%.

5.2.15 Preparation of the Cadmium complex of L².

Cadmium iodide (0.183g, 0.0005 mole) in ethanol (10 cm³) was added to a solution of L² (0.401g, 0.0005 mole) in chloroform (30 cm³). The colourless solution was gently heated under dinitrogen for 3 hours and then allowed to cool to room temperature. On addition of n-hexane (30 cm³) a cream solid formed which was filtered off and recrystallised from nitromethane from which a cream coloured crystalline solid formed. Yield 70%.

5.2.16 Preparation of the Platinum(II) complex of L².

A solution of potassium tetrachloroplatinate(II) (0.208g, 0.0005 mole) in water (5 cm³) was added dropwise to a solution of L² in chloroform (20 cm³). Initially the solution turned red but on completion of addition a brown solid formed. The mixture was stirred at room temperature under dinitrogen for 2 hours whereupon the precipitate turned yellow. The solid was filtered off, washed in water and chloroform and dried in *vacuo*. Yield 90%.

5.2.17 Preparation of the Palladium(II) complex of L².

A solution of sodium tetrachloropalladate (0.150g, 0.0005 mole) in water (5 cm³) was added dropwise to a solution of L² (0.401g, 0.0005 mole) in chloroform (30 cm³). An orange solid formed in the solution which was stirred at room temperature under dinitrogen for 5 hours. The solid was filtered off, washed in water and chloroform and dried in *vacuo*. Yield 90%.

5.2.18 Preparation of the Copper(I) complex of L².

A solution of copper(I) bromide (0.143g, 0.005 mole) in acetonitrile (10 cm³) was added dropwise to a solution of L² (0.401g, 0.0005 mole) in chloroform (30 cm³). The mixture was stirred under dinitrogen for 2 hours. The green solution was filtered and from the filtrate a green crystalline solid formed which was recrystallised from nitromethane. Yield 90%.

5.2.19 Preparation of the Mercury(II) complex of L³.

A solution of mercuric chloride (0.136g, 0.0005 mole) in acetone was added to a solution of L³ (0.422g, 0.0005 mole) in chloroform (20 cm³). The pale yellow solution was stirred at room temperature under dinitrogen for 2 hours. On addition of n-hexane (25 cm³) a white solid separated out which was filtered off, washed in chloroform and dried in *vacuo*. Yield 85%.

5.2.20 Preparation of the Cadmium(II) complex of L³.

A solution of cadmium chloride (0.092g, 0.0005 mole) was added to a solution of L³ (0.422g, 0.0005 mole) in chloroform (20 cm³). The colourless solution was stirred under gentle heat and dinitrogen for 3 hours. On cooling to room temperature, n-hexane (20 cm³) was added. A cream coloured solid separated which was filtered off and washed in ethanol. Recrystallisation from nitromethane gave a cream coloured crystalline material. Yield 60%.

5.2.21 Preparation of the Platinum(II) complex of L³.

Potassium tetrachloroplatinate(II) (0.208g, 0.0005 mole) in water (5 cm³) was added dropwise to a solution of L³ (0.422g, 0.0005 mole) in chloroform (20 cm³). Initially a red solution formed but on completion of addition a bright yellow coloured solution formed. The mixture was stirred at room temperature for 2 hours under dinitrogen. On addition of n-hexane (20 cm³) a yellow solid separated out which was filtered off, washed in chloroform and water and recrystallised from benzene. Yield 70%.

5.2.22 <u>Preparation of the Palladium(II) complex of L³.</u>

A solution of sodium tetrachloropalladate (0.150g, 0.0005 mole) in water (5 cm^3) was added dropwise to solution of L^3 (0.422g, 0.0005 mole) in chloroform (30 cm^3) whereupon an orange precipitate formed.

The mixture was stirred under dinitrogen for 2 hours at room temperature. It was then filtered off and washed in water and chloroform. Yield 90%.

5.2.23 Preparation of the Copper(I) complex of L³.

Copper(I) bromide (0.058g, 0.0002 mole) in acetonitrile (10 cm³) was added dropwise to a solution of L³ (0.170g, 0.002 mole) in chloroform (20 cm³). The mixture was gently heated for 4 hours under dinitrogen and allowed to cool to room temperature. On filtration a green coloured crystalline solid formed from the filtrate. Yield 85%.

5.2.24 Preparation of the Mercury(II) complex of L⁴.

A solution of mercuric chloride (0.136g, 0.0005 mole) in acetone (5 cm³) was added to a solution of L⁴ (0.283g, 0.0005 mole) in chloroform (25 cm³). The colourless solution was stirred at room temperature under dinitrogen for 3 hours and then n-hexane (20 cm³) added whereupon a colourless precipitate separated. This was filtered off washed with ethanol and dried in *vacuo*. Yield 60%.

5.2.25 Preparation of the Mercury(II) complex of L⁵.

A solution of mercuric chloride (0.136g, 0.0005 mole) in acetone (5 cm³) was added to a solution of L⁵ (0.349g, 0.0005 mole) in chloroform (20 cm³). The colourless solution was stirred at room

temperature for 2 hours and then n-hexane (20 cm³) was added whereupon a white solid separated. This was filtered off. Yield 80% (based on Se).

5.2.26 Preparation of the Platinum(II) complex of L⁵.

Potassium tetrachloroplatinate(II) (0.208g, 0.0005 mole) in water (5 cm³) was added dropwise to a solution of L⁵ (0.349g, 0.0005 mole) in chloroform (20 cm³). The mixture was stirred for 4 hours at room temperature under dinitrogen. On addition of n-hexane and stirring for 30 mins a yellow solid separated which was filtered washed in water and dried in *vacuo*. Yield 80%.

5.3 RESULTS AND DISCUSSION

5.3.1 <u>Characterisation of Aryltelluroalkylamines and</u> <u>Arylselenoalkylamines or their hydrochloride derivatives</u>

2-Aryltelluroethylamines, 3-aryltelluropropylamines (or their hydrochloride derivatives) can be prepared by the nucleophilic reaction of sodium aryltellurolate (ArTe⁻Na⁺) with 2-chloroethylamine or 3-chloropropylamine (or their hydrochloride derivatives). Initially the hydrochloride salts are formed but the free amines can be liberated by alkali addition.

$$^{NaBH4/NaOH/N2}$$

$$^{1}/2Ar_{2}Te_{2} \longrightarrow ArTe\cdot Na^{+}$$

$$ArTe\cdot Na^{+} + Cl(CH_{2})_{n}NH_{2}.HCl \longrightarrow ArTe(CH_{2})_{n}NH_{2}.HCl$$

$$^{10\% NaOH}$$

$$ArTe(CH_{2})_{n}NH_{2}.HCl \longrightarrow ArTe(CH_{2})_{n}NH_{2}$$

The amines are soluble in common organic solvents whilst the amine salts are only soluble in highly polar solvents (eg DMSO). Arylselenoalkylamines can be synthesised in a similar fashion but using the nucleophile RSe-. Singh and Srivastava⁽¹¹⁴⁾ recently reported compounds of this type when they synthesised the ligands 2-aryltelluroethylamines (aryl = p-methoxyphenyl and p-ethoxyphenyl) and their complexes with HgCl₂.

Analytical, infra-red and N.M.R spectroscopic results are shown in tables 5.1-5.3. The results are discussed collectively rather than

individual assignment of the compounds. The analytical data (table 5.1) support the formation of either the amine or the amine salt. Interpretation of the infra-red data (table 5.2) is straightforward and relevant infra-red absorptions are given. The C-N vibration in all the compounds is found at 1176-1183cm⁻¹. Absorptions in the range 700-1000cm⁻¹ are assigned as out of plane (C-H) ring deformations along with weaker CH₂ rocking modes. In the high wavenumber region broad bands centered at ~3000cm⁻¹ and tailing to 2400cm⁻¹ have been assigned as H-Cl bands with strong hydrogen bonding present. For the amines, sharp bands at ~3240cm⁻¹ are characteristic of N-H stretching modes.

The ¹³C N.M.R spectra (table 5.3) are as expected with distinct signals in the aliphatic and aromatic regions. Of the methylene signals, it is the Te-CH₂ or the Se-CH₂ signals which are found furthest upfield. The chalcogen shields the neighbouring carbon with its lone pairs of electrons. The CH₂-NH₂ (or CH₂-NH₃+) signals are found furthest downfield, deshielded by the electron withdrawing amine functionality.

The ¹H N.M.R spectra (table 5.3) again show separate features in the aromatic and aliphatic regions. Multiplicity and integration values are as expected. The NH₂ and NH₃+ signals appear as broad signals. In the 2-aryltelluroethylamines and the 2-arylselenoethylamines, the E-CH₂ (E= Se,Te) and CH₂-NH₂ protons appear as triplets, except in the case of p-ethoxyphenyltelluroethylamine where a broad band at δ =3.6 ppm is explained by the merging of both signals. The E-CH₂ protons are found

Analytical Data

Compound	m.pt.(⁰ C)	Fou	nd (Requi	red)
		%C	%N	%Н
p-CH ₃ OC ₆ H ₄ Te CH ₂ CH ₂ NH ₂	85-87	39.7 (38.8)	4.48 (4.67)	5.16 (5.03)
p-C ₂ H ₅ OC ₆ H ₄ TeCH ₂ CH ₂ NH ₂	90-92	41.1 (41.0)	4.80 (5.13)	4.53 (4.78)
PhTeCH ₂ CH ₂ CH ₂ NH ₂	78-80	41.3 (41.1)	4.69 (4.39)	4.50 (4.62)
p-CH ₃ OC ₆ H ₄ TeCH ₂ CH ₂ CH ₂ NH ₃ +Cl ⁻	75(d)	35.9 (36.5)	5.22 (4.86)	4.51 (4.25)
p-C ₂ H ₅ OC ₆ H ₄ TeCH ₂ CH ₂ CH ₂ NH ₃ +Cl ⁻	75(d)	38.3 (38.5)	4.95 (5.24)	3.85 (4.08)
p-CH ₃ C ₆ H ₄ TeCH ₂ CH ₂ CH ₂ NH ₃ +Cl ⁻	120(d)	38.3 (38.3)	5.07 (5.15)	4.29 (4.47)
PhSeCH ₂ CH ₂ NH ₂	50-51	48.5 (48.0)	4.70 (5.54)	6.85 (7.00)
PhSeCH ₂ CH ₂ CH ₂ NH ₃ +Cl-	140-142	42.7 (43.1)	5.60 (5.63)	5.44 (5.54)
(PhTeCH ₂ CH ₂) ₃ N L ¹	65-66	39.9 (40.5)	3.74 (3.79)	
$(p-CH_3OC_6H_4TeCH_2CH_2)_3N$ L ²	58-59	40.2 (40.4)	4.06 (4.12)	1.68 (1.75)
$(p-C_2H_5OC_6H_4TeCH_2CH_2)_3N$ L ³	66-67		4.65 (4.62)	

Analytical Data (continued)

Compound	m.pt (°C)	Fou	nd (Requi	red)
	• • •	%C	%H	%N
(PhSeCH ₂ CH ₂) ₃ N L ⁴	46-47	50.3	4.72	2.35
		(50.9)	(4.80)	(2.47)
(p-C ₂ H ₅ OC ₆ H ₄ SeCH ₂ CH ₂) ₃ N L ⁵	49-50	50.8 (51.6)	5.57 (5.63)	1.83 (2.01)
L^2 HgCl ₂	105-107	29.5 (30.2)	3.01 (3.07)	1.27 (1.30)
L^2CdI_2	86-87	28.1 (27.7)	2.97 (2.83)	1.30 (1.20)
L ² PtCl ₂ .H ₂ O	175(d)	29.3 (29.8)	3.09 (3.04)	1.07 (1.29)
L ² PdCl ₂ .H ₂ O	160-161	31.5 (32.5)	3.44 (3.51)	1.25 (1.40)
L ² CuBr.H ₂ O	110	31.6 (33.6)	3.40 (3.63)	1.36 (1.45)
L^3 HgCl ₂	103-105	31.8 (32.3)	3.41 (3.50)	1.21 (1.25)
$L^3Cd(OH)_2$	140(d)	36.4 (36.4)	3.99 (4.14)	1.95 (1.41)
L ³ PtCl ₂ .H ₂ O	145-147	30.9 (31.9)	3.38 (3.63)	1.20 (1.24)

Analytical Data (continued)

Compound	m.pt. (°C)	Four	nd (Requi	red)
		%C	%H	%N
L ³ PdCl ₂ .H ₂ O*	155-156	22.0		
2 2 -	133-130	33.9	3.80	1.33
		(34.6)	(3.95)	(1.35)
L ³ CuBr.H ₂ O	100(d)	35.8	3.78	1.16
		(35.8)	(4.08)	(1.39)
L ⁴ HgCl ₂ . 0.5CHCl ₃	45-46	32.5	3.13	1.43
		(32.8)	(3.07)	(1.56)
L ⁵ .3HgCl ₂	80-81	23.5	2.69	1.04
		(23.8)	(2.58)	(0.93)
L ⁵ PtCl ₂ .H ₂ O	81-82	37.6	4.26	1.40
		(36.7)	(4.17)	(1.43)

Table 5.1 Analytical Data

^{* %}Cl = 7.44 (6.82)

Mass Spectroscopy Data

Compound	Fragmentation Ion	m/e
PhSeCH ₂ CH ₂ CH ₂ NH ₃ +Cl-	PhSeCH ₂ CH ₂ CH ₂ NH ₃ +	215
	PhSeCH ₂ CH ₂ CH ₂ +	199
Electron Impact	PhSe+	157
	Ph+	77
(PhTeCH ₂ CH ₂) ₃ N	(PhTeCH ₂ CH ₂) ₃ N ⁺	714
	(PhTeCH ₂ CH ₂) ₂ NCH ₂ CH ₂ +	508
Electron Impact	(PhTeCH ₂ CH ₂) ₂ +	466
	Ph ₂ Te ₂ +	410
	Ph ₂ Te ⁺	284
	PhTe+	207
	Ph ₂ +	154
	Ph+	77
(p-CH ₃ OC ₆ H ₄ TeCH ₂ CH ₂) ₃ N	(CH ₃ OC ₆ H ₄ TeCH ₂ CH ₂) ₃ N ⁺	802
	(CH ₃ OC ₆ H ₄ TeCH ₂ CH ₂) ₂ NCH ₂ CH ₂ +	570
Fast Atom Bombardment	$(CH_3OC_6H_4TeCH_2CH_2)_2N^+$	540
	$(CH_3OC_6H_4TeCH_2CH_2)_2^+$	526
	$(CH_3OC_6H_4TeCH_2CH_2N=CHCH_2)^+$	306
	CH ₃ OC ₆ H ₄ TeCH ₂ CH ₂ +	265
	CH ₃ OC ₆ H ₄ Te ⁺	237
	CH ₃ OPh ⁺	108
	Ph+	77

Compound	Fragmentation Ion	m/e
$\mathrm{L}^2.\mathrm{PdCl}_2\mathrm{H}_2\mathrm{0}$	(CH ₃ OC ₆ H ₄ TeCH ₂ CH ₂) ₃ N.PdCl ⁺	942
Fast Atom Bombardment		
$C_2H_5O-C_6H_4TeCH_2CH_2)_3N$	$(C_2H_5OC_6H_4TeCH_2CH_2)_3N^+$	845
	(C ₂ H ₅ OC ₆ H ₄ TeCH ₂ CH ₂) ₂ NCH ₂ CH ₂ +	598
Fast Atom Bombardment	$(C_2H_5OC_6H_4TeCH_2CH_2)_2N^+$	570
	$(C_2H_5OC_6H_4)_2Te^+$	372
	$(C_2H_5OC_6H_4Te + NH_3)^+$	268
	$C_2H_5O-C_6H_4Te^+$	251
	C ₂ H ₅ O-Ph+	122
L^3 .Cd(OH) ₂	(C ₂ H ₅ OC ₆ H ₄ TeCH ₂ CH ₂) ₂ NCH ₂ CH ₂ +	596
	$(C_2H_5OC_6H_4TeCH_2CH_2)_2N^+$	568
	$(C_2H_5OC_6H_4TeCH_2CH_2)_2^+$	555
	$C_2H_5OC_6H_4TeCH_2CH_2N(CH_2CH_2)_2^+$	346
	C ₂ H ₅ OC ₆ H4TeCH ₂ CH ₂ NCH ₂ CH ₂ +	321
	C ₂ H ₅ OC ₆ H ₄ TeCH ₂ CH ₂ ⁺	279
	$C_2H_5OC_6H_4Te^+$	251
L ³ PdCl ₂ .H ₂ O	(C ₂ H ₅ OC ₆ H ₄ TeCH ₂ CH ₂) ₃ N.PdCl ⁺	986
2 2	$(C_2H_5OC_6H_4TeCH_2CH_2)_2NCH_2CH_2^+$	598
	$C_2H_5OC_6H_4$ Te.PdCl ⁺	357
	$C_2H_5OC_6H_4$ Te.PdCl ⁺	485
	$C_2H_5OC_6H_4Te^+$	249

Compound	Fragmentation Ion	m/e
$(PhSeCH_2CH_2)_3N$	(PhSeCH ₂ CH ₂) ₃ N ⁺	568
	(PhSeCH ₂ CH ₂) ₂ NCH ₂ CH ₂ +	410
Electron Impact	(PhSeCH2CH2)2N=CH2+	398
	PhSeCH ₂ CH ₂ +	185
	PhSe+	157
	Ph+	77
(C ₂ H ₅ OC ₆ H ₄ SeCH ₂ CH ₂) ₃ N	(C ₂ H ₅ OC ₆ H ₄ SeCH ₂ CH ₂) ₃ N ⁺	700
	(C ₂ H ₅ OC ₆ H ₄ SeCH ₂ CH ₂) ₂ NCH ₂ CH	
Chemical Ionisation	$(C_2H_5OC_6H_4SeCH_2CH_2)_2N=CH_2^+$	486
	$C_2H_5OC_6H_4Se^+$	77
L ⁵ HgCl ₂	(C ₂ H ₅ OC ₆ H ₄ SeCH ₂ CH ₂) ₃ N.HgCl ⁺	935
	$(C_2H_5OC_6H_4SeCH_2CH_2)_3N^+$	701
Fast Atom Bombardment	(C ₂ H ₅ OC ₆ H ₄ SeCH ₂ CH ₂) ₂ NCH ₂ CH ₂	+498
	(CH ₃ CH ₂ OSeCH ₂ CH ₂) ₂ N=CH ₂ +	-
	$(\mathrm{C_2H_5OC_6H_4SeCH_2CH_2})_2\mathrm{N^+}$	470
	$(PhSeCH_2CH_2)_2N^+$	378
	$C_2H_5OC_6H_4SeCH_2CH_2NCH_2CH_2^+$	271
	$C_2H_5OC_6H_4SeCH_2CH_2^+$	229

Table 5.2 Mass Spectroscopy Data

(based on ${}^{1}H$, ${}^{12}C$, ${}^{14}N$, ${}^{16}O$, ${}^{80}Se$, ${}^{130}Te$).

(correct isotopic patterns were observed for $\mathrm{Te_n}^+$).

Compound	Solvent	CI	C2	හ	C4	CS	9.0	C7
${}_{1}\left\langle \sum_{k=0}^{2} \right\rangle^{4} \text{Te-CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}$	9 G-OSWG		137.0	127.4 137.0 129.4	112.3		2.9 4.3 40.4	40.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CDCl3	126.1	126.1 132.7 130.0	130.0		31.8	41.3	
${}^{2} = {}^{3} + {}^{5} + {}^{6} + {}^{7} + {}^{1}$	DMSO-D ₆	126.7	131.4 129.6	129.6	129.6 23.1	23.1	27.4	39.5

Table 5.3 13C N.M.R data.

H5 H6 H7	7.4 (s) 7.7 (m) 7.2 (m) 1.9 (t) 2.8 (m) 2.9 (m) 3.4 (b.s)	2.8 (t) 3.0 (t) 2.6 (b.s)	(t) 2.8 (t) 3.0 (t) 8.2 (b.s)
H3 H4) 7.2 (m) 1.	1	7.2 (d) 1.9 (t) 2.8 (t)
H1 H2	7.4 (s) 7.7 (m	7.27.6 (m)	7.3 (s) 7.5 (d)
Solvent	DMSO-D ₆	DMSO-D ₆	DMSO-D6
Compound	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{2}_{1} \overset{3}{\overset{H}{\longrightarrow}} \overset{4}{\overset{5}{\longrightarrow}} SeCH_{2}CH_{2}NH_{2}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

s= singlet; b.s= broad singlet; d= doublet; t= triplet; m= multiplet. Table 5.3 (continued)

Compound	Solvent	C1	C2	C3	C4	CS	90	C7	85
$^{1}_{CH_{3}^{2}} \left\langle \stackrel{3}{\longleftarrow} \right\rangle^{5}_{F} \text{TeCH}_{2} \text{CH}_{2} \text{CH}_{2} \text{NH}_{3}^{+} \text{CI}$	DMSO-D ₆	20.7	136.9	130.2	137.6 107.8	107.8	6.3	28.9	40.3
$\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}^4 \text{TeCH}_2\text{CH}_2 -)_3\text{N}$	CDCl ₃	112.6	127.4	112.6 127.4 138.1	129.1	7.9. 54.3	54.3		
$(1\sqrt{\sum_{j=1}^{2}})^{4}-\operatorname{SeCH}_{2}\operatorname{CH}_{2}-)_{3}\operatorname{N}$	DMSO-D ₆	127.4	132.2 130.1	130.1	121.4	25.9	53.7		

Table 5.3 (continued)

Compound	Solvent	IJ	C3	C3	C4	CS	90	C7	80	ව
$^{1}_{\text{CH}_{3}\text{O}^{2}}\left\langle \overbrace{-}^{3}\right\rangle ^{4}_{\text{F}}$ TeCH ₂ CH ₂ CH ₂ NH ₂	CDCl ₃	55.1	159.8	115.2	141.1	8.66	14.9	43.1		
1 2 3 4 $\stackrel{7}{=}$ 7 8 7 8 7 1 8 1	DMSO-D ₆	14.6	63.0	158.5	131.6	139.9	100.3 12.5 43.1	12.5	43.1	
$CH_3O- \left(\frac{3}{2} \right)^5 + CH_2CH_2CH_2CH_3 + CI$	DMSO-D ₆	55.0	159.2	115.4	139.9	100.6 4.7	4.7	29.9	40.8	
1 2 3 4 5 5 7 8 9 9 9 2	DMSO-D ₆	14.6	62.9	158.5	139.8	1	115.8 100.7 4.9 31.2 41.4	4.9	31.2	41.4

Table 5.3 (continued).

Compound	Solvent	H1 H2 H3 H4 H5 H6 H7 H8
2 2 4 5 6 6 5 6 5 6 5 6	CDCl ₃	3.8 (s) 6.7 (d) 7.6 (d) 2.8 (b.s) 3.0 1.9 (b.s)
$CH_3CH_2O- \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	DMSO-D ₆	1.3 (t) 4.0 (q) 6.8 (d) 7.6 (d) 3.6 (b.s) 2.9 (b.s)
1 1 1 2 4 5 6 7 7 2 2 3 2	DMSO-D ₆	1.4 (t) 6.8 (d) 7.6 (d) 1.9 (d) 1.9 (t) 2.7 (t) 2.9 (t) 5.0 (b.s)
CH_3CH_2O - $CH_3CH_2OH_3^+CI$ -	DMSO-D ₆	1.3 (t) 4.0 (m) 6.8 (d) 7.6 (d) 1.8 (t) 2.7 (t) 2.8 (t) 4.0 (b.s)
1 2 $^{+3}$ 4 5 6 7 7 7 $^{-1}$ $^{-1$	DMSO-D6	2.3 (t) 7.1 (d) 7.5 (d) 2.0 (t) 2.8 (t) 2.9 (t) 3.7 (t)

Table 5.3 (continued) s= singlet; b.s= broad singlet; d= doublet; t= triplet; q=quartet; m= multiplet

Compound	Solvent	CI	C3	\Im	75	C5	9.0	CJ
$(CH_3O^3 = \frac{3}{\sqrt{3}} \int_{-2}^{4} TeCH_2CH_2-)_3N$	CDCI ₃	55.1	159.6	115.1	140.6	101.1	8.0	54.2
$(CH_3O-\bigcap$ $TeCH_2CH_2-)_3N.HgCl_2$	DMSO-D ₆	56.2	161.3	116.7	139.9	103.3	18.3	52.0
$(CH_3O \longrightarrow$ $TeCH_2CH_2)_3N.CdI_2$	DMSO-D ₆	55.0	159.1	115.2	139.6	101.4	9.2	53.3
$(CH_3O- \bigcirc \longrightarrow TeCH_2CH_2)_3N.PtCl_2.H_2O$	DMSO-D ₆	55.2	160.3	115.7	139.5		!	
$(CH_3O- \bigcirc$ TeCH ₂ CH ₂) ₃ N.PdCl ₂ .H ₂ O	DMSO-D ₆	55.2	160.2	115.7	139.5			
(CH_3O) Te $CH_2CH_2)_3N.CuBr.H_2O$	DMSO-D ₆	55.2	159.9	115.7	137.8	100.5	16.4	51.9

Table 5.3 (continued) s= singlet; b.s= broad singlet; d=doublet; t= triplet; m= multiplet.

Compound	Solvent	HI	H2	H3	H4	H5	H6
$(CH3O)$ $\downarrow 1$ $\downarrow 1$ $\downarrow 1$ $\downarrow 1$ $\downarrow 2$ $\downarrow 2$ $\downarrow 3$ $\downarrow 4$ $\downarrow 5$ $\downarrow 1$ $\downarrow 1$ $\downarrow 1$ $\downarrow 1$ $\downarrow 1$ $\downarrow 2$ $\downarrow 1$	CDCI,	3.7 (s)	6.8 (d)	7.6 (d)	← 2.8 (b.s) →	b.s) →	
$(CH_3O-\bigcirc$ TeCH ₂ CH ₂ -) ₃ N.HgCl ₂	DMSO-D ₆	3.7 (s)	(p) 6.9	7.8 (d)	2.8 (b.s)	3.2 (b.s)	
$(CH_3O-\bigcirc$ TeCH ₂ CH ₂) ₃ N.CdI ₂	DMSO-D ₆	3.7 (s)	6.8 (d)	7.6 (d)	2.8 (b.s)	3.1 (b.s)	
$(CH_3O- \bigcirc \bigcirc \bigcirc \bigcirc $ TeCH ₂ CH ₂) ₃ N.PtCl ₂ .H ₂ O	DMSO-D ₆	3.8 (s)	(p) 6.9	7.8 (d)	2.8(b.s)	3.4*	3.5 (b.s)
$(CH_3O- \left(\begin{array}{c} 6 \\ \end{array} \right)$ TeCH ₂ CH ₂) ₃ N.PdCl ₂ .H ₂ O	DMSO-D ₆	3.8 (s)	(p) 6.9	7.8 (d)	2.9 (b.s)	4.1 (b.s) 3.4 (b.s)	3.4 (b.s)
$(CH_3O \bigcirc \bigcirc \bigcirc \bigcirc$ TeCH ₂ CH ₂) ₃ N.CuBr.H ₂ O	DMSO-D ₆	3.7 (s)	(p) 6.9	7.6 (d)	2.8 (b.s)	2.9 (b.s) 3.5 (b.s)	3.5 (b.s)

* tentative assignment. Table 5.3 (continued) s= singlet; b.s= broad singlet; d=doublet; t= triplet; m= multiplet.

Compound	Solvent	CI	C3	C3	C4	CS	90 90	C7	% %
$(CH_3^2CH_2O^3 + 16CH_2^5CH_2^2)_3N$	CDCl ₃	14.8	63.3	159.0	115.7	140.7	101.0	7.9	54.2
$(CH_3CH_2O- \bigcirc \longrightarrow TeCH_2CH_{2^-})_3N.HgCl_2$	DMSO-D ₆	15.5	64.1	160.9	117.0	140.3	102.9		52.8
$(CH_3CH_2O- \bigcirc$ Te $CH_2CH_2-)_3N.PtCl_2.H_2O$	DMSO-D ₆	14.5	63.2		116.0	134.9			
$(CH_3CH_2O- \bigcirc \longrightarrow TeCH_2CH_2-)_3N.PdCl_2.H_2O$	DMSO-D ₆	14.6	63.2	159.4	116.1	138.6			
$(CH_3CH_2O- \left(\begin{array}{c} \\ \\ \end{array} \right)$ TeCH ₂ CH ₂ -) ₃ N.CuBr.H ₂ O	DMSO-D ₆	14.6	63.1	159.2	159.2 116.0	139.2	100.9 16.0		51.9

Table 5.3 (continued)

Compound	Solvent	H1	H2	Н3	H4	H5	H6	H7
$(CH_{3}CH_{2}O) = A + A^{4} + A^{5} + A^{6} + A^{5}CH_{2}CH_{2} - A^{3}N$	CDCI ₃	1.4 (t)	4.0 (q)	1.4 (t) 4.0 (q) 6.7 (d) 7.6 (d)	7.6 (d)	← 2.9 (b.s) →	← (s:	
$(CH_3CH_2O- \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ TeCH ₂ CH ₂ -) ₃ N.HgCl ₂	DMSO-D ₆	1.3 (t)	4.0 (q)	6.8 (q)	7.7 (d)	1.3 (t) 4.0 (q) 6.8 (q) 7.7 (d) 2.9 (b.s) 3.1 (b.s)	3.1 (b.s)	
$(CH_3CH_2O- \bigcirc \longrightarrow TeCH_2CH_2-)_3N.PdCl_2.H_2O$	DMSO-D ₆	1.3 (t)	1.3 (t) 4.0 (t)	6.9 (d)	7.8 (d)	6.9 (d) 7.8 (d) 2.9 (b.s) 4.0*		3.4 (b.s)
$(CH_3CH_2O- \left(\begin{array}{c} 7 \\ \end{array} \right)$ TeCH ₂ CH ₂ -) ₃ N.CuBr.H ₂ O	DMSO-D ₆	1.3 (t)	4.0 (d)	6.8 (d)	7.6 (d) 2	1.3 (t) 4.0 (d) 6.8 (d) 7.6 (d) 2.7 (b.s) 2.8 (b.s) 3.4 (b.s)	8 (b.s) 3.4	t (b.s)

* tentative assignment

Table 5.3 (continued) s= singlet; b.s= broad singlet; d= doublet; t=triplet; q= quartet; m=multiplet;

Compound	Solvent	Ü	C7	ຮ	C4	C5	92	C2	8 2 8
$(CH_3CH_2O)^3$ $(CH_3C)^3$ $(CH_$	DMSO-D ₆	14.6	63.1	157.9	14.6 63.1 157.9 115.3	134.4	1	119.5 25.9	52.9
(CH_3CH_2O) Se $CH_2CH_2)_3N.3HgCl_2$	DMSO-D ₆	14.6	14.6 63.3	158.9	115.8	134.4	116.6	27.8	27.8 50.7
(CH_3CH_2O) Se $CH_2CH_2)_3N.PtCl_2.H_2O$	DMSO-D ₆	14.5 63.4	63.4	159.7	115.8	134.7	117.4	25.9 52.8	52.8

Table 5.3 (continued).

Compound	Solvent	H	H2	Н3	H4	H5	H6
2 H 3 4 5 5 5 1 1 1 2 2 2 2 3 3 3	CDCL3		7.1 - 7.8	<u> </u>	+ 2.9	← 2.9(m)→	
^{2}H $ \begin{array}{c} ^{2}H \\ \end{array}$ $ \begin{array}{c} ^{4} & ^{5} \\ \end{array}$ $ \begin{array}{c} ^{4} & ^{5} \\ \end{array}$ $ \begin{array}{c} ^{3} & ^{4} & ^{5} \\ \end{array}$	DMSO-D ₆		7.2 - 7.4 —	<u> </u>	2.8 (t)	2.9 (t)	
$(CH_3CH_2O - (CH_3CH_2O)_3N)$	DMSO-D ₆	1.3 (t)	4.0 (t)	6.8 (d)	7.3 (d)	2.6 (t)	2.8 (t)
$(CH_3CH_2O- \left(\begin{array}{c} 7 \\ \end{array} \right) - SeCH_2CH_2)_3N.PtCl_2.H_2O$	DMSO-D ₆	1.3 (t)	4.0 (m)	(b) 6.9		7.8 (s) 3.2 (b.s) 3.6 (b.s)	3.6 (b.s)
$(CH_3CH_2O- \bigcirc)$ Se $CH_2CH_2)_3N.HgCl_2$	DMSO-D ₆	1.3 (t)	4.0 (m)	(p) 6.9	7.5 (d)	6.9 (d) 7.5 (d) 2.8 (b.s) 3.1 (b.s)	3.1 (b.s)

Table 5.3 (continued) s= singlet; b.s broad singlet; d= doublet; t=triplet; m= multiplet.

Compound	υ(C-N)	δ(C-H)	$\delta(\mathrm{CH}_2)$	υ(M-X)	$v(M-X)$ $v(Te-CH_2)$	v(Te-C _{arom})
$(\mathrm{CH_3CH_2OC_6H_4TeCH_2CH_2})_3\mathrm{N}$ Ligand L 3	1175(s)	818(s)	919(m), 740(m) 697(m)	0(m)	377(m), 354(m) 338(m)	315(w), 306(w) 291(w), 279(w)
$L^3.\mathrm{HgCl}_2$	1180(s)	819(s)	920(s)	317(m)	381(w), 358(w)	265(w) 317(w), 284(w)
L^3 .Cd(OH) ₂	1179(s)	822(s)	922(m)	632(m)	386(w), 371(w)	243(w), 255(w) 322(w), 306(w)
L^3 .PtCl $_2$.H $_2$ O	1180(s)	818(s)	921(m)	327(m)	353(w), 337(w)	289(w), 279(w) 267(w) 281(w), 262(w)
L^3 .PdCl $_2$.H $_2$ O	1179(s)	817(s)	695(m) 921(m)	321(m)	381(w), 371(w)	254(w) 302(w), 276(w)
L^3 .CuBr.H $_2$ O	1177(s)	817(s)	698(m) 919(m)	321(R)	357(w) 377(w), 370(w)	266(w) 317(w), 305(w)
			696(m)		361(w), 346(w) 337(w)	293(w), 288(w) 281(w), 272(w)

Table 5.4 Infra-red Spectroscopic data

w= weak; m= medium; s= strong R= Raman signal

188

Compound	υ(C-N)	δ(C-H)	$\delta(\mathrm{CH}_2)$	v(M-X	$v(M-X)$ $v(Te-CH_2)$	v(Te-C(arom))
$(CH_3OC_6H_4TeCH_2CH_2)_3N$ L ²	1174(s)	817(vs),	852 698(m)		350(w)	314(w), 296(w)
$L^2.HgCl_2$	1181(s)	786(vs) 823(s)	842(m)	322(m)	376(w), 355(w)	284(w), 263(w) 306(w), 300(w)
$\mathrm{L}^2\mathrm{CdI}_2$	1177(s)	789(m) 822(s)			362(w), 333(w)	243(w), 255(w) 309(w), 295(w)
L^2 .PtCl ₂ .H ₂ O.	1178(s)	823(m)	712(m)	328(m)	387(w), 376(w)	285(w), 274(w) 250(w). 314(w), 295(w)
L^2 .PdCl $_2$.H $_2$ O	1177(s)	789(m) 822(s)	711(m)	321(m)	358(m) 392(w), 381(w)	284(w) 317(w), 284(w)
		788(s)	699(m)	321(R)	376(w), 371(w) 365(w), 355(w) 342(w), 337(w)	
$ m L^2.CuBr.H_2O$	1177(s)	821(s) 787(s)	747(m) 703(m)		391(w), 376(w) 354(w), 343(w) 343(w), 337(w)	316(w), 301(w) 291(w), 280(w) 268(w), 255(w)

Table 5.4 Infra-red spectroscopic data

w= weak; m=medium; s=strong

* Stock Chinespie !

R= Raman signal

Compound	υ(C-N)	δ(C-H)	δ(CH ₂)	Others
CH ₃ OC ₆ H ₄ TeCH ₂ CH ₂ NH ₂ C ₂ H ₅ OC ₆ H ₄ TeCH ₂ CH ₂ NNH ₂ CH ₃ OC ₆ H ₄ TeCH ₂ CH ₂ CH ₂ NH ₃ +Cl- C ₂ H ₅ OC ₆ H ₄ TeCH ₂ CH ₂ CH ₂ NH ₃ +Cl-	1185(s) 1177(s) 1177(s) 1176(s)	817(m), 787(m) 819(s), 806(s) 821(s), 810(s) 819(s), 803(m)	724(m), 711(m) 921(m), 754(m) 927(m), 944(m), 920(m)	3242(m) (N-H) 3244(w) (N-H) 2928(s) (H-Cl) 2932(s) (H-Cl)
PhTeCH ₂ CH ₂ CH ₂ NH ₂ CH ₃ C ₆ H ₄ TeCH ₂ CH ₂ CH ₂ NH ₃ +CI-	1179(s)	820(s), 801(s) 793(w),750(w)	940(m), 922(m)	3246(m) (N-H) 3431(s) (H-Cl)
PhSeCH ₂ CH ₂ NH ₂ PhSeCH ₂ CH ₂ CH ₂ NH ₃ ⁺ Cl ⁻	1178(s) 1183(s)	728(w) 738(s), 694(s) 728(s), 688(s)	792(m), 751(m) 939(m), 897(m) 815(m), 784(m)	3232(s) (N-H) 2884(s) (H-Cl)

Table 5.4 Infra-red Spectroscopic data.

*STOR CHARACTER &

s= strong; m= medium; w= weak.

Compound	v(C-N)	δ(C-H)	8(CH ₂)	υ(M-X)	v(E-C _{Aryl})	v(E-CH ₂)
(PhTeCH ₂ CH ₂) ₃ N	1175(w)	732(vs) 693(vs)	857(w) 797(w)		281(w),301(w)	397(w), 386(w) 381(w), 366(w) 357(w), 346(w)
$(PhSeCH_2CH_2)_3N$	1181(m)	731(s)	840(m), 691(m)		316(w), 307 (w) 289(w)	337(w). 381(w), 359(w) 338(w)
$({ m PhSeCH}_2{ m CH}_2)_3{ m N.HgCl}_2$	1180(m)	730(s)	842(m) 690(m) 667(m)	322(m)	320(w), 309(w)	380(w), 360(m) 339(w)
$(C_2H_5OC_6H_4SeCH_2CH_2)_3N$ Ligand L ⁵	1174(s)	829(s) 810(s) 740(w)	920(m) 765(w)		304(m), 280(m) 255(w)	304(m), 280(m) 342(w), 327(w) 255(w)
$L^5.HgCl_2$	1179(s)	822(s)	921(m)	322(m)	309(w), 302(w) 276(w)	357(w), 343(w) 338(w), 329(w)
L^5 .PtCl $_2$.H $_2$ O	1176(s)	821(s)	921(m) 730(m)	343(m) 333(m)	305(w), 277(w) 392(w)	392(w)
Table 5.4 Infra-red spectroscopy data	pectroscopy	/ data	vs= very stro	ıg, s= strong, п	vs= very strong, s= strong, m= medium; w= weak.	ak. E= Se,Te

at higher field. The same trend is observed in the proton signals of the propyl groups in the aryltelluropropylamines where all three methylene signals appear as triplets.

1

1

Only the mass spectrum of phenylselenopropylamine hydrochloride was recorded. The highest mass fragment detected was at m/e = 215 pertaining to PhSeCH₂CH₂CH₂+. The other fragments are shown in table 5.2.

5.3.2 <u>Characterisation of Tris(2-aryltelluroethyl)amines.</u> <u>tris(2-arylselenoethyl)amines and their complexes.</u>

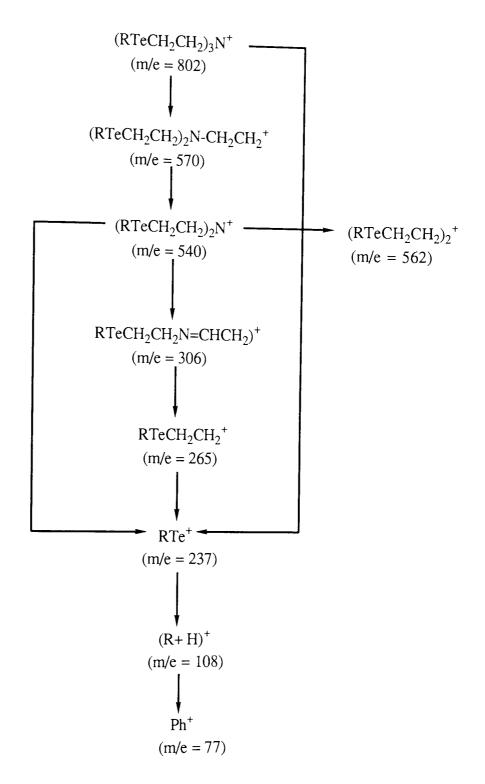
 $\underline{\operatorname{Tris}}(2\text{-aryltelluroethyl})$ amine ligands [aryl = phenyl (L¹), p-methoxyphenyl (L²) and p-ethoxyphenyl (L³) can be prepared by the reaction of a solution of sodium aryltellurolate with $\underline{\operatorname{tris}}(2\text{-chloroethyl})$ amine.

$$(CICH_2CH_2)_3N.HCI \xrightarrow{10\% \text{ NaOH}} (CICH_2CH_2)_3N$$

$$(CICH_2CH_2)_3N + 3Na^+TeAr \xrightarrow{} (ArTeCH_2CH_2)_3N$$

Ligands L² and L³ were reported recently by Singh and Srivastava⁽¹¹⁵⁾ along with their complexes with mercury(II). In a similar reaction, the analogous <u>tris</u>(2-arylselenoethyl)amines [Ar= phenyl (L⁴) and p-ethoxyphenyl (L⁵)] can be synthesised. These tetradentate ligands are found to be soluble in chloroform, benzene and hot alcoholic

solvents. They are stable in air, have low melting points and are non-electrolytes in solution.


1

Analytical, infra-red, N.M.R and mass spectroscopic data are presented in tables 5.1-5.4. Some spectra are also illustrated.

The mass spectra of the free ligands (Te,N) and (Se,N) show the molecular ion in all cases. For the (Te,N) ligands, fragmentation occurs with loss of RTe+ (R= Ph, p-CH₃OC₆H₄-, p-C₂H₅OC₆H₄) and the formation of (RTeCH₂CH₂)₂NCH₂CH₂+. This ion undergoes further fragmentation. Detailed assignment of the ions for each compound are shown in table 5.2. As an illustration the fragmentation process of L² is shown in scheme 5.1.

The infra-red spectra of the ligands were recorded using KBr discs. Strong absorption bands at 1174-1183cm⁻¹ are typical of C-N stretching vibrations. The Te-C(alkyl) and Te-C(aryl) vibrations are tentatively assigned in the regions 400-330cm⁻¹ and 315-260cm⁻¹ respectively. McWhinnie and coworkers⁽¹¹⁹⁾ have shown from isotopic substitution experiments that bands in the latter region do undergo shifts and have been assigned as Te-C(aryl) vibrations. In the selenium ligands bands in the same regions have been assigned as Se-CH₂ and Se-C(aryl) vibrations.

The ¹³C N.M.R spectra of the tellurium and selenium ligands

 $R = CH_3OC_6H_4$ Based on ¹²C, ¹H, ¹⁴N, ¹⁶O, ¹³⁰Te. (correct isotopic patterns were observed for Te_n^+)

Scheme 5.1 F.A.B Mass spectrum interpretation of Ligand L²

Figure 5.6 ¹³C N.M.R. spectrum of Ligand L¹.

Figure 5.7 13C N.M.R. spectrum of Ligand L2.

-7

-57

- FOI

- 10

- E3

51

-B

10

- 6.0 5.0 5.0

. 81

121

B 7 1

143

153

163

178

188

198

288

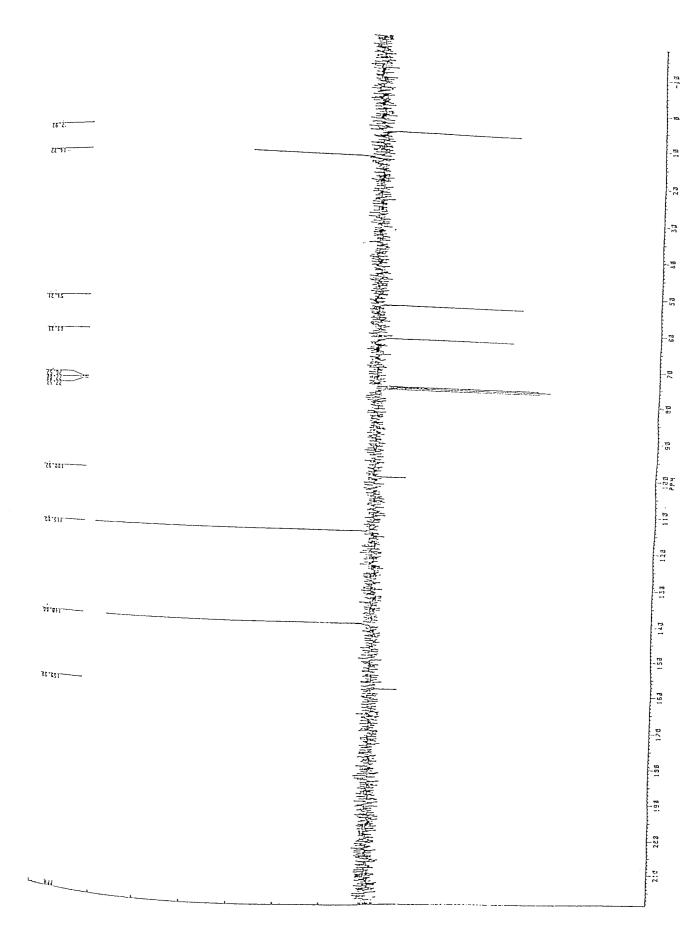
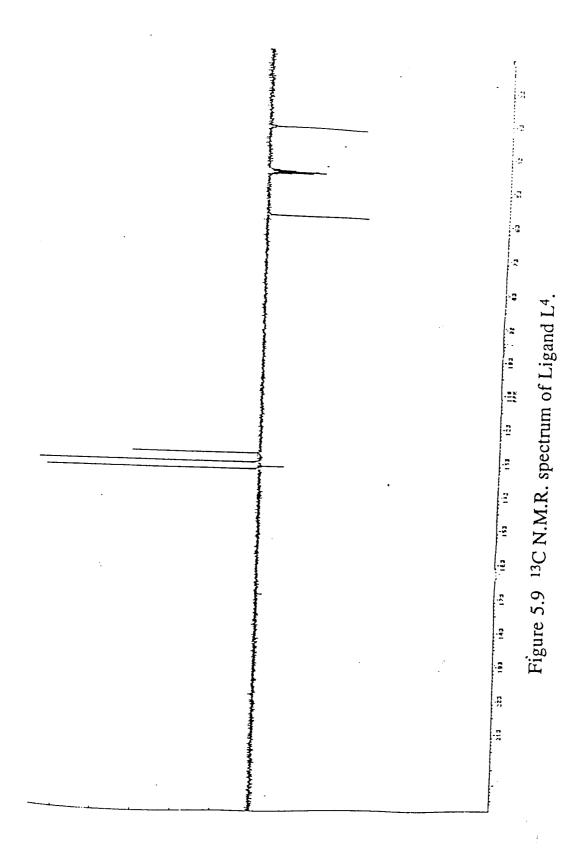



Figure 5.8 13C N.M.R. spectrum of Ligand L3.

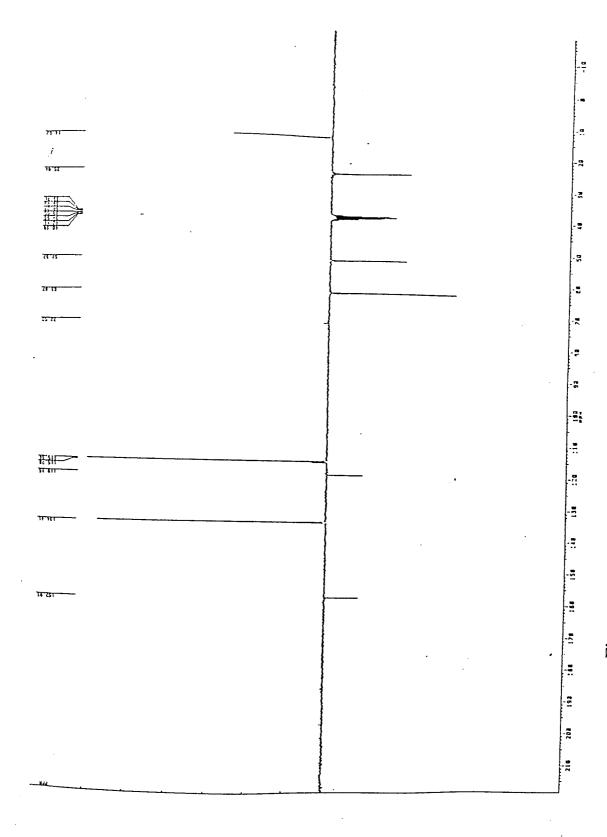


Figure 5.10 13C N.M.R. spectrum of Ligand L5.

were recorded in chloroform and DMSO respectively and are illustrated in figures 5.6-5.10. There are no anomalies in any of the spectra with features in the aromatic and aliphatic regions as expected. The N-CH₂ signal is found further downfield than the neighbouring E-CH₂ signal. Furthermore the Te-CH₂ signal is found further upfield than the Se-CH₂ resonance and this can be explained by the larger screening effect of the tellurium atom⁽¹²⁰⁾. The same explanation can be applied to the lower chemical shift value found for the Te-C(aryl) signal (cf. δ = ~101 ppm) relative to that of the Se-C(aryl) resonance (cf δ = ~121 ppm). For comparison the *ipso* carbon for other aryltellurium(II) compounds⁽¹²¹⁾ are found at δ = 100 ppm (cf. benzene 128.5 ppm).

1

The same trends are observed in the ¹H N.M.R, except that for the tellurium ligands the methylene signals can not be distinguished and are merged thus appearing as broad singlets at δ = ~2.8-2.9 ppm. However the methylene protons in the selenium ligands can be resolved and appear as triplets with the Se-CH₂ signals found at higher field.

Molecular weight measurements have not been carried out but Singh and Srivastava⁽¹¹⁵⁾ have shown the ligands L² and L³ to be monomeric.

5.3.3 Characterisation of the Hg(II) complexes of L² and L³

The reaction of L² or L³ with mercuric chloride in a 1:1 molar ratio produces adducts of stoichiometry L.HgCl₂. These compounds were recently reported by Singh and Srivastava⁽¹¹⁵⁾. They are found to be moderately soluble in polar organic solvents and are non-electrolytes in DMSO. The spectroscopic data agree with that of Singh and Srivastava but in our case the ¹³C and ¹H N.M.R of both compounds could be recorded (Singh and Srivastava had solubility problems with L³HgCl₂).

1

The ¹³C N.M.R spectra of both compounds are shown in figures 5.11-5.12. For the complex L²HgCl₂, the Te-C(aryl) and Te-CH₂ signals resonate at 2 and 10 ppm downfield from the corresponding ligand signals. In the complex L³HgCl₂ the *ipso* carbon is seen 2 ppm downfield but the Te-CH₂ resonance was not observed. [However Singh and Srivastava did observe this signal at 12 ppm downfield from the ligand]. From this evidence there appears to be a strong interaction between the lone pairs of electrons on tellurium and the mercury atom. Thus the mercury(II) centre appears to be behaving as a Lewis acid, withdrawing electrons from tellurium and hence deshielding the carbon nuclei. There is a slight shift in the N-CH₂ signals for both complexes and these shifts probably arise from the coordinaton of tellurium to mercury rather than any nitrogen-mercury interaction. Both spectra show only one set of signals implying equivalence of all three tellurium

atoms. However on turning to the ¹H N.M.R spectra (see figures 5.13-5.14) there is evidence for non-equivalence of the telluriums in the complex L³HgCl₂. On careful inspection of the aromatic region, not only are there strong signals characteristic of 1,4-disubstituted benzenes (AB splitting pattern) but two sets of weaker signals also emerge in the integration ratio 4:2:1. The implication is that each set perhaps corresponds to one, two and three coordinated telluriums. This detail probably arises from fluxionality of coordinated and uncoordinated tellurium atoms. Only one set of signals is seen in this region for L²HgCl₂. For this compound it can be suggested that kinetically the fluxionality between coordinated and uncoordinated telluriums is much faster than the N.M.R time scale and hence the telluriums appear equivalent. In the aliphatic region of the spectra the Te-CH₂ and N-CH₂ protons appear as partially resolved triplets in both compounds with the former resonating furthest upfield.

In the solid state infra-red spectrum, the C-N stretching vibrations of both compounds are not shifted from the free ligand values, therefore supporting the N.M.R evidence that no mercury-nitrogen interaction is present. In the low frequency region bands at 322 and 317cm⁻¹ for L²HgCl₂ and L³HgCl₂ respectively are assigned as Hg-Cl vibrations. For comparison HgCl₂ shows vibrations at 330 and 310cm⁻¹ and $\upsilon_s(Hg-Cl)$ in the recently reported crystal structure 1,6-bis-2-butyltellurophenyl-2,5-diazahexa-1,5-diene(Te,Te)dichloro mercury(II)(111) is found at 312cm⁻¹. Bands in the regions assigned as

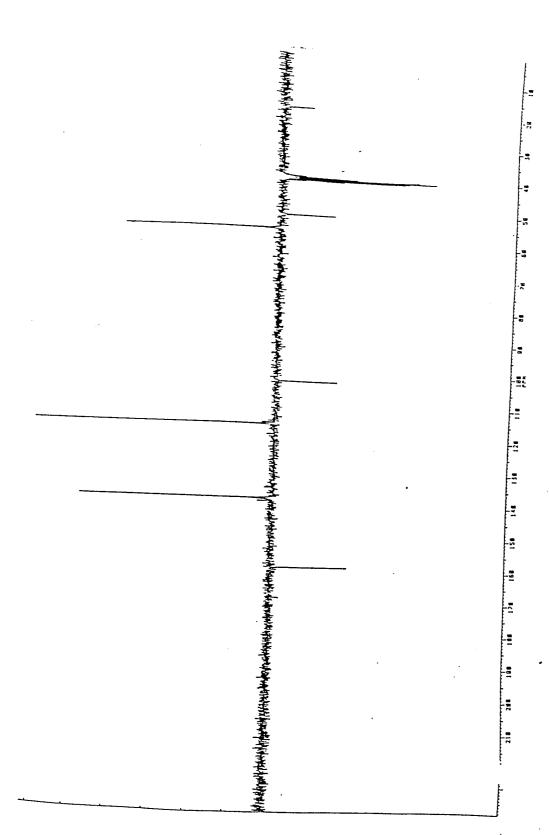


Figure 5.11 ¹³C N.M.R. spectrum of L²HgCl₂.

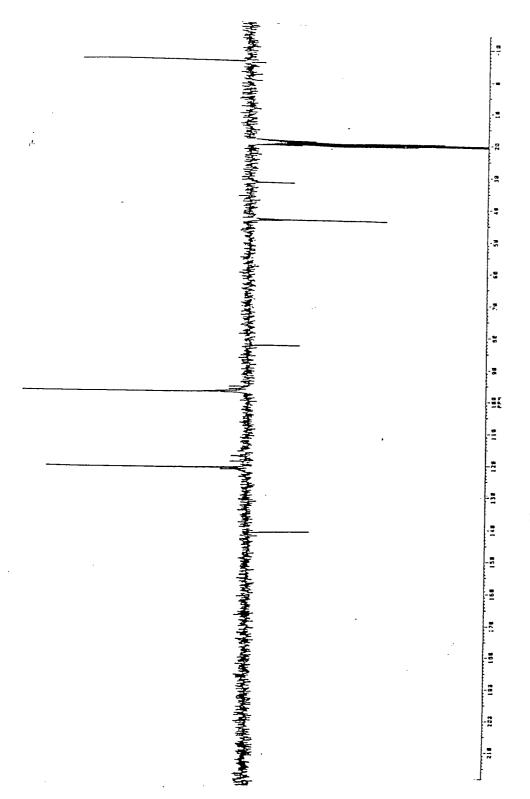


Figure 5.12 ¹³C N.M.R. spectrum of L³HgCl₂.

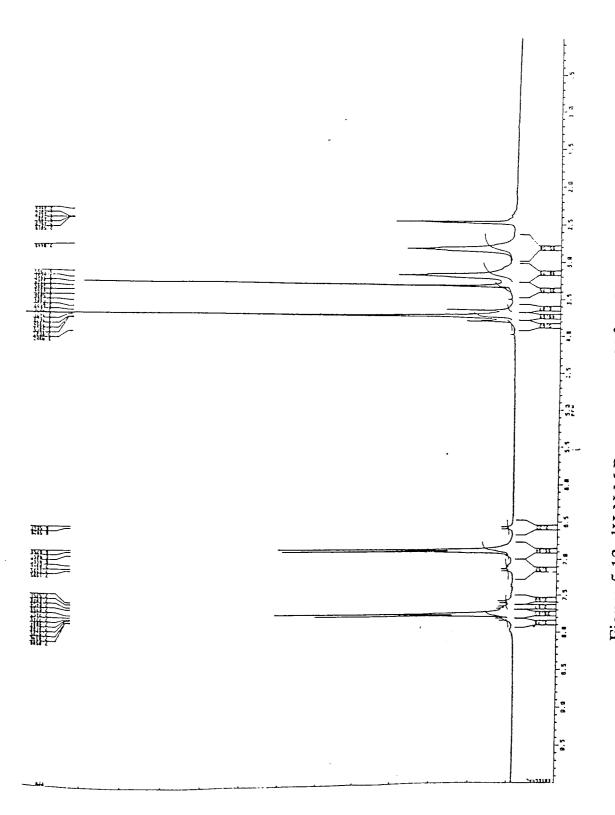


Figure 5.13 ¹H N.M.R. spectrum of L²HgCl₂.

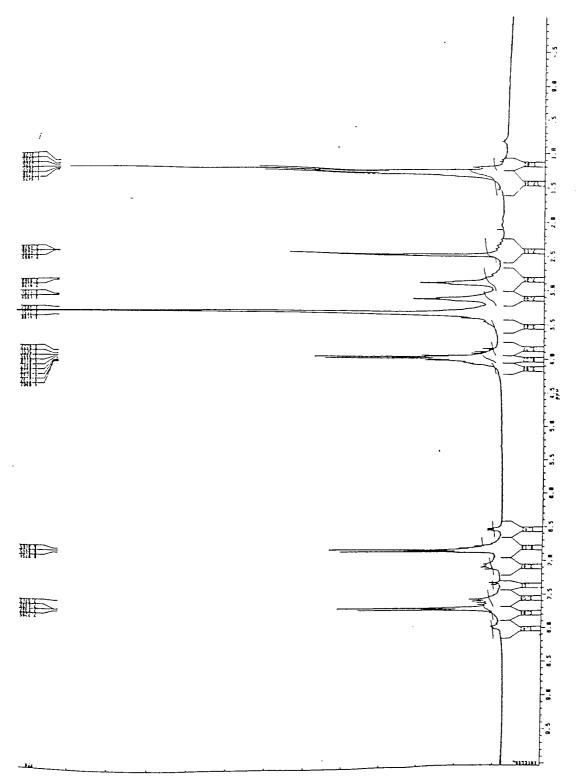


Figure 5.14 ¹H N.M.R. spectrum of L³HgCl₂.

Te-CH₂ and Te-C(aryl) vibrations have undergone shifts in the complexes and new bands are also present. It is likely that these bands represent coordinated and uncoordinated telluriums.

If one assumes that the mercury atom adopts a four coordinate tetrahedral stereochemistry, two of the corners of the tetrahedron may be occupied by chlorine atoms whilst the other two positions may be occupied by two of the tellurium atoms of the ligand leaving one tellurium uncoordinated. Figure 5.1 illustrates the stereochemistry.

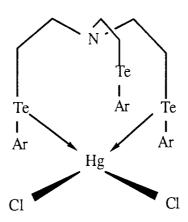


Figure 5.1

In summary, the solid state infra-red and ¹³C N.M.R data do not appear to be consistent. The fact that all three telluriums appear equivalent in the ¹³C spectra could be explained by the rapid exchange between coordinated and uncoordinated telluriums which at room temperature is faster than the N.M.R time-scale. However support for the inequivalence of the telluriums in at least one of the complexes is apparent from the ¹H N.M.R spectra.

5.3.4 Characterisation of the Cd(II) complexes of L^2 and L^3 .

The reactions of CdI₂ with L³ and of CdCl₂ with L³ in a 1:1 molar ratio leads to products whose analytical data fit the formulae L²CdI₂ and L³Cd(OH)₂. The complex L²CdI₂ was found to be soluble in polar organic solvents, for example, acetonitrile, nitromethane and DMSO. It was found to be a non-electrolyte in DMSO solution. The complex L³Cd(OH)₂ was insoluble in all common organic solvents except hot nitromethane and hence its solution conductivity and N.M.R data could not be recorded. To help characterise this compound, a fast atom bombardment mass spectrum was obtained. The molecular ion was not observed but details of the fragments detected are given in table 5.2.

In the ¹³C N.M.R spectrum of L²CdI₂, (see figure 5.15), the Te-CH₂ signal is found 1 ppm downfield from the corresponding ligand signal. If this difference is real, then there is only a very weak interaction between the tellurium and cadmium atoms. Comparison of this shift with that of the Hg(II) complexes leads us to the conclusion that mercury(II) behaves as a stronger Lewis acid than cadmium(II) towards tellurium with this ligand. The N-CH₂ signal is shifted only very slightly from the analogous ligand resonance and this suggests there is no mercury-nitrogen interaction. The signals corresponding to the p-methoxyphenyl moiety do not appear as singlets. Instead a set of much weaker signals are found slightly off-set from the more intense resonances. Undoubtedly there are two environments for the p-methoxyphenyl moiety. The most likely explanation of this comes from

the inequivalence of p-methoxyphenyl groups in which one set of signals corresponds to that of coordinated tellurium atoms, the other set to uncoordinated telluriums.

In the 1 H N.M.R spectrum (figure 5.16), this inequivalence of groups is even more pronounced. The methoxy protons appear as a doublet at δ = 3.7 and 3.8 ppm of integration 4:3. Similarly in the aromatic region of the spectrum, the phenyl protons are characterised by the classic AB splitting pattern but with a second set of signals slightly off-set and further downfield. Again the integration ratio is consistent at 4:3. The favoured explanation is the inequivalence of pmethoxyphenyl groups due to coordination of at least one and more likely two of the telluriums. The Te-CH₂ and N-CH₂ resonances appear as broad bands at 2.8 and 3.1 ppm respectively.

In the solid state infra-red spectrum of $L^3Cd(OH)_2$ a broad band centered at $v=3424cm^{-1}$ can be assigned as an O-H vibration. The appearance of this band probably implies that hydrolysis of the Cd-Cl bond has occured in the reaction. From experience this has become a common feature when using $CdCl_2$ in synthetic reactions. A broad band at $v=605cm^{-1}$ may be assigned as a Cd-O vibration although it is not unreasonable to assume that this band could conceivably be ascribed as a Te-O vibration; Te-O bands have been observed in this region in other compounds⁽⁷⁶⁾. The C-N vibrations in both complexes appears unshifted than for the free ligands therefore suggesting no interaction of cadmium

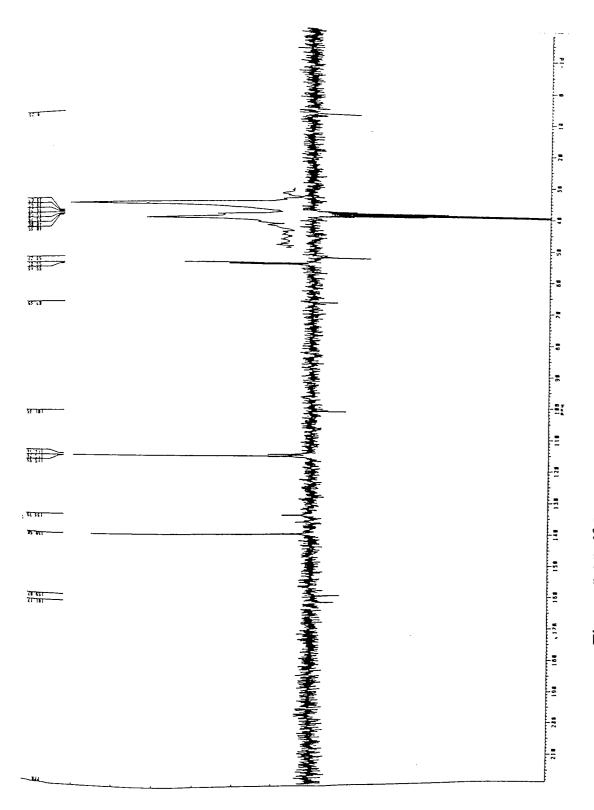


Figure 5.15 13C N.M.R. spectrum of L²CdI₂.

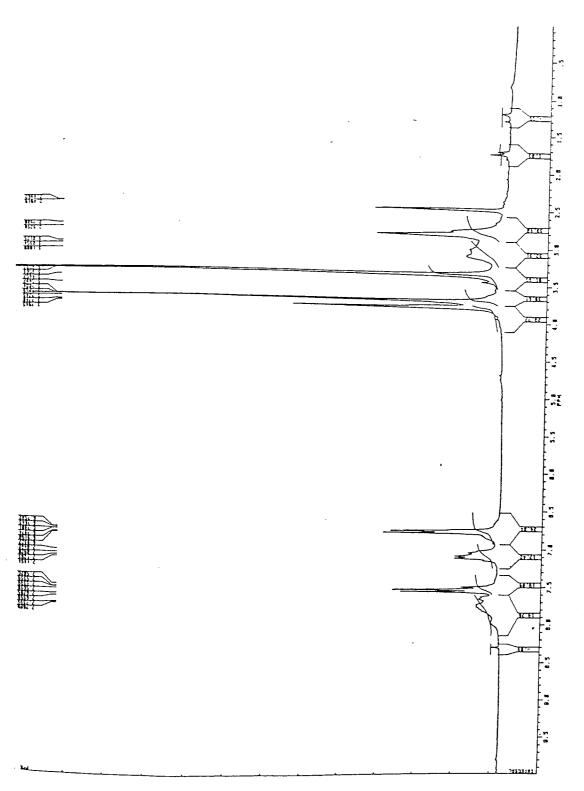


Figure 5.16 ¹H N.M.R. spectrum of L²CdI₂.

with nitrogen, supporting the N.M.R. data. Bands attributed to Te-CH₂ and Te-C(aryl) vibrations are shifted slightly from the free ligand values and new bands are also seen in these regions. One can infer from this that there are probably coordinated and uncoordinated telluriums in the solid state.

Assuming the cadmium atom in both compounds adopts a four coordinate tetrahedral stereochemistry, it seems probable that two of the telluriums of the ligands are coordinating and in L²CdI₂ the other positions are occupied by iodine atoms. The ¹³C and ¹H N.M.R. data certainly support this claim. The remaining two positions in the complex L³Cd(OH)₂ are likely to be occupied by hydroxyl groups. The insolubility of this compound might suggest that it is polymeric with propagation through Cd-O bonds. Unfortunately no comment can be made on the solution properties of this compound.

5.3.5 Characterisation of the Cu(I) complexes of L² and L³.

In the reaction of equimolar amounts of solutions of CuBr and ligands L^2 and L^3 , complexes of stoichiometry L^2 CuBr. H_2 O and L^3 CuBr. H_2 O were obtained according to the elemental analyses.

Both complexes are soluble in benzene, nitromethane and acetonitrile. Conductivity measurements in DMSO of 10⁻³M solutions gave values of 33 and 32 ohm⁻¹cm²mole⁻¹ consistent with the values for

1:1 electrolytes.

The ¹³C N.M.R spectra of both compounds are illustrated in figures 5.17-5.18. Since only one set of signals is observed in both spectra, then it appears that all the telluriums are in equivalent chemical environments. In both complexes the Te-CH₂ resonance is found 8 ppm downfield from the corresponding ligand chemical shifts implying interaction of tellurium with the metal centre. On comparing this shift with those of the mercury(II) and cadmium(II) compounds, a Lewis acidity series can be proposed. Hence mercury deshields the Te-CH₂ carbon the most and is therefore a stronger lewis acid, whilst cadmium deshields this carbon the least.

McWhinnie *et al*,⁽¹²²⁾ using Mossbauer spectroscopy, suggested an order of Lewis acidity for some metal ions relative to bis(p-ethoxyphenyl)telluride consistent with the results found here.

$$Cu(I) < Pd(II) < Pt(II) < Hg(II)$$

The N-CH₂ carbon resonance is shifted 3 ppm downfield in both the copper complexes. This results probably results from the coordinate interaction of tellurium with copper and not as a result of any copper-nitrogen contact. The ¹H N.M.R. spectra are illustrated in figures 5.19-5.20. The high quality of the spectra presents no interpretation problems. Only one set of signals is seen in both complexes. The appearance of peaks at δ = 3.35 ppm arise from the presence of water (inferred from the infra-red and elemental analysis). In both spectra the

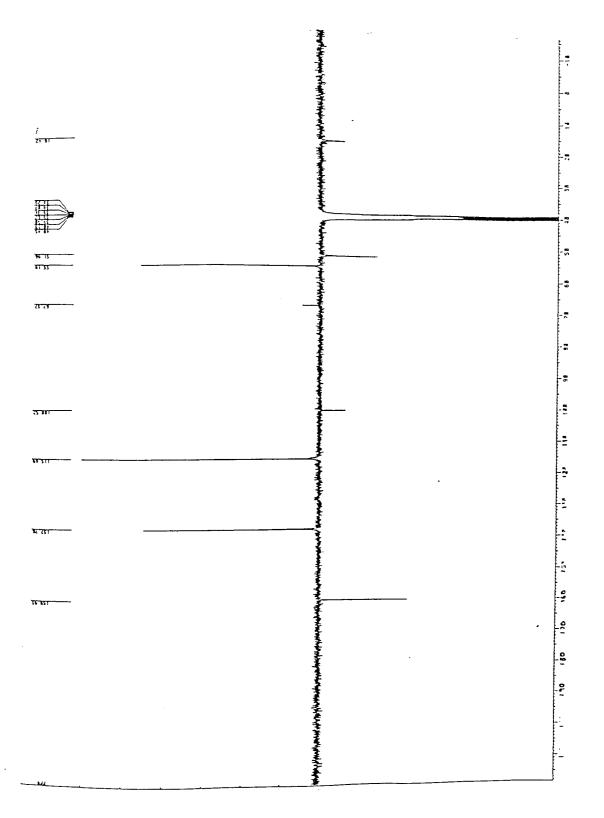


Figure 5.17 ¹³C N.M.R. spectrum of L²CuBr.H₂O.

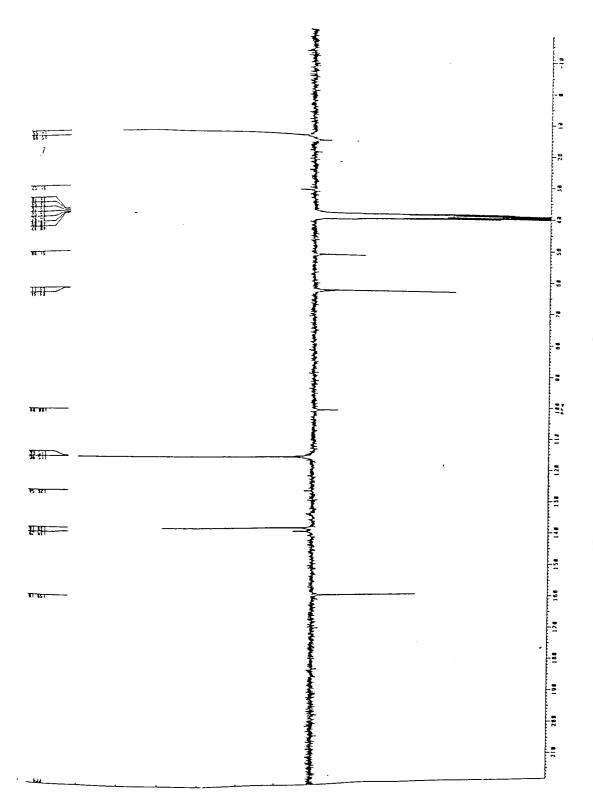


Figure 5.18 ¹³C N.M.R. spectrum of L³CuBr.H₂O.

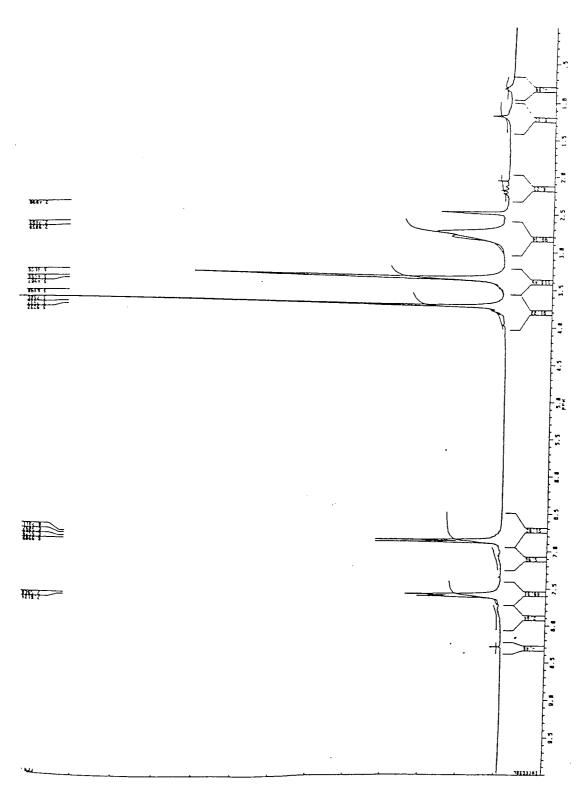


Figure 5.19 ¹H N.M.R. spectrum of L²CuBr.H₂O.

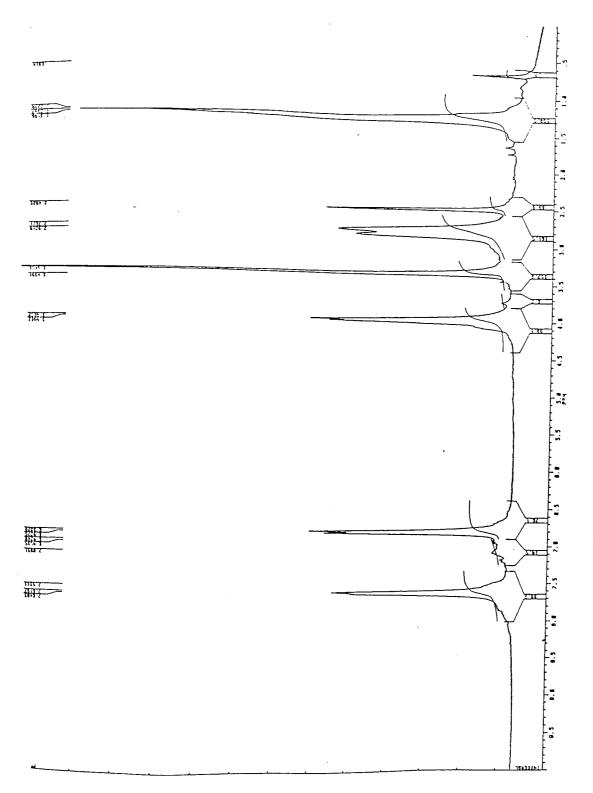


Figure 5.20 ¹H N.M.R. spectrum of L³CuBr.H₂O.

two bands at δ = 2.8-2.9 ppm correspond to overlapping Te-CH₂ and N-CH₂ signals.

The solid state infra-red spectra of L²CuBr.H₂O and L³CuBr.H₂O show O-H bands at v = 3436 and 3435cm⁻¹ respectively. The C-N stretching vibration remains unchanged from the free ligand implying no copper-nitrogen interaction. The Te-C(alkyl) and Te-C(aryl) vibrations appear slightly shifted ($\Delta v = 10 \text{cm}^{-1}$) from the free ligand values with new bands also present in this region. Although copper(I) compounds can adopt a linear geometry for lower coordination numbers (eg. CuCl₂-), the usual stereochemistry is tetrahedral as in complexes such as $Cu(CN)_4^{3-}$, $Cu(py)_4^+$ and $Cu(L-L)_2^+$ (L= bipy, phen)⁽¹²³⁾. If one assumes a tetrahedral arrangement in our complexes (see figure 5.2), one may suggest that all three telluriums are coordinated to the metal centre, with the fourth position occupied by a water ligand. Since the complexes behave as 1:1 electrolytes in solution, the bromine atom is probably ionic in both compounds. As the ¹³C and ¹H N.M.R spectra appear to show all three tellurium atoms as being equivalent, then it seems likely that all three telluriums in both complexes are coordinated to the metal centre.

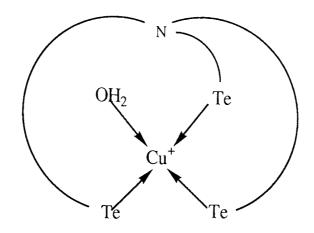


Figure 5.2

5.3.6 Characterisation of Pt(II) complexes of L² and L³

The reaction of equimolar solutions of potassium tetrachloro-platinate(II) with L² and L³ gives complexes whose analytical data suggest a 1:1 stoichiometry and fits for L²PtCl₂.H₂O and L³PtCl₂.H₂O can be derived. These complexes are moderately soluble in polar organic solvents. Their conductivities in 10⁻³M DMSO solutions are 31 and 33 ohm⁻¹cm²mole⁻¹ implying they are 1:1 electrolytes in solution.

In the solid state infra-red spectra recorded in KBr, both complexes show bands at $v=3376 \mathrm{cm}^{-1}$ (L²PtCl₂.H₂O) and 3387cm⁻¹ (L³PtCl₂.H₂O) characteristic of O-H stretching vibrations in water molecules. The C-N bands at 1178 and 1180cm⁻¹ are unaltered from the free ligand values implying no platinum-nitrogen contact. The low wavenumber regions of both complexes show shifts in the Te-C vibrations along with new bands in this region supporting the view that

both uncoordinated and coordinated telluriums are present in the solid state. Medium intensity bands at 328cm⁻¹ (L²PtCl₂.H₂O) and 327cm⁻¹ (L³PtCl₂.H₂O) are characteristic of Pt-Cl stretching vibrations⁽¹²⁴). Since the complexes behave as 1:1 electrolytes in solution, it is likely that one of the chloride atoms in each complex is ionic and that the Pt-Cl absorption frequencies are due to terminal Pt-Cl vibrations and not asymmetric or symmetric Cl-Pt-Cl vibrations. If one assumes a square planar geometry of the ligands around platinum then two of the three telluriums may be coordinating along with chloride and water ligands. The molecules can adopt either a trans or cis configuration with the chloride atom either trans to a tellurium or a water ligand. In other complexes the Pt-Cl stretching frequency has found to change with the ligand coordinated trans to it. These variations can be interpreted in terms of the <u>trans</u> influence of the ligands⁽¹²⁵⁾ (which is the tendency of a ligand to weaken the bond trans to itself in a complex). It has been shown that the trans influence decreases in the order, (11)

Te-donor >Se-donor >S-donor > N-donor > halide-donor > O-donor Therefore the stronger the Pt-Cl bond the higher the absorption frequency. In \underline{trans} -PtCl₂[Te(CH₂CH₂C₆H₅)₂]₂⁽¹²⁷⁾, υ (Pt-Cl) = 337cm⁻¹ and for \underline{trans} -PtCl₂.L.H₂O (L= 1,6- \underline{bis} -2-butyltellurophenyl-2,5-diazal,5-diene) υ (Pt-Cl) = 315cm⁻¹. In \underline{cis} -PtCl₂[ArTe(CH₂)₇TeAr]₂ the values of υ (Pt-Cl) were reported to be lower at 320 and 299cm⁻¹⁽¹⁰³⁾ in agreement with values of other \underline{cis} -complexes of PtCl₂ with monodentate tellurium ligands.

Using this evidence and noting that water is a weaker donor than tellurium one can conclude that the values of 327 and 328cm⁻¹ for the Pt-Cl stretching frequency probably indicates that the chloride ligand is trans to the water ligand in both complexes. This is shown diagrammatically in figure 5.3 below.

Since the complex L³PtCl₂.H₂O is only soluble in DMSO its ¹H N.M.R. spectrum only shows weak signals and its precise interpretation has been excluded here. Nethertheless there is little doubt that both

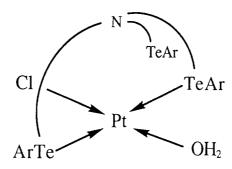


Figure 5.3

p-ethoxyphenyl and methylene groups are present. Detailed examination of the 1H N.M.R. spectrum of $L^2PtCl_2.H_2O$ (figure 5.21) shows two environments for the p-methoxyphenyl moiety in the aromatic region. The two sets of signals are in the ratio of approximately 2:1. This inequivalence of groups supports the infra-red data and therefore in solution there are probably both coordinated and uncoordinated telluriums. A sharp peak at δ = 3.45 ppm is assigned as signals from a water ligand. The N-CH₂ signal is broad at δ = 2.8 ppm. No confident

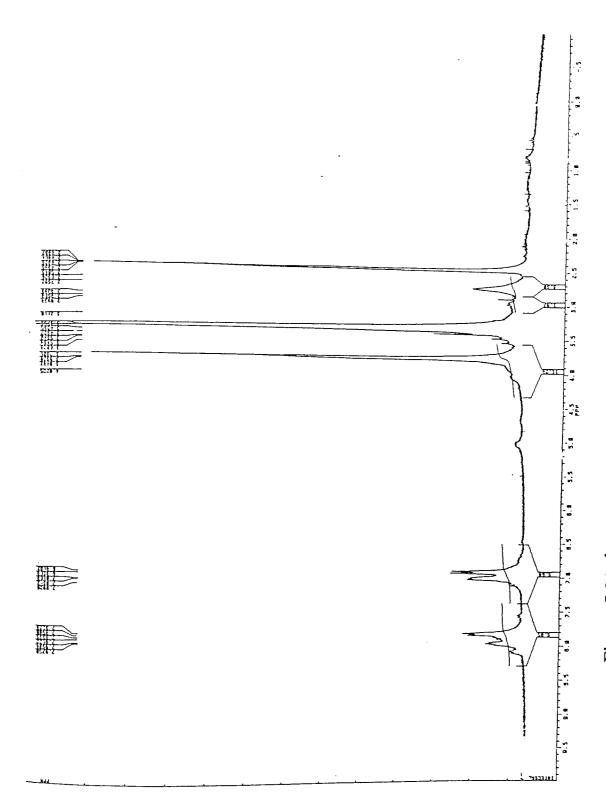


Figure 5.21 ¹H N.M.R. spectrum of L²PtCl₂.H₂O.

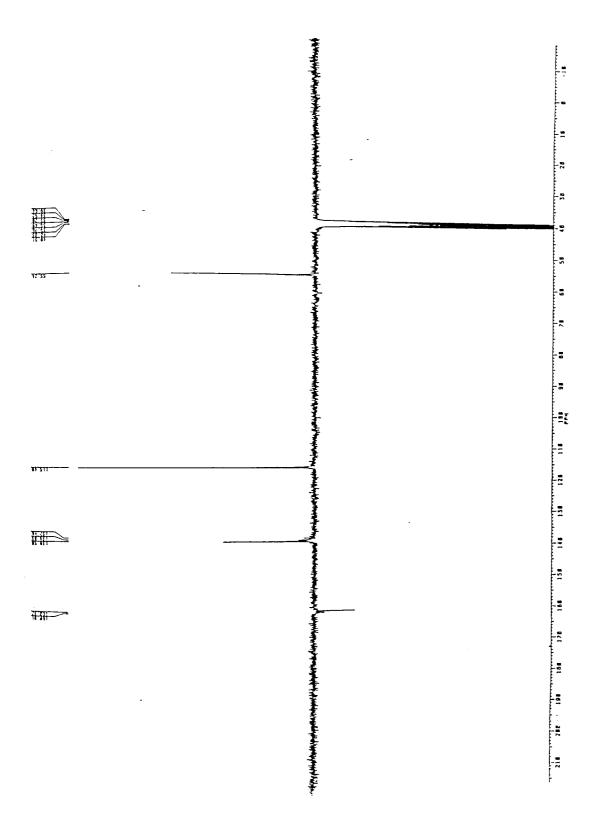


Figure 5.22 ¹³C N.M.R. spectrum of L²PtCl₂.H₂O.

assignment can be made of the Te-CH₂ proton signal, but it is believed to be masked in the broad signal at δ = 3.4 ppm (due to moisture present in the DMSO solution). In the ¹³C N.M.R. spectra of these complexes, surprisingly only the p-methoxyphenyl and p-ethoxyphenyl groups were observed. To illustrate this observation the spectrum of L2PtCl2.H2O is shown in figure 5.22. The ipso Te-C(aryl) signal was also absent. Two explanations for this anomaly can be given. Firstly the relaxation times of the ipso and the methylene carbons have increased dramatically on complexation. Ipso carbons are known to have longer relaxation times and sometimes do appear as weak signals or even not at all. It seems unlikely that the methylene carbons would also undergo long enough relaxation times to become absent. Secondly and more likely, the complexes may have undergone dealkylation with new species formed in solution. Indeed the ¹³C N.M.R. spectra of these complexes were recorded several hours after the ¹H spectra. It therefore seems feasible to suggest that although the proton spectra do show methylene signals, on standing in solution for long periods the complexes decompose probably via Te-CH2 bond cleavage.

5.3.7 Characterisation of the Pd(II) complexes of L² and L³.

The reaction of sodium tetrachloropalladate(II) with L² and L³ leads to orange coloured complexes in which analytical fits for L²PdCl₂.H₂O and L³PdCl₂.H₂O can be derived. These complexes are soluble in nitromethane but found to be insoluble in chloroform, ethanol

and benzene. The conductivities of 10⁻³M DMSO solutions are 30 ohm⁻¹cm²mole⁻¹ and therefore behave as 1:1 electrolytes.

In the solid state infra-red spectra, a broad band at $v = 3408 \text{cm}^{-1}$ for L²PdCl₂.H₂O is evidence for an O-H stretching vibration of water. The analogous band in $L^3PdCl_2.H_2O$ is much sharper and found at v=3410cm⁻¹. The C-N stretching frequency is unchanged from the free ligand values and thus the nitrogen atom remains uncoordinated to the metal centre. In the low frequency region, the Te-C bands appear slightly shifted from the free ligand values and new bands are also present. Medium intensity bands at $v = 321 \text{cm}^{-1}$ in both complexes have been assigned as Pd-Cl vibrations. The Raman spectra of these complexes also show medium intensity bands at this wavenumber (see figure 5.23). Since the complexes were found to be 1:1 electrolytes in solution, then one of the chloride atoms in both compounds could be ionic with the other bonded to palladium. If this is so, then this band is likely to represent a terminal Pd-Cl vibration. Palladium complexes often adopt a square planar geometry. Assuming this to be the case here, the chloride ligand could lie trans to a water ligand, or, assuming two of the telluriums are coordinated, trans to a tellurium atom. As was described for the platinum complexes, the infra-red stretching frequency is representative of the strength of the Pd-Cl bond and this is reflected in the ligand trans to it. In the compound trans-Pd[(p- $C_2H_5OC_6H_4)_2Tel_2Cl_2^{(128)}$ $\upsilon(Pd-Cl)=348cm^{-1}$. Al-Salim has proposed a $\underline{\text{trans}}$ configuration for LPdCl₂.H₂O (L= 1,6- $\underline{\text{bis}}$ -2-butyltellurophenyl-

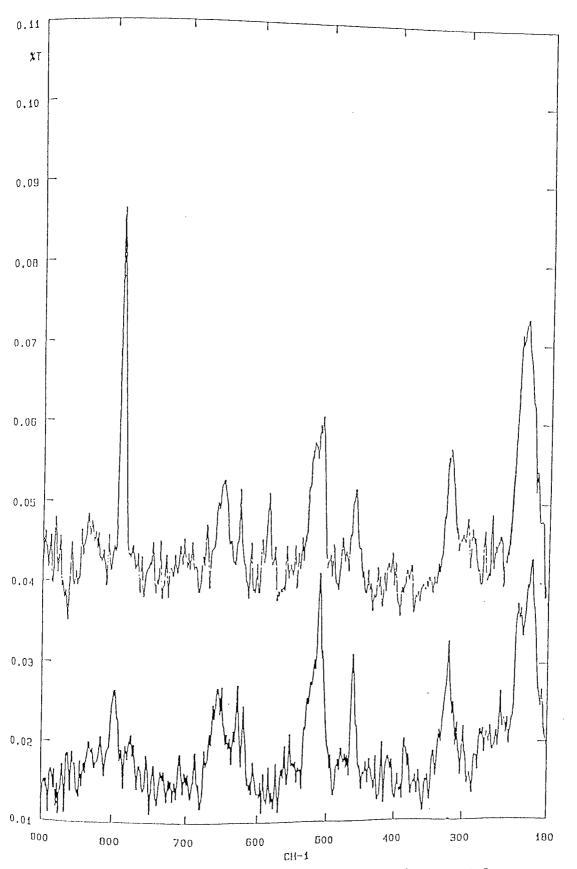


Figure 5.23 Raman spectrum of top:- $L^2PdCl_2.H_2O$. bottom:- $L^3PdCl_2.H_2O$.

2,5-diaza-hexa-1,5-diene) in which the compound exists in a monomeric state (A) or is dimeric with bridging tellurium atoms (B) with $\nu(Pd-Cl)=345cm^{-1}$.

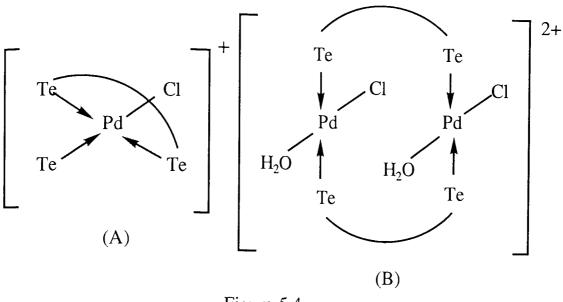


Figure 5.4

The same author proposes a <u>cis</u> configuration for $PdCl_2.L$ ' (L'= 1,4-<u>bis</u>-2-butyltellurophenyl-2,3-diazabuta-1,3-diene) where vas(Pd-Cl) = 332cm⁻¹ and vs(Pd-Cl) = 288cm⁻¹.

$$\begin{array}{c|c} & Bu \\ & Te \\ \hline & N-N \end{array}$$

$$\begin{array}{c} Cl \\ & Te \\ \hline & Cl \end{array}$$

$$\begin{array}{c} Te \\ & Te \\ \hline & Bu \end{array}$$

$$(L)$$

$$\begin{array}{c} Cl \\ & Te \\ \hline & Cl \end{array}$$

Using this information the complexes L²PdCl₂.H₂O and

 $L^3PdCl_2.H_2O$ ($v=321cm^{-1}$) are likely to adopt a <u>cis</u> configuration. If the chloride ligand was <u>trans</u> to the water ligand one may expect a higher frequency for the Pd-Cl vibration.

In the fast atom bombardment mass spectrum of $L^2PdCl_2.H_2O$ the only fragment detected was L^2PdCl^+ (m/e= 942). The highest m/e ion detected in $L^3PdCl_2.H_2O$ was also the analogous L^3PdCl^+ fragment but other ions were also detected (see table 5.2).

The ^{1}H and ^{13}C N.M.R spectra of both complexes show remarkable similarities to the platinum complexes. Thus in the ^{1}H N.M.R spectra close inspection of the aromatic region shows two sets of signals for the p-methoxyphenyl and the p-ethoxyphenyl groups in the integration ratio of ~2:1. This detail supports the theory that two of the three telluriums are coordinating to palladium as proposed from the solid state infra-red data. In both complexes the Te-CH₂ proton signals are found at δ = 2.9 ppm whilst the N-CH₂ resonance is believed to be merged within the broad band at δ = 3.4 ppm (due to the presence of H₂O). In the ^{13}C N.M.R. spectra only the p-methoxyphenyl and p-ethoxyphenyl signals are observed. As was described in the case of the platinum complexes, it is believed that on standing in solution for long periods, the complexes undergo dealkylation.

The visible absorption spectrum of L2PdCl2.H2O in DMSO revealed bands at 23600cm⁻¹ (ϵ =5400) and 29400cm⁻¹ (ϵ =5000), while

Table 5.5 U.V-Visible spectral data and conductivity data of the complexes of L^2 and L^3 .

Compound	λmax (nm)	Umax(cm ⁻¹)	ε*	Λ^{**}
L ² HgCl ₂				0
- -				2
$L^3 HgCl_2$				2
$L^2 \text{ CdI}_2$				3
$L^3 Cd(OH)_2$				ins
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				1110
L ² PtCl ₂ .H ₂ O				31
L^3 PtCl ₂ .H ₂ O				33
				33
L ² PdCl ₂ .H ₂ O	424	23600	5400	30
2 2	340	29400	5000	
L ³ PdCl ₂ .H ₂ O	420	23800	4250	30
2 2	340	29400	4300	
	570		.200	
L ² CuBr.H ₂ O				33
_				32
L ³ CuBr.H ₂ O				J <u>L</u>

^{*} ε in cm⁻¹ mole⁻¹

ins = insoluble in common organic solvents

^{**} ohm⁻¹ cm² mole⁻¹ (of 10⁻³M DMSO solutions)

 $L^3PdCl_2.H_2O$ showed bands at $23800cm^{-1}$ (ϵ =4250) and $29400cm^{-1}$ (ϵ =4300) (see table 5.5) implying the compounds adopt square planar geometries.

5.3.7 Characterisation of the Hg(II) complexes of the selenium ligands L⁴ and L⁵.

In the reactions of equimolar solutions of mercuric chloride and L⁴ and L⁵, colourless solids are formed whose analytical data fits the formulations L⁴HgCl₂.0.5CHCl₃ and L⁵3HgCl₂. Due to the limited amount of L⁴HgCl₂ prepared, only analytical and infra-red spectroscopic data were obtained. Unfortunately no conclusions can be derived about it's structural properties.

The complex L⁵3HgCl₂ was found to be a non-electrolyte in solution. In the infra-red spectrum the C-N stretching vibration appears unchanged from the free ligand and hence no mercury-nitrogen contact appears present. In the low wavenumber region a band at v= 322cm⁻¹ has been attributed to a Hg-Cl vibration. Bands in the region where Se-C vibrations are found are slightly shifted. This may imply coordination of selenium with mercury but this is only a tentative suggestion. In the ¹³C N.M.R. (see figure 5.24) only one set of signals is observed with no pronounced shifts to those of the free ligand. The same observation is seen in the ¹H N.M.R. (figure 5.25). Therefore in solution there appears to be no coordination of mercury with the donor atoms selenium and nitrogen. This result is contrary to the infra-red data.

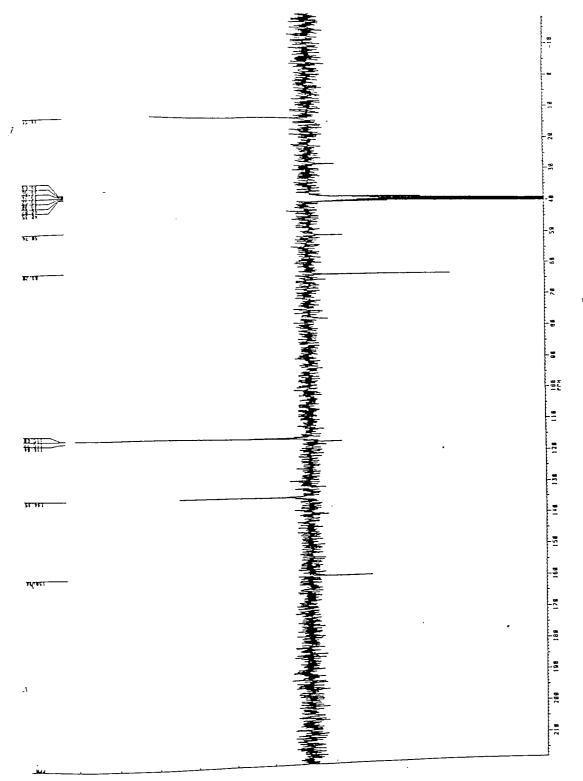


Figure 5.24 13C N.M.R. spectrum of L⁵3HgCl₂.

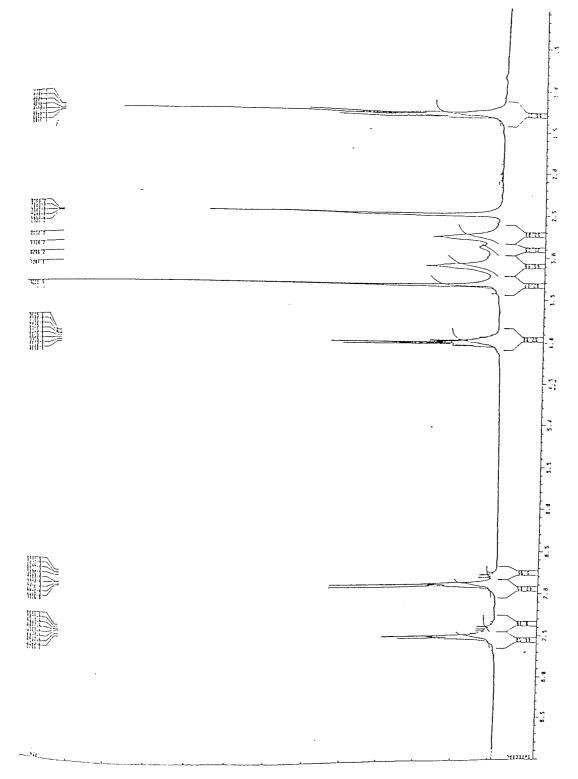


Figure 5.25 ¹H N.M.R. spectrum of L⁵3HgCl₂.

5.3.8 Characterisation of the Pt(II) complex of L⁵.

In the reaction of L^5 with sodium tetrachloropalladate(II) a yellow solid formed which from analytical data fits the formulation $L^5PtCl_2.H_2O$. The compound is moderately soluble in chloroform, benzene and nitromethane. It is a non-electrolyte in solution.

In the infra-red spectrum a broad band at $v=3382 \, \mathrm{cm}^{-1}$ is characteristic of an O-H stretching vibration. The C-N band is unaltered from that of the free ligand. In the low frequency region bands at $v=343 \, \mathrm{and} \, 333 \, \mathrm{cm}^{-1}$ are characteristic of asymmetric and symmetric Pt-Cl vibrations. Bands at 392, 305 and 277 cm⁻¹ are assigned as Se-C vibrations. In the tellurium compounds the Te-C bands were used to show differences in the coordinated and the uncoordinated telluriums. No definitive assignments can be made here.

In the ¹H N.M.R. (see figure 5.26) there are two sets of signals for the p-ethoxyphenyl group of integration ratio 4:1. The weaker set of signals corresponds exactly with those of the free ligand. Furthermore, the Se-CH₂ and N-CH₂ resonances appear as broad bands further downfield from the free ligand. Therefore the ¹H N.M.R. supports the view that there is an interaction of selenium with platinum in which the methylene protons are deshielded. It seems feasible to assume that at least two of the seleniums are coordinating. However the ¹³C spectrum is not so clear (see figure 5.27). There are two sets of signals for the p-

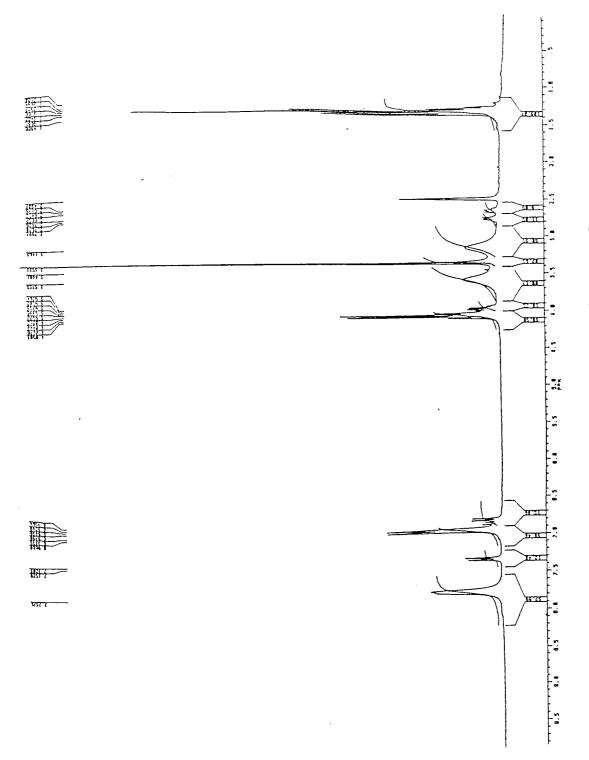


Figure 5.26 ¹H N.M.R. spectrum of L⁵PtCl₂.H₂O.

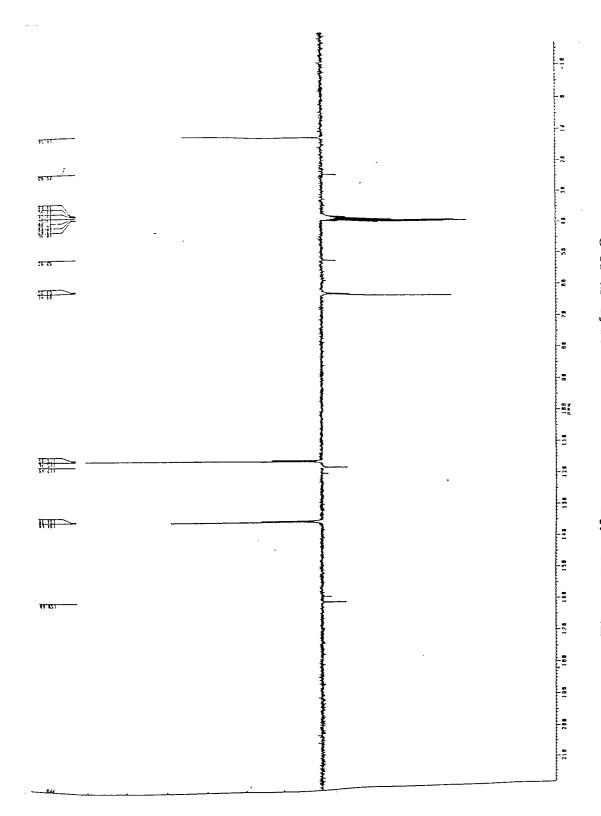


Figure 5.27 ¹³C N.M.R. spectrum of L⁵PtCl₂.H₂O.

ethoxyphenyl groups. Contrary to the ¹H N.M.R. data, the shifts in the signals are so small (~0.4 ppm) it is difficult to believe there is any interaction between the selenium and platinum centres. There are ambiguities in the N.M.R data and hence definitive characterisation has been avoided here.

5.4. Tellurium(125) N.M.R. Spectroscopy.

125Te N.M.R. spectroscopy is now a powerful tool for the elucidation of structural detail in tellurium chemistry. The relative abundance of ¹²⁵Te (7%) and receptivity (12.5 times that of ¹³C) has led to a steady increase in data for tellurium compounds and there are a number of articles illustrating this ⁽¹²⁹⁾.

In order to probe these tetradentate ligands further, an examination of their chemistry in solution was undertaken by using this technique. The spectra of the ligands L^1 , L^2 and L^3 are shown in figures 5.28-5.30 with δ = 22.11 ppm (L^1), δ = 7.34 ppm (L^2) and δ = 6.24 ppm (L^3). The chemical shift values reported here are relative to the standard bis(p-ethoxyphenyl)ditelluride. The signal for this ditelluride is found 455.0 ppm downfield of Me₂Te (the standard usually quoted) and so the new chemical shift values become δ =477.11 ppm (L^1), δ = 462.34 ppm (L^2) and δ = 461.24 ppm (L^3) respectively.

Despite vigorous efforts to obtain spectra of the complexes

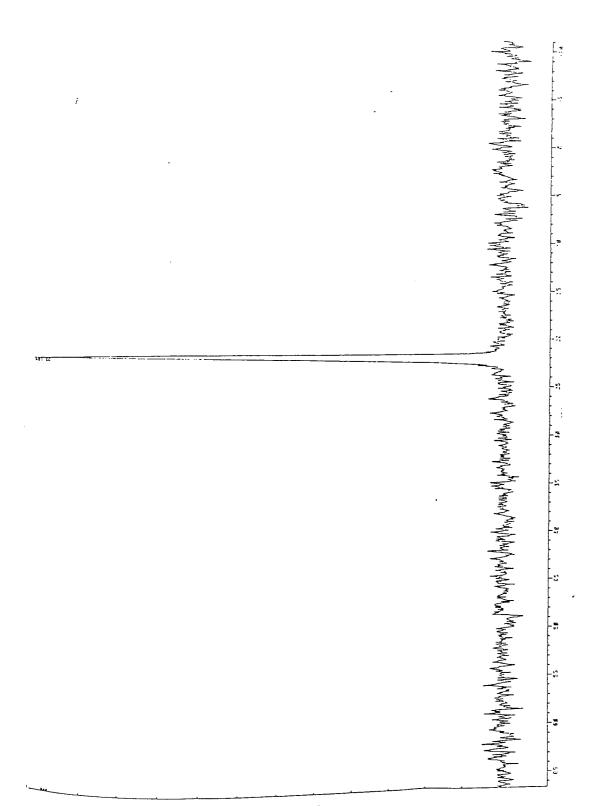


Figure 5.28 ¹²⁵Te N.M.R. spectrum of Ligand L¹.

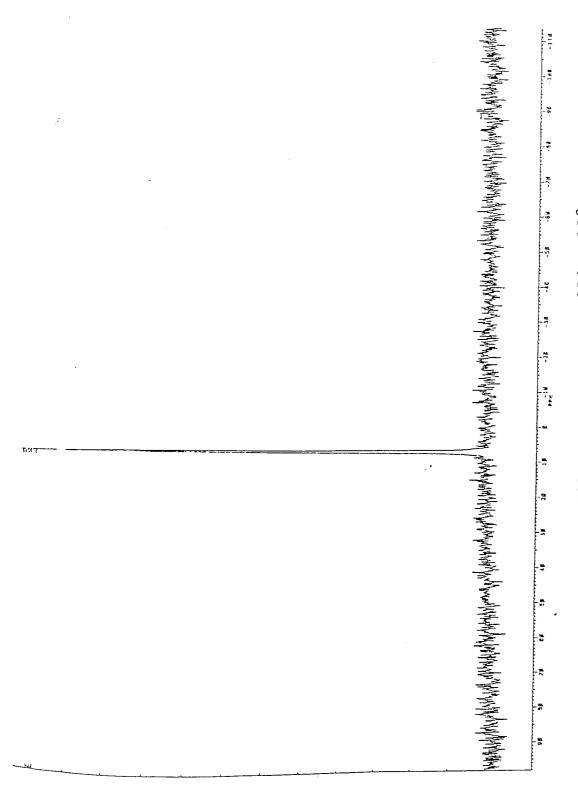


Figure 5.29 ¹²⁵Te N.M.R. spectrum of Ligand L².

===
=
-

-2:
- €
<u> </u>
=
€
~
₹.
-
<u> </u>
臺
<u>.</u>
_==
<u>=</u> ±-
-
<u> </u>
<
-3.
-
<u> </u>
, ~
3-
*
-
~~
Į.
===
₹
>-
F
- 3
茎
⋽
- ₹=
<u> </u>
7
=
-
Ē
-
-
A.A.K.
-
-
Shariff James Johnson
Shariff James Johnson
the state of the same of the same
the state of the same of the same
Shariff James Johnson
servery promote through the factor
the state of the same of the same
servery promote through the factor
serving promote the serve of th
servery remarkably respectively and the servery
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
serving promote the serve the serve to the s
ووالمروسيل كمعيوسهم وبالمحام والمبرأته وديم بإحرابا فالهوابير والمعادات المعاراته والمبارع الإرابان إنفار الإ
ووالمروسيل كمعيوه بالموادم فالمراب فواجه والموازية والمدارية والمعادية والمعادية والمراج الماران والمارية والأرافة
ووالمروسيل كمعيوه بالموادم فالمراب فواجه والموازية والمدارية والمعادية والمعادية والمراج الماران والمارية والأرافة
ووالمروسيل كمعيوسهم وبالمحام والمبرأته وديم بإحرابا فالهوابير والمعادات المعاراته والمبارع الإرابان إنفار الإ
ووالمروسيل كمعيوه بالموادم فالمراب فواجه والموازية والمدارية والمعادية والمعادية والمراج الماران والمارية والأرافة

	t
	- =
_	7
	#II- 89: 25: PB- #c- P3-
-	t.
-	ŀ
	-
=	
-	1 7
- -	l
r	i
:	1
·	1 ~
	1-0
-	ſ
	ţ
_	t
-	1
.	70
	[- e
	į i
*	1
s.	i
	ŀ
	- mat
	1-7
-	t
	t
	ſ.
:	1
	1.2
-	1 7
-	į.
	l.
-	Į.
	-
	- 22
	t '
	-
	l
	t '
	ł
•	-
	į .
	ļ '
	t
	ŀ
	ŀ- <i>∵</i> :
	[
	r
-	
	ŀ
	-,
	-
	-
	-
	-3
	7
	7
	7
	7
	3
	2
	2
	2 2
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
· •	32 11: 25
· · · · · · · · · · · · · · · · · · ·	2 11: 32 25 11
· · · · · · · · · · · · · · · · · · ·	2 11: 32 25 11
· · · · · · · · · · · · · · · · · · ·	2 11: 32 25 11
· · · · · · · · · · · · · · · · · · ·	2 11: 32 25 11
· · · · · · · · · · · · · · · · · · ·	2 11: 32 25 11
· · · · · · · · · · · · · · · · · · ·	2 11: 32 25 11
· · · · · · · · · · · · · · · · · · ·	2 11: 32 25 11
· · · · · · · · · · · · · · · · · · ·	2 11: 32 25 11
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	31 Et 13 35 14 14 15

Figure 5.30 125Te N.M.R. spectrum of Ligand L³.

[(Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II)], no data were obtained. Based on the Lewis acidity of these metals, the tellurium signals ought to have resonated downfield from the ligands. During the experiments no hint of a signal was observed. The range scanned was 9000 ppm downfield to 5000 ppm upfield of the reference. The number of pulses used per window (each window being 500 ppm wide) was 5000. The pulse angle and relaxation time delay (T1) was varied without success.

The solvent used in these experiments DMSO has been known to coordinate to tellurium in its complexes and has previously caused decomposition problems in other complexes studied in the research group. Whilst no decomposition of the complexes appeared subjectively, the possibility that DMSO could be screening the tellurium nucleus could not be discounted. Therefore the solvent was changed to 1,1,1-trichloroethane but without success. At this stage the only explanation that can be given for such disappointing results is that the concentration of the solution was too low for the detection of signals.

5.5 Precursors for MOVPE

<u>Tris</u>(aryltelluroethyl)amines and aryltelluroalkylamines are solids at room temperature and are stable in air for long periods. For this reason they are attractive as MOVPE precursors. They are high molecular weight low melting point solids. Although these solids are non-volatile, mild heat (to convert to the liquid form), may produce volatilities suitable for MOVPE purposes (>1torr) although these

experiments were not carried out. In the mass spectroscopy experiments, the multidentate ligands fragment with loss of RTe+ as a volatile ion. This in turn yields atomic tellurium under further fragmentation. Whilst no close comparisons should be made between the MOVPE and mass spectroscopy techniques, it is interesting to note that tellurium deposition does occur from these organometallics.

The tetradentate ligands do form complexes with metal ions such as Hg(II) and Cd(II) which are stable in air and have relatively low melting points. Unfortunately, from an MOVPE point of view, the Te:Cd and Te:Hg ratio is 3:1 and not 3:3 as we had hoped for. Nethertheless, there is evidence for a strong tellurium-mercury interaction in the mercury complexes and therefore this type of compound may be useful as a single source precursor containing groups II and VI atoms. None of these compounds have been tested on an MOVPE kit yet and so it is difficult to gain a measure as to their potential use as precursors. A programme of work in which the aryl substituents are replaced by alkyl groups must be worthy of further investigation.

5.5 SUMMARY

Some aryltelluroalkylamines and arylselenoalkylamines are reported and have been synthesised by the reaction of 2-chloroethylamine or 3-chloropropylamine with RE- (E=Se,Te). They have been characterised by elemental analyses, infra-red and N.M.R. spectroscopy.

Some potentially tetradentate tripodal <u>tris</u>(aryltelluroethyl)amines and <u>tris</u>(arylselenoethyl)amines have been synthesised by the reaction of <u>tris</u>(2-chloroethyl)amine and RE⁻. They have been characterised by elemental analyses, infra-red, N.M.R. and mass spectroscopy. The ligands <u>tris</u>(p-methoxyphenyltelluroethyl)amine (L²) and <u>tris</u>(p-ethoxyphenyltelluroethyl)amine (L³) form complexes with Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II). In all cases the nitrogen donor atom is innocent in any coordination to the metal centre

For the Hg(II) complexes, formulae based on LHgCl₂ are proposed. Based on a tetrahedral geometry, the organic ligand coordinates in a bidentate (Te,Te) mode with the other two positions occupied by chloride atoms.

For the cadmium(II) complexes, formulae based on L^2CdI_2 and $L^3Cd(OH)_2$ are proposed. Based on a tetrahedral stereochemistry around cadmium, the organic ligand coordinates in a bidentate fashion (Te,Te)

with the other two positions occupied by either iodine or hydroxy groups. L³Cd(OH)₂ may be polymeric with propagation through Cd-O bonds.

Copper(I) forms complexes of stoichiometry LCuBr.H₂O. They behave as 1:1 electrolytes in solution with, it is believed, the bromide atom being ionic. Assuming a tetrahedral geometry around copper, the organic ligand appears to bond in a terdentate (Te,Te,Te) mode with the fourth position occupied by a water ligand.

Platinum(II) forms complexes of stoichiometry LPtCl₂.H₂O. They behave as 1:1 electrolytes in solution, with it is believed one of the chloride atoms being ionic. Based on a square planar stereochemistry around platinum, it is proposed that the organic ligand coordinates in a bidentate (Te,Te) mode with the other positions occupied by chloride and water ligands in <u>trans</u> positions.

Palladium(II) forms complexes of stoichiometry LPdCl₂.H₂O. In solution they behave as 1:1 electrolytes with, it is proposed one of the chloride atoms being ionic. Assuming a square planar geometry around the metal centre, it is suggested that the organic ligand coordinates in a bidentate (Te,Te) fashion with the other position occupied by chloride and water ligands. Infra-red data suggests the ligands adopt a cisgeometry around the metal centre.

Chapter Six X-RAY CRYSTALLOGRAPHIC STUDIES

6.1 Introduction

The synthesis of 2-(2'-pyridyl)phenyltellurium(II) bromide (RTeBr) has been reported⁽⁷⁸⁾ and was one of the starting materials in this work for the synthesis of polychalcogenide compounds. During a routine examination of the mass spectrum of this compound (see scheme 4.1), not only was the parent ion observed but other ions of higher m/e were also seen pertaining to tellurium cluster species (eg. R₃Te₃+). An X-ray crystal structure determination was undertaken to ascertain the presence or absence of intermolecular contacts in the solid state.

As part of other work being carried out in our research group, Mbogo studied the reaction of RHgCl with $SeX_4^{(130)}$ (X = Cl, Br) and isolated a range of products whose chemistries involved both <u>trans</u> metallation and redox processes. To help understand this complex chemistry, an X-ray structure determination of one of the materials, 2-(2'-pyridyl) phenylselenium(II) tribromomercurate(II) was carried out.

Finally, as part of the programme of work on the organotellurium carboxylate compounds, an attempt was made at solving the crystal structure of bis(p-methoxyphenyl)tellurium(IV) dibenzoate. There are remarkably few X-ray crystallographic reports in the literature of this class of compound despite the ease with which they form crystals. One example noted is phenoxatellurium(IV)

bis(trifluoroacetate)(131). The results of this work are presented herein.

6.2 Experimental and Results.

Crystallographic Analysis of 2-(2-pyridyl)phenyltellurium(II) bromide (RTeBr).

Orange crystals of RTeBr were obtained from slow evaporation of a DMF solution at room temperature and a suitable crystal was mounted on an Enraf-Nonius CAD-4 diffractometer. Data were collected at room temperature using the ω-2θ scan technique. As a check on crystal stability three representative reflections were measured every two hours. Lattice parameters were obtained by least squares analysis from the setting angles of 24 reflections. Following unsuccessful attempts to solve the structure in space group P1 it was eventually solved by Patterson and Fourier methods in space group P1 and refined⁽¹³²⁻¹³³⁾ by least squares. Details of the data collection are given in table 6.1. The tellurium and bromine atoms were refined anisotropically and all other non-hydrogen atoms isotropically. Hydrogen atoms were placed in calculated positions riding on their respective bonded atoms

Two of the molecules (labelled e and f), are affected by disorder corresponding to rotation of ca. 6% of the $C_{11}H_8NTe$ residues about the central bond so that the disordered telluriums, Te(e') and Te(f') make contacts of 3.02(3) and 2.78(2) Å with neighbouring bromine atoms.

Computations were carried out on the University of Birmingham

Crystallographic and Experimental Data. for RTeBr

Formula	$C_{11}H_8BrNTe$
Mol Wt.	361.7
Crystal Size mm,	0.35 x 0.13 x 0.23
Space Group	P1
System	triclinic
a, Å	11.217(2)
b, Å	12.026(2)
c, Å	13.346(4)
α , deg	77.87(2)
β, deg	77.17(2)
γ, deg	70.75(2)
V, Å ³	1639
Z	6
Deale, g/cm ³	2.20
μ / mm ⁻¹	6.65
$\lambda(Mo-K\alpha)$, Å	0.71069
Temp, °C	25
No. of unique data	6520
Observed Data [IF>5σ FI]	4961
Scan Range, θ	2-25
Weighting Scheme	$w = 1/[\sigma^2(F) + 0.0003F^2]$
Absorption Correction	empirical (DIFABS)
R	0.050
Rw	0.058

Table 6.1

Honeywell computer. Figures 1 and 2 were drawn with PLUTO 88 at the Manchester Computer Centre.

6.3 **DISCUSSION**

The structure of RTeBr is shown in figures 6.1-6.2. Selected bond lengths and bond angles are tabulated in tables 6.2-6.3. Atomic coordinates, temperature factors and mean plane analyses are shown in tables 6.4-6.7.

In the structure of RTeBr six molecules are present in the unit cell. The coordination about tellurium can be considered as essentially pseudo-trigonal bipyramidal with the tellurated carbon and the two lone pairs making up the equatorial coordination and the bromine atom and pyridyl nitrogen atom the axial coordination. Since the position <u>trans</u> to the tellurated carbon is unoccupied, the molecule is essentially "T" shaped with the Te-C bond representing the stem.

The average Te-N distance is 2.24 Å. This value is in agreement with the postulated value for an axial Te-N⁽¹³⁴⁾ bond length and is comparable with the distances reported for (pap)Te(SCN) (2.243 Å)⁽¹³⁵⁾, (pap)TeCl (2.23 Å)^(90b), (pap= 2-phenylazophenyl) and the recently reported structure of (RTeCl)₂.R'HgCl [R= 2-(2'-pyridyl)phenyl- and R'= p-ethoxyphenyl-] $\{2.236(6) \text{ Å}\}^{(136)}$. The Te-N interaction holds the organic ligand in a planar geometry. The maximum angle between the phenyl and pyridyl planes is only 3.08° (range 0.85-3.08° over the six

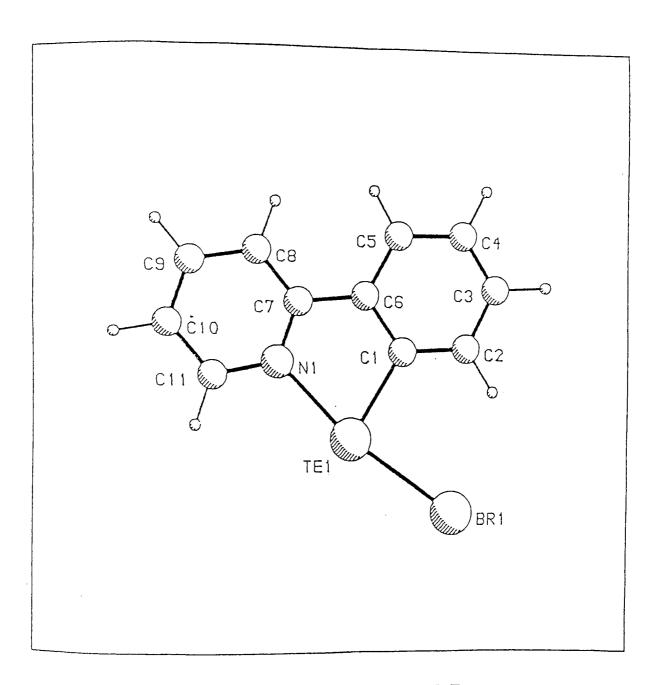


Figure 6.1 Structure of RTeBr.

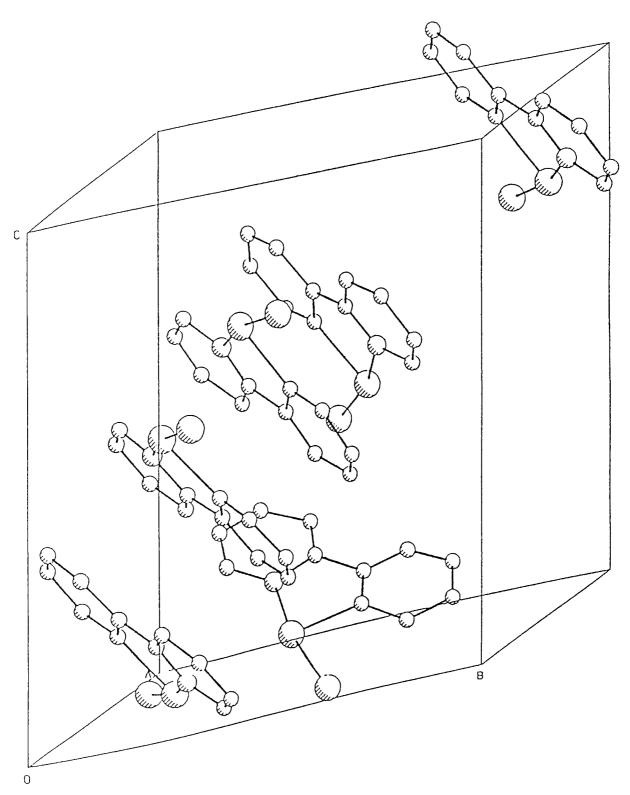


Figure 6.2 Packing diagram for RTeBr.

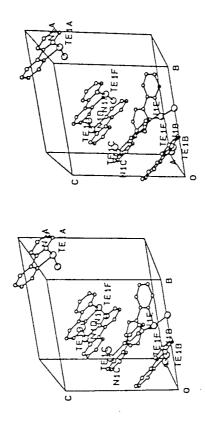


Figure 6.3 Stereoscopic view of RTeBr.

Table 6.2 <u>Bond lengths (Å) and bond angles (°) with e.s.d's in parentheses for RTeBr.</u>

Te(a) $Br(a)$	2.868(3)	C(7b) C(8b)	1.404(28)
Te(a) N(a)	2.243(16)	C(8b) C(9b)	1.429(30)
Te(a) $C(1a)$	2.108(22)	C(9b) C(10b)	1.333(30)
Te(b) N(b)	2.208(14)	C(1c) C(2c)	1.330(23)
Te(b) C(1b)	2.107(19)	C(1c) C(6c)	1.403(23)
Te(c) $Br(c)$	2.743(2)	C(2c) C(3c)	1.391(27)
Te(c) N(c)	2.214(16)	C(3c) C(4c)	1.447(26)
Te(c) $C(1c)$	2.110(17)	C(4c) C(5c)	1.355(27)
Te(d) $Br(d)$	2.666(6)	C(5c) C(6c)	1.386(27)
Te(d) N(d)	2.231(18)	C(6c) C(7c)	1.486(25)
Te(d) $C(1d)$	2.090(21)	C(7c) C(8c)	1.387(26)
Te(e) $Br(e)$	2.704(3)	C(8c) C(9c)	1.319(28)
Te(e) $N(e)$	2.281(16)	C(9c) C(10c)	1.378(29)
Te(e) C(1e)	2.139(18)	C(10c) C(11c)	1.351(30)
Te(f) $Br(f)$	2.724(3)	C(1d) C(2d)	1.361(27)
Te(f) N(f)	2.238(16)	C(1d) C(6d)	1.414(27)
Te(f) $C(1f)$	2.112(20)	C(2d) C(3d)	1.382(33)
N(a) $C(7a)$	1.306(24)	C(3d) $C(4d)$	1.397(34)
N(a) C(11a)	1.389(26)	C(4d) $C(5d)$	1.390(31)
N(b) C(7b)	1.306(22)	C(5d) $C(6d)$	1.344(30)
N(b) C(11b)	1.351(24)	C(6d) $C(7d)$	1.475(27)
N(c) C(7c)	1.383(24)	C(7d) $C(8d)$	1.351(33)
N(d) C(7d)	1.341(26)	C(9d) $C(10d)$	1.313(35)
N(d) C(11d)	1.340(28)	C(10d) C(11d)	1.405(34)
N(e) C(7e)	1.354(23)	C(1e) C(2e)	1.419(25)
N(e) C(11e)	1.435(26)	C(1e) C(6e)	1.326(25)
N(f) C(7f)	1.323(25)	C(2e) C(3e)	1.377(28)
N(f) C(11f)	1.394(25)	C(3e) C(4e)	1.382(30)
C(1a) $C(2a)$	1.419(27)	C(4e) C(5e)	1.353(28)
C(1a) C(6a)	1.369(27)	C(5e) C(6e)	1.339(25)
	,		

C(2a) C(3a)	1.383(30)	C(6e) C(7e)	1.509(22)
C(3a) $C(4a)$	1.324(32)	C(7e) C(8e)	1.376(25)
C(4a) $C(5a)$	1.411(31)	C(8e) C(9e)	1.399(26)
C(5a) - C(6a)	1.449(30)	C(9e) C(10e)	1.334(28)
C(6a) C(7a)	1.479(27)	C(10e) C(11e)	1.404(29)
C(7a) $C(8a)$	1.387(28)	C(1f) C(2f)	1.392(26)
C(8a) $C(9a)$	1.441(32)	C(1f) C(6f)	1.366(26)
C(9a) C(10a)	1.326(32)	C(2f) C(3f)	1.390(30)
C(10a) $C(11a)$	1.439(31)	C(3f) C(4f)	1.410(32)
C(1b) $C(2b)$	1.445(26)	C(4f) C(5f)	1.284(32)
C(1b) $C(6b)$	1.391(26)	C(5f) C(6f)	1.460(31)
C(2b) $C(3b)$	1.372(29)	C(6f) C(7f)	1.475(23)
C(3b) C(4b)	1.354(33)	C(7f) C(8f)	1.339(27)
C(4b) $C(5b)$	1.411(34)	C(8f) C(9f)	1.399(31)
C(5b) C(6b)	1.387(29)	C(9f) C(10f)	1.371(33)
C(6b) C(7b)		C(10f) C(11f)	1.391(28)

Table 6.2

Table 6.3 Bond Angles (°) with e.s.d's in parentheses for RTeBr.

D-(a)	-Te(a) -N(a)	160.27 4		
Br(a)	-Te(a) $-C(1a)$	169.3(4)	N(b) -C(11b)-C(10b)	118.2(19)
Br(a)		94.2(6)	Te(c) - $C(1c)$ - $C(2c)$	123.4(13)
N(a)	-Te(a) $-C(1a)$	75.2(7)	Te(c) -C(1c) -C(6c)	114.2(12)
Br(b)	-Te(b) -N(b)	169.9(4)	C(2c) - C(1c) - C(1c)	122.2(17)
Br(b)	-Te(b) -C(1b)	95.0(5)	C(1c) - C(2c) - C(3c)	119.8(18)
N(b)	-Te(b) -C(1b)	75.3(7)	C(2c) - C(3c) - C(4c)	119.5(19)
Br(c)	-Te(c) -N(c)	169.3(4)	C(3c) - C(4c) - C(5c)	117.9(18)
Br(c)	-Te(c) $-C(1c)$	91.7(4)	C(4c) - C(5c) - C(6c)	122.1(18)
N(c)	-Te(c) $-C(1c)$	77.9(6)	C(1c) - C(6c) - C(5c)	118.0(17)
Br(d)	-Te(d) -N(d)	169.2(5)	C(1c) - C(6c) - C(7c)	119.6(16)
Br(d)	-Te(d) -C(1d)	92.7(6)	C(5c) - C(6c) - C(7c)	122.3(16)
N(d)	-Te(d) -C(1d)	76.7(7)	N(c) - C(7c) - C(6c)	113.0(16)
Br(e)	-Te(e) -N(e)	169.5(4)	N(c) - C(7c) - C(8c)	119.8(18)
Br(e)	-Te(e) -N(e)	94.7(5)	C(6c) - C(7c) - C(8c)	127.2(18)
N(e)	-Te(e) $-C(1e)$	75.2(6)	C(7c) - C(8c) - C(9c)	119.7(21)
Br(f)	-Te(f) -N(f)	168.1(4)	C(8c) - C(9c) - C(10c)	120.6(21)
Br(f)	-Te(f) $-C(1f)$	93.4(5)	C(9c) - C(10c) - C(11c)	120.2(22)
N(f)	-Te(f) $-C(1f)$	75.1(7)	N(c) -C(11c)-C(10c)	120.5(22)
Te(a)	-N(a) -C(7a)	116.2(13)	Te(d) -C(1d) -C(2d)	124.4(16)
Te(a)	-N(a) -C(11a)	122.4(14)	Te(d) -C(1d) -C(6d)	115.9(15)
C(7a)	-N(a) -C(11a)	121.1(17)	C(2d) - C(1d) - C(6d)	119.7(20)
Te(b)	-N(b) -C(7b)	115.6(12)	C(1d) - C(2d) - C(3d)	121.2(22)
Te(b)	, , , , ,	121.0(13)	C(2d) - C(3d) - C(4d)	118.3(26)
	-N(b) -C(11b)	123.3(16)	C(3d) - C(4d) - C(5d)	119.9(26)
	-N(c) -C(7c)	115.2(13)	C(4d) - C(5d) - C(6d)	120.6(24)
	-N(c) -C(11c)	125.6(14)	C(1d) - C(6d) - C(5d)	119.6(20)
	-N(c) -C(11c)	119.2(17)	C(1d) - C(6d) - C(7d)	117.3(18)
	-N(d) $-C(7d)$	115.4(14)	C(5d) - C(6d) - C(7d)	123.0(20)
	-N(d) $-C(11d)$	121.6(16)	N(d) - C(7d) - C(6d)	114.7(18)
	-N(d) -C(11d)	123.0(20)	N(d) - C(7d) - C(8d)	121.6(21)
	-N(e) -C(7e)	113.7(12)	C(6d) - C(7d) - C(8d)	123.8(20)
	-N(e) -C(11e)	123.5(13)	C(7d) - C(8d) - C(9d)	115.7(25)
	-N(e) -C(11e)	123.4(17)	C(8d) - $C(9d)$ - $C(10d)$	122.2(28)
	-N(f) -C(7f)	118.1(13)	C(9d) - $C(10d)$ - $C(11d)$	122.7(29)
		122.5(14)	N(d) -C(11d) -C(10d)	114.5(24)
	-N(f) -C(11f)	119.4(17)	Te(e) -C(1e) -C(2e)	120.9(14)
	-N(f) -C(11f)		Te(e) -C(1e) -C(6e)	118.3(14)
10(a)	-C(1a) - C(2a)	123.9(15)		

Te(a) -C(1a) -C(6a) C(2a) -C(1a) -C(6a)	116.2(16)	C(2e) -C(1e) -C(6e)	120.7(18)
•	119.8(20)	C(1e) - C(2e) - C(3e)	115.9(20)
C(1a) - C(2a) - C(3a)	121.1(20)	C(2e) - C(3e) - C(4e)	123.2(23)
C(2a) - C(3a) - C(4a)	120.6(24)	C(3e) - C(4e) - C(5e)	116.2(23)
C(3a) - C(4a) - C(5a)	120.5(26)	C(4e) - C(5e) - C(6e)	123.3(21)
C(4a) - C(5a) - C(6a)	120.0(22)	C(1e) - C(6e) - C(5e)	120.6(18)
C(1a) - C(6a) - C(5a)	117.6(20)	C(1e) - C(6e) - C(7)	117.5(18)
C(1a) - C(6a) - C(7a)	118.0(19)	C(5e) - C(6e) - C(7e)	121.9(18)
C(5a) - C(6a) - C(7a)	124.3(19)	N(e) - C(7e) - C(6e)	115.3(16)
N(a) -C(7a) -C(6a)	114.1(17)	N(e) - C(7e) - C(8e)	119.6(17)
N(a) - C(7a) - C(8a)	122.8(20)	C(6e) -C(7e) -C(8e)	125.1(18)
C(6a) - C(7a) - C(8a)	123.0(19)	C(7e) - C(8e) - C(9e)	118.5(18)
C(7a) - C(8a) - C(9a)	118.0(23)	C(8e) - C(9e) - C(10e)	122.8(21)
C(8a) - C(9a) - C(10a)	118.9(25)	C(9e) - C(10e) - C(11e)	120.6(22)
C(9a) - C(10a) - C(11a)	121.5(25)	N(e) - C(11e - C(10e))	115.9(20)
N(a) -C(11a)-C(10a)	117.6(21)	Te(f) -C(1f) -C(2f)	123.3(14)
Te(b) -C(1b) -C(2b)	123.7(14)	Te(f) -C(1f) -C(6f)	114.6(14)
Te(b) -C(1b) -C(6b)	116.6(14)	C(2f) - C(1f) - C(6f)	122.0(19)
C(2b) - C(1b) - C(6b)	119.7(18)	C(1f) - C(2f) - C(3f)	119.4(20)
C(1b) - C(2b) - C(3b)	118.4(19)	C(2f) - C(3f) - C(4f)	119.3(24)
C(2b) - C(3b) - C(4b)	121.7(24)	C(3f) - C(4f) - C(5f)	119.7(28)
C(3b) - C(4b) - C(5b)	120.9(28)	C(4f) - C(5f) - C(6f)	124.0(24)
C(4b) - C(5b) - C(6b)	119.2(24)	C(1f) - C(6f) - C(5f)	115.1(19)
C(1b) - C(6b) - C(5b)	120.0(20)	C(1f) - C(6f) - C(7f)	121.6(18)
C(1b) - C(6b) - C(7b)	115.5(18)	C(5f) - C(6f) - C(7f)	123.0(18)
C(5b) - C(6b) - C(7b)	124.5(19)	N(f) - C(7f) - C(6f)	110.2(17)
N(b) - C(7b) - C(6b)	116.9(16)	N(f) - C(7f) - C(8f)	122.8(20)
N(b) - C(7b) - C(8b)	120.8(19)	C(6f) - C(7f) - C(8f)	126.7(19)
C(6b) -C(7b) -C(8b)	121.9(18)	C(7f) - C(8f) - C(9f)	119.3(23)
C(7b) - C(8b) - C(9b)	116.7(21)	C(8f) - C(9f) - C(10f)	119.8(25)
C(8b) -C(9b) -C(10b)	120.8(22)	C(9f) - C(10f) - C(11f)	118.6(23)
C(9b) -C(10b)-C11b)	119.8(22)	N(f) -C(11f)-C(10f)	119.8(20)

Table 6.3 Bond Angles(°) for RTeBr.

Anisotropic Temperature Factors $(\mathring{A}^2 \times 10^3)$ with e.s.d's in parentheses for RTeBr

	U11	U22	U33	U23	U13	U12
e(e')	68(16)	56(15)	71(18)	8(13)	-38(14)	-15(12)
e(f')	33(14)	32(15)	55(19)	0(13)	-23(12)	-5(11)
Te(a)	37(1)	56(1)	47(1)	-5(1)	-6(1)	-19(1)
e(b)	41(1)	55(1)	50(1)	-9(1)	-3(1)	-16(1)
`e(c)	39(1)	55(1)	45(1)	5(1)	-8(1)	-16(1)
(b)e	42(1)	58(1)	58(1)	1(1)	-9(1)	-18(1)
re(e)	47(1)	45(1)	46(1)	-9(1)	-13(1)	-12(1)
re(f)	43(1)	49(1)	42(1)	-2(1)	-8(1)	-14(1)
3r(a)	55(1)	137(1)	101(2)	-1(2)	-20(2)	-45(2)
3r(b)	49(1)	76(2)	121(2)	-18(2)	-9(2)	-20(1)
Br(c)	49(1)	86(2)	89(2)	11(2)	-18(1)	-24(1)
Br(d)	64(2)	150(3)	120(3)	10(2)	-33(2)	-51(2)
Br(e)	72(2)	88(2)	81(2)	-7(2)	-14(1)	-25(1)
Br(f)	59(1)	93(2)	108(2)	-18(2)	-23(2)	-21(1)

Table 6.4

Table 6.5. Fractional Atomic Coordinates $(x \ 10^4)$ with e.s.d's in parentheses and isotropic temperature factors $(\mathring{A}^2 \ x \ 10^3)$ for RTeBr.

Ueq = 1/3 (trace of the orthoganised Uij tensor)

	X	у	Z	Ueq/Uiso
Te(e')	1083(23)	7287(21)	3573(20)	64
Te(f')	14414(21)	4603(21)	8699(21)	39
Te(a)	8554	9095	7794	46
Te(b)	6159(2)	1392(2)	14(2)	49
Te(c)	9719(2)	142(2)	4362(1)	47
Te(d)	7116(1)	2568(1)	6506(1)	52
Te(e)	4540(2)	4428(2)	842(2)	45
Te(f)	11388(2)	7031(2)	5661(2)	45
Br(a)	6174(3)	8965(3)	7945(3)	96
Br(b)	3630(2)	1542(3)	460(3)	81
Br(c)	12243(2)	53(3)	4098(3)	75
Br(d)	9465(3)	2764(4)	6262(3)	109
Br(e)	6541(3)	4720(3)	-636(3)	80
Br(f)	9034(3)	7032(3)	5433(3)	84
N(a)	10570(15)	8925(14)	7917(13)	44(4)
N(b)	8225(14)	1103(13)	-69(13)	42(4)
N(c)	7645(15)	526(15)	4371(14)	50(4)
N(d)	5090(17)	2704(16)	6480(15)	62(5)
N(e)	2856(14)	4495(14)	2172(13)	52(4)
N(f)	13303(15)	6702(14)	6097(14)	49(4)
C(1a)	8920(20)	7880(18)	9159(18)	54(6)
C(2a)	8009(19)	7352(17)	9817(17)	49(5)
C(3a)	8319(22)	6536(20)	10689(19)	68(6)
C(4a)	9470(24)	6249(23)	10944(23)	82(8)
C(5a)	10436(23)	6688(20)	10282(20)	69(7)
C(6a)	10134(19)	7568(18)	9378(17)	52(5)

	X	у	Z	Ueq/Uiso
C(7a)	11051(18)	8145(17)	8675(17)	47(5)
C(8a)	12295(21)	7919(20)	8834(20)	47(5)
C(9a)	13107(26)	8521(22)	8085(22)	64(6)
C(10a)	12619(23)	9301(21)	7308(20)	81(8) 69(7)
C(11a)	11314(21)	9532(20)	7181(19)	63(6)
C(1b)	6665(18)	70(17)	1288(16)	48(5)
C(2b)	5770(20)	-466(18)	2011(17)	57(5)
C(3b)	6211(22)	-1307(20)	2820(20)	70(6)
C(4b)	7456(27)	-1660(26)	2937(26)	102(9)
C(5b)	8355(23)	-1176(20)	2224(19)	71(7)
C(6b)	7943(19)	-292(18)	1415(17)	54(5)
C7(b)	8767(17)	271(16)	634(15)	41(5)
C8(b)	10066(22)	35(21)	685(21)	72(7)
C9(b)	10774(21)	674(19)	-116(18)	62(6)
C(10b)	10208(21)	1464(20)	-860(19)	66(6)
C(11b)	8875(19)	1708(18)	-839(17)	52(5)
C(1c)	9410(15)	1476(14)	3058(14)	34(4)
C(2c)	10342(18)	1852(16)	2426(15)	47(5)
C(3c)	10056(19)	2749(17)	1590(17)	56(5)
C(4c)	8760(18)	3199(17)	1371(16)	51(5)
C(5c)	7872(19)	2712(17)	1992(17)	52(5)
C(6c)	8147(16)	1875(15)	2862(15)	41(5)
C(7c)	7165(17)	1368(16)	3565(15)	44(5)
C(8c)	5876(19)	1676(19)	3500(18)	60(6)
C(9c)	5120(20)	1158(18)	4204(18)	59(6)
C(10c)	5598(20)	321(19)	5009(18)	61(6)
C(11c)	6848(20)	27(20)	5087(19)	62(6)
C(1d)	6699(19)	3787(17)	5170(17)	51(5)
C(2d)	7541(21)	4317(18)	4520(18)	57(6)
C(3d)	7225(26)	5057(23)	3614(23)	84(8)
C(4d)	5969(24)	5356(23)	3435(22)	81(8)

	X	у	Z	Ueq/Uiso
C(5d)	5127(23)	4777(20)	4077(20)	71(7)
C(6d)	5154(19)	4047(17)	4949(17)	71(7)
C(7d)	4581(19)	3443(18)	5678(17)	51(5)
C(8d)	3332(24)	3615(23)	5566(22)	51(5) 76(7)
C(9d)	2691(26)	2949(23)	6283(22)	82(8)
C(10d)	3179(27)	2262(24)	7088(24)	87(8)
C(11d)	4444(23)	2074(22)	7215(21)	73(7)
C(1e)	3937(17)	6212(16)	1177(15)	47(5)
C(2e)	4566(18)	7053(17)	602(16)	51(5)
C(3e)	4104(21)	8172(20)	891(19)	66(6)
C(4e)	3098(21)	8479(21)	1692(19)	67(-6)
C(5e)	2562(19)	7613(18)	2189(18)	56(5)
C(6e)	2961(16)	6514(15)	1936(14)	40(4)
C(7e)	2354(17)	5563(16)	2517(15)	47(5)
C(8e)	1340(16)	5720(16)	3325(14)	43(4)
C(9e)	896(20)	4745(18)	3801(18)	59(6)
C(10e)	1428(20)	3668(20)	3515(18)	62(6)
C(11e)	2455(21)	3471(21)	2686(19)	70(6)
C(1f)	11393(18)	5832(17)	7066(16)	47(5)
C(2f)	10340(19)	5450(18)	7576(17)	54(5)
C(3f)	10439(23)	4638(21)	8487(20)	72(7)
C(4f)	11571(25)	4282(24)	8916(24)	87(8)
C(5f)	12530(23)	4641(20)	8424(20)	70(7)
C(6f)	12495(19)	5505(18)	7473(17)	54(5)
C(7f)	13065(18)	5914(17)	6926(16)	48(5)
C(8f)	14737(21)	5633(20)	7239(20)	68(6)
C(9f)	15642(25)	6199(22)	6682(21)	83(8)
C(10f)	15386(21)	6995(20)	5800(18)	62(6)
C(11f)	14183(20)	7283(19)	5523(18)	55(6)

Table 6.5 Fractional atomic coordinates of non-hydrogen atoms

Fractional atomic coordinates $(x \ 10^4)$ of the hydrogen atoms and isotropic temperature factors $(\mathring{A}^2 \ x \ 10^3)$ for RTeBr.

	X	у	Z	Uiso
H(2a)	7055	7582	9640	70
H(3a)	7628	6125	11180	70
H(4a)	9671	5685	11669	70
H(5a)	11400	6349	10453	70
H(8a)	12640	7325	9505	70
H(9a)	14096	8326	8164	70
H(10a)	13213	9775	6756	70
H(11a)	10928	10147	6535	70
H(2b)	4773	-189	1930	70
H(3b)	5560	-1718	3373	70
H(4b)	7761	-2297	3602	70
H(5b)	9352	-1525	2307	70
H(8b)	10517	-612	1288	70
H(9b)	11783	494	-118	70
H(10b)	10746	1944	-1464	70
H(11b)	8386	2372	-1412	70
H(2c)	11325	1468	2547	70
H(3c)	10786	3118	1108	70
H(4c)	8506	3879	718	70
H(5c)	6913	3028	1813	70
H(8c)	5491	2349	2883	70
H(9c)	4123	1368	4143	70
H(10c)	4972	-102	5578	70
H(11c)	7206	-582	5747	70
H(2d)	8488	4105	4706	70 70
H(3d)	7932	5414	3080	70 70
H(4d)	5651	6028	2795	70

H(5d) 4184 4928 3908 70 H(8d) 2895 4223 4937 70 H(9d) 1716 3022 6246 70 H(10d) 2631 1770 7651 70 H(11d) 4884 1480 7848 70 H(2e) 5332 6829 -42 70 H(3e) 4567 8839 494 70 H(4e) 2743 9357 1918 70 H(5e) 1779 7817 2825 70 H(8e) 865 6581 3573 70 H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(8f) 14926 4992 7929 70 H(9f) </th <th></th> <th>X</th> <th>у</th> <th>Z</th> <th>Uiso</th>		X	у	Z	Uiso
H(8d) 2895 4223 4937 70 H(9d) 1716 3022 6246 70 H(10d) 2631 1770 7651 70 H(11d) 4884 1480 7848 70 H(2e) 5332 6829 -42 70 H(3e) 4567 8839 494 70 H(4e) 2743 9357 1918 70 H(5e) 1779 7817 2825 70 H(8e) 865 6581 3573 70 H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f)<	H(5d)	4184	4928	3908	70
H(9d) 1716 3022 6246 70 H(10d) 2631 1770 7651 70 H(11d) 4884 1480 7848 70 H(2e) 5332 6829 -42 70 H(3e) 4567 8839 494 70 H(4e) 2743 9357 1918 70 H(5e) 1779 7817 2825 70 H(8e) 865 6581 3573 70 H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f	H(8d)	2895	4223		
H(10d) 2631 1770 7651 70 H(11d) 4884 1480 7848 70 H(2e) 5332 6829 -42 70 H(3e) 4567 8839 494 70 H(4e) 2743 9357 1918 70 H(5e) 1779 7817 2825 70 H(8e) 865 6581 3573 70 H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(9d)	1716	3022	6246	
H(11d) 4884 1480 7848 70 H(2e) 5332 6829 -42 70 H(3e) 4567 8839 494 70 H(4e) 2743 9357 1918 70 H(5e) 1779 7817 2825 70 H(8e) 865 6581 3573 70 H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(10d)	2631	1770	7651	
H(3e) 4567 8839 494 70 H(4e) 2743 9357 1918 70 H(5e) 1779 7817 2825 70 H(8e) 865 6581 3573 70 H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(11d)	4884	1480	7848	
H(4e) 2743 9357 1918 70 H(5e) 1779 7817 2825 70 H(8e) 865 6581 3573 70 H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(2e)	5332	6829	-42	70
H(5e) 1779 7817 2825 70 H(8e) 865 6581 3573 70 H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(3e)	4567	8839	494	70
H(8e) 865 6581 3573 70 H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(4e)	2743	9357	1918	70
H(9e) 117 4842 4450 70 H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(5e)	1779	7817	2825	70
H(10e) 1070 2927 3892 70 H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(8e)	865	6581	3573	70
H(11e) 2955 2599 2470 70 H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(9e)	117	4842	4450	70
H(2f) 9450 5794 7274 70 H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(10e)	1070	2927	3892	70
H(3f) 9654 4285 8863 70 H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(11e)	2955	2599	2470	70
H(4f) 11648 3683 9642 70 H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(2f)	9450	5794	7274	70
H(5f) 13408 4303 8743 70 H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(3f)	9654	4285	8863	70
H(8f) 14926 4992 7929 70 H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(4f)	11648	3683	9642	70
H(9f) 16549 5991 6941 70 H(10f) 16102 7388 5330 70	H(5f)	13408	4303	8743	70
H(10f) 16102 7388 5330 70	H(8f)	14926	4992	7929	70
10102	H(9f)	16549	5991	6941	70
H(11f) 13945 7932 4848 70	H(10f)	16102	7388	5330	70
	H(11f)	13945	7932	4848	70

Table 6.6 Atomic coordinates for the hydrogen atoms.

		molecule	/ perpendicui	morecure / perpendicular distance from plane A	om piane A	
	В	þ	ပ	р	v	f
Cl	0.00407	-0.01678	-0.01930	0.02593	-0.01830	-0.02953
C2	-0.00510	0.00286	-0.03035	0.00174	-0.00943	0.02744
C3	-0.01559	-0.00105	0.01795	-0.03435	-0.00200	-0.01600
C4	0.03673	0.01417	0.00488	0.04061	0.00587	0.00765
C5	-0.03589	-0.02839	-0.01531	-0.01436	0.00223	-0.00953
92	0.01579	0.02918	0.00353	-0.01958	-0.01496	0.01997
Mean Dev	0.01886	0.01540	0.01522	0.02276	0.00879	0.01835
R.M.S Dev	0.02299	0.01892	0.01773	0.02612	0.01073	0.02012

Mean Plane Analysis for the Phenyl ring (C1-C6). Table 6.7

	В	p	v	p	a	f
	-0.01985	-0.00146	0.00888	-0.00156	0.04082	-0.01593
	0.02146	0.00639	0.01091	0.01118	-0.01379	-0.00274
60	-0.01338	-0.00474	-0.01402	-0.01226	-0.00189	0.02172
C10	0.00376	-0.00175	-0.00353	0.00328	0.01003	-0.02310
C11	0.00170	0.00679	0.02461	0.00731	0.03743	0.00581
Z	0.00971	-0.00523	-0.02686	-0.00795	-0.05259	0.01425
Mean Dev	0.01165	0.00439	0.01480	0.00726	0.02610	0.01392
R.M.S Dev	0.01381	0.00487	-0.02686	0.00822	0.03197	0.01583

Mean Plane Analysis for the Pyridyl ring. Table 6.7 (continued)

			4		4	
	હ	p	ပ	p	ð	f
	-0.01874	0.01352	-0.00250	-0.00458	0.01019	-0.00203
	0.01743	-0.02262	0.00781	0.01841	0.00138	-0.00541
	-0.00411	0.02151	-0.01064	-0.02602	-0.01773	0.02884
	-0.02220	-0.00299	0.00703	0.01987	0.03125	-0.04170
	0.02762	-0.00942	-0.00169	-0.00768	-0.02508	0.02030
Mean Dev	0.01802	0.01401	0.00593	0.01531	0.01713	0.01965
R.M.S Dev	0.01964	0.01584	0.00682	0.01727	0.02013	0.02456

Table 6.7 (continued) Mean Plane Analysis for the Te-C1-C6-C7-N ring.

	f	-0.02294 -0.02720 0.05819 0.02296 0.02550 0.01811 -0.06121 -0.06122 -0.06465 0.00383 0.05067 0.02897 0.03520
plane Å	Ð	-0.00392 0.00444 -0.00066 -0.02519 0.02900 0.03183 -0.01383 -0.01383 0.03183 0.03183 0.03183 0.03183 0.03183 0.03183 0.03183 0.03183 0.03685 0.03685 0.03685
molecule / perpendicular distance from plane Å	p	0.00867 0.03855 0.00264 0.04911 -0.02221 0.02050 -0.01054 0.03854 -0.01395 -0.01395 -0.0147 -0.01654 -0.02099 0.02099
erpendicular	3	-0.01568 0.01935 -0.02301 -0.02766 0.00891 0.08142 -0.00206 -0.00335 -0.01336 0.00972 0.03757 -0.01336 0.00972 0.01587
molecule / p	þ	0.01101 -0.03651 0.00454 0.01723 0.02887 0.03416 -0.01316 0.00404 0.01132 0.01132 0.01134 0.01138
	а	-0.03871 -0.00861 -0.00809 0.00883 0.04714 -0.05163 -0.01261 -0.01261 0.00943 0.00943 0.002663 0.01087 0.02663 0.01087
		Te C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 N Mean Dev R.M.S Dev

Table 6.7 (continued) Mean Plane Analysis for the RTe moiety.

				T T ,		
	В	P	ပ	p	v	4
Te	0.02374	-0.02696	-0.04951	-0.02692	-0.06327	0.04989
Br	-0.09054	0.05452	0.04955	0.05265	0.08533	-0.17586
C1	0.02204	-0.05484	0.00232	0.02084	-0.02392	-0.01160
C2	0.04396	-0.01787	-0.4279	-0.01843	-0.03585	0.06870
C3	0.02235	0.00905	0.01955	-0.05776	0.01256	0.01678
C4	0.03412	0.03718	0.01635	0.03020	0.04259	0.00789
C5	-0.07125	-0.0225	-0.00820	-0.00956	0.02051	-0.03021
C6	-0.00994	0.00447	-0.00373	-0.01213	-0.03475	0.00604
C7	-0.01287	-0.01203	-0.00191	0.02729	-0.01156	-0.04341
<u>د</u> د ک	-0.01831	0.02014	0.01456	0.05535	-0.02248	-0.05992
60	-0.05668	0.02228	0.00266	0.00236	0.04192	0.00397
C10	0.00537	0.01413	0.01270	-0.01831	0.04233	0.02971
C11	0.04787	-0.00163	0.02650	-0.02916	0.04421	0.08536
Z	0.06016	-0.02619	-0.03805	-0.01641	-0.09763	0.05265
Mean Dev	0.03708	0.02311	0.02059	0.02696	0.04135	0.04585
R.M.S Dev	0.04446	7070	2573600	0.031652	0.04811	0.06375

Table 6.7 (continued) Mean Plane Analysis for the RTeBr molecules.

independent molecules). With the help of the structure solved here and those reported elsewhere⁽⁷⁴⁾, a useful bank of information has been collected for molecules of the type RTeL [R= 2-(2'-pyridyl)phenyl-] illustrating the strength of the Te-N interaction relative to the group trans to the nitrogen atom. Relevant data are shown in table 6.8 below. Strong Te-N interactions are seen when L= Cl, Br. However the

Compound	Atom Trans to N	Te-N distance (Å)
RTeBr	Br	2.24 (mean)
(RTeCl) ₂ R'HgCl	Cl	2.24 (mean)
RTe(dmdtc)	S	2.354(4)
RTeR'	C	2.695(4)
R= 2-(2'pyridyl)p R'= p-ethoxyphen dmdtc = dimethyl	yl-	

Table 6.8. Trans influence on Te-N interactions.

presence of a Te-C covalent bond <u>trans</u> to the Te-N vector significantly weakens the interaction. For these Te(II) compounds a <u>trans</u> influence series can be suggested

$$Br \sim Cl < S < C$$

in agreement with results obtained previously from consideration of other tellurium compounds (137).

All six molecules have the RTeBr group planar to within ± 0.08 Å with the bromine atom displacements from this plane in the range 0.10-0.23 Å. The small value for the C-Te-N bond angles [range 75.1-77.9°] is due to the constraint of the five membered chelate ring. It is this constraint that distorts the tellurium coordination from ideal pseudo trigonal bipyramidal values.

The Te-C distance (mean 2.11 Å) is in good agreement with the sum of the Pauling single bond covalent radii⁽¹³⁸⁾ and with the mean value given by Allen *et al* ⁽¹²⁾ for Te-C(aromatic) of 2.116 Å.

The bromine atom lies <u>trans</u> to nitrogen with N-Te-Br angles ranging from 168.1-169.9°. The mean Te-Br bond length of 2.71 Å may be compared with Te(IV)-Br distances of 2.59-2.67 Å in RTeBr₃ and 2.63-2.76 Å in [2-(dimethylaminomethyl)phenyl]tellurium(IV)-tribromide⁽¹³⁹⁾. However it is shorter than the distances in the Te(II) compounds PhTe(tu)Br (3.11 Å)⁽¹⁴⁰⁾, PhTe(etu)Br (2.83 Å)⁽¹⁴¹⁾ and PhTe(esu)Br (3.05 Å)⁽¹⁴²⁾ where the bromine atom is <u>trans</u> to carbon.

Surprisingly there are no intermolecular contacts between the molecules and this result does not help explain the mass spectrum. Without further evidence one can only speculate that the high m/e ions in the mass spectrum arise as a result of thermolysis of the sample.

In collaboration with colleagues at Surrey University, the

structure of (RTeCl)₂.(R'HgCl) [R= 2-(2'pyridyl)phenyl- and R'= p-ethoxyphenyl-] was determined as part of other work being carried out within the research group. A diagram of the structure is shown in figure 6.4 below. The link between this structure and that of RTeBr is greater than appears on first impression. Both compounds have the organotellurenyl halide (RTeX) molecules present. The molecular dimensions of RTeCl and RTeBr are very similar. Thus the geometry around tellurium in both structures is pseudo-trigonal bipyramidal with the lone pairs on tellurium occupying equatorial positions.

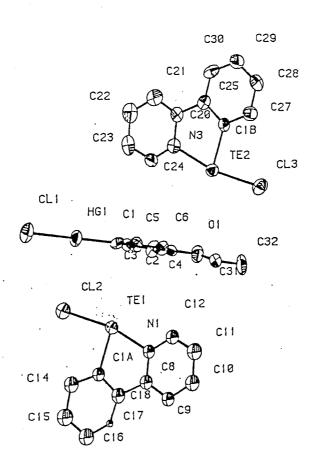


figure 6.4

The Te-N contact in RTeCl (2.24 Å) is similar to the value in RTeBr (mean = 2.24 Å). Both halogens lie <u>trans</u> to nitrogen. In (RTeCl)₂.(R'HgCl) there are no intermolecular contacts between the RTeCl and R'HgCl molecules and the compound can be considered as an "inclusion compound". The interesting crystallographic point is that both compounds have six molecules in the unit cell. It is as if two molecules of RTeX have been replaced by two R'HgCl molecules to form (RTeCl)₂.R'HgCl. Based on this point of interest it may be possible to design similar inclusion compounds.

6.4 Experimental and Results

<u>Crystallographic Analysis of 2-(2-pyridyl)phenylselenium(II)</u> tribromomercurate(II).

In the past few years a whole range of organotellurium compounds based on 2-phenylpyridine have been synthesised and their chemistry is now well understood. On the contrary, the analogous selenium compounds were unknown until relatively recently when Mbogo at Aston University attempted some of their synthesis. During his work he encountered some differences in the synthetic pathways to those of the tellurium series⁽¹⁴³⁾. As part of this work the crystal structure of 2-(2'-pyridyl)phenylselenium(II) tribromomercurate(II) was solved.

An irregular shaped crystal of size 0.3mm^3 was mounted on an Enraf Nonius CAD-4 diffractometer. Final cell dimensions and reflection intensities were measured with graphite monochromated Mo- K_{α} radiation with the diffractometer operating in the ω -2 θ scan mode. Three standard reflections were measured every three hours to monitor the stability of the system.

The structure was determined by Patterson and Fourier Methods and refined by least squares. Anisotropic thermal parameters were used for the heavier atoms Hg, Se and Br only. Carbon atoms were refined isotropically and hydrogen atoms were placed in calculated positions riding on their respective bonded atom. Details of the data collection are

Crystallographic and Experimental Data. for $RSe^+HgBr_3^-$

Formula	$C_{11}H_8Br_3HgNSe$
Mol Wt.	673.5
Crystal Size mm ⁻³ ,	~0.3
Space Group	C2/c
System	monoclinic
a, Å	16.427(4)
b, Å	13.794(7)
c, Å	6.863(2)
β, deg	109.07(10)
V, Å ³	14.698
Z	4
Dcalc, g/cm ³	3.044
μ / mm ⁻¹	21.97
$\lambda(Mo-K\alpha)$, Å	0.71069
Temp, °C	25
No. of unique data	1295
Observed Data [IF>5oIFI]	612
Scan Range, θ	2-25
Weighting Scheme	$w = 1/[\sigma^2(F) + 0.0001F^2]$
Absorption Correction	empirical (DIFABS)
R	0.093

Table 6.9

given in table 6.9. The molecule appears to be disordered about a two-fold axis, the carbon atom bonded to selenium and the pyridyl nitrogen atom becoming equivalent. Refinement in space group Cc without allowing for disorder did not converge satisfactorily

Computations were carried out on the University of Birmingham Honeywell computer with the SHELX⁽¹³²⁻¹³³⁾ suite of programmes. An empirical absorption was applied using DIFABS⁽¹⁴⁴⁾ and the diagrams were drawn using PLUTO⁽¹⁴⁵⁾ at the University of Manchester Regional Computer Centre.

Bond lengths and bond angles are listed in table 6.12, and fractional atomic coordinates in table 6.11. Table 6.13 illustrates mean plane deviations of the atoms. The structure is shown in Figure 6.5 and the packing diagram in Fig 6.6.

6.5 <u>Discussion</u>

Owing to disorder in the structure it was not possible to distinguish between the nitrogen and the carbon atom bonded to selenium and hence the NC-Se bond distances are equivalent [1.91(3) Å]. This distance is close to the sum of the Pauling single bond covalent radii of selenium (1.14 Å) and sp² hybridised carbon (0.74 Å). Furthermore a search of the Cambridge structural database⁽¹⁴⁶⁾ for Se-C(sp²) distances revealed 843 bond lengths with a mean distance of 1.898(2) Å which is in close agreement with the value found here; for

Table 6.10 Anisotropic temperature factors $(\mathring{A}^2\ x\ 10^3)$ with e.s.d's in parentheses.

	U11	U22	U33	U23	U13	U12
Hg(1) Br(1) Br(2) Se(1)	88(4) 195(11)	101(4) 49(4)	110(3) 111(5) 65(5) 3(2)	25(4)	16(2) 34(4) 22(6) 8(2)	0 30(3) 0 0

Table 6.11

Fractional atomic coordinates $(x10^4)$ with e.s.d's in parentheses and equivalent isotropic temperature factors $(\mathring{A}^2 \times 10^3)$.

	U	Ueq = $1/3$ (trace of the U tensor)				
	X	У	Z	U		
Hg(1)	0	955(2)	2500	83a		
Br(1)	-1377(4)	1920(5)	1420(11)	100a		
Br(2)	0	-851(5)	2500	108a		
Se(1)	0	3660(4)	2500	40a		
NC(1)	819(20)	4692(22)	3041(49)	40(8)**		
C(2)	455(23)	5566(28)	2811(58)	44(9)		
C(3)	1102(28)	6405(34)	3199(66)	61(11)		
C(4)	1876(31)	6275(35)	3696(76)	70(13)		
C(5)	2217(36)	5346(37)	3907(81)	81(15)		
C(6)	1645(24)	4591(28)	3581(61)	47(10)		

a Refined anisotropically.

Fractional atomic coordinates $(x10^3)$ of the hydrogen atoms with e.s.d's in parentheses and isotropic temperature factors $(\mathring{A}^2 \times 10^3)$.

	X	у	Z	Uiso	
H(3)	903	7155	3072	70	
H(4)	2322	6875	3965	70	
H(5)	2902	5215	4380	70	
H(6)	1897	3843	3636	70	

^{**} Due to disorder NC(1) represents 50% C and 50% N.

Table 6.12 Bond lengths (Å) and bond angles (°) (e.s.d.'s in parentheses).

Hg(1) Br(1)	2.518(6)	C(2) C(3)	1.53(6)
Hg(1) $Br(2)$	2.492(8)	C(2)	1.22(6)
Se(1) NC(1)	1.91(3)	O(4) O(5)	1.39(7)
NC(1) C(2)	1.33(5)	0(*)	1.37(6)
NC(1) C(6)	1.29(5)	G(0)	1.41(7)
Br(1) - $Hg(1)$ - B	r(2) 121.9(2)	NC(1) -C(2) -(C2')	115(4)
Br(1) -Hg(1) -Br	r(1') 116.2(3)	C(3) $-C(2)$ $-C(2')$	131(4)
NC(1) -Se(1) -NC	C(1') 84(2)	C(2) - $C(3)$ - $C(4)$	123(5)
Se(1) -NC(1)-C(2) 113(2)	C(3) -C(4) -C(5)	121(5)
Se(1) -NC(1)-C(6) 126(3)	C(4) -C(5) -C(6)	117(6)
C(2) -NC(1)-C(6) 121(3)	NC(1) - C(6) - C(5)	124(4)
NC(1)- C(2) -C(3) 114(3)		

Table 6.13

Mean Plane Analysis for (RSe+)(HgBr₃-).

Mean Plane Analysis for NC1-C2-C3-C4-C5-C6(Å)

NC1 -0.00568

C2 0.00749

C3 -0.00572

C4 0.00274

C5 -0.00103

C6 0.00220

Mean Plane Analysis for NC2-C7-C8-C9-C10-C11(Å)

NC2 0.00568

C7 -0.00749

C8 0.00572

C9 0.00274

C10 0.00103

C11 -0.00220

Mean Plane Analysis for Se1-NC1-C6-C11-NC2(Å)

Se1 0.00000

NC1 -0.00303

C6 0.00545

C11 -0.00545

NC2 0.00303

Mean Plane Analysis for Hg-Br(1)-Br(2)-Br(1')

Hg1 0.00000

Br1 0.00000

Br2 0.00000

Br1' 0.00000

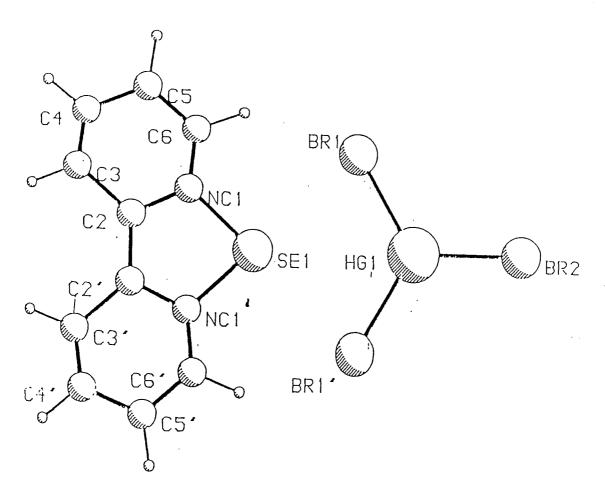
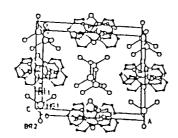



Figure 6.5 Structure of RSe⁺HgBr₃⁻.

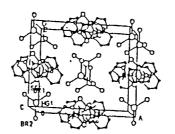


Figure 6.6 Stereoscopic view of (RSe⁺)(HgBr₃⁻).

example in the structure of 9,10-diseleno-anthracene⁽¹⁴⁷⁾ the C-Se distances are in the range 1.89(5) to 1.908(5) Å.

The sum of the Pauling covalent radii of Se (1.14 Å) and N (0.72 Å) is 1.86 Å⁽¹³⁸⁾. The Se-N distance is slightly longer, indicating that if this is not a formal bond then it is at least a strong coordinate interaction. This interaction holds the organic group in a planar geometry. The Cambridge structural database yielded 34 Se-N single bond distances, with a mean of 1.82 Å. In the analogous compound 5-(1,2-benzoselenazol-3-yl)-3,4-dimethyl-pentadienylnitrile, the Se-N bond distance is 1.833(7) Å⁽¹⁴⁸⁾. Values of 2.19(2) and 2.20(2) Å for a non-bonded Se-N interaction have also been reported for SeOCl₂.C₅H₅N⁽¹⁴⁹⁾.

The ${\rm HgBr_3^-}$ anion is accurately planar and the RSe+ cation is planar to within ${}^\pm 0.07$ Å. The whole complex is planar to within ${}^\pm 0.02$ Å. The Hg-Br distances of 2.518(6) and 2.492(8) Å are in agreement with analogous Hg-Br distances in tetramethylammonium tribromo mercurate(II)(150) (2.48-2.56 Å), bis(tetramethylammonium) tetrabromo mercurate(II)(151) [2.585(3) - 2.589(3) Å] and ${\rm HgBr_2}^{(152)}$ (2.48 Å). A histogram of the Hg-Br distance in the literature peaks in the range 2.45-2.55 Å. The mercury atom has two additional Br atoms as close neighbours Br(2') and Br(2''), completing a trigonal bipyramidal coordination geometry about mercury (see Fig. 6.6) with Hg---Br(2') and Br(2'') 3.43(1) Å. These distances are close to those found in

 $HgBr_2^{(152)}$.

The value of 3.21(1) Å for the Se---Br(1) distance is outside the Pauling single bond length of 2.31 Å, but well within the van der Waals distance of 3.75 Å⁽¹³⁸⁾ implying a moderately strong secondary interaction. This interaction may be responsible for the slightly longer Hg---Br(1) bond length relative to the Hg---Br(2) value. The Br(1) atoms related by the two-fold axis lie almost exactly <u>trans</u> to the NC atoms with the NC1-Se-Br(1) angle 177.9°. Also noteworthy is the Hg---Se distance of 3.73(1) Å.

The demonstation of the existence of the 2-(2'pyridyl)phenyl selenium(II) cation, which is isoelectronic with dibenzoselenophene, in this structure is of interest in the context of earlier work. Thus Bryce $et\ al\ ^{(153)}$ suggested that the compound 1(B) is an intermediate in the conversion of 1(A) to 1(C).

$$CH_3$$
 CH_3
 CH_3

There are similarities between this crystal structure and the 2-(2'-pyridyl)phenyltellurium compounds which have been studied in our laboratory. For example in the mass spectra of the tellurium compounds, the most dominant fragment is RTe+ which happens to be isoelectronic to dibenzotellurophene, a well known stable compound.

$$Te^+$$
 dibenzotellurophene

This species is related to the selenium cation (RSe $^+$) in the crystal structure above. In the context of MOVPE, it is suggested that the thermal decomposition of compounds of the type RTeR' and RSeR' (R = 2-phenylpyridine and R' = alkyl) is determined by the stability of the these cations.

6.6 <u>Crystallographic Analysis of bis(p-methoxyphenyl)-tellurium(IV) dibenzoate.</u>

Colourless crystals of <u>bis(p-methoxyphenyl)tellurium(IV)</u> dibenzoate were obtained by recrystallisation from ethanol. Analytical, infra-red, N.M.R. and mass spectroscopic data have been used to characterise the compound (chapter 3). Since very little is known about the bonding of carboxylate ligands to tellurium, a crystal structure examination of this compound was undertaken.

A crystal of size $0.2 \times 0.2 \times 0.1$ mm was selected from the batch of crystals and mounted on a CAD-4 diffractometer. The data collection proceeded smoothly but problems were encountered during the refinement. It became apparent that of the 4755 reflections collected (scanned in the range $2 < \theta < 25^{\circ}$) only 1473 of these could be used in the final analysis. It is believed that disorder within the structure led to poor data collection. However unit cell dimensions were obtained and are presented here.

Crystal data:-

Monoclinic:-

 $a = 10.976(2) \text{ Å, } b = 15.274(3) \text{ Å, } c = 15.733(3) \text{ Å, } \beta = 108.34(2)^{\circ}.$

Chapter Seven RAMAN SPECTROSCOPY

7.1 **INTRODUCTION**

Raman spectroscopy is a useful technique for structural investigations of compounds. The technique relies on changes in bond polarisability and since tellurium is a large polarisable atom its compounds are attractive for Raman studies. Surprisingly reports on this class of compound in the literature are rare. On the contrary, there are many reports on the infra-red spectra of organotellurium compounds such that their spectra are well understood and have been used for detailed structural investigations. In general Raman spectroscopy has been used to supplement such infra-red data⁽¹⁵⁴⁾. With the emergence of X-ray crystallography as a powerful technique for crystal and molecular structure characterisation, infra-red is no longer the preferred technique for structural studies and has been relegated to the routine examination of tellurium compounds. In recent years our research group has reported a number of organotellurium halides, particularly those of and 2-phenylpyridine, some of which have been azobenzene crystallographically characterised. Since we had access to a FT-Raman spectrometer, we decided to take the opportunity of studying these compounds particularly in the light that tellurium-halogen vibrations should be highly polarisable.

7.2 EXPERIMENTAL

The following compounds were investigated and were prepared by the indicated literature methods; RTeCl₃, RTeCl, RTeBr₃⁽⁷⁸⁾ and RTeBr⁽⁷⁸⁾ [where R= 2-(2'-pyridyl)phenyl-]; (pap)TeCl₃⁽⁹⁰⁾, (pap)TeCl⁽⁹⁰⁾ and (pap)₂Te₂⁽⁹⁰⁾ (pap= 2-phenylazophenyl). RTeCl₃ was synthesised by the same method as RTeBr₃ but substituting TeBr₄ for TeCl₄. RTeCl was then obtained by reduction using conditions identical to those given for RTeBr. To extend the number of Te(II) compounds studied, R'TeCl and R'TeBr [R'= 2-(2'-quinolinyl)phenyl-] were prepared in a similar fashion to RTeCl and RTeBr above.

Raman spectra were obtained on a Perkin-Elmer FT-Raman 1700X spectrometer using a NdYag laser operating at 1064nm and a NIR detector cooled to 77K. Spectra were obtained from solids pressed to a powder and held with a cup sample holder. For colourless samples, data were collected using laser powers of 300-500mW. Coloured samples required lower laser power (100-300mW).

Electronic spectra were recorded on a Perkin-Elmer Lamda 9 UV/VIS/NIR spectrometer working in the absorbance mode. Spectra were measured on solutions in acetone contained in 1cm quartz cells. FT-IR spectra were recorded on a Perkin-Elmer 1710 instrument using KBr and polyethylene discs.

7.3 **RESULTS**

Raman spectra of outstanding quality were obtained for most of the compounds except azobenzene, (pap)TeCl and (pap)₂Te₂ which gave some problems with fluorescence. Some of the spectra are illustrated in figures 7.1-7.9. By contrast the FT-IR data showed weaker and broader bands, with the additional disadvantage that some analytically useful regions were masked by polyethylene vibrations (CsI could not be used due to its ready metathesis with these compounds). The low frequency Raman data are tabulated for the azobenzene derivatives (table 7.1), the 2-phenylpyridine derivatives (table 7.2) and the 2-phenylquinoline compounds (table 7.3)

Stuctural data are available for some of the compounds studied eg. (pap)TeCl₃ (P1, Z=2)^(90a), (pap)TeCl (P1, Z=4)^(90b), RTeBr₃ (P1, Z=2)⁽⁷⁸⁾ and RTeBr (P1, Z=6)⁽¹³⁶⁾. The compounds crystallising in space group P1, show coincidence of Raman and infra-red bands; the spectra are determined from molecular symmetry. RTeBr is more complex and is discussed further on.

In the high frequency region, bands assignable to $\upsilon(N=N)$ (azobenzene derivatives) and $\upsilon(C=N)$ (2-phenylpyridine and 2-phenylquinoline derivatives) showed enhanced Raman intensities. We therefore recorded the electronic spectra of all compounds but no near infra-red (NIR) bands coincident with or near to the laser frequency

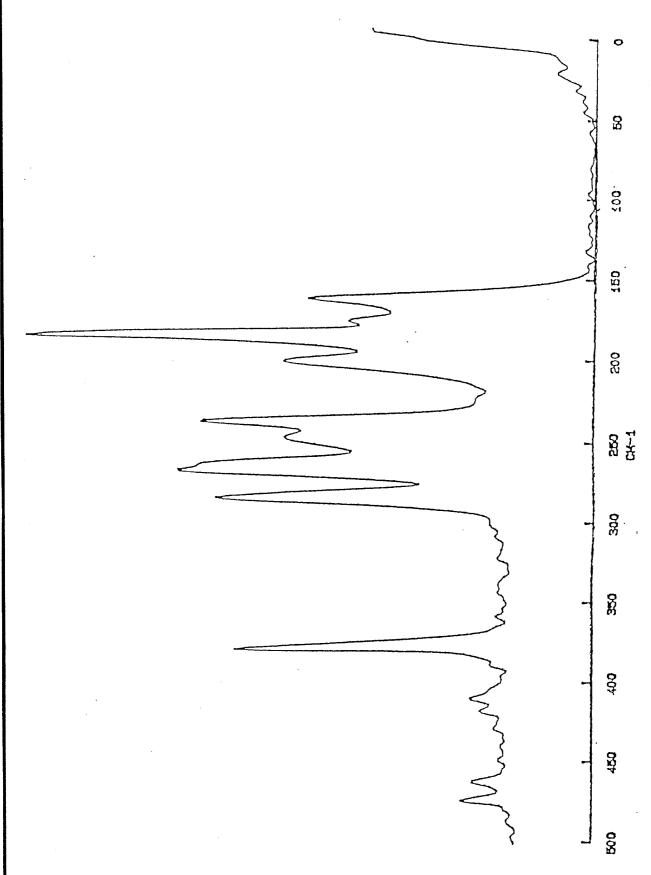


Figure 7.1 Low frequency Raman spectrum of RTeBr₃

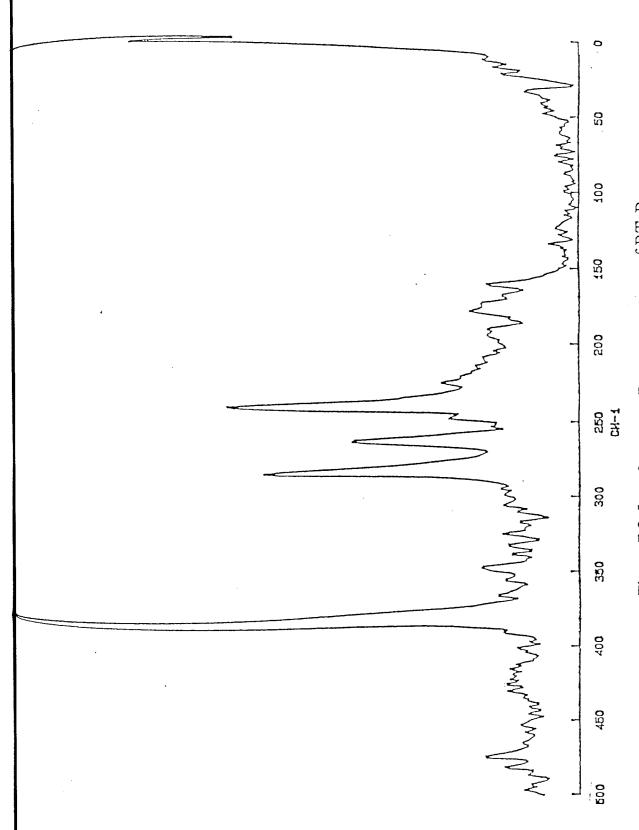
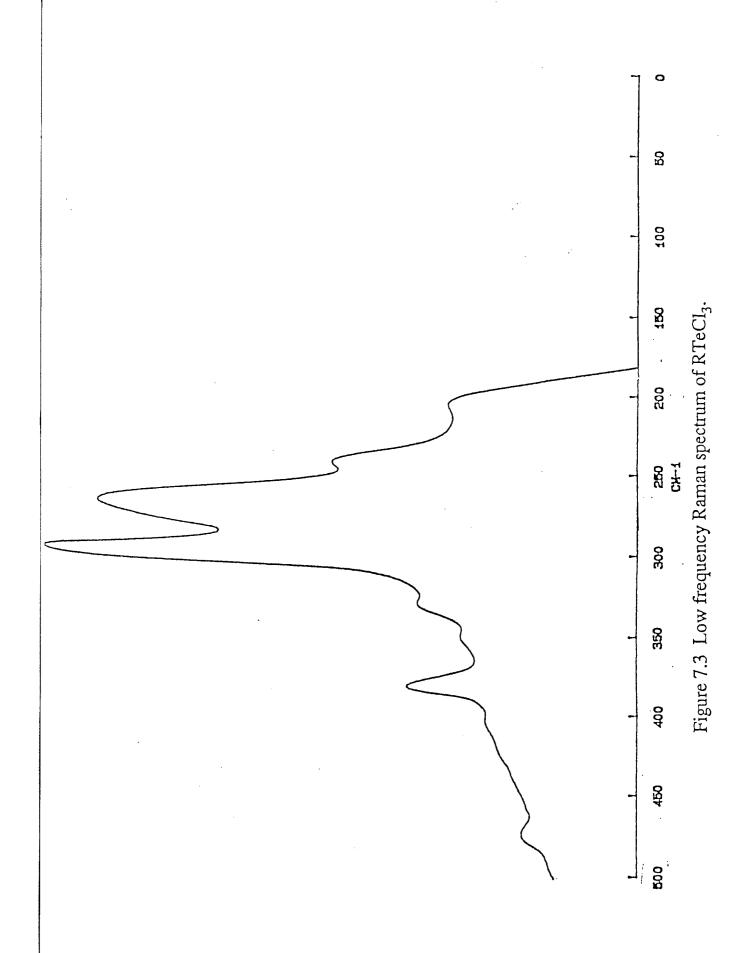



Figure 7.2 Low frequency Raman spectrum of RTeBr

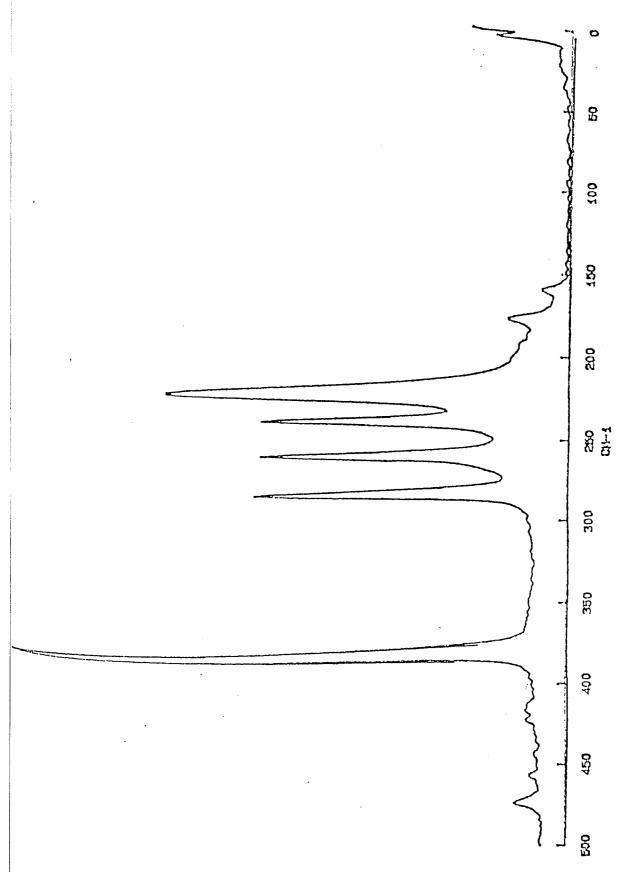


Figure 7.4 Low frequency Raman spectrum of RTeCI.

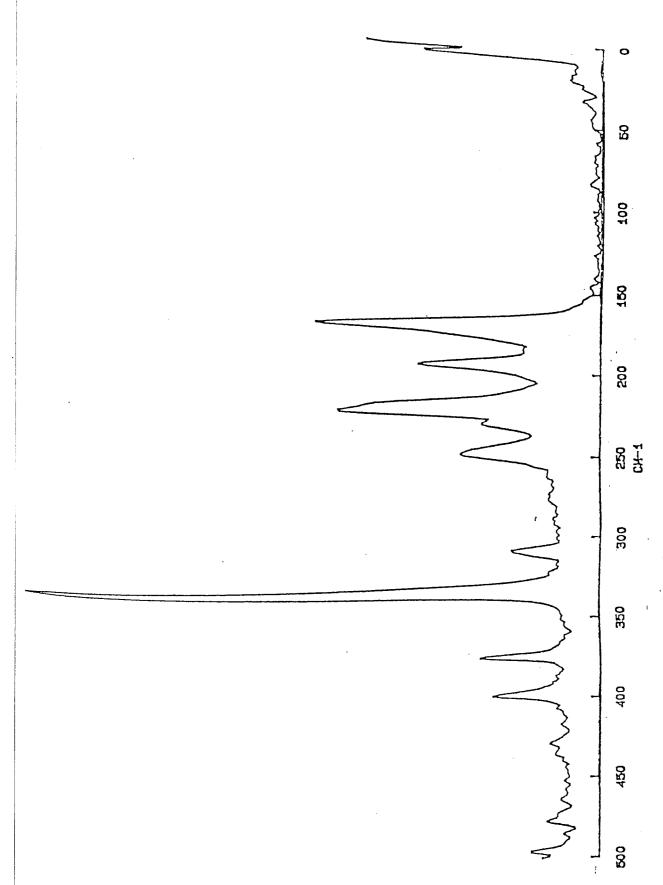


Figure 7.5 Low frequency Raman spectrum of R'TeBr.

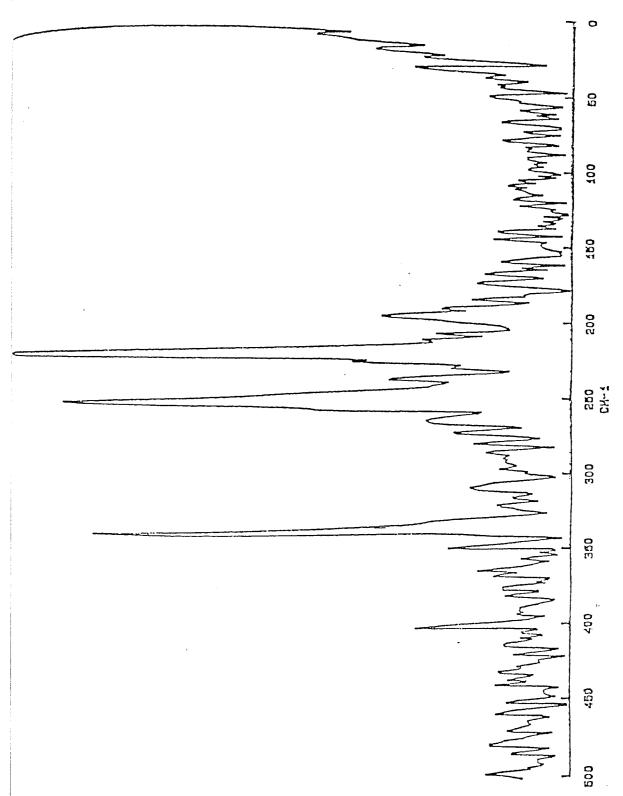


Figure 7.6 Low frequency Raman spectrum of R'TeCl.

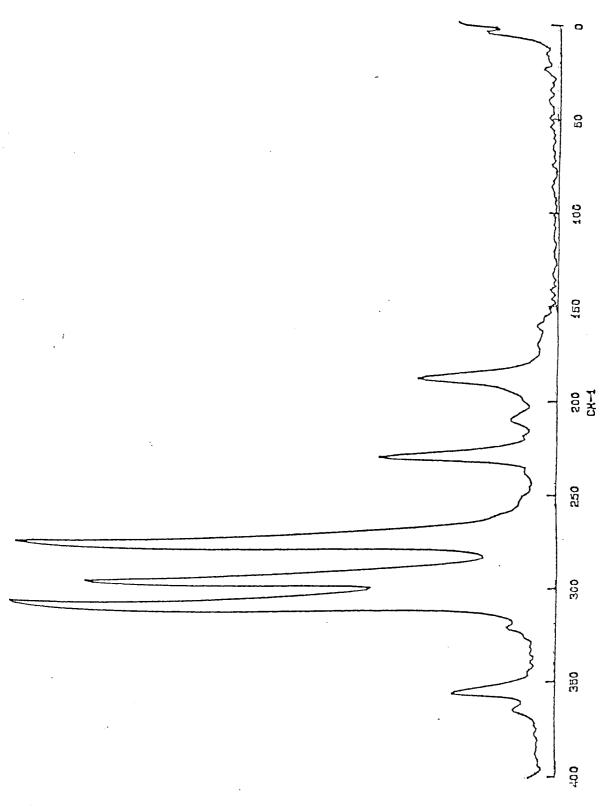


Figure 7.7 Low frequency Raman spectrum of (pap)TeCl₃.

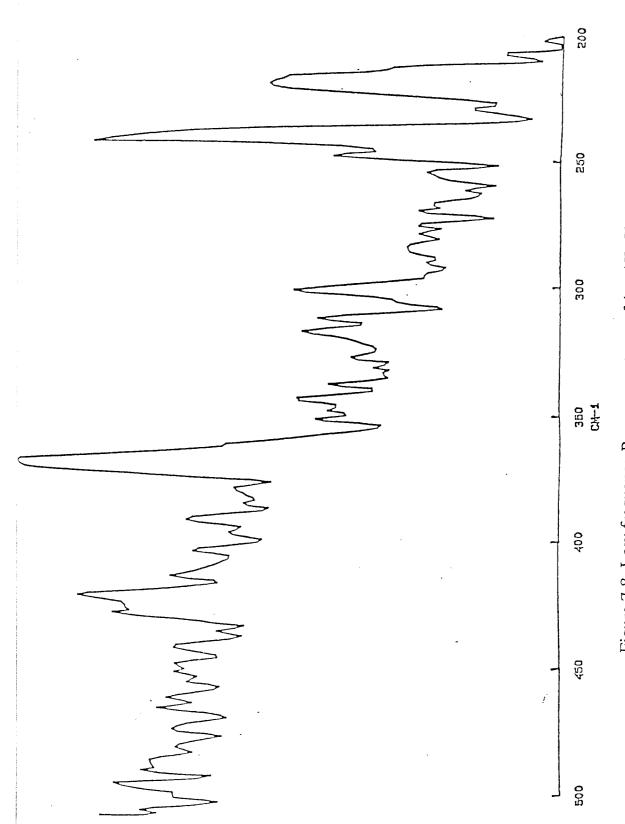


Figure 7.8 Low frequency Raman spectrum of (pap)TeCl.

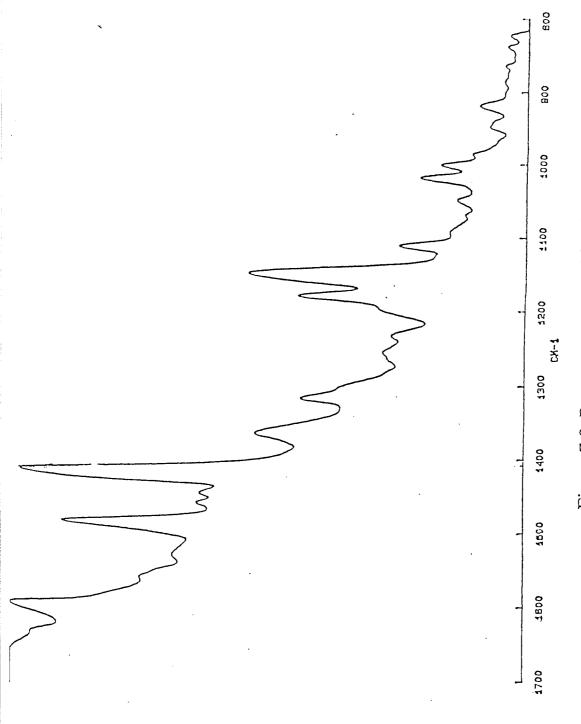


Figure 7.9 Raman spectrum of (pap)₂Te₂.

(1064nm) were observed. No resonance or pre-resonance enhancement need be considered.

7.4 <u>DISCUSSION</u>

The scarcity of Raman vibrational spectroscopic data for organotellurium compounds led us to probe a series of well characterised compounds featuring tellurium-halogen bonds. The quality of the Raman spectra was far more impressive than the infra-red traces and it is recommended that where available, Raman spectroscopy is the more useful of the two vibrational spectroscopic techniques.

In azobenzene $\upsilon(N=N)$ was located at 1433cm⁻¹. Telluration of this ligand to produce (pap)TeCl₃ and (pap)TeCl with consequent Te-N coordination leads to lowering of the $\upsilon(N=N)$ frequencies to 1410 and 1375cm⁻¹ respectively. The lower frequency for the Te(II) compound reflects the stronger Te<-N interaction [N.B Te-N bond lengths are for (pap)TeCl {2.23(2) and 2.19(2) Å} and for (pap)TeCl₃ {2.417(4) Å}].

McWhinnie and coworkers studied the 125 Te Mossbauer spectroscopy of these compounds $^{(155)}$. The quadrupole splitting value (Δ) can be used to predict changes in p-electron density around tellurium. Compounds of the type RTeX₃ have been shown to have quadrupole splitting values of \sim 9.0 mms⁻¹ and for RTeX of \sim 14 mms⁻¹. The value for (pap)TeCl₃ is 8.1 mms⁻¹ is in accord with expectation. However

(pap)TeCl shows $\Delta=11.8 \text{mms}^{-1}$ much lower than expected. One possibility is that the p-electron density is drained away from tellurium and is delocalised in the C=C-N=N->Te ring. This assumption is likely since the C-N and N=N bond lengths are longer than in azobenzene and there is a strong Te<-N interaction. Therefore the lowering of the Raman $\upsilon(N=N)$ vibrations in the azobenzene derivatives is consistent with the results obtained from the Mossbauer study.

The tellurium-halogen vibrations are readily assigned and are indicated in tables 7.1-7.3. The spectra of the azobenzene derivatives are "cleaner" in that the tellurium halogen vibrations overlap less with the X-sensitive modes of the organic ligand (ie. ligand bands (R) which shift on substitution with X groups in RX).

In a previous report by McWhinnie and coworkers the $\upsilon(\text{Te-Cl})$ stretching vibration in (pap)TeCl has been assigned at 247cm⁻¹ using infra-red data^(70b). This assignment seemed reasonable since (pap)TeCl₃ showed no major bands in this region and $\upsilon(\text{Te-Cl})$ was expected to be lower in Te(II) than Te(IV) compounds. In the Raman spectrum a further band at 220cm⁻¹ is observed. This band is obscurred in the infrared spectrum by strong polyethylene absorptions. Comparison of the spectra of RTeCl and RTeBr shows that $\upsilon(\text{Te-Cl})$ is located at 218cm⁻¹. The molecular dimensions of RTeCl have been determined in the inclusion compound (RTeCl)₂(R'HgCl) (R'= p-ethoxyphenyl-)⁽¹³⁶⁾ in which the Te-Cl bond distance is 2.558 Å, similar to values reported in

(pap)TeCl (ie. 2.552(8) and 2.549(8) Å). Therefore using this evidence it is suggested that the band at 220cm⁻¹ is a Te-Cl vibration and the original assignment of 247cm⁻¹ (IR) must be revised and may be a candidate for a Te-N vibrational mode. To support this observation, a strong band in the Raman spectrum of R'TeCl (R'= 2-(2'-quinolinyl)phenyl) at 218cm⁻¹ is also asigned as υ(Te-Cl).

The crystal and molecular structure of RTeBr (R= 2-(2'-pyridyl)-phenyl) has been solved (see chapter six). The compound crystallises in space group P1 and there are six non-symmetry related molecules in the asymmetric unit. In the Raman spectrum the $\nu(Te-Br)$ region appears more complex than expected if only the molecular symmetry determined the selection rules. A weak band at $\nu=168cm^{-1}$ is assigned as $\nu(Te-Br)$ which is similar to the value of $\nu=165cm^{-1}$ observed in R'TeBr [R'= 2-(2'-quinolinyl)phenyl].

The low frequency Raman spectra of the 2-phenylpyridine and 2-phenylquinoline compounds are very rich (from X-sensitive contributions) and for this reason no Te-N assignment can be made.

In summary, the superior quality of the Raman spectra observed compared to the infra-red spectra, leads to the conclusion that where available, Raman spectroscopy is the technique of choice.

Table 7.1 Low frequency FT-Raman data for some tellurated 2-phenylpyridines.

RTeCl ₃	RTeBr ₃	RTeCl	RTeBr	RH	
377 m 349 w	375 m	379 s	377 s		
329 w				322 w	
<u>283 v.s</u>	282 m	285 m	282 m		<u>υ(TeCl)</u>
<u>266 s</u>	266 m	260 m	259 m	261 sh	<u>υ(TeCl)</u>
	263 sh			256 sh	
241 m	247 m	240 m	238 m.s	246 s	
	236 m				
		<u>218 s</u>			<u>υ(TeCl)</u>
204 m	202 m				
	<u>186 s</u>				<u>v(TeBr)</u>
	<u>176 m</u>	175 w	179 w.m		<u>v(TeBr)</u>
	164 m		173 w.m		
		158 w	<u>168 w.m</u>		<u>υ(TeBr</u>)
			161 w.m		

R= 2-(2'pyridylphenyl)-

s= strong; m= medium; w= weak; sh= shoulder.

Table 7.2 Low frequency FT-Raman data for some tellurated azobenzene compounds.

(pap)TeCl ₃	(pap)TeCl		
365 w	369 w		
354 w.m			
320 w			
<u>303 v.s</u>		υ(TeCl)	
<u>288 s</u>		υ(TeCl)	
<u>272 v.s</u>		υ(TeCl)	
232 m	242 m		
	<u>220 m.s</u>	<u>υ(TeCl)</u>	
210 w			
184			

pap= phenylazophenyl-

w= weak; m= medium; s= strong.

Table 7.3 Low frequency FT-Raman data for some tellurated 2-phenylquinoline compounds.

R'TeCl	R'TeBr	
399 w	395 w	
	372 w	
337 s		
335 sh	330 sh	
	307 w	
250 sh		
247 s	248 w.m	
	230 sh	
225 sh	222 m	
<u>218 vs</u>	220 sh	<u>υ(TeCl)</u>
193 w	193 w.m	
	<u>165 m</u>	<u>v(TeBr)</u>

R'= 2-(2'-quinolinyl)phenyl-

w= weak; m= medium; s= strong

REFERENCES

REFERENCES

- 1. H. M. Manasevit, App. Phys. Letters, 1968, 12, 156.
- 2. H. M. Manasevit and W. I. Simpson, *J. Electrochem. Soc.*,1969, **116**, 1725.
- 3. H. M. Manasevit and W. I. Simpson, *J. Electrochem. Soc.*,1971, **118**, 644.
- 4. J. B. Mullin, S. J. C. Irvine and D. J. Ashen, *J. Cryst. Growth*, 1981, **55**, 92.
- 5. J. B. Mullin, S. J. C. Irvine and J. Tunnicliffe, *J. Cryst. Growth*, 1984, **68**, 214.
- 6. B. Cockayne and P. J. Wright, J. Cryst. Growth, 1984, 68, 223.
- 7. S. J. C. Irvine, J. Tunnicliffe and J. B. Mullin, *J. Cryst. Growth*, 1983, **65**, 479.
- 8. B. Cockayne and P. J. Wright, J. Cryst. Growth, 1984, 68, 223.
- 9. P. J. Wright, R. J. M. Griffiths and B. Cockayne, *J. Cryst.Growth*, 1984, **66**, 26.
- 10. T. F. Kuech and J. O. McCaldin, *J. Electrochem. Soc.*, 1981,**128**, 1142.
- S. J. C. Irvine, J. B. Mullin and A. Royle, *J. Cryst. Growth*, 1982,
 57, 15.
- 12. I. Bhat and S. K. Ghandi, J. Electrochem. Soc., 1988, 138.
- 13. M. R. Czerniak and B. C. Easton, J. Cryst. Growth, 1984, 68, 128.
- 14. M. D. Pattengill, Chem. Phys., 1983, 75, 59.
- J. B. Mullin and S. J. C. Irvine, J. Vac. Sci. Technol., 1982, 21, 178.

- 16. W. E. Hoke and P. J. Lemonias, *Appl. Phys. Letters*, 1985, **46**, 398.
- 17. I. B. Baht and S. R. Ghandi, J. Cryst. Growth, 1986, 75, 241.
- 18. I.B. Baht, H. Fardi, S. R. Ghandi, J. Vac. Sci. Technol., 1988, A6, 2800.
- 19. B. J. Morris, Appl. Phys. Lett., 1986, 48, 867.
- 20. J. E. Jensen, P. D. Brewer, G. L. Olson, L.W. Tutt and J. J. Zinck, J. Vac. Sci. Technol., 1988, A6, 2808.
- 21. S. Fujii, Y. Fujita and T. Iuchi, J. Cryst. Growth, 1988, 93, 750.
- 22. S. J. C. Irvine, J. B. Mullin, H. Hills, G. T. Brown and S. Barnett, *J. Cryst. Growth*, 1988, **86**, 188.
- 23. S. J. C. Irvine, J. Vac. Sci. Technol. B., 1989, Vol. 7 No. 5, 1191.
- 24. S. J. C. Irvine and J.B. Mullin, J. Cryst. Growth, 1981, 55, 107.
- 25. J. B. Mullin and S. J. C. Irvine, *J. Vac. Sci. Technol.*, 1986, **A4(3)**, 700.
- S. J. C. Irvine, J. Geiss, J. B. Mullin, G. W. Blackmore and O. D. Dosser, J. Vac. Sci. Technol. B., 1985, B3(5), 1450.
- 27. S. J. Irvine, J. B. Mullin and J. Tunnicliffe, *J. Cryst. Growth*, 1984, **68**, 188.
- 28. W. E. Hoke, P. J. Lemonais and R. Korenstein, *J. Mater. Res.* 1988, **3**, 329.
- J. Thompson, P. Mackett, L. M. Smith, D. J. Cole-Hamilton and
 D. V. Shenai-Khatkhate, J. Cryst. Growth, 1988, 86, 223.
- 30. W. E. Hoke, Mat. Res. Soc. Proc., 1987, 90,379.
- 31. W. E. Hoke and P. J. Lemonais, Appl. Phys. Lett., 1986, 48, 1669.

- 32. D. W. Kisker, M. L. Steigarwald, T. Y. Komentani and K. S. Jeffers, *Appl. Phys. Lett.*, 1987, **50**(23), 1681.
- 33. L. S. Lichtmann, J. D. Parson and E. H. Cirlin, *J. Cryst. Growth*, 1988, **86**, 217.
- 34. J. D. Parson and L. S. Lichtmann, J. Cryst. Growth, 1988, **86**, 222.
- 35. S. K. Ghandi, Appl. Phys. Lett., 1989, 55(2), 137.
- 36. I. B. Baht, E. Hassan and S. K. Ghandi, *J. Vac. Sci. Technol.*, 1990, **A8(2)**, 1055.
- 37. R. Korenstein, W. E. Hoke, P. J. Lemonais, K. T. Higa and D. C. Harris, *J. App. Phys.*, 1987, **62**, 4929.
- 38. G. E. Coates, H. H. L. Green and K. Wade, "Organometallic compounds", Vol. I, 1967.
- 39. S. Sritharan and K. A. Jones, *J. Cryst. Growth*, 1984, **66**, 231.
- 40. S. Sritharan and K. A. Jones, *J. Cryst. Growth*, 1984, **68**, 656.
- 41. J. Hail, I. R. Girling and D. R. Stern, private communication.
- 42. F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 4th edition, Wiley Interscience, 1980, 610.
- 43. K. J. Irgolic, "The Organic Chemistry of Tellurium", (Gordon and Breach, New York, NY 1974), p. 91-104 and references therein.
- 44. Y. Okamato and T. Yano, J. Organomet. Chem., 1971, 29, 99.
- 45. H. K. Spencer and M. P. Cava, J. Org. Chem., 1977, 42, 2937.
- 46. D. H. Brown, R. J. Cross and D. Millington, *J. Organomet. Chem.*, 1977, **125**, 219.
- 47. G. Holfe and J. E. Baldwin, J. Am. Chem. Soc., 1971, 93, 6307.

- 48. J. Tunnicliffe, S. J. C. Irvine, O. D. Dosser and J. B. Mullin, J. Cryst. Growth, 1984, **68**, 245.
- 49. J. A. Connor, G. Grieg and O. P. Strausz, J. Am. Chem. Soc., 1969, **91**, 5695.
- 50. D. S. Kisker and R. D. Feldman, J. Cryst. Growth, 1985, 72, 102.
- 51. S. J. C. Irvine, J. Geiss, J. B. Mullin, G. W. Blackmore and O. D. Dosser, *Matt. Lett.*, 1985, **3**, 290.
- 52. S. J. C. Irvine, J. Geiss, J. B. Mullin, G. W. Blackmore and O. D. Dosser, *J. Vac. Sci. Technol.*, 1985, **B3**, 1450.
- S. J. C. Irvine, J. Geiss, J. S. Gough, G. W. Blackmore, A. Royle,
 J. B. Mullin and N. G. Chiu, J. Cryst. Growth, 1986, 77, 437.
- 54. H. Ando, H. Inuzuka, M. Konagi and K. Takahashi, *J. Appl. Phys.* 1985, **58**, 802.
- 55. J. A. Connor, G. Grieg and O. P. Strausz, J. Am. Chem. Soc., 1969, **91**, 5695.
- 56. Y. Rytz-Froidevaux, R. P. Salathe, H. H. Gilgen and H. P. Webber, *Appl. Phys.*, 1982, **A27**, 133.
- 57. J. B. Mullin, S. J. C. Irvine, J. Geiss and A. Royle, *J. Cryst. Growth*, 1985, **72**, 1.
- 58. F. Paneth, W. Hofeditz and A. Wunsch, J. Chem. Soc., 1935, 372.
- 59. A. C. Jones, *Chemtronics*, 1989, **Vol. 4**, 15.
- 60. A. H. Moore, M. D. Scott, J. I. Davies, D. C. Bradley, M. M. Faktor and H. Chudzynska, J. Cryst. Growth, 1986, 77, 19.
- 61. G. E. Coates and S. I. E. Green, J. Chem. Soc., 1962, 3340.
- 62. D. V. Shenai-Khatkhate, E. D. Orrell, J. B. Mullin, D. C.

- Cupertino and D. J. Cole-Hamilton, J. Cryst. Growth, 1986, 77, 27.
- 63. A. E. D. McQueen, M. B. Parker, J. B. Mullin and D. J. Cole-Hamilton, *Chemtronics*, 1989, Vol. 4, 269.
- 64. P. Granger, S. Chapelle, W. R. McWhinnie and A. Al-Rubaie, J. Organomet. Chem., 1981, 220, 149.
- 65. K. T. Higa and D. C. Harris, Organometallics, 1989, 8, 1674.
- 66. H. L. M. Smith, J. Thompson, A. C. Jones and P. R. Jacobs, *Matt. Lett.*, 1988, 7, 22.
- 67a. B. C. Pant, J. Organomet. Chem., 1974, 65, 51.
- 67b. B. C. Pant, W. R. McWhinnie and N. S. Dance, *J. Organomet. Chem.*, 1973, **63**, 305.
- 68. N. S. Dance and W. R. McWhinnie, *J. Organomet. Chem.*, 1976, **104**, 317.
- 69. N. S. Bhandar, K. Uppal, A. K. Singh and B. L. Khandelwal, private communication.
- 70. T. H. Baum and C. R. Jones, *Appl. Phys. Lett.*, 1985, **47(Sept)**, 538.
- 71. F. A. Houle, C. R. Jones, T. Baum, C. Pico and C. A. Kovac, *Appl. Phys. Lett.*, 1985, **46**(2), 204.
- 72. G. T. Morgan, J. Chem. Soc., 1930, 2310.
- 73. J. Bergman, Tetrahedron, 1972, 28, 3323.
- 74. N. I. Al-Salim, Ph.D thesis, Aston University, 1987.
- 75. N. F. Curtis, J. Chem. Soc.(A), 1968, 1579.
- 76. P. Thavoryutikarn, Ph.D thesis, Aston University, 1972.

- 77. M. A. K. Ahmed, W. R. McWhinnie and T. A. Hamor, J. Organomet. Chem., 1985, 293, 219.
- 78. N. I. Al-Salim, A. A. West, W. R. McWhinnie and T. A. Hamor, J. Chem. Soc., Dalton Trans., 1988, 2363.
- 79. F. Sladky, B. Bildstein, C. Reiker, A. Gieren, H. Betz and T. Hubner, J. Chem. Soc., Chem. Comm., 1985, 1800.
- 80. F. Sladky, B. Bildstein, C. Rieker, A. Gieren, H. Betz and T. Hubner, J. Chem. Soc., Chem. Comm., 1985, 1800.
- 81. M. A. Ansari and J. A. Ibers, *Coord. Chem. Reviews 100*, Vol. 100, April 1990.
- 82. A. Cisar and J. D. Corbett, Inorg. Chem., 1977, 16(3), 632.
- 83. W. A. Flomer, S. C. O'Neal, W. Cordes, D. Jeter and J. W. Kalis, *Inorg. Chem.*, 1988, **27**, 969.
- 84. R. C. Haushalter, Ang. Chem. Int. Ed. Engl., 1985, 24, 433.
- 85. R. C. Haushalter, Ang. Chem. Int. Ed. Engl., 1985, 24, 432.
- 86. W. A. Flomer and J. W. Kalis, *J. Am. Chem. Soc.*, 1988, **110**, 3682.
- 87. B. W. Eichhorn, R. C. Haushalter, F. A. Cotton and B. Wilson, *Inorg. Chem.*, 1988, **27**, 4084.
- 88. See K. J. Irgolic, "The Organic Chemistry of Tellurium", Gordon and Breach, 1974, Chap. XII.
- 89. H. B. Singh and P. K. Khanna, J. Organomet. Chem., 1988, 338, 9.
- ⁹⁰a. M. A. K. Ahmed, W. R. McWhinnie and T. A. Hamor, *J. Organomet. Chem.*, 1985, **281**, 205.
- 90b. R. E. Cobbledick, F. W. B. Einstein, W. R. McWhinnie and F. H.

- Musa, J. Chem. Res. (S), 1979, 145.
- 91. C. A. Kraus and C. Y. Chiu, J. Am. Chem. Soc., 1934, 56, 79.
- 92. E. Zintl, J. Goubeau and W. Z. Dullenkopf, *Phys. Chem. Abt. A*, 1931, **154**, 1.
- 93. D. Schultz and W. H. Koehler, Inorg. Chem., 1987, 26, 1989.
- 94. G. Bergson, Acta Chem. Scand., 1957, 11, 571.
- 95. D. J. Sandman, J. C. Stark and B. M. Foxman, *Organometallics*, 1982, 1, 739.
- 96. R. A. Zingaro, C. Herrera and E. A. Meyers, *J. Organomet. Chem.*, 1986, **306**, C36.
- 97. N. L. M. Dereu, R. A. Zingaro, E. A. Meyers and M. Renson, *Organometallics*, 1982, **10**, 1333.
- 98. N. L. M. Dereu, R. A. Zingaro, E. A. Meyers and M. Renson, *Organometallics*, 1982, 1, 111.
- 99. K. J. Irgolic, "The Organic Chemistry of Tellurium", Gordon and Breach, 1974, p.365.
- 100. G. T. Morgan and F. H. Burstall, J. Chem. Soc., 1931, 180.
- 101. N. S. Dance and C. H. W. Jones, *J. Organomet. Chem.*, 1978, **152**, 175.
- 102. L. Y. Chia and W. R. McWhinnie, J. Organomet. Chem., 1976,148, 165.
- 103. H. M. K. K. Pathirana, A. W. Downs, W. R. McWhinnie and P. Granger, *Inorg. Chim. Acta*, 1988, 143, 161.
- 104. A. K. Singh, V. Srivastava and B. L. Khandewal, *Polyhedron*, 1990, 9(4), 495.

- 105. D. C. Harris and R. W. Schwartz, Matt. Letts., 1986, 4, 370.
- 106. A. H. Cowley, B. L. Benac, J. G. Ekerdt, R. A. Jones, K. B. Kidd, J. Y. Lee and J. E. Miller, J. Am. Chem. Soc., 1988, 110, 6248.
- 107a. M. A. K. Ahmed, A. E. McCarthy, W. R. McWhinnie and F. J. Berry, J. Chem. Soc., Dalton Trans, 1986, 771.
- 107b. R. E. Cobbledick, F. W. B. Einstein, W. R. McWhinnie and F. Musa, *J. Chem. Res.*, 1979, (S), 145.
- 108. H. B. Singh and W. R. McWhinnie, *J. Chem. Soc., Dalton Trans.*, 1985, 821.
- 109. V. I. Minkin, A. A. Maksimento, G. K. Mehrotra, A. G. Maslakov,O. E. Kompan and I. D. Sadekov, *J. Organomet. Chem.*, 1988,348, 63.
- 110. N. I. Al-Salim, A. A. West, W. R. McWhinnie and T. A. Hamor, J. Chem. Soc., Dalton Trans., 1988, 2363.
- 111. N. I. Al-Salim, T. A. Hamor and W. R. McWhinnie, *J. Chem. Soc.*, *Chem. Comm.*, 1986, 453.
- 112. F. W. B. Einstein, C. H. W. Jones, T. Jones and R. D. Sharma, Inorg. Chem., 1983, 22, 3924.
- 113. M. R. Greaves, T. A. Hamor, B. J. Howlin, T. S. Lobana, S. A. Mbogo, W. R. McWhinnie and D. C. Povey, Submitted to *J. Organomet. Chem.*
- 114. A. J. Singh and V. Srivastava, *Phosphorus*, *Sulphur and Silicon*, 1990, 47, 471.
- 115. A. J. Singh and V. Srivastava, J. Coord. Chem., 1990, 21, 39.

- 116. F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 5th Edition, (John Wiley and Sons, New York, 1988), p.50.
- 117. F. Cecconi, C. A. Ghilardi, S. Midollini, S. Monetti, A. Orlandini and G. Scapacci, *J. Chem. Soc.*, *Dalton Trans.*, 1989, 211.
- 118. G. T. Morgan and H. D. K. Drew, J. Chem. Soc., 1925, 127, 2307.
- 119. N. S. Dance and W. R. McWhinnie, J. Chem. Soc., Dalton Trans., 1975, 43.
- 120. R. K. Chadha and J. M. Miller, J. Chem. Soc., Dalton Trans., 1982, 117.
- 121. H. Pathirana, Ph.D Thesis, Aston University, 1985.
- 122. I. Davies, W. R. McWhinnie, N. S. Dance and C. H. W. Jones, *Inorg. Chim. Acta*, 1978, **29**, L203.
- 123. Greenwood and Earnshaw, "Chemistry of the Elements", Pergammon Press.
- 124. D. M. Adams, J. Chatt, J. Gerratt and A. Westland, *J. Chem. Soc.*, 1964, 734-736.
- 125. W. J. Cherwinsk, H. C. Clark and L. E. Manzer, *Inorg. Chem.*, 1972, **11**, 1511.
- 126. T. G. Appleton, H. C. Clark and L. E. Manzer, *Coord. Chem. Rev.*, 1973, **10**, 335.
- 127. H. Gysling, N. Zumbulyadis and J. A. Robertson, *J. Organomet. Chem.*, 1981, **209**, C41.
- 128. L. Y. Chia and W. R. McWhinnie, *J. Organomet. Chem.*, 1978, 148, 165.
- 129. W. R. McWhinnie and Z. Monsef-Mirzai, Proceedings of the

- Fourth International Conference on the Organic Chemistry of Selenium and Tellurium, eds. F. J. Berry and W. R. McWhinnie, The University of Aston in Birmingham; D. H. O'Brien, K. J. Irgolic and C.-K. Huang, p.468.
- 130. S. A. Mbogo, T. S. Lobana, W. R. McWhinnie, M. R. Greaves and T. A. Hamor, *J. Organomet. Chem.*, 1990, **395**, 167.
- 131. M. M. Mangion and E. A. Meyers, *Cryst. Struct. Commun.*, 1973, **2**, 629.
- 132. G. M. Sheldrick, SHELX86, Program for crystal structure determination, University of Cambridge, 1976.
- 133. G. M. Sheldrick, SHELX76, Program solution of crystal structures, University of Gottingen, 1987.
- 134. See ref. 129, p. 3.
- 135. M. A. K. Ahmed, W. R. McWhinnie and T. A. Hamor, J. *Organomet. Chem.*, 1985, **293**, 145.
- 136. M. R. Greaves, T. A. Hamor, B. J. Howlin, T. S. Lobana, S. A. Mbogo, W. R. McWhinnie and D. C. Povey, Submitted to *J. Organomet. Chem.*
- 137. See ref 134, p. 298.
- 138. L. Pauling, "The Nature of the Chemical Bond 3rd Edition.", Cornell University Press; Ithaca, New York, 1960.
- 139. H. B. Singh, N. Sudha, A. A. West and T. A. Hamor, *J. Chem. Soc.*, *Dalton Trans.*, 1990, 907.
- 140. O. Foss and S. Husebye, Acta Chem. Scand., 1966, 210, 132.
- 141. O. Vikane and S. Husebye, Acta Chem. Scand., 1975, A29, 738.

- 142. O. Vikane, Acta Chem. Scand., 1975, A29, 763.
- 143. S. A. Mbogo, Ph. D thesis, 1990.
- 144. N. Walker and D. Stuart, Acta Crystallogr., 1983, A39, 158.
- 145. W. D. S. Motherwell and W. Clegg, PLUTO, Programs for drawing Crystal and Molecular structures, University of Cambridge, (1978).
- 146. F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennara, W. D. S. Motherwell, J. R. Rogers and D. G. Watson, Acta Crystallogr., 1979, B35, 2331.
- 147. E. A. Meyers, K. J. Irgolic, R. A. Zingaro, T. Junk, R. Chakravorty, N. L. M. Dereu and K. French, *Phosphorus and Sulphur*, 1988, **38**, 257.
- 148. M. R. Bryce, C. E. Reynolds, P. Hanson and J. M. Venon, *J. Chem. Soc.*, *Perkins Trans I*, 1981, 607.
- 149. L. Lindqvist and G. Nahringbauer, *Acta Crystallogr.*, 1976, **B32**, 1414.
- 150. J. G. White, Acta Crystallogr., 1976, B32, 1414.
- 151. B. Kamenar and A. Nagl, Acta Crystallogr., 1976, B32, 1414.
- 152. H. J. Verweel and J. M. Bijvoet, Z. Kristallogr., 1932, 77, 122.
- 153. M. R. Bryce, C. E. Reynolds, P. Hanson and J. M. Venon, J. Chem. Soc., Perkin Trans. I., 1981, 607.
- 154. N. S. Dance and W. R. McWhinnie, J. Chem. Soc., Dalton Trans., 1975, 43.
- 155. C. H. W. Jones, private communication to W. R. McWhinnie.

APPENDIX

м	0.5	1100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AGE	FC 1	######################################
۵	0 10	מורשטשע בישטשער אייי אייי אייי אייי איייי איייי איייי איייי איייי אייייי אייייי אייייי איייייי
	10F	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	×	
	I	11111111111111111111111111111111111111
	105	22 24 28 34 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	10FC	2 4 454 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4
	10F0	1010141
	_	
	×	0
	Ŧ	
		and the second s
	105	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10FC	8400 8683
	10F0	1112968811796488177888778888178888178888818888888888
<u> </u>	_1	
р Р	×	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
unodwo	I	
OR C	108	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RS F	10FC	110000
FACTO	10F0	なるのである。 そのことでは、 というないできないできないできます。 というというというというというというというというというない こととりからしまるのできるできるというというない こととりかん しょくしゅう というという こうしょく しょくしょく しゅうしょく しゅうしょく しゅうしょく しゅうしゅう しゅう
ш		7 000000000000000000000000000000000000
RUCTUR	×	11111111111111111111111111111111111111
ST	I	
	0 S	07
ĭ	_	0x 0
AL	щ	2 2 2 2 2 2 2 2 3 2 2 3 3 1 1 2 1 1 3 1 1 1 1
AN	u_	サー 2 を2 と22とことでしょうない。これは、10 10 と 20 とこことでしょうないできょうないできょうないできるといっています。 4 と 3 とここと 4 ととりらって 4 というない 4 と
RVED	، ر	
BSE	•	01000000000000000000000000000000000000

4 \sim 10F0 \mathbb{C} Compound FOR FACTORS STRUCTURE CALCULATED AND OBSERVED

Ŋ	S	
GE.	C 10	WIN THE STATE OF T
PA(10F	20110000000000000000000000000000000000
	10F0	201103000
	×	000000000000000000000000000000000000000
	I	
	108	1
	10FC	11000000000000000000000000000000000000
	10F0	40404 VEG BAT 1940 AND 1940 AN
	_	
	×	000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	x	111 : 1111
	105	8. 1 1 8. 1 1 8. 1 1 1 1 1 1 1 1 1 1 1 1
	lOFC	200
	1050	20012022222222222222222222222222222222
10	_	
g	×	NUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNU
unodwo	x	111 111111 111 111 111 111 111 111 111
ں ع	105	WW: 1
RS FO	10FC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
FACTO	10F0	α
ш	٠.	
RUCTUR		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
ED ST		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
CULAT	2 105	7
CALC	10FC	8 4 7 8 1 6 1110000 10000 10000 10000 1000 0000 0000 0000 00000 0000 0000 0000 0000
AND	10F0	0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VED		
OBSER	×	71111111111111111111111111111111111111

I

ď	9 10S	
(PAGE 10FC	70000000000000000000000000000000000000
	10F0	649404499944999999999999999999999999999
		$\frac{1}{1}$
	×	000000000000000000000000000000000000000
	π	04W010010W40000000000000000000000000000
		444111111111111111111111111111111111111
	105	
	10FC	1110 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10F0	101240000000000000000000000000000000000
	_1	мамамамамамамамамамамамамамамамамамама
	×	00000000000000000000000000000000000000
	x	1111 1111 111 111 111 111 111 111 111
	105	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10FC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10F0	1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3		мамамамамамамамамамамамамамамамамамама
ק		**************************************
pundago	L :	
<u>د</u>	105	1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1
RS FO	OFC	80000000000000000000000000000000000000
FACTO	0 F O	ϕ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ш		им и и и и и и и и и и и и и и и и и и
STRUCTUR	x	11 11 11 11 11 11 11 11 11 11 11 11 11
CULATED	105	MI
CALCU	10FC	1 20
AND	0 F O	しょう にとう にという はい にい
VED	L 1	นนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนน
OBSERV	× x	8 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

10FC Compound STRUCTURE v_{t} $v_{$ CALCULATED AND OBSERVED

	105	8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	10FC	20
	F0 .	110777710000888797870177761778661109888777777777777777777777777777777777
	L 10	00 400 4 044 000 00 4044000 004 04 0404000
	ı T	00000000000000000000000000000000000000
	_	
	0.5	2211020205 211021102110208284248802022401110208866542052014
	C 1	40V4080420840840840840848888888888888888
	10F	120 00 00 00 00 00 00 00 00 00 00 00 00 0
	10F0	10
	_	ՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ
	×	
	I	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	105	00001194010094744411800800010100000000000000000000000
	OFC	1 67954741454 64 4 6480921
	0.1	ストると毎岁と母とらららららららららららららららららららってこれのことにいっていると
	10F	7 00748459 00 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	_	տառանանանանանանանանանանանանանանանանանանա
2	×	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
500	I	11 01000000000000000000000000000000000
E د		
- - -	105	1
2	OFC	000 0 0000 0000 0000 0000 0000 0000 0000
2011	0.	12182120 12182120 080167820 12182120 12
) I	10F	
7		
֚֡֝֟֝֟֝֟֝֟֝֟֝ <u>֚</u>	×	
2 3	I	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ij		
3	10	444444444444444444444444444444444444444
ALCO	0 F	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ט שאט ט)F0 1	00000000000000000000000000000000000000
	. 10	<u> </u>
7		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
200	~	0.000 0.000

```
1 OFC
             10F0
             \phi
             1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 1855 | 18
      90
              10F0
               HWN TONN NEW NOWLD NO HONDOWN NOWN NOWN NOWN NO HOND NOW NO HONDOWN NO HONDOWN NO TONNO NO TO
               \mathbf{p}
3
             りいりのはいつ
       ر
د
                oldsymbol{	ilde{-}} oldsymbol{-} olds
        メ でではさらではらららららららららららららららららららっとしてレーレーレーレーレー
        105
        10FC
                 <u>F</u>
                oldsymbol{\omega}
                oldsymbol{1}
```

7

FAGE

ェ

PAGE

	2	r r s 8	10	თ თ	20	11	10	n on	ထ ထ	ω (10	10	ع ح	σ	10	10	٦ ٥	σ (ט ט	010	10	010	90	ω _[017	2 5	10	010	201	07.	200	א טיי	ע
	ည က	324 750 773 738	36	18 26	67 30	07	4.0	24	8 4 8 8	80	7,	803	n v	96	27 84 87	97	000	75	25	17	, ω ()	9 8	33	ა ა გ		χ. Γ	26	67 7.7	9.6	9 c	191	. 5	Ţ.
	_	1 1 1 1	(4 (.)	.,.,	(~ u)	- C.	111	7 1	σ.				.' '.	٠.	٠.٠٠.			•		٠.,							- 1		- 1				
	0.50	248 554 491	5.4 5.0	87 52	30	9 7 9	77	0,0	23	425	4. Q	7	υ C	000	2 2	8	79	6	76	803	1 —	9,	653	37.	661	7 o	151	20,6	126	$\tilde{\sim}$	3,00	9 4 9 W	45.
	1	0000	22							77					22								1 77	٥,	100	70					40	200	7
	×	0000	00	00	00	00	00	0	00	н,		Н,	٦.			Н,	10	~	10	77	10	0 C	1 7	04 m	m	v) (r	സ	m r	1 M	m r	ი ო	J) 4.	4
	I	118 146 124	018	9 4	7,0	N 4	ωα	0	12	15	16	7	ر ا ا	۲,	~ ~	1 (2)	_	_	0 7	75	0	4. α	10	-	-	ן טר	- 5	ر ا	4 ~	m u	0 ~		_
		1 1 1 1		•	•					1							١	1						1	1							1	1
	SO	1000	11	10	010	10	011	010	10	10	100	10	nσ	100	010	101	7.0	07.	10	00	010	010	10	010	200	2,5	10	01	101	თ (10	100	10
	i i	0310 0400 0504																															
	10F	22 17 12	13	ထဖ	115	φα	101	ש מ	14	11	10	וסי	Ծ Մ	1	1 4. R	1	ւր և	Ф	DΚ	יו נע	1	1 1	1	1 1	1	1, 0	1	1 1	1	1	1 1	1 1	,
	OFO	612 113 666 333					200	ე ტ 4. ტ	8 4	2	72	, m																					
	i i		42		Н		٦,	⊣	-	· ~		,																					
	×		~ ~	77	~ ~	- σο σ	000	ဘထ	· ω α	ထ	œ œ	, ω		ი თ	თσ	s on o	م د	0	00	0 -	٠,٠	٦,	٠.	40	101	7,0	10	4,0	10	4,0	, ω	44	9
	Ħ	г иен										ω,	0 (4 ro	ო -	i m i	r α	200		ישי	- M	4		0 0	9 00	4.	10	-,,		ω (> ⊷	4.0	• •
	_	1 1 1 1			_	177	1	1 1	1				۲,	⊣ 1	! !		١	1			1,1	1		ן י		1 !				•	⊣ I	1	
	S	0000	തെയ	ထင	/nc	000	000	o -	100	0	00	, o	ω 0	၀ ထ	0,0	0	0 -	10	o c	000	90	0,	10	0,0	0	თ c	0	-10	90	0	<u>ე</u> რ	00	0
	10	пппп	1		-		٠ ٦٠			-			_			1 -											1 C				- - 10		<u>г</u>
	OF	1625	25.	50.50	36) W 4	900	31	. 60 4	9	22	160	96	7 7	81	· (r)	0 4	20	0 5	, שו						27.4				m			
	0	7078	آآ ٻون	ைம	7 2	2 6 9	ا ۾ د	ūω 1	249	ا ق	04	2	ω -	70	my	9	Հ	475	ည်ဆ	m 9	ν .α	0 1	- 0	2:	33	7.5		7.	n m	ლ (2 TO	17	m
	10F	205 96 111	. W 4	34	י סהי	901	" 🔿 🤆	\circ	١œ،	ŊΨ	~ -	-	9 -	4 K)	70	, ,,	w	24.5	U1 1	9	ဂို ထိ	ω̈́	y [-	10.	ó 4	m u	u 4	4.	4 4	ñ:	4 W	4,00	7
	H		4 ~ ~	-	ı	4 -4 -	4 ~ 1	r-1 - -	·	4 ~4	~ ~	٠,	۲,	٦,	-		~ ~	4 ~	~ -		٦,	٠,	→	۲,		~ ~		,-I,	-	٦,			٦
	×	4444	100	mm	mm	n m r	ე	m m	n m m	സ	m m	n	m r	υ 4	4.	7 7	4.	4 4	4.4	4.	വ വ	ı,	വ ഹ	ស	വ	ro c	oω	φι	စ ဖ	9	9 1	<u>ر</u> ر	7
	Ħ	0000	12		, , , ,	⊣ 1 1	- 50	m F	4 ~ ~	υ	r 0	11,	13	⊣ ┌		٠,	40	0 0	4. α	2	ر ا ا	۳,	⊣ ,−	mı	o L	13	0 4	00	79	ω (-13	<u>ا</u>
U O					1 1										1																		
J	0.5	110	101	22.	100	200	3 0	21	100	10	٥.	11	010	010	000	11	11	10	11	:::	11	- σο σ	ט כ	10	10	10	3.5	000	ω ∞	ω.	108	10	11
5	ic 1	115 66 60 60																															
2	10E	-13 -4 -4	11	ωσ	n on u	າ ຕາ ⊀	* (7)	щ г С	4	n on	(T) (T)	12	7,	-11	י נים	, 4,	Ψï	1	1 1	1		1	1, 6	123	136	ä,	12	1	ĭĩ	1	1 1	5-12 1	-17
S S	0FO	347. 721. 484.					21	55	616	, 7	41	11	28	n α							350	N (1)	., .	35	or a	51	۲۲ -	528	- 6	6	0.4 0.4 0.0	22	35,
ξ.	L L	0000	900	000	000	000		00			00				00	00	0	00	00	00	0-									_			
3	×	L L 80	ာထားလ	000	nono	nonc	ים ע	00	000	0	0.5		٦,			10	oj c	. יי	n, n	י אי	- ب	٠		٠,		Д,	- -			_	~~	77	7
֭֚֡֝֟֝֟֝֟֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟	I	0400	140	0-	ฯ๛๚	0 - 0	ה ע	0 (44.4	0 00	4-				(n (4					2 1	-10	mσ		ņ	٦,	ひて	. თ	ıω	ς.	90	ω 4	.5
SIRO		Н		7			-				٦				Н,	-						7	_ 1	1	1 1					_	77	1 1	1
T C	S	H000	ησα	ာထ	۰	100	νω	ω r	10,	٠,	0,0	ې م	٦.	0-	! -: -	- 0		20	Ξ.	10	0 0	\ <u></u>	0 0	20:		0:		20	00	01	10	10	10
LAI	10	440				- - -											~		~ ^	. .	~ ~		m ~				~ ~	. ~		_	m s r	1010	σ.
2	OFC	2006	ე () დ ე () დ	100	າຜເ	0 C C	2.4	40	100	ი ო - ო	90	6.5	25	9		2 L	22	400	9	om.	0 4	9	~ ~	4	300	2	4 6	7	2 8	õ	5	137	
5	0	4040	n	7	~ ~ -	- (7)	-			'			T_{ij}				ï	11	7		~ ~	Ţ,			1 1	<u> </u>			m	Ŧ	. ;; m m	7.7	1
2	10F	4683 2744 4701	510	100	4000	0 W (4.6	53	170	50	4.0	א ע ה	132	ωα	2.7	ຸດດ	9	どこ	8	118	~ 4 ∞ 0	-	7	, in	ñč	4	o 4	• ळ	4. 90	7	တ် လ	130	ဆ်
3	ы	0000	000	000	000	000	00	00	000	0	00	0	0	00	00	00	0	00	00	00	00	0	00	00	00	0	> C	0	00	0	00	00	0
7	×	0000	000	000) H	⊣ ~ .		ч с	400	70	~ ~	7 7	m	(1) (1	n m (n m	4.	4 4	4.	7 4	7 7	'n	വ വ	y CO t	വ ഹ	S)	ט פ	·w	ဖ ဖ	9	9 1	7	7
Z C C	ĸ	0.44 0 o	010	4 4 4	9 M L	v L 0	13 y	1.5	045	4.0	ω ς	177	7	M U	0 ~ 0	11 3	C '	• •	φο	10	12	-	ረ ነ	· - 0	5 4	13	o د	4.	ω ω	10	12	സഹ	7
-	٠.				٠																												

PAGE 2

105		
10FC	$\begin{matrix} u_{d} d} u_{d} u_{$	2
OFO 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$: >
1		í
×	$ \\ $	
Ħ	$\hat{\omega} \dot{\neg} \neg \neg \omega \wedge \omega \wedge \omega \wedge \omega \dot{\neg} \neg \omega \wedge \omega \dot{\neg} \neg \omega \wedge \omega$)
108		
10FC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
10FO	$\begin{array}{c} 1 & 1 & 1 \\ 2 & 1 & 1 \\$)
H	$u_{u}u}$	
×	H4444444444444444444444444444444444444	ı
×		,
108		
OFC 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1
0	0.000000000000000000000000000000000000	
10F	1	,
ㅂ	- นนนนนนทหนทพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ	,
×.	$ \begin{array}{c} HWNL-HW0 \\ HWML-HW0 \\ HW0 \\$	
,	नित्री वित्री	•
105		1
OFC	$\begin{array}{c} 0.00\\$)
OFO 1	88414488767674487688488484848484848484848484)
占		1
×		•
×	40048000 ULL URC COR 04400440 SHOCK WILL URC COLO 1040 COR	1
108)
10FC 1	110202020202020202020202020202020202020)
OFO	878490	7
1		4
×	ᡮᡮᡮᡮᡮᡮᡮᡮᡮᡮᡮᡮᡮᡮ ᡮᡮႷჽჽჽჽჽჽჽჽჽჽჽჽჽჽჽჽჽჽჽჽჽ	,
=	444-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	>

```
100011110011100000
            10FC
                         10FO
                          W44444444411111
                          708 664
547 539
673 - 632
468 - 436
867 - 481
867 - 698
696 - 665
1237 - 1926
2175 - 1926
1132 - 1155
1246 - 1035
1246 - 165
             10FC
                          υυνυνουουουνυνυν
                          10FC
                          10FO
              ы
                           \alpha
                           \mathsf{WWWWAANNNNNNNNAAAL}
hgse
FACTORS FOR
                           1045

686

686

674

697

8997

1008

1008

1007

1007

1007

1007

1008

1008

1008

1008

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009

1009
              10FC
              10FO
              н
                                          4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
STRUCIURE
              ×
              Ξ
CALCULATED
              108
                            10FC
              10FO
                           AND
OBSERVED
              н
              ×
                            48800 C E H O 4 2 4 H O C C E
```