Some parts of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
THE DESIGN, EVALUATION AND COSTING
OF BIOMASS GASIFIERS

JEREMY MARK DOUBLE
Doctor of Philosophy

The University of Aston in Birmingham
September 1988

This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior, written consent.
SUMMARY

The objective of this study has been to enable a greater understanding of the biomass gasification process through the development and use of process and economic models.

A new theoretical equilibrium model of gasification is described, using the operating condition called the adiabatic carbon boundary. This represents an ideal gasifier working at the point where the carbon in the feedstock is completely gasified. The model can be used as a “target” against which the results of real gasifiers can be compared, but it does not simulate the results of real gasifiers. A second model has been developed which uses a stagewise approach in order to model fluid bed gasification, and its results have indicated that pyrolysis and the reactions of pyrolysis products play an important part in fluid bed gasifiers. Both models have been used in sensitivity analyses: the biomass moisture content and gasifying agent composition were found to have the largest effects on performance, whilst pressure and heat loss had lesser effects.

Correlations have been produced to estimate the total installed capital cost of gasification systems and have been used in an economic model of gasification. This has been used in a sensitivity analysis to determine the factors which most affect the profitability of gasification. The most important influences on gasifier profitability have been found to be feedstock cost, product selling price and throughput. Given the economic conditions of late 1985, refuse gasification for the production of producer gas was found to be viable at throughputs of about 2.5 tonnes/h dry basis and above, in the metropolitan counties of the United Kingdom. At this throughput and above, the largest element of product gas cost is the feedstock cost, the cost element which is most variable.

Key words: Biomass gasification, equilibrium model, stagewise model, capital costs, production costs.
Acknowledgements

Firstly, I would like to thank my supervisor, Dr Eric Smith, for his invaluable help with this work. I am also grateful to Dr Tony Bridgwater, who gave advice on some aspects of the work, particularly on gasifier economics.

I would like to thank the Heads of the Chemical Engineering Department during my time at Aston, Professor GV Jeffreys and Dr EL Smith, for making available the facilities for carrying out the work.

I am grateful for the financial support of the Science and Engineering Research Council.

Finally, I thank my family and friends for their support, especially my fiancée, Miss Michelle Parish, whose encouragement enabled me to complete this thesis.
List of Contents

SUMMARY 2
ACKNOWLEDGEMENTS 3
LIST OF CONTENTS 4
LIST OF TABLES 7
LIST OF FIGURES 8

1 INTRODUCTION 11

2 THE FEEDSTOCK AND GASIFICATION PROCESS 15
2.1 The Biomass Feedstock 15
2.1.1 Composition 15
2.1.2 Other Properties of Biomass Influencing Gasification 21
2.2 Principles of Gasification 26
2.2.1 Drying 26
2.2.2 Pyrolysis 26
2.2.3 Char Gasification 31
2.2.4 Tar Cracking and Reactions of Pyrolysis Products 34
2.3 Products of Gasification in Practical Gasifiers 35

3 GASIFICATION SYSTEM DESIGN 37
3.1 The Feeder 37
3.2 The Reactor 40
3.2.1 The Reactor Function 40
3.2.2 Gasifier Types 44
3.3 Heat Recovery 56
3.4 Gas Cleaning 57

4 INTRODUCTION TO GASIFIER MODELLING 61
4.1 Introduction 61
4.2 Black Box Modelling 63
4.3 Stagewise Modelling 66
4.4 Differential Modelling 67
4.4.1 Modelling the Reactions of a Single Particle 68
4.4.2 Kinetic Models 70
4.4.3 Other Differential Models 71
4.5 Transient Models 71
4.6 Conclusions 72
Nomenclature, Chapter 4 73
7.3 Operating Cost
 7.3.1 Feedstock Cost
 7.3.2 Utilities
 7.3.3 Maintenance
 7.3.4 Overheads
 7.3.5 Labour Cost
 7.3.6 Product Gas Value
7.4 Production Cost and Sensitivity Analysis
 7.4.1 Methods of Economic Evaluation
 7.4.2 Fuel Gas Production Costs and Economic Evaluation
 7.4.3 Sensitivity Analysis
 7.4.4 Product Price and Feedstock Cost
 7.4.5 Production Cost Analysis
7.5 Conclusions
8 CONCLUSIONS AND RECOMMENDATIONS
 8.1 Modelling and Design of Gasifiers
 8.2 Gasification Economics
 8.3 Recommendations for Future Work
APPENDICES
A Calculation of Equilibrium with No Solid Carbon
 Nomenclature, Appendix A
B Flow Diagrams, Listings, and Example Output of Computer
 Programs
 Program MODEL
 Program FLMOD
 Program EVAL1
 Program EVAL2
C Further Results of the Carbon Boundary Model Sensitivity
 Analysis
D Gasifier Capital Cost Data
LIST OF REFERENCES
List of Tables

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.1 Ultimate analyses of gasification feedstocks</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>4.1 Independent Equations and Unknown Variables in the Overall Mass and Energy Balances of a Biomass Gasifier</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>5.1 Unknown Variables and Equations in the Black Box Equilibrium Model</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>5.2 Input Variables in Computer Program "MODEL"</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>5.3 Comparison of Real against Theoretical Gasifier Performance</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>6.1 Comparison of Actual Fluid Bed Gasifier Results with those Predicted by an Equilibrium Model</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>6.2 Pyrolysis Data Used in the Stagewise Model</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>6.3 Base Case Reaction Conditions</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>6.4 Comparison of Actual Fluid Bed Gasifier Results with Results of the Stagewise Model</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>6.5 Further Comparison of the Three Models</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>6.6 Effect of Tar Production on Predicted Gasifier Performance</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>7.1 Analysis of the Capital Costs of Two Gasifier Systems</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>7.2 Total Plant Capital Costs of Coal Gasification and Waste Combustion Technologies</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>7.3 Utilities Costs of Gasifier Systems</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>7.4 Maintenance Costs of Gasifier Systems</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>7.5 Feedstock Characteristics</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>7.6 Data and Results of Economic Calculations for the Base Case</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>7.7 Results of Economic Calculations</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>7.8 Results of the Sensitivity Analysis</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>7.9 Production Cost Analysis</td>
<td>168</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>D1 Equipment Costs of Gasifiers</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>D2 Total Plant Costs of Gasifiers</td>
<td>283</td>
</tr>
</tbody>
</table>
List of Figures

CHAPTER 2

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structural Formula of Cellulose</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Structural Formula of Xylan Hemicellulose</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Monomers of Coniferous Lignin</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Equilibrium Moisture Content of Wood as a Function of Relative Humidity and Temperature</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Reactions in the Pyrolysis of Cellulose</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Factors Influencing the Pyrolysis of a Small Element Within a Wood Chip Showing Relationships Between Factors</td>
<td>33</td>
</tr>
</tbody>
</table>

CHAPTER 3

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>A Typical Gasification System</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Throated Downdraft Gasifier</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Open-Core Downdraft Gasifier</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Updraft Gasifier</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Crossflow Gasifier</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Fluid Bed Gasifier</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Fast Fluid Bed Gasifier</td>
<td>51</td>
</tr>
<tr>
<td>3.8</td>
<td>Entrained Bed Gasifier</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>Twin Fluid Bed Steam Gasifier</td>
<td>53</td>
</tr>
<tr>
<td>3.10</td>
<td>The Oxygen Donor Gasification Process</td>
<td>55</td>
</tr>
<tr>
<td>3.11</td>
<td>Tar and Particulate Loadings in Gasifier Product Gases</td>
<td>58</td>
</tr>
</tbody>
</table>

CHAPTER 4

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Inlet and Outlet Streams of a Biomass Gasifier</td>
<td>64</td>
</tr>
</tbody>
</table>

CHAPTER 5

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Flows and Variables in a Typical Gasifier</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Basic Flow Diagram of an Equilibrium Gasifier Model</td>
<td>82</td>
</tr>
<tr>
<td>5.3</td>
<td>Theoretical Gasifier Performance against Hydrogen Content of Biomass, Oxygen Gasifier</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>Theoretical Gasifier Performance against Oxygen Content of Biomass, Oxygen Gasifier</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>Theoretical Gasifier Performance against Biomass Ash Content, Oxygen Gasifier</td>
<td>91</td>
</tr>
<tr>
<td>5.6</td>
<td>Theoretical Gasifier Performance against Moisture Content of Biomass, Oxygen Gasifier</td>
<td>92</td>
</tr>
</tbody>
</table>
CHAPTER 5, continued

5.7 Theoretical Gasifier Performance against Gasifying Agent
N2 Mole Fraction, Oxygen Gasifier

5.8 Theoretical Gasifier Performance against Inlet Steam Mole
Fraction, Oxygen Gasifier

5.9 Theoretical Gasifier Performance against Gasifying Agent
Temperature, Oxygen Gasifier

5.10 Theoretical Gasifier Performance against Gasifier Heat Loss,
Oxygen Gasifier

5.11 Theoretical Gasifier Performance against Gasifier Pressure,
Oxygen Gasifier

5.12 Graph to Show Variation of Exit Energies with Temperature,
for an Idealised Biomass Gasifier

5.13 Graph to Show Variation of Exit Gas Composition with
Temperature, for an Idealised Biomass Gasifier

5.14 Theoretical Gasifier Performance against Actual Performance

CHAPTER 6

6.1 General Stagewise Model of a Fluid Bed Gasifier

6.2 Conceptual Diagram of the Stagewise Computer Model

6.3 Structure and Data Flows in the Stagewise Computer Model

6.4 Comparison of the Three Stagewise Models with the Idealised
Adiabatic Carbon Boundary Model

6.5 Predicted Gasifier Performance as a Function of the Gasifier
Temperature

6.6 Predicted Gasifier Performance as a Function of the Gasifying
Agent Air Volume Fraction

6.7 Predicted Gasifier Performance as a Function of the Gasifying
Agent Steam Volume Fraction

6.8 Predicted Gasifier Performance as a Function of the Biomass
Moisture Content

6.9 Predicted Gasifier Performance as a Function of the Gasifier
Heat Loss

CHAPTER 7

7.1 Gasifier Delivered Equipment Cost against Gasifier Capacity

7.2 Total Installed Gasifier Capital Cost against Gasifier Capacity

7.3 Comparison Between the Total Installed Capital Costs of
Gasifiers and Related Technologies

7.4 Product Cost against Gasifier Throughput
CHAPTER 7, continued

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>Product Cost against Gasifier Efficiency</td>
<td>160</td>
</tr>
<tr>
<td>7.6</td>
<td>Relationship Between Product Selling Price and Feedstock Cost for a 3 Year Payback Time</td>
<td>167</td>
</tr>
</tbody>
</table>

APPENDIX B

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Flow Diagram of Program MODEL</td>
<td>180</td>
</tr>
<tr>
<td>B2</td>
<td>Flow Diagram of Program FLMOD</td>
<td>208</td>
</tr>
<tr>
<td>B3</td>
<td>Flow Diagram of Program EVAL1</td>
<td>230</td>
</tr>
<tr>
<td>B4</td>
<td>Flow Diagram of Program EVAL2</td>
<td>250</td>
</tr>
</tbody>
</table>

APPENDIX C

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Theoretical Gasifier Performance against Gasifying Agent H₂ Mole Fraction, Oxygen Gasifier</td>
<td>264</td>
</tr>
<tr>
<td>C2</td>
<td>Theoretical Gasifier Performance against Gasifying Agent CO Mole Fraction, Oxygen Gasifier</td>
<td>265</td>
</tr>
<tr>
<td>C3</td>
<td>Theoretical Gasifier Performance against Gasifying Agent CO₂ Mole Fraction, Oxygen Gasifier</td>
<td>266</td>
</tr>
<tr>
<td>C4</td>
<td>Theoretical Gasifier Performance against Gasifying Agent CH₄ Mole Fraction, Oxygen Gasifier</td>
<td>267</td>
</tr>
<tr>
<td>C5</td>
<td>Theoretical Gasifier Performance against Hydrogen Content of Biomass, Air Gasifier</td>
<td>268</td>
</tr>
<tr>
<td>C6</td>
<td>Theoretical Gasifier Performance against Oxygen Content of Biomass, Air Gasifier</td>
<td>269</td>
</tr>
<tr>
<td>C7</td>
<td>Theoretical Gasifier Performance against Biomass Ash Content, Air Gasifier</td>
<td>270</td>
</tr>
<tr>
<td>C8</td>
<td>Theoretical Gasifier Performance against Moisture Content of Biomass, Air Gasifier</td>
<td>271</td>
</tr>
<tr>
<td>C9</td>
<td>Theoretical Gasifier Performance against Gasifying Steam:Air Ratio, Air Gasifier</td>
<td>272</td>
</tr>
<tr>
<td>C10</td>
<td>Theoretical Gasifier Performance against Gasifying Agent Temperature, Air Gasifier</td>
<td>273</td>
</tr>
<tr>
<td>C11</td>
<td>Theoretical Gasifier Performance against Gasifier Heat Loss, Air Gasifier</td>
<td>274</td>
</tr>
<tr>
<td>C12</td>
<td>Theoretical Gasifier Performance against Gasifier Pressure, Air Gasifier</td>
<td>275</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Gasification is a process for converting carbonaceous feedstocks to a gas which may be used either directly as a fuel or as a feedstock for processing into liquid fuels and chemicals. In its widest sense, gasification includes both true gasification processes, carried out with the aid of an oxidising (or gasifying) agent, and pyrolysis processes based on the thermal breakdown of the feedstock without the aid of oxidising agents and optimised to give a gaseous product. Gasification is part of the field known as thermochemical processing, which includes the related topics of carbonisation in which the pyrolysis process is optimised to produce a solid, pyrolysis in which the process is optimised to produce liquid products and direct liquefaction.

The first commercial process for converting a solid fuel into a gaseous fuel was set up in London in 1812, and produced a gas for street lighting from coal by dry distillation - a pyrolysis process. The first true gasifier, using air as a gasifying agent, was constructed by Bischoff of Mägdesprung in 1839 with coal or peat as fuel. 1,2 Gasifiers were developed technically and enjoyed a heyday in the first half of the twentieth century. The gas was used for lighting, heating, and fuelling gas engines (a form of internal combustion engine). Coal was the most important feedstock, but peat and wood were also used. During the Second World War, about 700 000 vehicles had their engines fuelled by gas from small gasifiers, mostly using charcoal feedstock. 3 In the post-war years, cheap oil and natural gas led to a decline in the use of gasification, but interest was re-kindled by the Oil Crisis of 1973. The
emergence of the "Green" lobby has encouraged work on renewable sources, and biomass gasification has been one process option of interest.

Since 1973, many research projects have been undertaken with the eventual aim of designing a commercial scale biomass gasifier. A list of commercial or near-commercial scale biomass gasifiers is given in Bridgwater. 4 Although there have been many gasifiers built, there are still gaps in the understanding of the whole process of gasification. The survey by Reed is notable for its coverage of all aspects of gasification. 5

The author's study has its roots in previous work carried out at Aston University 6,7,8 and was concerned with the production of fuels and chemicals using the gasification of biomass followed by synthesis of products from the gas produced. This study was based on computer modelling to estimate the process performance and economics of systems using fixed bed gasifiers. The emphasis was on the understanding of the parameters which influence the gasification process, and this theme has been continued in the author's work.

The objective of the author's study has been to enable a greater understanding of the gasification process through the development and use of computer models. Greater understanding of the gasification process will aid the design of gasifiers in the future and the development of new processes of which gasification forms only a part. The models which have been developed have been centred on three areas which are important to the understanding of the gasification process - chemical equilibrium in the gasification process, modified equilibrium modelling of gasification to predict performance more accurately where it deviates from ideality, and the economics of the gasification process. Because
previous work at Aston was concentrated on fixed bed gasifiers, the modified equilibrium modelling has concentrated on fluid bed gasifiers, which are more suited to synthesis gas production at high throughputs than fixed bed types.

Chapters 2, 3 and 4 of the thesis give the background to the work. Chapter 2 outlines the complex network of reactions which comprises the gasification process, including the true gasification reactions and the pyrolysis reactions which also take place in a biomass gasifier. Chapter 3 describes the types of gasifiers which have been used for biomass gasification. Chapter 4 is a survey of the various models of biomass gasification which have been developed by other workers in the field.

Chapter 5 describes a new equilibrium model of gasification, which uses the operating condition called the adiabatic carbon boundary - an operating condition which gives the highest thermal efficiency for an idealised gasifier. The main function of this model is to provide a "target" against which the results of real gasifiers can be compared; it is not intended to be a model of the performance of real gasifiers. It has been used in a sensitivity analysis to study the effects of various parameters such as gasifier pressure and feedstock composition, on the performance of an idealised gasifier. A computer program has been written using the adiabatic carbon boundary model and which also incorporates other equilibrium models of gasification.

One reason why gasifiers do not perform exactly as predicted by equilibrium models is that hydrocarbons derived from the products of pyrolysis bypass the gasification reactions to be incorporated in the product gas. Some work has been done by Shand and Bridgwater to account for this in the case of fixed bed gasifiers using a stagewise
modelling approach. This type of model conceptually divides the gasifier into a number of connected black box reactors, the connections depending on the geometry of the particular reactor being modelled: each of the black boxes can then be used to represent a group of reactions, typically drying, pyrolysis and char gasification. Fluidised bed gasifiers are increasingly being preferred over fixed bed types for a number of reasons, but no stagewise modelling of fluid bed gasification has been performed. Chapter 6 describes a computer program which uses the stagewise approach in order to model this type of gasifier. By considering various types of stagewise model, the processes taking place within a fluid bed gasifier can be more easily understood.

In addition to understanding the physics and chemistry of the gasification, it is important that the economics of the process be evaluated. Information on the capital costs of commercial or near-commercial gasifier systems was collected, and correlations have been produced to estimate the total installed capital cost. These have been used to construct an economic model of gasification, which is presented in Chapter 7. This has been used in a sensitivity analysis to determine the most important factors which influence the profitability of gasification.

The conclusions which can be drawn from the author's work are summarised in Chapter 8, and their implication in the design of fluid bed gasifiers described. This chapter also includes recommendations for future work which will aid the design process further.
CHAPTER 2
THE FEEDSTOCK AND GASIFICATION PROCESS

2.1 THE BIOMASS FEEDSTOCK

Gasification was first used as a process for converting coal to gas for lighting purposes. Throughout the heyday of gasification in the early part of this century, coal remained the predominant feedstock, but in areas where coal was expensive or not readily available other feedstocks, such as peat and wood, were used.2,9,10

Any combustible carbonaceous feedstock may be used for gasification, given certain constraints (eg particle size distribution). Wood was commonly used in gasifiers until their fall from favour after the Second World War. During the Second World War, 700,000 vehicles were fuelled by gas produced in vehicle-mounted gasifiers using wood or charcoal feedstocks.4

Recently, the possibility of using refuse as a feedstock for gasification processes has been considered. This has a substantial price advantage over other feedstocks, even though pre-processing treatment is required. As the bulk of refuse is ligno-cellulose material, it behaves similarly to wood in gasification processes.11

2.1.1 Composition

There are two ways of expressing the composition of gasification feedstocks - the mean composition, expressed as the proximate and
ultimate analyses of the fuels and the full analysis of compounds present in the fuel.

Proximate and Ultimate Analyses

The traditional method for considering the suitability of a fuel for gasification is to look at the proximate and ultimate analyses of the fuel. Methods of performing the proximate and ultimate analyses of feedstocks are detailed in Karr. The proximate analysis considers the fuel to consist of four fractions: moisture, combustible volatile matter, fixed carbon and ash. This is most useful when considering a fuel for combustion, as it indicates the proportions of combustion which will take place on and above the grate, the fixed carbon remaining within the bed of fuel during combustion and the volatile matter being burnt above the bed. In gasification the proximate analysis is also useful because it provides the ash and moisture content of the fuel.

The ultimate analysis of the fuel is much more important in gasification. The ultimate analysis is an elemental analysis of the fuel, usually expressed as mass percent on a dry basis. The elements considered are usually carbon, hydrogen, oxygen, nitrogen and sulphur, and ash content is also recorded. When refuse is being considered as a gasification feedstock, it could be useful to consider the chlorine content. Chlorine is present in negligible quantities in most forms of biomass but it is often not negligible in refuse. Chlorine compounds in the product gas will cause corrosion problems with some materials of construction and may create an air pollution problem.

The ultimate analyses of a number of gasification feedstocks are
shown in Table 2.1.

As the ultimate analysis is the elemental analysis of a gasification feedstock, it is needed whenever material balances are to be calculated. Material balances are used in gasifier design, in the technical evaluation of real gasifiers, and in gasifier modelling.

Chemical Composition of Gasification Feedstocks

Most biological materials which may be considered as gasification feedstocks are composed of a diverse range of chemical compounds and are therefore difficult to analyse fully. There are even greater difficulties with analysing municipal refuse and other solid wastes which may be considered as gasification feedstocks. Refuse consists of a range of different materials - paper and cardboard, plastics, waste animal material, vegetable matter and non-combustible materials such as glass, ash and ferrous and non-ferrous metals. Each of these fractions vary in composition and each fraction is present in different proportions in wastes from different areas of the country. The animal and vegetable matter will decompose during storage, changing the chemical composition. Because of these factors, it is impossible to express a full chemical analysis of refuse.

Wood is the material most often considered as a biomass gasification feedstock, and its chemical composition is known. 15 Woods from different trees differ, but all woods contain three components: ash, the inorganic fraction of the wood, which usually forms less than 1% of the wood; extractables, the material making up the living cells of the wood, about 4 to 20% of the wood; and cell wall components, which make up the bulk of the wood.
Table 2.1 Ultimate analyses of gasification feedstocks

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Mass %, dry basis</th>
<th>Ref. & notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>Wood and derived materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir</td>
<td>52.3</td>
<td>6.3</td>
</tr>
<tr>
<td>Redwood</td>
<td>53.5</td>
<td>5.9</td>
</tr>
<tr>
<td>Beech</td>
<td>51.6</td>
<td>6.3</td>
</tr>
<tr>
<td>Hickory</td>
<td>49.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Maple</td>
<td>50.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Douglas Fir bark</td>
<td>56.2</td>
<td>5.9</td>
</tr>
<tr>
<td>Redwood waste</td>
<td>53.2</td>
<td>6.0</td>
</tr>
<tr>
<td>Alabama Oak waste</td>
<td>49.2</td>
<td>5.7</td>
</tr>
<tr>
<td>Charcoal</td>
<td>80.3</td>
<td>3.1</td>
</tr>
<tr>
<td>Paper</td>
<td>43.4</td>
<td>5.8</td>
</tr>
<tr>
<td>Wastes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice hulls</td>
<td>38.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Refuse</td>
<td>30.7</td>
<td>4.2</td>
</tr>
<tr>
<td>Municipal solid waste</td>
<td>33.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Coals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekenberg peat briquette</td>
<td>58.4</td>
<td>5.4</td>
</tr>
<tr>
<td>Malay lignite</td>
<td>68.4</td>
<td>5.8</td>
</tr>
<tr>
<td>Yorkshire bituminous</td>
<td>73.1</td>
<td>5.5</td>
</tr>
<tr>
<td>South Wales anthracite</td>
<td>87.5</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Note

§ Ash includes metals etc.
Figure 2.1 Structural Formula of Cellulose

Figure 2.2 Structural Formula of Xylan Hemicellulose
The cell wall components may be divided into two fractions, lignin, and the holocellulose fraction consisting of polysaccharides. Lignin forms about 25 to 40% of the wood and holocellulose 40 to 60%.

Holocellulose forms the fibrous part of the cell wall, and may be divided into cellulose and hemicellulose.

Cellulose is a straight-chain polymer of d-glucose, (Figure 2.1) and forms 60 to 70% of the holocellulose. It has the general formula
C₆H₁₀O₅ and in wood its molecular weight is usually over 100 000.

Hemicellulose is intertwined with cellulose in the cell wall fibres. It is a polymer of various sugars, the most common being d-xylose (Figure 2.2) and d-mannose. Unlike cellulose, it is usually in the form of branched chains of 50 to 200 units.

Lignin is an amorphous substance which surrounds the cellulose fibres, cementing them together. It is a three dimensional polymer of various aromatic units, which are mainly based on phenyl propane (Figure 2.3). Its structure is not certain, but a representative structure has been published by Grabowski and Bain. ¹⁵

The chemistry of these wood components, as it affects gasification, is described in Section 2.2.2.

2.1.2 Other Properties of Biomass Influencing Gasification

Heating Value

As gasification is primarily an energy conversion process, the energy balance is of prime importance in assessing the performance of the process. The chemical energy of the feedstock is the dominant, if not the only energy input to the process, and hence has a large influence on the energy balance. The heating value of the gasification feedstock is therefore very important in the process of gasification.

There are two ways of expressing the heating value of fuels: the higher heating value and the lower heating value. The higher heating value is the heat evolved in combustion of the fuel to carbon dioxide gas and liquid water, whereas the lower heating value is the heat evolved when the products of combustion are gaseous carbon dioxide and water.
vapour. In combustion processes the latent heat of the produced water vapour is not usable, and so the lower heating value is a measure of the usable heat of combustion. However, in thermodynamic calculations, the heat of reaction is given for the reactants and products in their standard state at 25 °C: the higher heating value is thus the thermodynamically correct measure of the heat of combustion. The higher heating value is also the heat which is measured in a bomb calorimeter. In the author’s work, the higher heating value has been used for both feedstocks and products.

The calorific value of gasification feedstocks should always be expressed on a dry basis, as this involves less risk of confusion. Dry basis calorific value can be adjusted easily to account for the actual moisture content of the feedstock in energy balance calculations. If the natural basis (ie wet basis) calorific value is quoted then the moisture content must be stated as well. The moisture content of many forms of biomass is not constant (see below); consequently, the quoted wet basis calorific value must be adjusted to the actual moisture content, giving the wet basis no advantage over the dry basis.

Several equations exist for calculating the dry basis calorific value of gasification feedstocks, using the ultimate analysis. Grabowski and Bain 15 tested three equations for calculating higher heating value, and found the IGT equation to be the most accurate for biomass and biomass derived materials:
\[HHV = 146.5C + 568.78H + 29.45 - 6.58A - 51.53 (O + N) \]

where:

- \(HHV \) = dry basis higher heating value, BTU/lb
- \(A \) = mass percent ash, dry basis
- \(C \) = mass percent carbon, dry basis
- \(H \) = mass percent hydrogen, dry basis
- \(N \) = mass percent nitrogen, dry basis
- \(O \) = mass percent oxygen, dry basis

The IGT equation has been used in this work whenever a feedstock ultimate analysis was available but no dry basis heating value given.

Moisture Content

The moisture content of the feedstock affects both the mass balance and the energy balance of the gasification process (see Section 2.2.3). The biomass moisture content is therefore an important parameter in gasification and must be clearly stated when presenting results of modelling or experiments on real gasifiers.

The moisture content of biomass is usually expressed in one of two ways - both are given as mass percentages, but in one case the moisture is expressed as a proportion of the dry mass of the biomass and in the other case the moisture is expressed as a fraction of the total wet mass. Confusing these two bases leads to large errors - 50\% wet basis is equivalent to 100\% dry basis. As ultimate analyses and heating values are expressed on a dry basis in this work, moisture contents are also expressed on a dry basis.

Moisture is stored within the biomass in two ways - either as liquid within the cells, or bound into the cell wall structure. When biomass is left to dry in air, the free water within the cells is lost, followed by some of the
moisture from the cell walls. Some of the cell wall moisture remains, as
there is an equilibrium moisture content of biomass, dependent on the
relative humidity and temperature of the atmosphere. Figure 2.4 shows
the equilibrium moisture content of wood. Because of this equilibrium
moisture content, "air dry" wood may in fact contain 10 to 20% water.

Biomass Physical Structure

Most biomass materials are fibrous in structure, and hence are
anisotropic. This could give rise to both process and mechanical
considerations when designing gasification processes. To illustrate the
effect of anisotropic behaviour on the process, consider a wood particle
undergoing gasification: diffusion of gasifying agent and product gases
takes place along the grain, as diffusion across the cell walls
perpendicular to the grain is negligible. In addition, the thermal
conductivity across the grain may be different from that along the grain.
However, these process considerations are minor when compared with
the influence of anisotropy on gasifier mechanical design. Some types of
feeders may be easily jammed by biomass, and knife valves to control
biomass flow have to be specially designed. Size reduction can cause
problems: wood tends to split along the grain, and the resulting particles
are shaped like pins. Such particles can mat together in storage and
feeding systems causing bridging problems.
Figure 2.4 Equilibrium Moisture Content of Wood as a Function of Relative Humidity and Temperature

(taken from Timber Research and Development Association Wood Information, Section 4, Sheet 14. Note that moisture contents are on a wet basis)
2.2 PRINCIPLES OF GASIFICATION

A particle of biomass passing through a gasification reactor undergoes a complex series of physical changes and chemical reactions which may be grouped into four steps: drying, pyrolysis, gasification and tar cracking. These steps are not discrete processes and it is difficult to decide where pyrolysis ends and gasification begins. Also, because of the resistance of biomass materials to heat and mass transfer, the centre of a biomass particle may be in the drying stage while the surface is being gasified and an intermediate zone is undergoing pyrolysis.

2.2.1 Drying

Drying is the simplest step of the process in that it involves only a physical removal of moisture from the wood, with no chemical reactions taking place. However, it is of importance because of its effect on the heat balance.

Drying is an energy-consuming process, as the latent heat for the conversion of biomass moisture to water vapour must be supplied. This latent heat is no longer available as useful energy to pass into the outlet gas stream, and hence a higher feedstock moisture content will reduce the thermal efficiency of the gasifier.

2.2.2 Pyrolysis

Pyrolysis is the term given to the thermal decomposition of biomass and may take place in the absence of external reagents. Pyrolysis is not a single reaction but a complex network of series and parallel reactions which can only be understood for the simplest of biomass materials. A number of reviews of pyrolysis are available,
including those by Antal and Milne. 19, 20, 21

The pyrolysis behaviour of biomass materials is different as is that of the three main components of wood - cellulose, hemicellulose and lignin.

To describe the pyrolysis step, it is usual to consider it as a single reaction with three products: char, tar and gases.

\[
\text{heat} \\
\text{biomass} \rightarrow \text{char + tar + gases} \tag{2.2}
\]

Char

Char is the solid product of pyrolysis. It is usually about 30% of the mass of the original biomass, but it contains about 50% of the chemical energy of the biomass. It is a black solid which retains the structure of the original biomass. Its physical strength, however, is much less than that of the original biomass, and it tends to be friable.

Chemical analysis of the char shows it to be mainly carbon, but it retains some of the hydrogen and oxygen of the original biomass (see entry for charcoal in Table 2.1).

Charcoal is used as a clean burning fuel for cooking in many developing countries and has a long history as both a general fuel and for metallurgical purposes. However, it is not an ideal fuel because of its limited mechanical strength. In gasification, the aim is to reduce char production to a minimum and maximise the production of fuel gas.

Tar

Tar is a term used to describe the condensable products of pyrolysis, excluding water. Tar is a viscous, acidic liquid, usually of a
brown or black colour. Many compounds are present in tar and over a hundred have been identified. 22

Tar has been considered as a substitute for fuel oil but has been rejected because it is carcinogenic, unstable in storage, and generally unpleasant to handle. Tar produced in gasification must be removed from the gas if it is to be piped for even short distances from the gasifier, as it will condense in the pipes. Tar removal is usually performed by scrubbing the product gas with water. Treatment of the used wash water is difficult, as the phenolics and organic acids in the tar are detrimental to the bacteria used in aerobic water treatment processes. Because of these problems associated with tar, it is often useful to optimise gasification processes to avoid the production of tar.

Gases

Gases from pyrolysis include the oxides of carbon, hydrogen and low molecular weight hydrocarbons. In a gasification process the pyrolysis gases will mix with the products of char gasification.

Carbon monoxide, carbon dioxide and hydrogen are present both in pyrolysis gas and in the gas produced by char gasification, and no differentiation is possible between these gases from the two sources. However, very little hydrocarbon is produced by char gasification (see Section 2.2.3), and most of the methane and all of the higher hydrocarbons in gasification product gas come from the pyrolysis step.

Mechanisms

As stated above, pyrolysis involves a complex network of reactions, and the complete chemistry of the process is not understood. However, cellulose pyrolysis has been studied extensively and may be used as an example of the reaction pathways involved in pyrolysis. 19,23
In the pyrolysis of cellulose, there are two primary reactions - dehydration and depolymerisation. Dehydration involves the evolution of water vapour and the oxides of carbon, leaving a char residue. Competing with it is depolymerisation, the dehydration being favoured at lower temperatures (200 to 280 °C) and depolymerisation taking over at higher temperatures. Depolymerisation takes place by the cleavage of the ether bonds between the glucose units, followed by re-arrangement to give a tar monomer, the most common being levoglucosan (see Figure 2.5).

Levoglucosan is only an intermediate; the final products of pyrolysis arise from secondary reactions in the gas phase. Levoglucosan may react in three ways to form:

i. char and gases, similar to the products of dehydration

ii. polymeric tars

iii. various condensable, volatile products

These secondary pyrolysis reactions are closely allied with the tar cracking described in Section 2.2.4.

The final pyrolysis product mix is largely dependent on these secondary reactions, which are themselves dependent on many factors, especially the atmosphere in which they take place. For example, in a vacuum, the primary pyrolysis products are removed as soon as they are evolved, and no time is available for secondary reactions; consequently, the pyrolysis products under an inert atmosphere are different from those of vacuum pyrolysis.
Figure 2.5 Reactions in the Pyrolysis of Cellulose

Hemicellulose pyrolysis is known to be analogous to cellulose pyrolysis in its reaction mechanisms, the intermediate levoglucosan being replaced by a furan derivative. Hemicellulose pyrolysis takes place at lower temperatures than cellulose pyrolysis.

Lignin is the most thermally stable component of woody biomass. Its pyrolysis mechanism is not clearly understood, partly because its structure before pyrolysis is complex and not well defined. Lignin is known to produce more char than holocellulose in pyrolysis.

Whilst these mechanisms help with the understanding of pyrolysis, it must be remembered that the individual steps within the reaction schemes are actually generalisations and simplifications of the very complex processes actually taking place.
Factors influencing Pyrolysis

The principal chemical and physical factors which influence the pyrolysis reactions and the final distribution of pyrolysis products are shown in Figure 2.6. The factors which affect the product mix resulting from the pyrolysis of a small element of wood within a wood particle are shown. These factors are themselves dependent on the conditions external to the particle, and the size, shape and composition of the particle itself, together with the position of the element within the particle. These relationships are shown in Figure 2.6. As each small element of wood within a particle experiences a different set of conditions, the pyrolysis products from different parts of a wood particle will differ in both composition and proportions of char, tar and gases.

Because of these complex relationships and the complicated nature of the reactions involved, it is difficult to produce a general theoretical model of pyrolysis and models of pyrolysis must be confined to specific idealised cases or must be qualitative models. There is no general model to predict the relative proportions of the products with their compositions.

2.2.3 Char Gasification

Char gasification is the most fully understood of the sub-processes of gasification. Char, a substance which approximates to carbon, reacts with a gasifying agent to form gaseous products at temperatures of 700 to 1000 °C. The gasifying agent may be oxygen, air or steam, or a mixture of these. The reactions between oxygen and carbon are:

Combustion
\[\text{C} + \text{O}_2 \rightarrow \text{CO}_2 \quad \Delta H = -393.5 \text{kJ/mol C} \quad [2.3] \]
Boudouard reaction
\[\text{C} + \text{CO}_2 = 2\text{CO} \quad \Delta H = +172.5\text{kJ/mol C} \quad [2.4] \]
These may be combined to give:
\[2\text{C} + \text{O}_2 \rightarrow 2\text{CO} \quad \Delta H = -221.0\text{kJ/mol O}_2 \quad [2.5] \]
The reaction between oxygen and carbon to give carbon monoxide is
exothermic and the energy released is used to heat the reactants to the
temperature of reaction.

The reaction between carbon and steam is known as the water-
gas reaction:
\[\text{C} + \text{H}_2\text{O} = \text{CO} + \text{H}_2 \quad \Delta H = +131.3\text{kJ/mol} \quad [2.6] \]
This reaction is endothermic and heat must be supplied for the reaction
to proceed. There are two strategies which may be adopted to achieve
this: one is to mix the steam with oxygen or air, the heat released from
reaction [2.5] supplying the energy for the water gas reaction; the other is
to transfer heat from a separate combustion process.

Another heterogeneous reaction which may take place forms methanee:
\[\text{C} + 2\text{H}_2 = \text{CH}_4 \quad \Delta H = -74.9\text{kJ/mol C} \quad [2.7] \]
Studies of the thermodynamics of gasification, for example by
Desrosiers 24 have shown that the only species present at equilibrium
are \(\text{H}_2, \text{CO, CO}_2, \text{CH}_4, \text{N}_2 \) and \(\text{H}_2\text{O}. \) Other species, such as higher
hydrocarbons and ammonia, are unstable, and only present in very small
concentrations under gasification conditions.
Primary factors

Temperature history of element

Pressure in element

Gas composition in element

Moisture content of element

Secondary factors

Heat effects of pyrolysis reaction

Heat transfer

Pressure outside particle

Mass transfer

Temperature history outside particle

Size and geometry of chip

Position of element within chip

Gas composition outside particle

Pyrolysis products

Figure 2.6 Factors Influencing the Pyrolysis of a Small Element Within a Wood Chip Showing Relationships Between Factors
In addition to the heterogeneous reactions, there are gas phase reactions between the species mentioned above, for instance the water-gas shift reaction:

\[\text{H}_2 + \text{CO}_2 \rightarrow \text{CO} + \text{H}_2\text{O} \quad \Delta H = +41.2 \text{kJ/mol} \quad [2.8] \]

This is, in effect, a combination of the heterogeneous reactions [2.4] and [2.6]. Similar combinations of reactions may be constructed to account for the formation of methane in the gas phase.

2.2.4 Tar Cracking and Reactions of Pyrolysis Products

The products of pyrolysis include polymeric tars and volatile organic products including phenolics, acids and hydrocarbons. None of these compounds is thermodynamically stable under gasification conditions. Therefore, in a system where the pyrolysis products pass through the gasification zone, the pyrolysis products will react to produce simpler compounds. If equilibrium is attained, the only products will be the simple gases \(\text{H}_2, \text{CO}, \text{CO}_2, \text{CH}_4, \text{N}_2 \) and \(\text{H}_2\text{O} \). However, in real gasifier systems, the pyrolysis products are not likely to attain equilibrium, and a range of other products will be formed.

The reactions of the pyrolysis products are in some ways analogous to the oil refinery operations of cracking and steam reforming. The large molecules are broken into smaller molecules either by the action of heat or by reaction with other species in the environment, such as oxygen and steam. However, in oil refining the feedstocks are usually straight chain hydrocarbons, whereas the tars cracked in a gasifier are aromatic and are oxygenated. The position in gasification is further complicated because the second stage of the pyrolysis process, which produces the compounds being cracked, takes place in the gas phase.
where the cracking and reforming also take place. The cracking reactions are thus strongly associated with secondary pyrolysis, and it is difficult to separate the two groups of reactions.

The cracking processes are not well understood, but it is known that increasing the temperature increases the extent of cracking. Catalytic effects are also important, and dolomite and limestone are known to aid cracking. It is also known that pyrolysis products can be cracked almost completely by passing them through a hot char bed.

2.3 PRODUCTS OF GASIFICATION IN PRACTICAL GASIFIERS

If gasification was taken to equilibrium the product gas would contain only H₂, CO, CO₂, CH₄, N₂ and H₂O. However, in real systems, pyrolysis products or compounds formed by the cracking of pyrolysis products may also be present. These include ethylene and higher hydrocarbons, condensable organics and tars.

The target gas composition depends on the use to which the gas is to be put: fuel gas must contain the maximum available energy for a given cost, whereas a synthesis gas must have hydrogen and carbon monoxide maximised while minimising methane and nitrogen. In most cases, the presence of tars and condensables in the exit gas is not desirable since they may be deposited in pipework or cause other problems: consequently, they must be removed from the product stream. It is, therefore, advantageous to reduce the tars in the reactor exit gas to a minimum. This can be done by using high reactor temperatures and by contacting the gas with either hot char or limestone catalyst, as discussed.
above.

The choice of gasifying agent has a large effect on the gas produced. The gas from air gasification contains about 50% nitrogen from the gasifying agent, and has a low heating value of about 5 MJ/m³. The combustible components are mainly H₂, CO, CO₂ and CH₄.

Oxygen gasifiers produce a similar gas, but it is undiluted with nitrogen and has medium heating value of about 10 MJ/m³. The gas from oxygen gasification is often suitable for use as a synthesis gas.

Gasification where steam is the only gasifying agent is uncommon because of the need to provide heat for the endothermic reactions. Since the temperature in such a gasifier is lower than for air or oxygen gasification the pyrolysis products are not cracked as extensively as in air or oxygen gasifiers. Thus, although the gas has a heating value similar to that of oxygen gasification, it has a higher hydrocarbon content and is less suitable as a synthesis gas.

The products of gasification also depend on the gasifier configuration and this topic is discussed in Chapter 3.
CHAPTER 3
GASIFICATION SYSTEM DESIGN

A gasifier system for converting biomass to usable gas needs four main components - a biomass feeder, a reactor, a gas cooler and a gas cleaner. Feedstock and product pass through the component parts of the system as shown in Figure 3.1; the gas cooling and gas cleaning may be in either order or combined. For some applications a hot, uncleaned gas is acceptable, and so the heat recovery and gas cleaning may be omitted.

In addition to these four essential parts, some pretreatment of the biomass feed may be required. Drying, size reduction, screening or classification, and sorting (for refuse feedstock) may be required to prepare the biomass for gasification. 28,29

The design of a gasifier system is heavily dependent on the characteristics of the biomass feedstock, and the use to which the product gas is to be put. This is made clear in the following sections in which the four key process components are considered in more detail.

3.1 THE FEEDER

The function of a gasifier feeder is to transport the biomass feedstock from storage into the reactor while preventing the uncontrolled entry of air or the escape of product gas. Biomass materials behave differently from other bulk solids in handling systems, because of their fibrous nature, and non-uniform particle shapes, and the feeder for a biomass gasifier must be designed specifically for biomass. Using a
Figure 3.1 A Typical Gasification System
feeder designed to handle coal will cause major problems. The following
discussion is based upon the review by Miles. 30

A feeding system needs three parts: a system of transporting the
biomass from the storage area to the gasifier, a lock-hopper or similar
device for preventing the transport of gases in to or out of the reactor, and
a device for delivering the biomass into the reactor.

Normally, use is made of a small hopper, immediately before the
lock-hopper, to provide buffer storage in the feeding system. This can be
fed with biomass from the main storage area in one of three ways:
manually, using a front-end loader vehicle, or using a conveying system.
Manual loading of biomass is most appropriate in the case of small
systems, and in locations where labour is plentiful. Front-end loaders are
used where storage is in piles on a paved area, whereas conveyor
systems require specially designed storage bins or hoppers. This
section of the feeding system is not troublesome compared with the lock-
hopper and final delivery parts of the feeder.

There are two types of lock hopper-system commonly used in
gasifier systems - conventional lock-hoppers equipped with knife valves
top and bottom and rotary feeding valves. These components must be
designed specifically for use in biomass gasification because of the
handling problems associated with fibrous materials. The fibrous
structure can cause jamming problems in both lock-hoppers and rotary
valves; this is a particular problem with the knife valves of conventional
lock-hoppers.

From the lock-hopper or rotary valve, there are three main ways of
delivering the biomass into the reactor - by gravity, screw feeder or ram
feeder. Gravity feeding is possible where it is acceptable to feed into the
top of a reactor; this applies only to fixed bed reactors. Gravity feeding is
the simplest method, but the lock-hopper or rotary valve is exposed to the
high temperatures of the reactor and this can cause premature pyrolysis
of feedstock. In addition, the mechanical parts of the lock hopper must be
designed to withstand reactor temperatures.

Screw feeders and ram feeders may be used to feed into any part
of a reactor and are thus more versatile. They must be designed to cope
with reactor temperatures, and the residence time of the biomass in the
feeder must be reduced to a minimum to obviate the possibility of
pyrolysis. As with the lock-hopper, there is the possibility of jamming
because of the special handling properties of biomass.

Of the three delivery methods, screw feeders are the most
common because of their versatility, followed by gravity systems because
of their simplicity.

3.2 THE REACTOR

3.2.1 The Reactor Function

The function of the reactor in a gasifier system is to contact the
biomass feed with the gasifying agent and so allow reaction to take
place. The design of the reactor depends on the feedstock to be used
and the application of the product gas. The choice of gasifying agent
also has a strong effect on the design of the reactor. For instance,
special types of gasifiers are required to overcome the problems
associated with steam gasification, see section 3.2.2. Also, the choice of
reactor configuration will affect strongly the design of both the feeder and
the downstream gas processing plant; therefore, the reactor must be the
first component of the gasifier to be designed. 28

The Influence of the Gas End Use

There are three basic types of product from gasifiers: 4

i. Raw fuel gas
ii. Clean fuel gas
iii. Synthesis gas

In this context, "raw" gas is a dirty gas containing tar and particulates; it is used as a fuel in situations where the gasifier is close-coupled to the gas burner and where the cleanliness of the combustion products is not important. Raw gas is burned while still hot, thus using the sensible heat of the gas and improving the thermal efficiency of the whole conversion process.

"Clean" gas contains little or no suspended tars or particulates and is used either where clean combustion products are required or in gas turbines or gas engines for power production. Clean gas is usually cold because the methods of gas cleaning employed require that the gas be cooled (see Section 3.4).

Synthesis gas is a mixture of hydrogen and carbon monoxide and may be used in the production of a range of fuels and chemicals, including methanol, synthetic gasoline, and synthetic natural gas. Strict limits are usually placed on impurity levels in the synthesis gas. 31

Each of the three classes of product requires different optimisation of the reactor system. In the case of both types of fuel gas, gas heating value and gasifier thermal efficiency should be maximised. This applies in the production of both low heating value gas by air gasification and medium heating value gas by oxygen/steam gasification. The difference between raw and clean gas lies in the tars produced: when producing a
clean gas, tar production should be minimised to reduce the load on the clean-up system, whereas the presence of tars in a raw gas is not important as they are burned in a close-coupled system.

Synthesis gas should ideally be a mixture of only carbon monoxide and hydrogen. Other gaseous components do not take part in the synthesis reactions and can build up to high concentrations in the synthesis recycle loop, requiring a large purge stream, and reducing the efficiency of the synthesis process. Carbon dioxide is not a problem in this context, as it is easily removed; but nitrogen is a problem and hydrocarbons must be converted by expensive reforming steps. Clearly, an oxygen or steam gasifier must be designed and operated so as to minimise the production of hydrocarbons. A clean gas is also required to prevent poisoning of the synthesis catalysts.

The Influence of Feedstock Properties

The properties of biomass feedstocks which are important in the process design of gasification have already been described (see Section 2.1). When designing a reactor the feedstock particle size distribution and mechanical properties are of particular importance. In a gasifier reactor, there is usually a bed of biomass and char, either fixed or fluidised, with a gas flowing though it. The size and shape of the particles and their packing behaviour will affect the structure and movement of a "fixed" bed of solids and will affect the fluidisation regime when the particles are used in a fluid bed. This has a number of consequences for the performance of the reactor. Firstly, the pressure drop across a fixed bed is dependent on the structure of the bed and so one containing many small particles will give an excessive pressure drop. Also, bridging may take place in the bed leading to the formation of
voids and to the channelling and maldistribution of the gas.2,4

There are two possible solutions to these problems: either to use a fluidised or entrained bed design which is tolerant of small particles or to pretreat the feedstock by size reduction and screening processes. It may be necessary to adopt both of these solutions in combination. As well as adjusting the particle size distribution, it may be necessary or advantageous to reduce the moisture content of the feedstock by drying before feeding it to the reactor. The inclusion of pretreatment steps will increase the efficiency and reliability of the reactor but there is a trade-off between increased reactor efficiency and pretreatment costs.

Information on the feedstock limitations for each type of reactor is included in Section 3.2.2.

\textbf{Ash Removal}

After gasification, the ash or mineral content of the biomass feed is left behind as a residue. This can have important consequences for gasifier design, as the melting temperature of the ash is often in the same region as the gasifier reactor temperature. The ash from a gasifier may thus be removed in either the solid or the liquid state. Molten ash removal is simple, as the ash merely needs to be run off from the bottom of the gasifier and allowed to solidify.1,10 Gasifiers using molten ash removal are known as "slagging gasifiers" and are not unknown in coal processing technology.35

The presence of molten ash is not without problems. In fixed beds, liquid ash formed in a hot zone can re-solidify in a cooler part of the reactor, cementing the bed together and severely impairing the performance of the gasifier. In a fluid bed, partially molten ash tends to agglomerate, forming large lumps which sink to the bottom of the bed,
again affecting the performance. Because of these potential problems, it is usual in biomass gasifiers to operate at a temperature below the ash fusion point. One practical method of controlling temperature is to inject steam with the gasifying agent, the endothermic reaction between the steam and char serving to reduce the gasifier temperature.

In fixed bed gasifiers, the ash is usually allowed to accumulate at the bottom of the gasifier, often by allowing it to fall through a grate. It can then be raked out manually or removed by mechanical means, for example, by screw feeder. 37,38,39

There are two methods of ash removal employed in fluid bed gasifiers: either some of the bed material is continuously taken out of the reactor and the ash removed, for example, by screening, before returning the material to the bed, or the ash is elutriated from the bed and removed from the gas stream by one of the methods described in Section 3.3. 37,40,41

3.2.2 Gasifier Types

There are a variety of reactor configurations which have been employed for the gasification of biomass, and these can be divided into two classes - fixed beds and fluidised beds. 37,42 There are three types of fixed bed gasifier: updraft or counter-current, downdraft or co-current, and crossdraft or crossflow. Fluid bed designs are not so easy to categorise, but they may be divided into simple fluid bed, fast fluid bed and entrained bed types. Gasification has also been carried out in equipment with mechanical movement or agitation of the biomass bed; examples are the Forest Fuels gasifier and the National Synfuels pyrolyser/gasifier. 43 These attempt to overcome flow problems encountered in packed bed
gasifiers by using mechanical means to transport the solid material through the gasifier. The National Synfuels design employs a pyrolyser in the form of a heated screw feeder followed by an updraft gasifier to gasify the char produced, in an attempt to produce a cleaner gas. Because of their complexity, these gasifier types are expensive and are not in common use.

There are a number of less common gasification processes, which require special combinations of reactors. Two of the most promising are the twin fluid bed steam gasifier and the Oxygen Donor Gasifier (ODG). These produce a medium heating value gas without the use of oxygen by using a twin bed system. One bed is a combustor fired by air, which provides heat for the gasification reactions taking place in the other reactor. \(^{44,45}\)

All of these gasifier reactors are designed for continuous operation.

The Downdraft Gasifier (see Figures 3.2 and 3.3)

The downdraft gasifier is a co-current gasifier; the biomass and gasifying agent pass down through the reactor and the product gas and ash are removed from the bottom of the reactor. \(^{2,43,46}\) In operation, there is a hot zone in the reactor where drying, pyrolysis and gasification take place in close succession. Below the hot zone, further gasification takes place in a char bed. There are two types of downdraft gasifier - the conventional or throated downdraft and the open-core downdraft.

The conventional downdraft gasifier has a "throat" or constriction at the point where the gasifying agent is injected. This creates an intense hot zone with strong turbulence and mixing, where most of the pyrolysis products are cracked, thus producing a clean gas. \(^2\)
The product gas is usually at a temperature of 600 to 800°C and so it is often passed through a jacket around the body of the reactor to recover energy by heating the feedstock. There are a number of limitations on the conventional downdraft gasifier. Firstly, to avoid a high pressure drop across the bed the biomass feed must be in the form of lumps. The biomass must also bridge the throat for correct operation of the reactor, and this constrains the biomass to a size of between 20 mm and 80 mm. Thus, fine particles of biomass must be pelletised before they can be used. The need for the biomass to bridge the throat of the gasifier also introduces a constraint on the diameter and hence the throughput, which is limited to about 0.75 t/h biomass.

Open core downdraft gasifiers consists of a plain tube with a grate at the bottom, through which the gas is extracted. Gasifying agent and biomass are both fed into the top of the tube; a lock-hopper system is not required although one may be used so that the flow of air into the gasifier can be controlled. There is no throat and so the hot zone is larger and cooler and its position is less well defined than in the conventional design. As the temperature is lower, there is less cracking of pyrolysis products. Also, as the zone is more diffuse and less stable, there is more opportunity for pyrolysis products to bypass the hot zone entirely. These two effects mean that the product gas is considerably more dirty than that from a conventional design. However, as the wood does not have to bridge across a throat, the particle size distribution is not as critical and the diameter of the gasifier is only constrained by the usual factors influencing maximum diameter of reactors.

Throated downdraft gasifiers were used extensively during World War Two to provide fuel for motor vehicles. The relatively clean gas
requires little treatment before use in internal combustion engines and this made such gasifiers particularly suitable. Open core downdraft gasifiers have not been used on a commercial scale.

The Updraft Gasifier (see Figure 3.4)

The updraft gasifier is a counter-current design: biomass enters at the top and moves downwards while gasifying agent enters at the bottom; the product gas is removed from above the bed. The gasifying agent first contacts char and combustion and gasification occur. The hot gas from this zone then passes through dry biomass, pyrolysing it to char, and picking up the volatile and gaseous pyrolysis products. In the upper section, the gas dries the wet biomass and some of the pyrolysis products are adsorbed by the biomass. Thus, the product gas contains most of the pyrolysis products and has a heavy load of tar. However, the gasifier may have a higher thermal efficiency than that of downdraft design, as heat is transferred from the product gas to the entering feed; this results in a lower gas exit temperature and smaller losses of energy as product gas sensible heat.

As with open-core downdraft gasifiers, updraft gasifiers are less influenced by particle size distribution than conventional downdraft designs, and there are no special limitations on throughput.

Several designs of updraft gasifier have been developed commercially. They have mainly been used for close-coupled applications where gas cleanliness is not important.

The Crossdraft Gasifier (see Figure 3.5)

The crossdraft gasifier is a much less common fixed bed arrangement. The biomass enters at the top and passes down through the reactor, as with other fixed bed designs. The gasifying agent
is injected into one side of the bed and the product gas is collected from the opposite side. There is a localised hot zone where the gasifying agent is injected; then, the hot, clean gas from this zone passes through the biomass causing pyrolysis and picking up the pyrolysis products. Therefore, the gas produced is fairly dirty.

There are currently no commercially available crossdraft biomass gasifiers but crossdraft charcoal gasifiers have been used to produce gas for motor vehicle fuel. Using charcoal fuel avoids the introduction of pyrolysis products into the gas stream and a clean gas is produced as a result.

The Fluid Bed Gasifier (see Figure 3.6)

The fluid bed gasifier usually consists of a bed of sand or other inert material, fluidised with gasifying agent at a temperature of 700 to 900°C. Biomass is fed into the bed and rapidly pyrolyses at this temperature, giving char which is then gasified. The bed is usually well-mixed and at an even temperature. The temperature of operation is lower than that of the hot zone of a downdraft reactor and so there is a lower conversion of pyrolysis products. Also, there may be some bypassing by the pyrolysis products in the bubbles within the fluid bed. Thus, the gas produced is dirtier than that from a downdraft gasifier, although it is much cleaner than that from an updraft gas producer. Because the gas velocities are higher than those in a fixed bed gasifier, there is a greater chance of small ash and char particles being entrained in the product gas; consequently, a cyclone separator is required to remove particulates.

The main advantage of fluidised bed gasifiers over fixed bed designs is that they do not require a lump feed; fine particles may be fed
into the bed. However, large pieces of feedstock (greater than about 50mm diameter) must be reduced in size before they can be fed into the gasifier. A fluid bed gasifier often may be used with different feedstocks, for example, the Rheinbraun HTW gasifier has been tested with wood, peat, lignite, brown coal and bituminous coal feedstocks with good results. This characteristic makes them versatile in use, and they are especially suitable for a feedstock, such as domestic refuse, which can vary widely in composition from day to day.

Fluid bed gasifiers are fairly simple, both in construction and in operation. They are more complex than fixed-bed producers and require a more sophisticated control system.

The Fast Fluid Bed Gasifier (see Figure 3.7)

The fast fluid bed gasifier, also known as the circulating fluid bed gasifier, is a variant of the fluid bed type in which a higher gas velocity is used. There is more elutriation of particles from the bed and there is no detectable interface between the bed and the freeboard. Elutriated particles are separated from the product gas in a cyclone and returned to the bed. The characteristics of fast fluid beds are similar to those of a simple fluid bed design; Lurgi claim that they have produced a tar-free gas from their circulating fluidised bed design.

The Entrained Bed Gasifier (see Figure 3.8)

In the entrained bed gasifier, the gas velocity is increased to a level where all the particles are entrained in the gas stream; there is no bed of particles present, just a homogeneous mixture of particles and gasifying agent. There is usually no inert carrier material as is the case in most fluid bed designs. 47
Figure 3.6
Fluid Bed Gasifier

Figure 3.7
Fast Fluid Bed Gasifier

Figure 3.8
Entrained Bed Gasifier
The entrained bed gasifier represents a higher level of technology than fluid bed designs and in addition, the biomass must undergo expensive size reduction to produce particles small enough to be entrained. For these two reasons, entrained bed gasification systems have not passed the research stage. 4

Steam Gasifiers (see Figure 3.9)

As mentioned in Section 2.2.3, the reaction between steam and char is endothermic. Consequently an external heat source is required for steam gasification. 4,45 There are two methods of supplying this heat to the gasification process - by indirect heat transfer or by direct heat transfer from a heat carrier.

The heat carrier method may be accomplished by using a twin fluid bed arrangement, using sand or other inert particulate material as the heat carrier. The gasification reactor is a fast fluid bed fluidised with steam, into which the biomass is fed. Sand and char are elutriated from the bed and removed from the product gas stream in a cyclone. They then pass to a combustor, where the char is burned in air, raising the temperature of the sand, which is returned to the gasifier. The heat carried in the sand is given up in the gasifier, thus sustaining the steam gasification reaction.

Steam gasification can also be performed using indirect heat transfer through a heat transfer wall. 40 In this case, there is a combustor section or combustion tubes in which biomass or some of the product gas is burned. Biomass is fed into the gasifier bed, which is again fluidised with steam, the heat for the gasification being transferred by conduction from the combustion section.
Figure 3.9 Twin Fluid Bed Steam Gasifier

The advantage of steam gasification over conventional processes is that pure oxygen is not required for the production of a medium heating value gas. There are three main disadvantages: the twin-bed systems are more complicated than conventional air or oxygen gasifiers; heat from the combustor flue gas must be recovered to make the system economic; and the low temperatures of the gasifier can cause formation of a dirty product gas.
The Oxygen Donor Process (see Figure 3.10)

There is one other gasification process which has been developed to produce a medium heating value gas without the use of pure oxygen. This process employs the Oxygen Donor Gasifier (ODG). The ODG is a twin fluid bed design with a central gasifier and a surrounding combustor. Bed material is continuously transferred from the gasifier to the combustor and from the combustor to the gasifier through two specially designed "transfer slots". The bed material consists of a mixture of CaS and CaSO₄. In the combustor, CaS is oxidised to CaSO₄ with air at high temperature. In the gasifier, the CaSO₄ gives up its oxygen in the gasification process, reverting to CaS. The biomass is fed into the gasifier bed, where pyrolysis and gasification take place producing product gas. Char from the gasifier passes with the CaS/CaSO₄ to the combustor, where it is burned in air, providing heat for the oxidation of the CaS.

While this process has the advantage of needing no oxygen to produce a medium heating value gas, the gasifier system is complex compared with conventional designs and heat must be recovered from the combustor flue gas. This process has been developed as far as the pilot plant stage.

Other Two-Step Processes

Pyrolysis as a method for gas production is inefficient because of the energy wasted in the char byproduct; consequently, other processes have been developed which have pyrolysis as a first step, followed by separate gasification of the char. These systems are similar to steam gasifiers in their characteristics, and it may be that in some types of steam gasifier the gasification reactor is actually behaving as a pyrolyser.
Figure 3.10 The Oxygen Donor Gasification Process
3.3 HEAT RECOVERY

Unless the product from a gasifier is to be burned while still hot, the gas must be cooled and the sensible heat recovered. At first sight, this would seem to be a simple heat exchanger design problem but pollutants in gasifier product gas can cause problems. Even the clean gas from a throated downdraft gasifier contains some tars, and ash is present to a greater or lesser extent in all product gases. Tars will condense as the gas temperature is reduced, coating heat transfer and other surfaces and there polymerising in situ. Ash precipitated from the gas stream will also foul heat exchangers. Heat exchangers and waste heat boilers installed to recover heat from product gas should be designed to minimise this fouling but even well designed systems will need regular cleaning. Unfortunately, gas cleaning technology has not yet reached the point where gases can be cleaned effectively while hot; consequently, gas cleaning cannot be performed before heat recovery to circumvent these problems.

There are a number of uses to which the waste heat can be put, two of which can increase the efficiency of the reactor; the waste heat can be used either for drying and heating the biomass feedstock or for preheating the gasifying agent. The other main use for the waste heat is in the production of steam which can be employed as the gasifying agent in a steam gasifier or added to air or oxygen to moderate the reaction temperature. Alternatively, it may be possible to export steam to other plants in an area local to the gasifier. Low grade heat can also be used to generate hot water which might be exported for space heating purposes.
The design of the heat recovery system must be undertaken with a particular site in mind. For example, there may be no market for steam or space heating locally; additionally, the chosen feedstock may already be at the optimum moisture content. In such cases the options outlined above have to be ruled out.

3.4 GAS CLEANING

The gas produced in a gasifier contains contaminants, primarily tar and particulates. Tar is a generic term for all condensable organic material; it may contain both high molecular weight, aromatic hydrocarbons and lighter, soluble, oxygenated organics, such as phenols and acetic acid. The tars are often present as a fine mist with droplet sizes in the sub-micron range; high temperature gases may contain tars in the vapour state. The particulate fraction consists of char and inorganic ash and, in fluid bed gasifiers using an inert bed, small particles of bed material will also be present. The quantities of tar and particulates present depend on the type of gasifier (see Figure 3.11).31

The quantities of contaminants which can be accepted depends on the end use of the product gas. Where the gasifier is close-coupled to a combustion system, it may be possible to omit gas cleaning entirely or to include only a cyclone to remove particulates.49 However, in many situations, gas cleaning is necessary. In a system where the product gas is to be piped to the end user, it is important to remove materials that could deposit in and eventually block the pipe.
In the case of synthesis gas and fuel for gas turbines for power generation, contaminants must be within the range 1 to 20 mg/m³. Gas engines can accept particulate concentrations in the range 10 to 50 mg/m³; tars must be kept to a similar level to prevent blocking of the valves and inlet manifold. 50
The gas cleaning equipment usually considered for gasifier applications includes 50,51

Cyclones
Liquid scrubbers
Electro-static precipitators
Bag filters.

Cyclones are the cheapest form of gas cleaning device and are used to remove particulates. They have the advantage that they can be operated at high temperatures, but they are inefficient at removing particles of below 5 to 10 \(\mu \text{m} \) diameter. 52,53

High efficiency cyclones have a higher collection efficiency for a given particle size, although they require a higher pressure drop and thus have a higher operating cost.

The next level of gas cleaning is represented by the liquid scrubber. This may use oil or water as the operating liquid, the use of water being much more common. 51 If oil scrubbing is chosen, the pyrolytic oils from the gasification process will probably be unsuitable because of their high viscosity; if this is the case, oil must be purchased and the used oil distilled before recycling. As water is readily available, it is possible to use a once-through scrubbing system, which is in effect a combined direct contact cooling and cleaning process. Effluent treatment would normally be a two stage process - separation of insoluble tars followed by conventional biological water treatment to reduce the biochemical oxygen demand (BOD). The disposal of insoluble tars may present a problem, although they could be incinerated. The main types of liquid scrubber available are plate and packed columns, spray scrubbers and venturi scrubbers. The most efficient of these is the
venturi scrubber but it requires a secondary separator to remove entrained water droplets from the gas stream.

When the product gas is to be used either to drive turbines or for chemical synthesis, water scrubbing will not clean the gas to the required specification. In this case, bag filters or an electrostatic precipitator could be used. These devices are physically large compared with other clean-up systems and have a high capital cost. They are, therefore, used only where a very clean gas is required. They may operate at higher temperatures than water scrubbers - about 230°C is the maximum for bag filters and there is an upper limit of about 400°C for electrostatic precipitators. 50,52
CHAPTER 4
INTRODUCTION TO GASIFIER MODELLING

4.1 INTRODUCTION

Mathematical modelling is used extensively in chemical engineering for problem solving. Models can be used in the following ways:

i. to predict the performance of a proposed system for design purposes; this may be referred to as design modelling.

ii. to predict the performance of an existing system under a set of conditions which have not been previously tested; this may be referred to as predictive modelling.

iii. to predict the performance of a system under a set of conditions which have been tested to obtain a better understanding of the physical and chemical processes taking place within a system; this may be termed investigative modelling.

Models may belong to more than one of these categories: for instance, a predictive model may also give a better understanding of the internal processes of a system.

A mathematical model must meet a number of criteria:

i. it must be as simple as possible, with as few assumptions and experimentally determined parameters as possible, whilst still meeting condition iii. below.

ii. it must be sufficiently simple for a result to be calculated using the methods at the modeller's disposal. Clearly if a solution
cannot be calculated, the model is useless.

iii. it must give a reasonably accurate result to the problem being solved.

Many models of gasifier systems have been proposed that fall into all three of the categories above and meet the three criteria to a greater or lesser extent.

The models discussed by the author will all be ones dealing with process aspects of gasification, such as temperatures, flowrate compositions and residence times. Mechanical design aspects, such as flow patterns and fluidisation phenomena, are not discussed except where these aspects have been incorporated into a process model. The author's work has concentrated on models which predict the overall performance of gasifier systems, especially the product gas composition, and this review concentrates on these aspects of gasifier modelling. The author's work has also concentrated on fluid bed gasifier modelling, so the emphasis in this chapter has been on models of this type.

Models in chemical engineering may be divided into two types: steady state models and transient or time-varying models. Steady state modelling is used for many purposes including the construction of mass and energy balances during design. Transient modelling is used for predicting the behaviour of systems at start-up and shut-down and for designing control systems.

Steady state models of gasification may be divided into three main types:

i. Black box models, in which the gasifier is treated as a single reaction stage. This type of model is used for the prediction of the flowrates and compositions of the streams entering and
leaving the gasifier. This type of model is described in Section 4.2.

ii. Stagewise models, in which the gasifier is divided into a number of linked black boxes or reaction stages. The results of this type of model might be only the flows and compositions of the outlet streams, or they might also include information about the internal workings of the reactor, depending on how the stages are defined.

iii. Differential models in which the reaction conditions vary throughout the reactor. These models make use of differential equations to describe the variation of the variables of interest with position within the reactor. Most kinetic models fall into this class.

4.2 BLACK BOX MODELLING

A biomass gasifier will usually have two inlet streams - the biomass and the gasifying agent - and two outlet streams - the product gas and a solid waste. These inlets and outlets are shown in Figure 4.1. Usually, the following information will be known:

- biomass composition
- biomass ash content
- biomass moisture content
- biomass inlet flowrate
- biomass inlet temperature
- gasifying agent composition
- gasifying agent temperature.
Figure 4.1 Inlet and Outlet Streams of a Biomass Gasifier

Table 4.1 Independent Equations and Unknown Variables in the Overall Mass and Energy Balances of a Biomass Gasifier

<table>
<thead>
<tr>
<th>Unknown variables</th>
<th>Independent Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_2, total</td>
<td>Carbon balance</td>
</tr>
<tr>
<td>n_3, H_2</td>
<td>Hydrogen balance</td>
</tr>
<tr>
<td>n_3, CO</td>
<td>Oxygen balance</td>
</tr>
<tr>
<td>n_3, CO_2</td>
<td>Nitrogen balance</td>
</tr>
<tr>
<td>n_3, CH_4</td>
<td>Ash balance</td>
</tr>
<tr>
<td>n_3, N_2</td>
<td>Energy balance</td>
</tr>
<tr>
<td>$n_3, \text{H}_2\text{O}$</td>
<td></td>
</tr>
<tr>
<td>T_3</td>
<td></td>
</tr>
<tr>
<td>x_4, ash</td>
<td></td>
</tr>
<tr>
<td>x_4, c</td>
<td></td>
</tr>
<tr>
<td>T_4</td>
<td></td>
</tr>
</tbody>
</table>

Total = 11

Total = 6
Table 4.1 shows the unknown variables. These are the outlet flowrates of all the gaseous components, the outlet flowrates of the solid components, the inlet gasifying agent flowrate and the two outlet stream temperatures. Applying the material and energy balance equations yields six equations against a total of eleven unknowns. Therefore, there are five degrees of freedom if no more equations are specified.

Some method of estimating the outlet gas composition is needed to reduce the number of parameters required in the calculation. The simplest approach is to use empirically derived correlations, specifying ratios of the gaseous components. However, this method does not have a sound theoretical base and would only apply to a specific system for which the empirical data were available. Empirical models of fluid bed gasification have been reviewed and developed by Maniatis.\(^{54}\)

Another method for estimating outlet gas composition is to consider the gasifier to be a box into which the input streams are fed and where they are allowed to come to chemical equilibrium. This is a common method of modelling gasification but the calculation is performed in different ways according to the assumptions made; also, the choice of assumptions will affect the results of the model. This class of model - the "equilibrium" or "thermodynamic" model - is discussed in Chapter 5.

Kinetics can only be included in this type of model if it is assumed that the reactor is of the lumped parameter or continuous stirred tank type, with constant reaction conditions throughout the reactor.\(^{55}\)
4.3 STAGEWISE MODELLING

A more sophisticated approach to gasifier modelling is to split the gasifier into zones; usually drying, pyrolysis and gasification. Models of each of these zones are then linked together to produce a whole gasifier model.

As discussed in Chapter 3, fixed bed gasifiers usually have separate zones for each of the processes taking part within them. In these cases, the black boxes of a stagewise model will correspond to the zones present within the gasifier. This means that in models of fixed bed gasifiers, each stage can be treated as a separate reactor, with its own energy balance as well as material balances. However, in fluidised bed systems, there will be mixing of both the gas and the solid phase of the bed, so that the various reactions take place throughout the bed, and are not spatially confined. In a stagewise model of a fluid bed reactor only the overall energy balance is meaningful: the individual energy balances cannot be used as there will be free exchange of energy between the stages. Thus, only in the case of fixed bed gasifiers will the stagewise model give information about the physical conditions in different parts of the reactor. To give an indication of the spatial variation of conditions within a fluid bed reactor, a more sophisticated model is required, as discussed in Section 4.4 below.

It was stated above that the calculation of chemical equilibrium may be used as the method of estimating gas compositions for a black box model. One method of constructing a stagewise model is therefore to use empirical models for the drying and pyrolysis steps, coupled with an equilibrium model of gasification. This approach is discussed in
Chapter 6.

Stagewise models which do not use equilibrium have been constructed, notably those by Belleville and Capart.\(^{56}\) In their models, the biomass first undergoes a pyrolysis using empirical data. Part of the residue is reacted with steam to give \(H_2\) and \(CO\), and part of the residue is burned to give a mixture of \(CO\), \(CO_2\) and \(H_2O\). The ratio of the \(CO : CO_2\) is determined by an empirical relationship due to Evans and Emmons.\(^{57}\) Also, part of the pyrolysis gases may react with oxygen to give \(CO_2\) and \(H_2O\). Belleville and Capart present the results of two models, one in which the heat of reaction is provided by combustion of part of the residue with the pyrolysis products remaining unreacted, and the other in which all of the residue is reacted with steam and the heat of reaction is supplied entirely by the combustion of pyrolysis products. Their comparison of the two models was inconclusive: both gave better predictions of fluid bed gasifier performance than an equilibrium model, but no modification of the equilibrium model to take pyrolysis products into account was attempted.

4.4 DIFFERENTIAL MODELLING

The most complex approach to gasifier modelling is to use differential mass and energy balances in the calculations. This can give a picture of the variations of the variables under study throughout the gasifier. Kinetics are usually included in this type of model to predict the product compositions from the progress of the reactions involved. This is the calculation approach commonly used in chemical engineering reactor design where the reaction mechanisms and kinetics are well
established.55

Schoeters and Buekens have done much work on applying this type of modelling to biomass gasification and have written a comprehensive review paper on the subject to which the reader is referred.58 Other work by Schoeters and Buekens is also useful.59,60

\subsection*{4.4.1 Modelling the Reactions of a Single Particle}

The starting point for a differential model of gasification is a model of a single particle within a reactor. The paper by Buekens and Schoeters 58 includes a review of single particle models. However, the modelling of the behaviour of a single particle in a gasifier is complicated by the sequence of processes which occur in the particle. The particle first undergoes drying, then pyrolysis leaving a char residue, which is then gasified by O\textsubscript{2} and steam. Each of these processes must be modelled separately, although there may be interactions between them.

Pyrolysis modelling is a problematic area. Much work has been done on cellulose pyrolysis, particularly by Shafizadeh.61 However, the pyrolysis of biomass materials is less certain, particularly at the high temperatures of gasification reactors,54,58 although models of pyrolysis have been constructed, for example by van den Aarsen.62 Thus, in a gasifier model, reliance has to be placed on the limited empirical data rather than on a robust model of pyrolysis behaviour.

Char gasification is better understood than wood pyrolysis. The models used for biomass char gasification are influenced by work on coal gasification, particularly the work by Johnson.63,64

In predicting the reactions of a particle there are two basic models which are used in chemical engineering: the progressive conversion
model, in which reaction takes place uniformly throughout a porous particle, and the shrinking core model, in which a reaction front passes through the particle from the surface to the centre with completely reacted material outside the reaction front and an unreacted core within it. Both types of models have been used to model gasification, but Buikens and Schoeters were of the opinion that the progressive conversion model gives a better representation of the reactions of a char particle in a fluid bed gasifier. This is because of the porous nature of wood char which allows diffusion of reactants and products within the particle. A number of single particle models of char gasification are available, of which that by Groeneveld seems to have been widely adopted.

Char gasification models need values of the rate constants of the gas-solid reactions, in addition to coefficients for mass and heat transfer within the particle and through the stagnant film of gas around the particle. Published results for the rate constants of char-gas reactions vary depending on the source of the biomass and the conditions under which the pyrolysis was carried out. This means that one of the important parameters for a kinetic model of char gasification is uncertain and must be determined experimentally for the feedstock of interest.

Results from single particle modelling of pyrolysis and gasification kinetics indicate that the pyrolysis reaction is fast compared with the gasification time. Smith and Shand showed that pyrolysis of a wood chip takes around 1 to 3 minutes, depending on the surrounding temperature, compared with gasification times of between 50 minutes and 500 minutes at the same temperatures. This indicates that
gasification is the rate determining step for sizing a biomass gasifier.

4.4.2 Kinetic Models

A kinetic model of a gas-solid reactor has two parts: the model of the reactions taking place on a single particle scale, described above, and a model of the flow patterns in the reactor. In fixed bed gasifiers, the solid phase should pass through the reactor in plug flow for a well designed system. This should also be the case for an entrained bed. However, in a fluid bed system there may be complex flow patterns.\(^55\) The flow of gases within the reactor is also important. Again, there should be plug flow in fixed bed and entrained reactors, but in a fluid bed there is the complexity of bubbles within the bed.

Kinetic models of fluid bed gasifiers have, therefore, introduced models of fluidisation to predict the flow patterns within the bed and their effect on gas-solid contacting within the bed. Again, Buekens and Schoeters\(^58\) have reviewed models of this type, and Schoeters\(^60\) has tested a number of models with different treatments of the fluid bed hydrodynamics. More recently, van den Aarsen\(^33,62\) has developed a model which incorporates empirically derived pyrolysis relationships into this type of model. However, these models do not include secondary reactions of volatile pyrolysis products other than those which take part in the homogeneous water-gas shift reaction. These models were successful in predicting the char hold-up in the reactor, and by implication the gasification rate, as well as predicting the outlet gas composition with reasonable accuracy.
4.4.3 Other Differential Models

It is possible to construct models of gasification which use the differential material and energy balances whilst representing the chemical reactions taking place without the use of kinetics. A notable model of this type is described by Bacon et al.71 This model was based on the use of assigned degrees of approach to equilibrium for the reactions involved, together with the Modified Bubble Assemblage Model of fluidisation.72 The results obtained using this model indicated that the gas composition, with the exception of CH\textsubscript{4}, was almost entirely dependent on the assigned degree of approach to equilibrium. The values of design variables had a negligible effect on the product gas composition, and the conclusion was that a fluid bed gasifier can be designed solely on the basis of achieving stable fluidisation behaviour.

4.5 TRANSIENT MODELS

Transient models of gasification have also been proposed, in addition to the steady-state models discussed above. They could be used for predicting the response of a gasifier to fluctuating reaction conditions or throughput. They could also be of use in devising control strategies for gasifiers. As the author's work has concentrated on steady-state models, transient models are not considered here. The interested reader is referred to the review by Buekens and Schoeters,58 and the thesis by Schoeters60 for a description of this type of model.
4.6 CONCLUSIONS

A wide variety of biomass gasifier models have been constructed at varying levels of complexity and for a number of purposes. Considering models to predict the performance of gasifiers, models range from simple equilibrium models to complex kinetic models incorporating the effects of mass and heat transfer on the gasification reactions. With the exception of the equilibrium models, which are based on simple thermodynamic relationships, experimental data are needed for the calculations. In stagewise models this may be empirical data on pyrolysis products, whilst in kinetic models the values of the rate constants must be determined, in addition to pyrolysis data.

When discussing complex kinetic models of fluid bed gasification, Buekens and Schoeters stated: "The results of computation are sometimes so detailed that their experimental verification is not yet feasible". If what is required is a reasonably accurate prediction of the gasifier heat and material balance, it is clearly sensible to use a simple model rather than a complex kinetic one if both predict the results with a similar degree of accuracy. However, kinetic models are needed for sizing gasifiers in design.
Nomenclature, Chapter 4

\[F_{ij} \quad \text{Mass flow of component } j \text{ in stream } i \]

\[n_{ij} \quad \text{Molar flow of component } j \text{ in stream } i \]

\[P \quad \text{Total pressure} \]

\[p_j \quad \text{Partial pressure of component } j \]

\[T \quad \text{Temperature of reaction} \]

\[T_i \quad \text{Temperature of stream } i \]

\[x_j \quad \text{Mole fraction of component } j \]

\[y_{ij} \quad \text{Mole fraction of component } j \text{ in stream } i \]
CHAPTER 5
GASIFIER EQUILIBRIUM MODELLING

5.1 CALCULATION OF C-H-O EQUILIBRIUM

As mentioned in Chapter 4, one of the methods of predicting gas compositions for a gasifier is to assume that the outlet gas is at chemical equilibrium. With the elements of carbon, hydrogen, oxygen and nitrogen present there are many chemical species which could possibly exist at equilibrium. However, Desrosiers 24 has shown that under normal gasification conditions the only species present at a concentration of greater than 10^{-4} mol % are H_2, CO, CO_2, CH_4, N_2 and H_2O. The following reactions are all important in the gasification process and include all of the species listed:

\[
\begin{align*}
\text{C} + \text{O}_2 & = \text{CO}_2 & \Delta H_{298}^\circ & = -393.8 \text{ kJ/mol} \ [5.1] \\
\text{C} + \text{CO}_2 & = \text{2 CO} & \Delta H_{298}^\circ & = +172.6 \text{ kJ/mol} \ [5.2] \\
\text{C} + \text{H}_2\text{O} & = \text{CO} + \text{H}_2 & \Delta H_{298}^\circ & = +131.4 \text{ kJ/mol} \ [5.3] \\
\text{CO} + \text{H}_2\text{O} & = \text{CO}_2 + \text{H}_2 & \Delta H_{298}^\circ & = -41.2 \text{ kJ/mol} \ [5.4] \\
\text{C} + 2 \text{H}_2 & = \text{CH}_4 & \Delta H_{298}^\circ & = -74.9 \text{ kJ/mol} \ [5.5] \\
\end{align*}
\]

However, in the calculation of equilibrium calculations it is not necessary to consider equilibrium of all these reactions. Both Gumz 9 and Desrosiers 24 have shown that there is no O_2 present at equilibrium, and equation [5.1] can be considered to go to completion. Of the other possible reactions only three are required to completely define the equilibrium, provided that all possible species are included in the three equations shown. 73

Baron, Porter, and Hammond 74 considered equations [5.3], [5.4]
and \([5.5]\) in order to calculate equilibrium. In this system of equations solid carbon is assumed to be present, and to calculate the gas composition only the \(\text{H:O}\) and \(\text{N:O}\) ratios need to be known. Nitrogen takes no part in the reaction, and is merely an inert diluent. Because reactions \([5.3]\) and \([5.5]\) have an unequal number of gaseous species on either side of the equation, the position of the equilibrium is affected by pressure. The addition of a diluent at a fixed total pressure reduces the partial pressures of the reactive components, thus affecting the final gas composition.

Assuming ideal gas behaviour, i.e. at pressures less than 50 atmospheres approximately, equations \([5.3]\) to \([5.5]\) lead to the following set of equilibrium relationships:

\[
K_1 = \frac{p_{\text{CO}}}{p_{\text{H}_2}} = \frac{P}{x_{\text{CO}}} \frac{x_{\text{H}_2}}{x_{\text{H}_2}} \quad [5.6]
\]

\[
K_2 = \frac{p_{\text{CO}_2}}{p_{\text{CO}}} = \frac{x_{\text{CO}_2}}{x_{\text{CO}}} \frac{x_{\text{H}_2}}{x_{\text{H}_2}} \quad [5.7]
\]

\[
K_3 = \frac{p_{\text{CH}_4}}{p_{\text{H}_2}} = \frac{x_{\text{CH}_4}}{P} \frac{x_{\text{H}_2}^2}{x_{\text{H}_2}} \quad [5.8]
\]

The equilibrium gas composition is obtained by solving this set of equations together with the element balances. However, the equations cannot be solved analytically, and an iterative solution is necessary. Baron, Porter and Hammond \(^{74}\) produced an iterative scheme based on estimating the equilibrium \(\text{H}_2: \text{H}_2\text{O}\) molar ratio. The equations are rearranged in terms of this parameter, to give a quadratic in \(x_{\text{H}_2}\). Solving the quadratic enables a trial gas composition to be calculated. The \(\text{H}_2: \text{H}_2\text{O}\) molar ratio is compared with the estimated value, and the calculation repeated until the calculated and estimated ratios are equal.
The equilibrium constants for the equations are calculated using the following equation:

$$\log_e (K_i) = \sum \frac{-v_i G_{i,T}}{RT}$$ \[5.9\]

Polynomials for the calculation of $G_{i,T}$ as a function of temperature have been tabulated by Baron, Porter and Hammond.

Desrosiers used a different approach to the calculation of the equilibrium composition, using a general-purpose equilibrium calculating program developed by NASA. However, this requires a large datafile of thermochemical data derived from the JANAF tables, as opposed to the simple polynomials used by Baron, Porter and Hammond. Older methods of equilibrium calculation are reviewed in Gumz. They are mostly graphical, and not readily modified for use in computer programs.

A second type of equilibrium calculation where there is no free carbon present may also be of interest. Here, the total quantities of carbon, hydrogen, oxygen and nitrogen must be known in order to calculate equilibrium. As there is one chemical species fewer (there being no solid carbon), one fewer equation is required for the solution of the problem. The two reactions considered are:

$$\text{CO} + \text{H}_2\text{O} = \text{CO}_2 + \text{H}_2$$ \[5.10\]
$$2 \text{H}_2 + 2 \text{CO} = \text{CH}_4 + \text{CO}_2$$ \[5.11\]

These chemical reactions give rise to the following equilibrium relationships:

$$K_4 = \frac{P_{\text{CO}_2} P_{\text{H}_2}}{P_{\text{CO}} P_{\text{H}_2 \text{O}}} = \frac{x_{\text{CO}_2} x_{\text{H}_2}}{x_{\text{CO}} x_{\text{H}_2 \text{O}}}$$ \[5.12\]

76
\[K_5 = \frac{p_{CO_2} p_{CH_4}}{p_{CO}^2 p_{H_2}^2} = \frac{x_{CO_2} x_{CH_4}}{P^2 x_{CO}^2 x_{H_2}^2} \] \[5.13\]

These equations must again be solved iteratively, and the method used in the author's work is presented in Appendix A.

The above case of chemical equilibrium would, at first sight, not seem to be applicable to a gasifier, where solid carbon is present. The usefulness of this type of calculation will be discussed later in this chapter.

5.2 INCLUSION OF EQUILIBRIUM CALCULATIONS IN GASIFIER MODELS

5.2.1 Degrees of Freedom and Assumptions.

The simplest type of equilibrium model treats the gasifier as a black box in which the inlet streams react and reach chemical equilibrium, giving two product streams, a gas and a solid. Figure 5.1 shows the input and outputs of such a gasifier. Some variables will be fixed by the environment and the choice of feedstock: these include the feedstock composition and ash content, and the feedstock temperature. Others will be chosen by the designer: these include the gasifying agent composition and temperature, the biomass moisture content, and the gasifier pressure. A gasifier heat loss may also be chosen, and the gasifier insulation specified accordingly. The variables which are fixed in either of these ways are shown in italics in Figure 5.1. The unknown variables (shown in bold in Figure 5.1) and the material and energy balance equations are tabulated in Table 5.1.
Depending on the relative quantities of biomass and gasifying agent, there are two possible cases:

i. Some free carbon is present in the output solids

ii. Only ash is present in the output solids, i.e. all the carbon is in the gas phase

In the first case, the equilibrium calculation will be of the first type described in Section 5.1, where three equilibrium relationships are used. In the second case, the lack of solid carbon means that the second type of equilibrium calculation must be used, with only two equilibrium relationships plus the constraint that no solid carbon is produced.

Table 5.1 shows that in both of these cases, there are twelve equations and nine variables, and this implies that either additional assumptions must be made in order to provide additional equations, or that the values of some of the unknown variables must be fixed, or a combination of both of these must be undertaken in order to allow the solution of the equations.

The main area where additional assumptions can be made is in the relationship between the outlet temperatures and the reaction temperature. The assumptions which may be made depend on the type of gasifier being modelled. In fixed bed types of gasifier, the reaction temperature will not be the same as the equilibrium temperature. However, in a fluid bed, it may reasonably be assumed that the gas outlet temperature, the solids outlet temperature and the reaction temperature are all equal, because of the good mixing.
Figure 5.1 Flows and Variables in a Typical Gasifier

Table 5.1 Unknown Variables and Equations in the Black Box Equilibrium Model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Balance Equations</th>
<th>Additional Equations</th>
<th>Additional Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon balance</td>
<td>Equilibrium of:</td>
<td>F_{4,C} = 0 (no solid C)</td>
</tr>
<tr>
<td>T_{g}</td>
<td>Hydrogen balance</td>
<td>C + H_{2}O = CO + H_{2}</td>
<td>Equilibrium of:</td>
</tr>
<tr>
<td>T_{3}</td>
<td>Oxygen Balance</td>
<td>CO + H_{2}O = CO_{2} + H_{2}</td>
<td>CO + H_{2}O = CO_{2} + H_{2}</td>
</tr>
<tr>
<td>n_{2,total}</td>
<td>Nitrogen Balance</td>
<td>C + 2 H_{2} = CH_{4}</td>
<td>2 CO + 2 H_{2} = CH_{4} + CO_{2}</td>
</tr>
<tr>
<td>n_{3,H_{2}}</td>
<td>Ash Balance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{3,CO}</td>
<td>Energy Balance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{3,CO_{2}}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{3,CH_{4}}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{3,N_{2}}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{3,H_{2}O}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{4,ash}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{4,c}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total numbers of equations and variables

Variables = 12
Equations (free solid carbon present) = 6 balance + 3 others = 9
Equations (no solid carbon present) = 6 balance + 3 others = 9
This assumption is also consistent with the well mixed black box approach to equilibrium modelling mentioned above, and this assumption has been used in the author's work. This assumption about the temperatures gives two additional equations for the modelling:

\[
T_g = T_3 \quad \quad \quad [5.14]
\]
\[
T_g = T_4 \quad \quad \quad [5.15]
\]

There remains one degree of freedom in the calculation. The two variables which might be fixed by the designer are the reaction temperature \(T \), or the gasifying agent inlet flowrate \(n_{2,\text{total}} \). Of these, it is easier to specify a reaction temperature, for a number of reasons. The kinetics of the gasification reactions are dependent on temperature, and if the temperature is too low, then the gas composition will not reach equilibrium within a reasonable time. If the temperature is too high, then there will be problems with the materials of construction of the gasifier.

Instead of specifying either gasifying agent input flowrate or reaction temperature, it is possible to make one additional assumption. Consider a black box gasifier using a gasifying agent containing oxygen or air. First, a small amount of gasifying agent is added to the biomass, and the mixture allowed to come to equilibrium. There will be a gas product, together with some solid carbon residue. If more gasifying agent is added, some of the solid will undergo partial combustion to carbon monoxide and the temperature will increase. If more gasifying agent is added, a point will be reached where the solid carbon will disappear. Beyond this point, the addition of more gasifying agent will boost the temperature of the gases by combustion of some of the hydrogen and carbon monoxide, reducing the total amount of chemical energy in the
gas product in favour of sensible heat. Clearly, the point at which the solid carbon disappears is the point at which there is maximum chemical energy in the gas phase. This point is called the "carbon boundary". From the point of view of equilibrium modelling, this point may be found by taking the set of equilibrium equations where solid carbon is present, but adding the additional constraint that the solid carbon residue tends to zero. If this assumption is used with equations [5.14] and [5.15], then there are no degrees of freedom in the calculation. For a set of gasifier operating conditions, (defined by the biomass composition, moisture content and temperature, the gasifying agent composition and temperature, the gasifier pressure, and gasifier heat loss) there is a unique, idealised, optimum operating point which may be called the "equilibrium carbon boundary".

5.2.2 Implementation of the Gasifier Model on the Computer

The usual method of solution of a set of simultaneous equations is to develop an iterative scheme for the simultaneous solution of all of the equations. However, in the case of an equilibrium model of gasification, there are eleven or twelve equations to be solved simultaneously, and some of the equations are non-linear, so that it is difficult to devise an iterative scheme which gives reliable convergence. In addition, fairly simple and straightforward iterative schemes have been developed for the solution of the equilibrium equations, as described above. Therefore, a useful alternative to the simultaneous solution of the model equations is to split the calculation into two parts. The energy balance may be solved simultaneously with the mass balances in a simple iterative calculation, if the equilibrium calculation is performed for each iteration of
the balance equations. This approach has the disadvantage of having two levels of iteration, one (the equilibrium calculation) being within the other (the energy balance calculation), adding to the computer time involved. However, the method has the advantage of being easier to understand than a complex one-level iterative scheme, and allows tested methods to be used for the calculation of equilibrium.

In the computer program of the model, the equilibrium calculation is a separate subroutine which can be separately tested, and which can be used in other programs. The mass and energy balances are performed by a separate subroutine which calls the equilibrium subroutine as part of its calculation (see Figure 5.2).

The program developed is called "MODEL" and is written in FORTRAN77. A flow diagram and listing is included as Appendix B. The model can perform three different types of calculation:

i. carbon boundary calculation

ii. fixed temperature calculation where there is no solid carbon present

iii. fixed temperature calculation where solid carbon is present

In each case, the equilibrium carbon boundary calculation is performed first. This calculation gives the equilibrium carbon boundary temperature, and the amount of gasifying agent required to gasify the carbon completely. If a temperature for gasification is specified, as in cases ii. and iii. above, then the program compares the specified temperature with the carbon boundary temperature. If the carbon boundary temperature is below the specified temperature, this implies that no solid carbon will be present, as discussed in Section 5.2.1, and a calculation is performed in which the gas product from the carbon
Figure 5.2 Basic Flow Diagram of an Equilibrium Gasifier Model
boundary calculation has further gasifying agent added to it, and which comes to equilibrium. The amount of extra gasifying agent added is iterated until the energy balance is satisfied at the specified temperature. In the other case, where the carbon boundary temperature is above the temperature specified, then some free carbon must be present at the end of the gasification. The calculation therefore uses the free carbon equilibrium, and a simple iteration of the gasifying agent flow is employed until the energy balance is satisfied at the required temperature.

The first stage in these calculations, the equilibrium carbon boundary calculation, is more complex than these two simple iterations. In this case there are two variables which must be calculated simultaneously in the heat balance calculation, and a two-dimensional iterative scheme must be used. In the program MODEL, a two dimensional simplex method is used, which searches for the point at which both the error in the energy balance, and the amount of solid carbon in the gasification products are both zero. The variables which are calculated simultaneously are the reaction temperature and the gasifying agent flow rate.

5.3 USE OF THE MODEL IN A SENSITIVITY ANALYSIS

5.3.1 Introduction

There are several variables to be chosen in the carbon boundary calculation which are set by the designer. The values of some of these are set as a result of choosing the gasifying agent and feedstock, and
others may be set by the designer, such as the gasifier pressure. Sets of results of thermodynamic gasifier calculations covering a range of conditions have been published before, for example by Desrosiers 24, Gumz 9, Baron, Porter and Hammond 74, and Gibbins 78. However these calculations have used models of one of three types: models where temperature is specified and input gasifying agent flow iterated to satisfy the heat balance, models where input gasifying agent is specified and temperature is iterated, or models where the energy balance is not used in the calculation, and both gasifying agent flow and temperature are specified. The results from equilibrium carbon boundary calculations have not been published.

However, as was stated above, the equilibrium carbon boundary case is the optimum, idealised case of gasification, and it is useful to look at the effects of varying various parameters on the carbon boundary point. A sensitivity analysis has therefore been performed using the carbon boundary model.

Because of the number of possible variables which may be specified in the calculation (see Table 5.2) it was considered to be impractical to carry out a full factorial analysis. If only two points were taken for each variable, this would have given $2^{16} = 65536$ calculations. It was therefore decided to adopt a sensitivity analysis type of approach, with each variable being varied about a base case. Two base cases were adopted, one representing a typical air gasifier, and the other a typical oxygen gasifier.
Table 5.2 Input Variables in Computer Program "MODEL"

<table>
<thead>
<tr>
<th>Variable</th>
<th>Oxygen Gasifier</th>
<th>Air Gasifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base Case</td>
<td>Base Case</td>
</tr>
<tr>
<td>Gasifier Pressure, atm. absolute</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Gasifier Heat Loss,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% chemical energy of feedstock</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Carbon content of the biomass,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry ash free molar basis</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Hydrogen content of the biomass,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry ash free molar basis</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Oxygen content of the biomass,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry ash free molar basis</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Moisture content of the biomass,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of dry ash free mass</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Ash content of the biomass,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of dry ash free mass</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Temperature of the gasifying agent, K</td>
<td>298.15</td>
<td>298.15</td>
</tr>
<tr>
<td>Enthalpy of gasifying agent steam, kJ / kg</td>
<td>2790.0</td>
<td>2790.0</td>
</tr>
<tr>
<td>Gasifying agent H2 mole fraction</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Gasifying agent CO mole fraction</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Gasifying agent CO2 mole fraction</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Gasifying agent CH4 mole fraction</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Gasifying agent N2 mole fraction</td>
<td>0.0</td>
<td>0.79</td>
</tr>
<tr>
<td>Gasifying agent H2O mole fraction</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Gasifying agent O2 mole fraction</td>
<td>1.0</td>
<td>0.21</td>
</tr>
</tbody>
</table>

5.3.2 Results for an Oxygen Gasifier

The results of the sensitivity analysis for an oxygen gasifier are presented in the form of graphs. The more important results are included here as Figures 5.3 to 5.11. The other results are shown in Appendix C.
(see Figures C1 to C4).

Figures 5.3 and 5.4 show the effect of varying the elemental composition of the biomass feedstock. In all cases, the feedstock ultimate analysis is quoted as a molar composition on a C₁ basis. Figure 5.3 shows the effect of varying the hydrogen content of the biomass. As might be expected, the main effect of this is to increase the proportion of hydrogen-containing species in the outlet gas stream. The oxygen content of the feedstock has a more marked effect on performance (Figure 5.4). In the program "MODEL" the biomass calorific value is calculated using the IGT equation which was described in Chapter 2. The result of increasing the oxygen content of the biomass is to reduce its calorific value. This affects the energy balance of the gasifier, reducing the temperature and thus favouring CO₂ and H₂O which are stable at lower temperatures. The increased amount of oxygen added to the system also affects the mass balances, but this is a lesser effect.

Figure 5.5 shows the effect of ash content on the performance of the gasifier. Increasing the ash content has the effect of reducing the biomass heating value according to the IGT equation. Increasing ash content therefore has similar effects to increasing oxygen content of the biomass, except that it does not affect the material balances.

The results of increasing the moisture content of the feedstock are shown in Figure 5.6. Both the mass and energy balances are influenced - more hydrogen is introduced into the gasifier, which tends to increase the concentration of hydrogen containing species, and moisture reduces the temperature due to two effects. The latent heat of vaporisation of the moisture must be supplied, abstracting heat from the system. Also, the reaction between H₂O and carbon is endothermic, again abstracting
available heat from the system. Thus, an increase in moisture content of the biomass strongly reduces the carbon boundary temperature. As a result of the decreased equilibrium temperature, H_2O, CO_2 and CH_4 are favoured, whilst CO and H_2 are reduced.

The effect of gasifying agent is shown by Figures 5.7, 5.8, and 5.9. Adding nitrogen to the gasifier obviously increases the N_2 in the product gas, at the expense of all other species. The temperature is slightly reduced, due to the need to provide the sensible heat to raise the temperature of the added nitrogen to the gas outlet temperature. Adding steam to the gasifying agent has a similar effect to increasing the moisture content of the feedstock. However, in this case the latent heat does not need to be provided, and the effect on the heat balance is less strong. Gasifying agent temperature is seen to have practically no effect on the results. This is because the sensible heat of the gasifying agent is a much smaller term in the energy balance than the changes of chemical energy.

Figure 5.10 shows the effect of heat loss. The results of this are very similar to the results of biomass ash content, because both of these cases affect the heat balance only.

The final graph, Figure 5.11, shows the effect of pressure. Here, the effects of equilibrium interact strongly with the heat and mass balance effects, and it is difficult to explain the results clearly. Methane is favoured by higher pressures, according to Le Chatelier’s principle, but the effects of equilibrium, material balance, and increased temperature with increased pressure cancel each other out in the case of the carbon oxides, the concentrations of which remain approximately constant.
Figure 5.3 THEORETICAL GASIFIER PERFORMANCE AGAINST HYDROGEN CONTENT OF BIOMASS OXYGEN GASIFIER
Figure 5.4 THEORETICAL GASIFIER PERFORMANCE AGAINST OXYGEN CONTENT OF BIOMASS OXYGEN GASIFIER
Figure 5.5 THEORETICAL GASIFIER PERFORMANCE AGAINST BIOMASS ASH CONTENT OXYGEN GASIFIER

91
Figure 5.6 THEORETICAL GASIFIER PERFORMANCE AGAINST
MOISTURE CONTENT OF BIOMASS
OXYGEN GASIFIER
Figure 5.7 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFYING AGENT N2 MOLE FRACTION OXYGEN GASIFIER
Figure 5.8 THEORETICAL GASIFIER PERFORMANCE AGAINST INLET GAS STEAM MOLE FRACTION OXYGEN GASIFIER
Figure 5.9 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFYING AGENT TEMPERATURE OXYGEN GASIFIER
Figure 5.10 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFIER HEAT LOSS
OXYGEN GASIFIER
Figure 5.11 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFIER PRESSURE OXYGEN GASIFIER
The results of adding gases other than steam and nitrogen to the
gasifying agent are shown in Appendix C. It is unlikely that gasifying
agents other than oxygen, air, or steam or a combination of these would
be used in a practical gasifier, so they are of academic interest only.

5.3.3 Results for an Air Gasifier

The results of the sensitivity analysis using air as the gasifying
agent are shown in Appendix C (see Figures C5 to C12). The trends
shown in this analysis are similar to those shown in the results for oxygen
gasification. The main differences are that the gas products contain
about 50% inerts, by volume. The total volume of gas produced is thus
about twice that of the oxygen gasifier. Also, the volume of gasifying
agent is higher than in the case of oxygen gasification. The higher gas
flows in air gasification lead to a greater importance of sensible heat
effects.

5.3.4 Discussion of Results of the Sensitivity Analyses

In all of the results of the sensitivity analyses, it may be seen that
the carbon boundary gasification temperature is below that of a real
gasifier. This implies that when using chemical equilibrium to model
biomass gasification, the homogeneous gas phase equilibrium should
be used, rather than the calculation which assumes the presence of solid
char.

In order to understand the effects of the heat balance more easily,
a modified version of "MODEL" was used. In this case, the heat balance
was not used in the calculation, but an equilibrium calculation was
performed using the carbon boundary at a range of temperatures. The
flows of energy in the system and the gas composition were then plotted against temperature. The results are shown in Figures 5.12 and 5.13. It can be seen that the sensible heat of the outlet gas stream is small compared with the chemical energy. As a result, the energy effects of chemical reaction are much more important than the influence of gas sensible heat. The curve of outlet energy against temperature in the carbon boundary case can be seen to be steep around the point where the energy balance is satisfied. Thus, the carbon boundary temperature will not vary much with changing physical conditions, but a change in chemical composition may have a strong influence on carbon boundary temperature, as previously shown.

One interesting effect demonstrated in Figure 5.13 is that below 500K, the equilibrium gas is mainly H₂O and CO₂ with some CH₄, and above 1250K the gas is solely H₂ and CO.

Whilst it is usually possible to explain the results of these calculations, once they have been produced by the computer model, it is often difficult to predict intuitively the effects of changing the various parameters. This illustrates the value of using a computer model to look at the effects of design parameters.
Figure 5.12 Graph to Show Variation of Exit Energies with Temperature, for an Idealised Biomass Gasifier

Figure 5.13 Graph to Show Variation of Exit Gas Composition with Temperature, for an Idealised Biomass Gasifier
5.4 COMPARISON OF REAL GASIFIER PERFORMANCE WITH RESULTS FROM THE MODEL

It was decided to compare the results of real gasifiers with results obtained using the equilibrium carbon boundary model: this is a method of comparing real results with ideality. In order to perform the comparison, the gasifying agent, pressure, feedstock composition, and performance of the real gasifier must be known. The feedstock, pressure and gasifying agent data can then be used in the program MODEL in order to calculate the idealised performance of the gasifier, which is then compared with the published gasifier performance.

One problem which was encountered in this work was the lack of comprehensive data on the performance of gasifiers. Although there are many designs of gasifier, much of the data is published in the form of "typical results", which are quoted without the operating conditions to which they apply, and which do not contain the full information required. This is especially true of commercial gasifier systems.

Table 5.3 shows the data used in this comparison between real and ideal gasifier performance. It was decided that the easiest way of making the comparison was to take a single figure measure of performance, which would allow the real performance of a gasifier to be plotted on a graph against the ideal performance. There are several measures of performance which could have been chosen for this purpose. These include various ratios of components of the product gas, such as the $\text{H}_2:\text{CO}$ ratio or the $\text{CO} : \text{CO}_2$ ratio. The disadvantage of using the ratios mentioned is that they are measures of specific components of the gas, and not the product gas as a whole. Where the product gas is to
be used as synthesis gas then the total $\text{H}_2 + \text{CO}$ becomes important, but in the majority of cases, the quality of the gas as a fuel is more likely to be important. The gasifier thermal efficiency would be a useful measure of performance, but there are a number of ways of defining the efficiency, depending on whether the sensible heat of the outlet gas is included, and depending on whether the higher or lower heating values are used. This could easily lead to confusion, and incorrect comparisons of results. Also, if product gas sensible heat is included in the efficiency, it would be possible for a gasifier to produce a large volume of a hot gas, giving a high efficiency, but the gas would have a low calorific value, and thus a poor gas quality. The measure which was chosen was the calorific value of the product gas, because it is a direct measure of the product gas quality. Because of the high calorific value of methane and higher hydrocarbons, which are often present in higher quantities in real gasifiers than is predicted by equilibrium, the heating value can also indicate non-ideal behaviour in a simple manner.

The results of the comparison are shown in Figure 5.14. In addition to the data points from Table 5.3, three lines have been plotted. Two of these lines show the results of the model where the effects of heat loss has been included in the calculations, at levels of 10% and 20% of the chemical energy entering the gasifier in the feedstock. The third line represents the case where some of the pyrolysis products bypass the reaction zone of the gasifier, to appear directly in the product gas. This was calculated by taking 10% of the gas to be hydrocarbons from the pyrolysis process, adding this to the gas composition calculated from the model for gasifying the remainder, and finding the HHV of the resulting gas.
<table>
<thead>
<tr>
<th>Gasifier</th>
<th>Feedstock</th>
<th>Gasifying agent</th>
<th>Actual HHV</th>
<th>Model HHV</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Battelle PNL updraft</td>
<td>wood</td>
<td>O₂ / steam</td>
<td>10.62</td>
<td>10.19</td>
<td>77</td>
</tr>
<tr>
<td>2 Foster Wheeler fluid bed</td>
<td>refuse</td>
<td>air</td>
<td>2.67</td>
<td>4.89</td>
<td>78</td>
</tr>
<tr>
<td>3 IGT pressurised fluid bed</td>
<td>wood</td>
<td>O₂ / steam</td>
<td>7.07</td>
<td>12.50</td>
<td>79</td>
</tr>
<tr>
<td>4 Battelle PNL catalytic fluid bed</td>
<td>bagasse</td>
<td>steam</td>
<td>10.22</td>
<td>17.32</td>
<td>80</td>
</tr>
<tr>
<td>5 Univ. Miss.-Rolla fluid bed</td>
<td>wood</td>
<td>air</td>
<td>4.01</td>
<td>4.87</td>
<td>81</td>
</tr>
<tr>
<td>6 CPC fluid bed</td>
<td>wood</td>
<td>air</td>
<td>5.47</td>
<td>5.88</td>
<td>82</td>
</tr>
<tr>
<td>7 Maniatis fluid bed</td>
<td>wood</td>
<td>air</td>
<td>5.34</td>
<td>5.89</td>
<td>54</td>
</tr>
<tr>
<td>8 Goss dowdraft</td>
<td>wood</td>
<td>air</td>
<td>6.28</td>
<td>5.84</td>
<td>83</td>
</tr>
<tr>
<td>9 JBECBS / Wellman Oxygen Donor</td>
<td>wood</td>
<td>O</td>
<td>12.84</td>
<td>10.25</td>
<td>44</td>
</tr>
<tr>
<td>10 SERI downdraft</td>
<td>wood</td>
<td>O₂</td>
<td>10.15</td>
<td>10.64</td>
<td>84</td>
</tr>
<tr>
<td>11 Koppers-Totzek coal</td>
<td>coal</td>
<td>O₂ / steam</td>
<td>10.5</td>
<td>5.8</td>
<td>10</td>
</tr>
<tr>
<td>12 Open Univ. downdraft</td>
<td>carrot fibres</td>
<td>air</td>
<td>3.10</td>
<td>5.60</td>
<td>85</td>
</tr>
<tr>
<td>13 Imbert downdraft</td>
<td>wood</td>
<td>air</td>
<td>5.26</td>
<td>5.77</td>
<td>38</td>
</tr>
<tr>
<td>14 Lurgi fluid bed</td>
<td>wood</td>
<td>O₂ / steam</td>
<td>9.91</td>
<td>10.15</td>
<td>47</td>
</tr>
<tr>
<td>15 Creusot Loire</td>
<td>wood</td>
<td>O₂ / steam</td>
<td>9.48</td>
<td>10.43</td>
<td>86</td>
</tr>
<tr>
<td>16 Aston University downdraft</td>
<td>wood</td>
<td>air</td>
<td>4.42</td>
<td>5.94</td>
<td>87</td>
</tr>
</tbody>
</table>
Figure 5.14 THEORETICAL GASIFIER PERFORMANCE AGAINST ACTUAL PERFORMANCE
On examining Figure 5.14, it can be seen that results are grouped in two clusters. This is because most gasifiers use either air, or a mixture of oxygen and steam as gasifying agent. Variations in parameters other than gasifying agent exert a small influence on the product gas calorific value compared with the influence of gasifying agent. Thus, all oxygen/steam gasifiers give fairly similar results, and air gasifiers give a separate group of similar results. There is no sufficiently detailed published data on gasification using oxygen-enriched air, so there are no figures in the region between the two groups of results.

Most of the results lie close to ideality, but show a gas composition that is slightly worse than ideality. (Ideality is shown by a 45° line in Figure 5.14). There are two main reasons for this: heat loss from the gasifier, and the fact that equilibrium carbon boundary gasification temperatures are lower than those experienced in gasification. The higher the temperature of the outlet gases, the more energy leaves the gasifier as sensible heat, and less energy is available as chemical energy in the product gas. Heat loss reduces the gas heating value by affecting the energy balance: the heat lost from the gasifier is no longer available to be included as chemical energy in the outlet gas stream. The higher temperatures of real gasifiers compared with the carbon boundary case (the difference is of the order of 200°C) affect the gas composition because of the greater amount of sensible heat in the outlet gas, reducing the energy which can leave as chemical energy.

The two effects which reduce the calorific value are offset by another effect which tends to give a higher gas heating value than ideality. This is the inclusion of non-equilibrium pyrolysis products in the gas produced by the gasifier. These are mainly methane and other
hydrocarbons, which have a much higher calorific value than hydrogen or carbon monoxide, and which have a large influence on gas calorific values at low concentrations.

The gasifiers which stand out as being a long way from ideality are the Oxygen Donor Gasifier, the IGT catalytic steam fluid bed gasifier, the Battelle PNL catalytic steam fluid bed gasifier, the Koppers-Totzek gasifier, the Foster Wheeler fluid bed gasifier and the Open University downdraft gasifier.

The main reason for the Open University and Foster Wheeler gasifiers giving considerably worse quality product gas than predicted by ideality is probably that the design has not been developed sufficiently, and they have not reached the best achievable performance.

The Oxygen Donor Gasifier is of an unusual type, and it has been suggested that its mode of operation is actually as a twin bed pyrolyser / combustor. This mode of operation would tend to favour hydrocarbons over hydrogen and carbon dioxide, giving a product gas of higher calorific value than would be predicted by equilibrium calculations.

The Koppers-Totzek gasifier gives a higher quality gas than that predicted for two reasons: the coal used by this gasifier has a very high ash content, and the IGT equation used by the computer model to predict the feedstock heating value predicts a lower feedstock calorific value than the coal actually has, affecting the heat balance; and the gasifier has a low retention time for the product gases, thus leaving more pyrolysis products in the product.

The adiabatic equilibrium carbon boundary model of gasification is only really applicable to gasifiers where the gasifying agent contains oxygen. Thus, the IGT catalytic fluid bed steam gasifier and the Battelle
PNL steam gasifier give anomalous results. Steam gasification is endothermic, whereas oxygen and air gasification are both exothermic. Therefore an adiabatic model of steam gasification requires the use of a high temperature steam as gasifying agent, most of which passes through the reactor virtually unchanged, apart from giving up its sensible heat to provide energy for the endothermic reaction. The reaction temperatures predicted by an adiabatic model are very low - below the practical range of operation of a gasifier - and the product gas methane content predicted by the equilibrium calculation is thus high. As the model is not applicable in this case, no sensible conclusions can be drawn from this comparison.

It should be stressed that the carbon boundary model of gasification described in this chapter is an idealised model intended to provide a "target" against which the results of real gasifiers may be compared. If an equilibrium model is to be used to estimate the performance of a real gasifier, a fixed temperature equilibrium model of the type described in Section 5.2.1 should be used. Fixed temperature models are included within the program MODEL in addition to the carbon boundary model, as mentioned in Section 5.2.2.

Finally, it should be recognised that the main limitation of the carbon boundary approach is that no account is taken of kinetic and physical rate processes. To estimate spatial temperature and composition distributions within gasifiers, it is necessary to include such processes in a more detailed model of the actual reactor system, as discussed in Section 4.4.
Nomenclature, Chapter 5

F_{ij} Mass flow of component j in stream i

$G_{j,T}$ Standard Gibbs free energy of formation of component j at temperature T

K_i Equilibrium constant of chemical reaction i

n_{ij} Molar flow of component j in stream i

P Total pressure

p_j Partial pressure of component j

T Temperature of reaction

T_i Temperature of stream i

x_j Mole fraction of component j

y_{ij} Mole fraction of component j in stream i

ν_j Stoichiometric coefficient of component j, positive for products, negative for reactants
CHAPTER 6
MODELLING OF FLUID BED GASIFIERS

6.1 INTRODUCTION

The equilibrium models of gasification described in Chapter 5 are straightforward and present an idealised picture of gasifier behaviour. Whilst the results often approximate to those of real gasifiers, there are also differences between the performance of the real gasifiers and the results of equilibrium models. This chapter describes models of fluid bed gasification which are based on equilibrium modelling, but which incorporate the effects of pyrolysis on gasifier performance. There are several types of fluid bed gasifiers, from single bed gasifiers fluidised by the gasifying agent to complex twin bed designs, as described in Chapter 3. The models described in this chapter are based on simple fluidised bed gasification: a single fluidised bed using air or oxygen mixed with some steam as the gasifying agent.

6.2 PERFORMANCE OF FLUID BED GASIFIERS

The main difference between the gas composition of real fluid bed gasifiers and that predicted by thermodynamic models is that the mole fraction of methane and higher hydrocarbons is much greater in the real gas composition. Table 6.1 compares the results obtained from real gasifiers with results obtained by using the same operating conditions and temperature in the program "MODEL" working in fixed temperature mode, as described in Chapter 5.
Table 6.1 Comparison of actual fluid bed gasifier results with those predicted by an equilibrium model

<table>
<thead>
<tr>
<th>Gasifier</th>
<th>Gas Yield</th>
<th>H₂</th>
<th>CO</th>
<th>CO₂</th>
<th>CH₄</th>
<th>HCSc</th>
<th>N₂</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framatome</td>
<td>1.35</td>
<td>30.9</td>
<td>41.1</td>
<td>22.8</td>
<td>0.6</td>
<td>4.5</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.34</td>
<td>32.9</td>
<td>45.1</td>
<td>22.0</td>
<td>0.0</td>
<td>0.0</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Lurgi</td>
<td>1.40</td>
<td>32.3</td>
<td>32.4</td>
<td>25.7</td>
<td>4.7</td>
<td>1.3</td>
<td>3.3</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1.56</td>
<td>41.9</td>
<td>35.2</td>
<td>22.7</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>86</td>
</tr>
<tr>
<td>IGT Renugas</td>
<td>1.70</td>
<td>10.1</td>
<td>7.2</td>
<td>16.2</td>
<td>24.4</td>
<td>1.0</td>
<td>41.1</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>3.44</td>
<td>18.0</td>
<td>7.8</td>
<td>18.4</td>
<td>0.0</td>
<td>0.0</td>
<td>55.8</td>
<td>88</td>
</tr>
<tr>
<td>Process Comb.</td>
<td>-</td>
<td>4.2</td>
<td>17.1</td>
<td>14.4</td>
<td>4.3</td>
<td>2.9</td>
<td>57.1</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>3.03</td>
<td>22.1</td>
<td>13.4</td>
<td>16.5</td>
<td>0.1</td>
<td>0.0</td>
<td>48.0</td>
<td>89</td>
</tr>
<tr>
<td>Biosyn d</td>
<td>-</td>
<td>9.7</td>
<td>13.0</td>
<td></td>
<td>6.8</td>
<td>1.9</td>
<td>68.7</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>2.97</td>
<td>18.6</td>
<td>16.9</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>64.5</td>
<td>90</td>
</tr>
</tbody>
</table>

Notes

a For each gasifier, the first line in plain text gives the actual results, and the second line in *italics* are those predicted by an equilibrium model calculating the gas composition at the working temperature of the actual gasifier.
b Gas yield is expressed as Nm³ of dry gas per kg dry ash free biomass feed.
c C₂H₄, C₂H₆, and higher hydrocarbons, quoted as C₂H₄.
d The CO₂ and N₂ are quoted as total inerts, in the N₂ column of this table.

As the formation of methane and hydrocarbons is not favoured by thermodynamic considerations, they must be either products of pyrolysis or derived from the products of pyrolysis by thermal cracking. The model...
discussed in this chapter takes pyrolysis products into account in the calculations of gasifier performance.

6.3 STAGEWISE MODELLING OF GASIFIERS

6.3.1 Introduction

The reactions experienced by a particle of feed entering a gasifier can be described in stages - drying, pyrolysis, gasification, and gas phase reactions of the pyrolysis tar. One approach to modelling a gasifier is, therefore, to divide the gasifier into these stages, each stage being modelled by a black box model, based on a mass balance and equations or algorithms to calculate the outlet products. Energy balances on each black box are not appropriate in the case of a fluid bed gasifier because, although the fluid bed is conceptually divided into a number of reaction zones, in actual fact each stage is taking place throughout the bed and heat will be freely transferred between the stages. The only energy balance which is applicable is the overall energy balance. The black box models can be linked so that a model of the whole gasification process is obtained, and an accurate prediction of gasifier performance is produced.

The black boxes used in a stagewise model do not necessarily have to represent the actual reactions which take place in the gasifier. A simple form of stagewise model may be envisaged which has two stages: one which produces the non-equilibrium products of gasification such as CH₄ and hydrocarbons, and a second which takes the remaining material from the feedstock and reacts it with the gasifying agent using an equilibrium method to calculate gas composition. In effect, this is an
equilibrium model of gasification with minor empirical corrections to account for non-equilibrium products. This type of model was described by Gibbins and Wilson. 76

Shand and Bridgwater modelled fixed bed gasifiers of both updraft and downdraft types using a stagewise approach. 6,7,8 Their models used empirical correlations for the pyrolysis modelling, with equilibrium modelling of the char gasification. Kosky and Floess 91 modelled updraft gasification of coal in a similar manner. There is a conceptual difference between these stagewise models of fixed-bed gasifiers and those for fluid bed gasifiers of the author: in the fixed bed gasifiers the individual black-box models represent physical zones of the reacting bed, whereas in the fluid bed model the individual steps are separated for modelling purposes only, with each black box representing processes which take place throughout the bed.

6.3.2 Stagewise Modelling of Fluidised Bed Gasifiers

One approach to stagewise modelling is to consider the reaction stages of drying, pyrolysis, tar cracking and gasification, as mentioned in Section 6.3.1. A general model of a fluid bed gasifier which uses these stages is shown in Figure 6.1. Solid biomass enters the gasifier and first undergoes drying. The dry biomass produced passes to the pyrolysis stage, whilst the water vapour produced splits in two, a fraction F1 passing to the gasification stage and the remainder bypassing the gasification reactions and passing directly into the product gas stream. The dry biomass is pyrolysed and the char passes to the gasification stage. The volatile tars, liquids and gases split into three, fraction F2 passing to the gasification stage, fraction F3 passing to the tar cracking
stage, and the remainder passing into the product gas stream. The
gaseous products from both the gasification stage and the tar cracking
stage pass into the product gas, whilst the solid ash and char residue
from gasification passes out of the gasifier in a solid residue stream. The
final product gas stream is a mixture of products from all four stages of
the model. The fractions F1, F2 and F3 will depend on the geometry and
mixing within the gasifier.

Figure 6.1 A General Stagewise Model of a
Fluid Bed Biomass Gasifier
This generalised stagewise model may be simplified in a number of ways. The fractions F_1 and F_2 may be considered to be equal, as the fraction of water vapour from drying which bypasses the gasification reaction and passes directly to the outlet gas stream should be the same as the fraction of pyrolysis products bypassing gasification. Alternatively, the number of stages may be reduced. One simple reduction would be to combine the drying and pyrolysis. These are unlikely to take place discreetly bearing in mind that the outside of a particle may be pyrolysing while the inside is still drying. Also, there may be interactions between the drying and pyrolysis processes.

6.3.3 Pyrolysis and Cracking in Stagewise Modelling

It was stated in Chapter 2 that pyrolysis is a complex process which is a network of reaction pathways. It was also stated that the products of pyrolysis are highly dependent on reaction conditions and that a good model to predict the products of pyrolysis does not exist. Empirical models of pyrolysis must, therefore, be used in stagewise models of gasification. These empirical models must be based on data from experiments with similar conditions to those which apply in the gasifier. Obviously, an inert atmosphere must be used, rather than gasifying agent, but the temperature, pressure, particle size and residence time of products should be the same.

Tar cracking is a more difficult problem. The boundaries between tar cracking and secondary pyrolysis in gas phase are difficult to draw. In some ways, the easiest approach is to consider tar cracking to be part of the pyrolysis process. The conditions in a well-mixed fluid bed are constant, so pyrolysis data obtained using similar temperature, pressure
and residence time should reflect the same tar cracking reactions as those which take place in a fluid bed reactor, providing the gasifying agent plays no part in the tar cracking process. However, the conditions through which the pyrolysis products pass in fixed bed types of reactor are more complex and this approach would be more difficult to use.

6.4 THE STAGEWISE COMPUTER MODEL

The approach adopted in constructing a computer program to perform stagewise modelling of gasification was to divide the program into modules which were as independent as possible. The main units of the program were the initialisation and data input subroutines, a subroutine to perform drying, pyrolysis and tar cracking calculations, a gasification subroutine connected with an iterative heat balance subroutine, and a subroutine to print the results of the calculations. Some data within the program are needed by many or all of the subroutines: these include the gasification conditions and the compositions and flows of the conceptual streams between the stages of the calculation. These data were transferred between subroutines by storing them in common blocks which could be accessed by any subroutine which required them.

It was decided to construct a program which could be used to model both simple and complex stagewise processes. The following approach was adopted for the pyrolysis stage: drying, pyrolysis and tar cracking were all combined into one stage of the model, which had only two outlets - one a bypass stream which mixed directly with the product gas stream, and another the residue stream which passed to the
gasification stage. The split and composition of the products from the first stage are read directly from a pyrolysis data file. The first stages of the model are calculated by hand and the results are then loaded into a datafile where they can be used by the gasifier computer model. It would be possible to construct computer programs to generate the pyrolysis data files used by the first stage of the gasifier model, if this was required, provided that a suitable pyrolysis and tar cracking model was available. Different models of pyrolysis and tar cracking may, therefore, be used in the same program, making it very flexible in use. A conceptual diagram of this model is shown as Figure 6.2.

Figure 6.3 is a representation of the structure of the computer model. Data are entered interactively and the data entry subroutine stores these in the common blocks. The pyrolysis subroutine then uses the input data and pyrolysis data from a previously created datafile to calculate the bypass products passing into the product gas and the residual material passing to gasification. A suite of subroutines then performs the gasifier calculations. The equilibrium calculations are simplified by the exclusion of methane, the only reaction considered being the homogeneous water gas shift reaction:

\[
\text{CO} + \text{H}_2\text{O} = \text{CO}_2 + \text{H}_2 \tag{6.1}
\]

The gasifier working temperature is specified as part of the input data, so the equilibrium constant can easily be calculated using equation [5.9] from Section 5.1. Note that this equilibrium calculation is not based on the carbon boundary equilibrium calculation described in Chapter 5.
Gasifier

Product gas

Methane, hydrocarbons and tars

Gases from equilibrium gasification

Drying, pyrolysis and tar cracking

Residual material

Gasification

Ash

Biomass

Gasifying agent

Figure 6.2 Conceptual Diagram of the Stagewise Gasification Model
Figure 6.3 Structure and Data Flows in the Stagewise Gasifier Computer Model
6.5 RESULTS OF THE STAGEWISE MODEL

6.5.1 Selection of Pyrolysis Data

Whilst there is an extensive literature about pyrolysis, much of the reported information on product yield and composition is incomplete and the material balances of pyrolysis are not closed. This may be because researchers who generated the data have been interested in one specific product from pyrolysis, for example charcoal, and the other products are often considered as unwanted byproducts which can be disposed of as fuel for the process. However, when incorporating pyrolysis into a gasification model, all products must be accounted for and the elemental balances must be closed.

A second problem in choosing pyrolysis data for the modelling of gasification is to find data from experiments carried out at a similar temperature, pressure and residence time to that of the fluid bed gasifier. Fluid bed gasifiers usually operate at a temperature between 700 and 900 °C, but most work on pyrolysis has been carried out at lower temperatures, often 250 to 600 °C.

The particular data chosen for the author's work were selected because the conditions under which the experiments were performed were deliberately chosen to reproduce the conditions encountered in fluidised bed gasification. The pyrolysis data are shown in Table 6.2. From the raw data, a material balance has been constructed and this is also shown in Table 6.2. It can be seen that the composition of the residue calculated by closing the elemental balances is $C_1H_{0.079}O_{0.011}$. Both the hydrogen and oxygen contents of this residue are much lower than those of pyrolysis tars (which have compositions ranging from about
Table 6.2 Pyrolysis Data Used in the Stagewise Model
(from Belleville and Capart 58)

Reaction Conditions
Wood slabs of 7mm thickness (ie similar dimensions to wood chips)
- Moisture, wet basis: 22.2 %
- Temperature: 780 °C
- Atmosphere: Nitrogen

Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Yield per kg dry ash free wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td>0.608 Nm$^3 = 0.521$ kg</td>
</tr>
<tr>
<td>Residues (char + tar)</td>
<td>0.282 kg</td>
</tr>
<tr>
<td>Water (by difference)</td>
<td>0.197 kg</td>
</tr>
</tbody>
</table>

Gas Composition, mol %
- H_2: 34.2
- CO: 39.0
- CO_2: 10.5
- CH_4: 13.4
- C_2H_4: 2.9

Material Balance
Basis: 1 kg dry ash free wood

<table>
<thead>
<tr>
<th>Input</th>
<th>total kg</th>
<th>total mol</th>
<th>mol C</th>
<th>mol H</th>
<th>mol O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>1.000</td>
<td>-</td>
<td>41.67</td>
<td>60.00</td>
<td>27.50</td>
</tr>
</tbody>
</table>

Outputs
- H_2: 0.019, 9.28, 0.00, 18.57, 0.00
- CO: 0.297, 10.59, 10.59, 0.00, 10.59
- CO_2: 0.125, 2.85, 2.85, 0.0, 5.70
- CH_4: 0.058, 3.64, 3.64, 14.55, 0.00
- C_2H_4: 0.022, 0.79, 1.57, 3.15, 0.00
- H_2O: 0.197, 10.96, 0.00, 21.92, 10.96
- Residue $§$: 0.282, -23.02, 1.81, 0.25

Total Outputs
- 1.000, 41.67, 60.00, 27.50

$§$ Composition by difference $= C_1H_{0.079}O_{0.011}$

\[\text{C}_1\text{H}_{1.45}\text{O}_{0.6} \quad \text{to} \quad \text{C}_1\text{H}_{0.81}\text{O}_{0.07} \] and those often quoted for charcoal (\[\text{C}_1\text{H}_{0.46}\text{O}_{0.11} \], see Table 2.1). Yet it has been inferred that the residue is entirely char; the effect of this assumption is tested in Section 6.5.4.

6.5.2 Evaluation of the model

In order to evaluate the model, two scenarios of pyrolysis were used at a standard set of reaction conditions; the results were compared with the results of the same program excluding pyrolysis (Model 1 in Table 6.4). The first pyrolysis scenario is that all of the gases and moisture from the pyrolysis pass to the outlet stream without reacting further and only the char residue from pyrolysis passes to the equilibrium gasification model (Model 2 in Table 6.4). In the second scenario, the components which take part in the water-gas shift reaction pass to the equilibrium model with only the methane and hydrocarbons passing directly to the reactor outlet without undergoing reaction (Model 3 in Table 6.4). The other reaction conditions are shown in Table 6.3.

The results from these models are compared with real gasifier results in Table 6.4. Some of the results from Table 6.1 cannot be used in this comparison, because their operating conditions are unlike those used in the models.

Table 6.3 Base Case Reaction Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>780 °C (to match pyrolysis data)</td>
</tr>
<tr>
<td>Pressure</td>
<td>1 bar absolute</td>
</tr>
<tr>
<td>Gasifying agent</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Wood composition</td>
<td>[\text{C}1\text{H}{1.44}\text{O}_{0.66}]</td>
</tr>
<tr>
<td>Moisture content</td>
<td>20 % dry basis, = 16.7 % wet basis</td>
</tr>
<tr>
<td>Gasifying agent temperature</td>
<td>25 °C</td>
</tr>
<tr>
<td>Heat Loss</td>
<td>5 % biomass calorific value</td>
</tr>
</tbody>
</table>
Table 6.4 Comparison of Actual Fluid Bed Gasifier Results with Results of the Stagewise Model

<table>
<thead>
<tr>
<th>Case</th>
<th>Gas Yield a</th>
<th>Dry gas composition, mol %</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H$_2$</td>
<td>CO</td>
<td>CO$_2$</td>
</tr>
<tr>
<td>Oxygen Gasification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 c</td>
<td>1.57</td>
<td>40.8</td>
<td>39.4</td>
</tr>
<tr>
<td>Model 2 d</td>
<td>1.14</td>
<td>19.7</td>
<td>58.9</td>
</tr>
<tr>
<td>Model 3 e</td>
<td>1.37</td>
<td>33.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Lurgi f</td>
<td>1.36</td>
<td>33.5</td>
<td>33.6</td>
</tr>
<tr>
<td>Mino</td>
<td>-</td>
<td>18.7</td>
<td>35.5</td>
</tr>
<tr>
<td>Air Gasification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1 c</td>
<td>3.01</td>
<td>19.0</td>
<td>18.1</td>
</tr>
<tr>
<td>Model 2 d</td>
<td>2.48</td>
<td>8.9</td>
<td>22.3</td>
</tr>
<tr>
<td>Model 3 e</td>
<td>2.59</td>
<td>15.2</td>
<td>15.9</td>
</tr>
<tr>
<td>Twente Univ.</td>
<td>-</td>
<td>14.4</td>
<td>18.0</td>
</tr>
<tr>
<td>Process Comb.</td>
<td>-</td>
<td>4.2</td>
<td>17.1</td>
</tr>
</tbody>
</table>

Notes

- a Gas yield is expressed as Nm3 of dry gas per kg dry ash free biomass feed
- b C$_2$H$_4$, C$_2$H$_6$ and higher hydrocarbons
- c Model 1 is the basic stagewise model with no pyrolysis included, ie a simple equilibrium model
- d Model 2 is the model where all of the pyrolysis products pass to the outlet gas stream without further reaction
- e Model 3 is the model where only the methane and hydrocarbons pass directly to the outlet gas stream, with other pyrolysis products passing to the equilibrium model
- f Adjusted to a nitrogen-free basis
It can be seen that Model 3 gives good predictions of the gas compositions of the Lurgi and Twente University gasifiers. However, the results of the Mino and Process Combustion gasifiers give results which are closer to the results of Model 2.

As the results from Model 2 match the results of the Mino and Process Combustion gasifiers with a fair fit, it can be inferred that in these gasifiers the pyrolysis products bypass the char bed and pass directly into the outlet stream. This is likely to occur where the fresh biomass is fed onto the surface of the fluid bed and where there is little mixing of pyrolysing biomass into the bed. It is notable that the Mino gasifier is fed onto the top of the bed, and was designed for a high loading of pyrolysis products in the outlet gas. The methane content of the product gas from these two gasifiers is higher than that predicted by the model. This might be explained in two ways: either less product gas is produced from the gasification reaction than estimated by the model giving less dilution of the pyrolysis products, or the pyrolysis data used in the model is inaccurate for the conditions applying in these two gasifiers.

Another interesting observation is that Model 2 predicts carbon dioxide concentrations below those of the Mino and Process Combustion gasifiers. The explanation may be that the gasifiers are imperfectly mixed beds in which a pyrolysis process is taking place in parallel with both combustion and char gasification, with little reaction between the product gases. In these cases, the non-equilibrium models of Belleville and Capart might be more appropriate than a model incorporating equilibrium.

Model 3 predicts well the results of the gasifiers of Lurgi and Twente University of Technology. In this model, the hydrocarbon
products of pyrolysis passed straight to the outlet gas stream, whereas the other components passed to the equilibrium model. The close fit of the model to actual results may be explained by considering the kinetics of the reactions involved. If the reactions of methane and other hydrocarbons were slow compared with the attainment of equilibrium of the water-gas shift reaction, then the short residence times of gases in the fluid bed reactor might allow attainment of water-gas shift equilibrium while giving insufficient time for the methane and hydrocarbons to react. However, it is difficult to substantiate this theory, as the rate of reaction of the water-gas shift reaction is uncertain and is changed by several orders of magnitude depending on whether catalysis is involved. The reaction velocities of the water-gas shift equilibrium and the attainment of equilibrium has been discussed by Schoeters. 60

It can be seen in Table 6.4 that Model 3 predicts a higher methane content than is found in the Lurgi gasifier. This can be explained by the configuration of the Lurgi gasifier, which is a circulating fluid bed, which allows recycle of some of the product gases. This gives a longer residence time for the gases in the reactor, allowing some reaction of the methane with gasifying agent.

It is interesting to compare the results of the three models. In the equilibrium model (Model 1) and the model where most of the pyrolysis products pass to the equilibrium calculation (Model 3) the H₂ : CO ratio is approximately equal to 1, but Model 2 predicts a ratio of about 0.35. The difference in the ratios of H₂ to CO between Models 2 and 3 is more marked than the difference between the predicted methane concentrations of the two models. This suggests that the two models could be used in conjunction to analyse the processes taking place in a
real gasifier. The two models could be run at the same reaction conditions as the real gasifier, and the $\text{H}_2 : \text{CO}$ ratio compared. If the $\text{H}_2 : \text{CO}$ ratio of the real gasifier were similar to the ratio predicted by Model 2, then poor mixing of pyrolysis products within the reactor is probable. If Model 3 gives a better prediction, then the reactor is likely to be well mixed.

The low $\text{H}_2 : \text{CO}$ ratio predicted by Model 2 can be explained by considering the conditions of the equilibrium stage of the model. As the biomass moisture and much of the hydrogen content of the dry biomass material pass straight to the outlet, there is little hydrogen in the equilibrium calculation. As a result, the equilibrium gasification produces only carbon oxides, and much of the hydrogen is lost in the form of steam in the product gas, as shown in Table 6.5. The small amount of hydrogen in the equilibrium stage means that there is little steam, and hence little shifting of CO and steam to CO_2 and H_2, causing a low CO_2 concentration in the product gas.

Model 2 gives the lowest estimated production of gas, but the highest heating value of gas. The total chemical energy of product gas predicted by the three models is similar, so there is a trade-off between gas volume and gas heating value (see Table 6.5).

Table 6.5 Further Comparison of the Three Models

<table>
<thead>
<tr>
<th>Model</th>
<th>HHV (MJ/Nm³)</th>
<th>Gas Yield (Nm³)</th>
<th>Chemical Energy (MJ)</th>
<th>H_2O Yield (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>10.19</td>
<td>1.58</td>
<td>16.1</td>
<td>0.22</td>
</tr>
<tr>
<td>Model 2</td>
<td>13.77</td>
<td>1.14</td>
<td>15.7</td>
<td>0.40</td>
</tr>
<tr>
<td>Model 3</td>
<td>11.83</td>
<td>1.37</td>
<td>16.2</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Note: all yields are based on 1 kg dry ash free biomass feed.
Of the three models, Model 3 is probably the most useful, as fluid bed gasifiers often exhibit \(H_2:CO\) ratios of the order of 1, and methane concentrations of about 5 to 10%, as predicted by Model 3. 4

6.5.3 Comparison with the Carbon Boundary Model

Figure 6.4 compares the results of the three stagewise models with the adiabatic carbon boundary model described in Chapter 5. The equilibrium model operating at fixed temperature (Model 1) predicts gas heating values lower than the idealised model. This is to be expected as, to raise the temperature of the gas from the carbon boundary temperature to the stagewise model temperature, some of the combustible components of the product gas must be burned, giving a reduction in the gas heating value.

![Comparison of the Three Stagewise Models with the Idealised Adiabatic Carbon Boundary Model](image)

Figure 6.4 Comparison of the Three Stagewise Models with the Idealised Adiabatic Carbon Boundary Model
As would be expected, models 2 and 3 give heating values above those of the idealised case. This is due to the methane and higher hydrocarbons present in the product gas, which more than counteract the effects of the extra gasifying agent required to raise the temperature above the carbon boundary temperature.

6.5.4 The Effect of Tar in Pyrolysis Products

The pyrolysis data used in Model 2 and Model 3 assumed that all of the residue from the pyrolysis process was tar, based on the mass balance information used. However, some tars may be produced in high temperature pyrolysis \(^{33}\), and it was decided to test the effect of tar production on the results of the model. The pyrolysis bypass data used in Model 3 was modified so that tar passed to the product gas at a mass yield of 5\% (Model 4). The results of this modified model are compared with Model 3 in Table 6.6.

The tar yield predicted by this modified model is 5\%. However, reported data on the tar content of fluid bed gasifier product gases is in the range 2000 to 10000 mg/Nm\(^3\) product gas, as shown in Figure 3.11 of Chapter 3. This corresponds to a tar yield of about 0.25 to 1.3 \%, so Model 4 greatly exaggerates the effect of tar loss in the product gas. A further model was therefore constructed, where there was still a 5\% production of pyrolysis tars but where most of the tar was cracked to methane giving a 1\% tar yield overall (Model 5 in Table 6.6). The idea of tar being cracked under the conditions occurring in a gasifier is not unreasonable. Considering analogous reactions, naphtha may be pyrolysed at 600 to 900 \(^\circ\)C at residence times of about 0.3 seconds \(^{95}\) and crude oil has been cracked in steam at temperatures of 700 to
900 °C at residence times of under 1 second. 96

Tar has a high heating value, so the production of comparatively little affects the product gas composition considerably, as shown by the results of Model 4: the gas yield is reduced, and the CO₂ content increased, giving poorer gas quality. Model 5, showing the effect of tar cracking, gives a possible explanation of the high methane production of some gasifiers (for example the Mino gasifier shown in Table 6.4). The methane production of these gasifiers is higher than would be expected from the inclusion of methane from the primary pyrolysis reaction, as shown in Section 6.5.2. However, if tar were produced in the primary pyrolysis and cracking of this tar occurred, then the extra methane production would be accounted for.

Table 6.6 Effect of Tar Production on Predicted Gasifier Performance

<table>
<thead>
<tr>
<th>Case</th>
<th>Gas Yield a</th>
<th>Dry gas composition, mol %</th>
<th>Tar Yield c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂</td>
<td>CO</td>
<td>CO₂</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.37</td>
<td>33.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Model 4</td>
<td>1.22</td>
<td>31.6</td>
<td>31.4</td>
</tr>
<tr>
<td>Model 5</td>
<td>1.31</td>
<td>31.6</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Notes

a Gas yield is expressed as Nm³ of dry gas per kg dry ash free biomass feed

b C₂H₄, C₂H₆ and higher hydrocarbons

c Tar yield is expressed as kg tar per kg dry ash free biomass feed
6.5.5 Sensitivity Analysis

Model 3 was used in a study of the effects of various operating parameters on fluid bed gasifier performance. Figures 6.5 to 6.9 show results of this sensitivity analysis. The base case used was as shown in Table 6.3 above. The results must be treated with some caution, as the pyrolysis data used was the single set of figures of Table 6.2. In particular, the temperature and biomass moisture content could affect the pyrolysis, which would also affect the results of the gasification model. Ideally, pyrolysis data for each set of operating conditions should have been used but these were unavailable.

The parameters tested were gasifier temperature, gasifying agent air content, gasifying agent steam content, biomass moisture content, and gasifier heat loss. Pressure has no effect on the results of the model. This is because the equilibrium calculation used the homogeneous water-gas shift reaction only, upon which pressure has no effect if gas ideality is assumed. In real gasifiers, pressure has an effect on gasifier performance, affecting the pyrolysis step and the rate of decomposition of pyrolysis products. If suitable pyrolysis data were available, the effect of pressure could be tested using the model.

Temperature is predicted to have a limited effect on the gas composition (Figure 6.5). The increased gasifying agent required to boost the temperature will decrease the H : O ratio in the system, producing CO at the expense of H₂. However, in real gasifiers there may be other effects due to the increasing reaction rate of methane reforming, and changes in the pyrolysis product yields and composition.

The addition of an inert gas to the system by mixing air into the gasifying agent has the effect of diluting the product gas, as shown in
Figure 6.6. The CO₂ concentration is not reduced in proportion with the CO and H₂, because more product gas must be burned to provide the sensible heat of the inert gas passing through the system.

Adding steam to the gasifying agent (Figure 6.7) has the effect of changing the C : H : O ratios, and also removes energy because of the endothermic reactions of steam with char. The net effect is to reduce CO at the expense of H₂ and CO₂, and the gas heating value is reduced. These results indicate that the H₂:CO ratio could be tailored to suit a downstream synthesis process by varying the steam : oxygen ratio of the gasifying agent.

Biomass moisture content (Figure 6.8) has similar effects to gasifying agent steam content, as might be expected. However, in a real gasifier there will also be effects on the pyrolysis step of the process. These would be predicted by the model if pyrolysis data were available at a range of moisture contents.

Figure 6.9 shows the effect of the heat loss from the gasifier, expressed as a percentage of the heating value of the biomass supplied to the gasifier. If heat is lost from the gasifier system, more oxygen must be supplied. This reacts with the product gas, increasing the CO₂ at the expense of combustible gases and reducing the gas heating value.

The results of this sensitivity analysis show the same basic trends exhibited by the results of the adiabatic carbon boundary model reported in Chapter 5, the main differences being due to the stagewise model's operation at a fixed temperature compared with the floating temperature of the carbon boundary model.
Figure 6.5 Predicted Gasifier Performance as a Function of the Gasifier Temperature
Figure 6.6 Predicted Gasifier Performance as a Function of the Gasifying Agent Air Volume Fraction
Figure 6.7 Predicted Gasifier Performance as a Function of the Gasifying Agent Steam Volume Fraction
Figure 6.8 Predicted Gasifier Performance as a Function of the Biomass Moisture Content
Figure 6.9 Predicted Gasifier Performance as a Function of the Gasifier Heat Loss
6.6 CONCLUSIONS

A computer program has been constructed and tested which allows stagewise modelling of fluid bed gasification with a range of different pyrolysis and tar cracking models.

Both models constructed using this program may be used to estimate the gas compositions from fluid bed gasifiers: Model 2 in the case where there is bypassing of pyrolysis gases, and Model 3 where the feedstock is rapidly mixed into the bed and reaction between pyrolysis products and the fluidising gases can occur. Model 3 gives more accurate predictions of real gasifier performance than Model 2.

The effect of the inclusion of tar in the pyrolysis products has been tested, and it was found that if tar is produced in the pyrolysis, some of this tar must undergo further reaction. Cracking of tar produced in pyrolysis can increase the methane content of the product gas, as demonstrated by Model 5.

The ability of these stagewise models to predict the product distribution of fluid bed gasifiers demonstrates the strong influence of pyrolysis on the product gas composition. This is supported by the results of Maniatis, who found that the gas composition from a fluid bed gasifier was very sensitive to a shutdown of the biomass feed, the hydrocarbons in the product gas falling to zero in about 1 minute, which is about the same period as the time for pyrolysis of the wood chips used.

Finally, sensitivity analyses carried out using the model show similar trends to those predicted by the adiabatic carbon boundary model.
CHAPTER 7
GASIFIER ECONOMICS

7.1 INTRODUCTION

For any developing technology to succeed and become a process which is used commercially, the process must be economically viable. However, the economics of a new process cannot be studied in a purely general way but must be based on a specific case where the technology can be employed. In order to study the economic viability of biomass gasification, it was decided to choose a particular application of gasification, and perform economic calculations on this case. The simplest application of biomass gasification technology is to use air gasification for the production of producer gas, which may be used in a number of applications, especially for process heat where the combustion of a solid fuel cannot easily be used. As simple technologies are likely to be adopted before more complicated ones, and as there may be a ready market for the product as a replacement for natural gas in some industrial applications, this case was thought to be the most likely initial use of biomass gasification in the UK and was thus chosen for the economic study.

In order to study the economics of a new process, both the capital cost and the operating costs of the plant must be estimated. The traditional methods of economic evaluation then require a product selling price to be estimated. From these data a cash flow table can be constructed, and measures of profitability such as payback time, return on investment (ROI), net present value (NPV) or discounted cash flow
rate of return (DCFRR) are calculated. These methods of profitability assessment are described in many texts, for example by Allen 97 or Peters and Timmerhaus. 98 An alternative approach, which is especially applicable when it is difficult to estimate the product value, is to estimate a production cost which includes an element to cover capital costs, which may then be directly compared with the range of product values to test the viability of a process. In this work, an economic model of biomass gasification for the production of fuel gas in the UK has been developed, and implemented on a computer. This has enabled a series of cases to be evaluated and the influential variables in gasifier economics to be identified.

The calculations were performed at the start of 1986, so the costs used are all for the second half of 1985. Changes in the values of these costs between 1985 and the time of writing may have changed the results slightly in numerical terms, but the conclusions drawn from the results will remain the same.

This work has been published in a report to the UK Department of Energy, 4 and the economic model of gasification has been used in performing economic evaluations, the results of which have been published elsewhere. 99,100
7.2 CAPITAL COSTS

7.2.1 Definition

A system for the production of a fuel gas from biomass involves a number of processing operations, some of which are always necessary, and others of which are only sometimes required. The processing operations which may be required are listed below: those which may not be essential are shown in parentheses.

- Storage
- Handling
 (Size reduction)
- (Screening)
- (Drying)
- Gasification
- Gas cleaning
 (Wastewater treatment)
- (Gas compression)
- (Pipeline to user)

The total plant cost of a gasification system is thus the equipment costs for all required steps listed above, together with costs of design, installation and commissioning.

For the purposes of this survey, capital costs of gasifiers have been collected and correlated, covering the process steps from the gasifier feeding system (feed on the ground) to clean cold product gas. This represents the case where a gasifier is built at an existing site which already has reception and storage arrangements. This would be typical of a gasifier constructed at a municipal refuse reception plant, or a factory
wishing to gasify waste generated on site.

The capital cost considered is a total plant cost including equipment, installation, design, project management and commissioning, but excluding land costs. Some data have been collected on a delivered equipment cost basis and converted by suitable factors.

7.2.2 Capital Cost Data

Gasifier capital cost data are available from a variety of sources. Data are usually expressed as single figures representing the equipment cost of a gasifier systems from the gasifier feeding equipment to clean gas i.e. it includes equipment for the feeding, gasification and gas clean-up steps of the process. In some cases total plant costs are available in addition to or instead of the delivered equipment cost. There are very little data on the breakdown of the capital cost into either costs of equipment for the individual process steps, or elements of capital cost.

The raw data on gasifier equipment cost are tabulated as Table D1 of Appendix D. In order to compare the capital costs on a consistent basis, the data have all been converted to £\textsubscript{1985} sterling, using the cost indices and exchange rate information from Process Economics International. The raw capital cost data are plotted against gasifier throughput in Figure 7.1. All throughputs are expressed as the flowrate of dry, ash free (daf) feedstock entering the gasifier.

Data on total installed gasifier costs are shown in Table D2 of Appendix D and presented graphically as Figure 7.2. In many cases, data on total plant costs are not published, and these data have been derived in part by multiplying the equipment cost by a suitable factor, as described in Section 7.2.3.
Figure 7.1 Gasifier delivered equipment cost v gasifier capacity
Figure 7.2 Total installed gasifier capital cost v. gasifier capacity
The important figure for calculations of process economics is the total installed capital cost of the plant. Looking at Figure 7.2, it can be seen that the data points generally lie between two parallel lines. The equations of the two lines are as follows:

Lower: \(\text{£1985 Capital Cost} = 260,000 \text{ (capacity, daf t/h)}^{0.65} \)

Higher: \(\text{£1985 Capital Cost} = 775,000 \text{ (capacity, daf t/h)}^{0.65} \)

In each case, the capital cost is expressed in £1985 sterling, and the capacity is in daf t/h. Both lines show a scale factor of 0.65 - close to the widely accepted scale factor for processing plant of 2/3. At a given throughput, the upper correlation predicts a capital cost about three times that of the lower line. There are several reasons for this range of capital costs. The level of sophistication of the technology and the quality of engineering differs between gasifiers. Some gasifiers are built and marketed by small companies with low overheads and low levels of research and development backup, whereas others are built by large companies whose high overheads and large research and development budgets are reflected in their higher gasifier selling prices.

The lower line thus represents the lower limit of gasifier capital costs, typically achieved by relatively simple gasifier systems and systems supplied by small companies. This correlation should be used where gas quality and gasifier reliability are not paramount, for example where that product gas is being used as a fuel gas supplementing natural gas.

The upper line represents the cost of high technology systems, for example twin fluid bed systems, systems with extensive use of
mechanised feeding and automatic control, and systems supplied by major companies. It would be appropriate to use the upper correlation when a gas of higher quality than normal was required, for example where the gasifier was to produce synthesis gas.

This range of capital costs agrees with data proposed by Earthscan 103 who also proposed two levels of capital cost. Their lower figure agrees well with the lower figure here, but their upper figure is four times higher than their lower figure rather than the factor of three found here. They do not, however, report any economy of scale. Bridgwater 99 proposed a third, lower level of gasifier capital costs for gasifiers built in developing countries, using very simple technology, and designed for manual feeding and control. This would give capital costs about half those of the lower correlation shown above. There is no published evidence to support this suggestion, but it would be expected that simple designs of gasifiers could be built at very low cost.

7.2.3 Capital Cost Relationships

In most cases, capital cost data are not available broken down into capital costs for each process step. As a rule of thumb, the cost of the gasifier reactor and associated feeder is about 60% of the equipment cost. 4 However, in view of the limited data available, further conclusions cannot be drawn, nor can the effect of different feed materials be assessed. An analysis of the capital costs of two systems are presented as Table 7.1.

There are more data available on the relationship between equipment cost and total installed cost of gasifier systems. The ratio of total plant cost to equipment cost varies depending on the type of gasifier
construction, but can be estimated with a fair degree of confidence.

For packaged and skid-mounted units, the gasification plant is complete but for a concrete area to stand on, and piping up to utilities. A light shed or cover may also be required. Figures quoted by various manufacturers indicate that the total installed cost for such a system would be about 1.2 times the equipment cost. 104

For large field erected units, over about 1 t/h capacity, much civil and fabrication work is usually required on site, and available data indicate that the total plant cost is about 2.25 times the equipment cost. 101 In the paper industry (with similar types of processing equipment), the accepted ratio of total plant cost to equipment cost is about 2.25, 4 confirming this conclusion.

For smaller units which are not skid-mounted, less on-site fabrication would be required than for the large units, and the ratio of total plant cost to equipment cost will be smaller than that for large units. Century Research quote a figure of 1.66, although there are indications that for other makes of gasifier the ratio could be higher than this. 43 A figure of 1.75 has been used for calculating total plant costs from equipment costs for this type of gasifier where no installed cost data are available.
Table 7.1 Analysis of the Capital Costs of Two Gasifier Systems

<table>
<thead>
<tr>
<th>Item</th>
<th>Battelle Columbus 20.8 daf tonnes/h</th>
<th>JBECE / Wellman ODG 5.0 daf tonnes/h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost US$ % *</td>
<td>Cost £ % *</td>
</tr>
<tr>
<td>Store/handle</td>
<td>713 800 27.5</td>
<td>34 500 3.9</td>
</tr>
<tr>
<td>Gasifier & feed</td>
<td>1 321 300 51.0</td>
<td>553 300 63.3</td>
</tr>
<tr>
<td>Gas clean-up</td>
<td>. 0 0.0</td>
<td>111 500 12.8</td>
</tr>
<tr>
<td>Heat recovery</td>
<td>377 000 14.5</td>
<td>174 500 20.0</td>
</tr>
<tr>
<td>Water treatment</td>
<td>182 400 7.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Total equipment</td>
<td>2 594 500 100.0</td>
<td>873 800 100.0</td>
</tr>
<tr>
<td>Total plant</td>
<td>4 874 400 188.0</td>
<td>1 962 000 225.0</td>
</tr>
</tbody>
</table>

* Percentage of total equipment cost

7.2.4 Comparison of the Capital Costs of Gasification and Related Technologies

Figure 7.3 shows the capital costs of plants for both coal gasification and waste combustion, compared with the capital cost correlations for biomass gasification. The data for this graph are shown as Table 7.2. The capital costs are adjusted to the same basis as the gasifier capital costs in Figure 7.2, in £1985 sterling.

Comparison with coal gasification. Two figures for the capital costs of coal gasification plants are included in Figure 7.3. These are
Table 7.2 Total Plant Capital Costs of Coal Gasification and Waste Combustion Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Throughput daf tonnes/h</th>
<th>Capital cost £_1985</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal gasification</td>
<td>2.7</td>
<td>2 300 000</td>
<td>4</td>
</tr>
<tr>
<td>Coal gasification</td>
<td>5.0</td>
<td>4 600 000</td>
<td>104</td>
</tr>
<tr>
<td>Refuse incineration</td>
<td>2.5</td>
<td>1 375 000</td>
<td>4</td>
</tr>
<tr>
<td>Refuse incineration</td>
<td>4.0</td>
<td>2 200 000</td>
<td>4</td>
</tr>
<tr>
<td>Refuse incineration, fluid bed</td>
<td>4.0</td>
<td>1 800 000</td>
<td>4</td>
</tr>
<tr>
<td>Refuse incineration, Straw combustion</td>
<td>10.0</td>
<td>4 250 000</td>
<td>4</td>
</tr>
<tr>
<td>Waste combustion</td>
<td>0.4</td>
<td>140 000</td>
<td>105</td>
</tr>
<tr>
<td>Waste combustion</td>
<td>0.2</td>
<td>118 000</td>
<td>106</td>
</tr>
<tr>
<td>Waste combustion</td>
<td>0.3</td>
<td>227 000</td>
<td>107</td>
</tr>
<tr>
<td>Waste combustion</td>
<td>2.2</td>
<td>2 061 000</td>
<td>108</td>
</tr>
<tr>
<td>Wood combustion</td>
<td>0.1</td>
<td>55 000</td>
<td>109</td>
</tr>
<tr>
<td>Waste combustion</td>
<td>0.4</td>
<td>282 000</td>
<td>110</td>
</tr>
<tr>
<td>Waste combustion</td>
<td>0.2</td>
<td>85 000</td>
<td>111</td>
</tr>
<tr>
<td>Waste combustion</td>
<td>0.2</td>
<td>139 000</td>
<td>112</td>
</tr>
<tr>
<td>Straw combustion</td>
<td>2.0</td>
<td>198 000</td>
<td>113</td>
</tr>
</tbody>
</table>

considerably above the line representing the capital cost of high technology biomass gasifiers. However, when the figures are adjusted for the increased calorific value of coal compared with biomass, they move much nearer the line, with the lower size of coal gasifier being almost on the line. Conversely there is evidence that the lower reactivity of coal will require larger reactors which would negate this effect. It can be concluded that on a thermal capacity basis, the costs of coal gasifiers are comparable to high technology biomass gasifiers, both of which tend to be supplied by major companies with high overheads.
Figure 7.3 Comparison between the total installed capital costs of gasifiers and related technologies
Comparison with waste combustion. Some data are available for the combustion or incineration of wastes, refuse and straw. The data shown in Figure 7.3 are within the range of gasifier capital costs, but there is an apparently lower economy of scale, making combustion appear to be less attractive at higher capacities.

The only exception to this conclusion is the Needham Chalks straw combustor, which has a very low capital cost. It is understood that another quotation for the same combustor was about twice the figure of the combustor purchased, which would bring the cost into the range of low technology gasifiers.

It can be concluded that the capital costs of combustion and gasification are similar for wastes and refuse.

7.3 OPERATING COST

Gasifier operating costs for a system for converting biomass as prepared feed on the ground to cold clean gas are considered in this section. The operating costs considered here are feedstock, utilities, maintenance, overheads and labour.

7.3.1 Feedstock Cost

Bridgwater has discussed the availability and price of renewable feedstocks for gasification in the UK. The feedstocks which are likely to be considered for use are wood and wood waste, straw, and refuse.

Wood and wood waste. These occur in several forms: forestry residues, wood processing residues, wastes from industries which use
wood as a raw material, and fuel wood. Of these, only forest residues and sawmill residues are likely to be available in sufficient quantities.

The cost of wood wastes is estimated to be £13/tonne on the site where the waste is generated, or £17/tonne if delivery within a radius of 25 miles is considered. These figures are applicable to wood with a moisture content of 50% wet basis, giving costs of £26/tonne on site or £34/tonne delivered on a dry wood basis. Fuel wood, that is wood grown as an energy crop, is likely to be considerably more expensive than this.

Straw. The largest quantity of agricultural waste in the UK is straw - there is about 7 x 10^6 tonnes/year of unused waste straw generated in the UK. This was estimated to cost £17/tonne on farm, or £22/tonne if delivered to a 25 mile radius. Straw has a moisture content of 17% wet basis, giving dry basis costs of £20/tonne on farm or £26/tonne delivered. However, it is unlikely that sufficient waste straw would be produced by a single farm to supply a biomass gasifier of an economic throughput.

Refuse. As a feedstock for gasification, refuse has the advantage that it must be collected and brought to a single point for disposal. As well as this, there is a cost associated with disposing of refuse, which would be saved if the refuse was gasified. However, the cost of separating and disposing of the non-combustible fraction of refuse must be included when assessing the cost of refuse as a feedstock.

Bridgwater analysed the disposal costs of refuse, and found that refuse disposal costs between £2/tonne and £15/tonne in the UK, with a mean of £6/tonne for all counties, or £10/tonne for the metropolitan
counties. He also estimated the costs of preparing the refuse for conversion, which included shredding, and screening and air classification to remove metals and other non-combustible materials. Thus, a refuse which cost £10/tonne to dispose of, i.e. which had a value of £10/tonne, would cost £5/tonne as a prepared feed, or £15/tonne if drying were included as well.

The feedstock costs used in the economic analysis are summarised in Table 7.5 (p 157).

7.3.2 Utilities

Utilities include:

- electricity, for driving pumps, blowers and feeding systems
- wash water for product gas scrubbers
- boiler feedwater for steam raising.

Steam and oxygen have been excluded. Steam, if required, would be raised using a waste heat boiler to recover heat from the hot product gases. As the current evaluation is of air gasification, oxygen is not required. However, if an evaluation of oxygen gasification were to be performed, the cost of oxygen would probably be significant. In some systems, a fuel such as propane gas is required to preheat the gasifier during start-up. In the current evaluation, only steady state operation has been examined, so this cost has not been included.

Table 7.3 shows data on electricity costs of gasifiers, expressed as £/GJ product gas. The mean of this data is £0.114/GJ. However, this does not include the other utilities costs, where very little information is available. A utilities cost of £0.24 /GJ was used for the base case in the production cost calculations. This has been estimated as the mean of
the electricity cost multiplied by 2 to cover the cost of water, etc, and is approximately the figure estimated for the ODG process.

Table 7.3 Utilities Costs of Gasifier Systems

<table>
<thead>
<tr>
<th>Gasifier</th>
<th>Electricity Cost* £/GJ</th>
<th>Total Utilities Cost £/GJ</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODG</td>
<td>0.15</td>
<td>0.27</td>
<td>101</td>
</tr>
<tr>
<td>Applied Engineering Co</td>
<td>0.105</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>Battelle PNL</td>
<td>0.042</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>EZ Manufacturing</td>
<td>0.155</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>Biomass Corporation</td>
<td>0.146 to 0.195</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>Duvant Model GA 20</td>
<td>0.205</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>Energy Equipment Engineering</td>
<td>0.043</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>Fritz Werner</td>
<td>0.109</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>Pyrenco</td>
<td>0.093</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>Vyncke Warmetechnick</td>
<td>0.130</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>National Synfuels</td>
<td>0.062 to 0.099</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>Omni</td>
<td>0.115 to 0.127</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>Sur-lite</td>
<td>0.043</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.114</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Electricity cost is calculated from published figures of electricity consumption, kWh/GJ, using a cost of 3.1 p/kWh.

7.3.3 Maintenance

Yearly maintenance cost is usually estimated as a proportion of the gasifier capital cost. Raw data are often expressed in terms of the equipment cost, but for the purposes of the computer model of gasifier economics, the maintenance cost is expressed as a fraction of the total plant cost. Table 7.4 shows the raw data on gasifier maintenance costs, and the data adjusted to a total plant cost basis. The mean maintenance cost is 2.5% on a total plant cost basis, and this figure was used in the
product cost calculations.

Table 7.4 Maintenance Costs of Gasifier Systems

<table>
<thead>
<tr>
<th>Gasifier</th>
<th>Annual Maintenance Cost</th>
<th>Fraction of Equipment Cost</th>
<th>Fraction of Total Plant Cost</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODG</td>
<td>-</td>
<td>0.002</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Applied Engineering Co</td>
<td>0.031</td>
<td>0.018</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>EZ Manufacturing</td>
<td>0.03</td>
<td>0.018</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Biomass Corporation</td>
<td>0.05</td>
<td>0.042</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Duvant model GA 10</td>
<td>0.04</td>
<td>0.022</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Duvant model GA 20</td>
<td>0.04</td>
<td>0.022</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Fritz Werner</td>
<td>0.05</td>
<td>0.042</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Imbert</td>
<td>0.03 to 0.06</td>
<td>0.024 to 0.047</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Pillard</td>
<td>0.05</td>
<td>0.029</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>National Synfuels</td>
<td>0.05</td>
<td>0.022</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Alberta Industrial Developments</td>
<td>0.04</td>
<td>0.018</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Energy Products of Idaho</td>
<td>0.035</td>
<td>0.016</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Omni</td>
<td>0.054</td>
<td>0.024</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Sur-lite</td>
<td>0.04</td>
<td>0.018</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td></td>
<td></td>
<td>153</td>
</tr>
</tbody>
</table>

7.3.4 Overheads

Annual overheads cost is usually expressed as a proportion of the capital cost, similar to maintenance cost. The economic model of gasification uses a fraction of the total plant cost to calculate annual overheads which include rates (local tax), insurance and all head office expenses. Payroll overheads have been included in the labour costs.

No relevant published information has been found which can be
used to estimate overheads for a UK location. Data from overseas will not necessarily be applicable. The only information available suggests the overheads for a commercial Oxygen Donor Gasifier system would be 8% of the total plant cost.101 The local rates and insurance for a gasifier would typically be 4% of the capital cost.101 This figure was multiplied by 2 to cover head office expenses, giving a figure of 8%, which matches the Oxygen Donor Gasifier estimate. This figure of 8% of total plant cost was therefore used in the economic analysis.

7.3.5 Labour Cost

The cost per shift used for the base case was £15 000/year. This includes the costs of one operator per shift, plus the costs of supervision and payroll overheads. It has been assumed that the costs of supervision are shared with other plants on a site. Four shifts are required for continuous operation, the base case - three shifts per day, plus an extra shift to cover rest days. If operation is restricted to weekdays only, then three shifts will be sufficient.

7.3.6 Product Gas Value

The calorific value of producer gas for biomass gasification is much lower than that of natural gas. The quality of the gas is likely to be more uncertain than natural gas, and the continuity of supply is also likely to be uncertain. The selling price of the gas, expressed as £/GJ, will therefore have to be less than that of natural gas. It has been estimated that in order to make a producer gas attractive to users, its cost will have to be of the order of 75% to 80% of the price of natural gas to industry. It was decided to use a product value of £2.40/GJ in the calculations, which
is 75% of the price of natural gas to industry, £3.20/GJ.

7.4 PRODUCTION COST AND SENSITIVITY ANALYSIS

7.4.1 Methods of Economic Evaluation

There are two approaches to the evaluation of a proposed project - calculation of a product cost, or the conventional profitability measures of payback time, ROI, NPV and DCFRR.

Product cost is calculated by totalling the feedstock cost and operating costs (as described in Section 7.3) and adding to them a capital amortisation charge, which covers recovery of the capital and interest payments on the capital employed. The product cost may then be compared with the product selling price to assess profitability.

In contrast, conventional profitability measures include all cash flows, both income and expenditure, but do not include charges for interest or capital recovery. This is because they are designed as a method of comparing investment in a project with the investment of a similar sum in a bank. DCFRR and ROI are a percentage rate of return, which can be compared with the bank interest rate. NPV is expressed as the value of a project in current pounds, at a fixed rate of return. These measures are usually expressed in real terms, i.e. allowing for the change in the value of money with inflation. Payback time is the time taken for the capital to be recovered, ignoring interest payments, and is usually expressed in nominal terms.

7.4.2 Fuel Gas Production Costs and Economic Evaluation

A computer program has been used which calculates product cost,
DCFRR, and payback time. In order to study the economics, two sets of calculations have been performed, and the results are presented in Tables 7.7 and 7.8. The lower capital cost correlation (see Section 7.2.2) was used as this represents a target price for a commercial system. In all cases the production of a cold, clean gas has been considered. All costs and interest rates are those which applied in the second half of 1985.

The first set of calculations considered gasification of wood, straw or refuse at a range of throughputs, in order to identify applications where gasification is economically attractive. The range of feedstocks is shown in Table 7.5. In all of these cases, the values of the other parameters were as discussed above.

The second set of calculations was a sensitivity analysis, using the base case shown in Table 7.6. The parameters for the base case were as in the first set of calculations, but a specific feedstock was chosen - prepared but undried refuse - and a throughput of 2.5 tonnes/h was chosen as this was thought to be the size of gasifier which would be most widely adopted. 4
<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Moisture content</th>
<th>Resulting gasifier efficiency</th>
<th>Cost raw basis £/tonne</th>
<th>Prepared cost dry basis £/tonne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straw, on farm</td>
<td>17%</td>
<td>78%</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Straw, delivered</td>
<td>17%</td>
<td>78%</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Refuse, undried</td>
<td>35%</td>
<td>71%</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Refuse, undried</td>
<td>35%</td>
<td>71%</td>
<td>-5</td>
<td>15</td>
</tr>
<tr>
<td>Refuse, undried</td>
<td>35%</td>
<td>71%</td>
<td>-10</td>
<td>5</td>
</tr>
<tr>
<td>Refuse, undried</td>
<td>35%</td>
<td>71%</td>
<td>-15</td>
<td>-5</td>
</tr>
<tr>
<td>Refuse, dried</td>
<td>17%</td>
<td>78%</td>
<td>-10</td>
<td>15</td>
</tr>
<tr>
<td>Wood, on site</td>
<td>50%</td>
<td>62%</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>Wood, delivered</td>
<td>50%</td>
<td>62%</td>
<td>17</td>
<td>34</td>
</tr>
</tbody>
</table>
Table 7.6 Data and Results of Economic Calculations for the Base Case

DATA (All tonnes are daf basis)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasifier throughput</td>
<td>2.50 t/h</td>
</tr>
<tr>
<td>Feedstock heating value</td>
<td>20.00 GJ/t</td>
</tr>
<tr>
<td>Gasifier efficiency</td>
<td>71.00 %</td>
</tr>
<tr>
<td>Number of shifts</td>
<td>4</td>
</tr>
<tr>
<td>Project life</td>
<td>10 y</td>
</tr>
<tr>
<td>Operating hours per year</td>
<td>6000</td>
</tr>
<tr>
<td>Capital cost (including working capital)</td>
<td>£472 000.00</td>
</tr>
<tr>
<td>Feedstock cost for prepared refuse</td>
<td>£5.00 t</td>
</tr>
<tr>
<td>Product selling price</td>
<td>£2.400 /GJ</td>
</tr>
<tr>
<td>Utilities cost</td>
<td>£0.240 /GJ</td>
</tr>
<tr>
<td>Yearly maintenance, fraction of capital cost</td>
<td>0.025</td>
</tr>
<tr>
<td>Yearly overheads, fraction of capital cost</td>
<td>0.080</td>
</tr>
<tr>
<td>Total cost of labour per shift</td>
<td>£15 000.00 /y</td>
</tr>
<tr>
<td>Target real discount rate</td>
<td>10.00 %</td>
</tr>
<tr>
<td>Nominal cost of capital</td>
<td>12.00 %</td>
</tr>
<tr>
<td>Inflation rate</td>
<td>5.00 %</td>
</tr>
<tr>
<td>Feedstock cost real escalation rate</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Product price real escalation rate</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Utilities cost real escalation rate</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Maintenance cost real escalation rate</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Overheads real escalation rate</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Labour cost real escalation rate</td>
<td>0.00 %</td>
</tr>
</tbody>
</table>

RESULTS

NPV at 10.00% real discount rate is £1 220 951
DCF rate of return is 57.8 % real, 65.7 % nominal
Payback time is 1.60 years from start-up, nominal basis.
Mean real product cost over project life is £1.41/GJ
7.4.3 Sensitivity Analysis

A sensitivity analysis to test the effect of selected parameters affecting gasifier economics has been carried out, and a summary of the results is shown in Table 7.8. Feedstock cost will have a strong influence on production cost, the effect on the product cost being linear. It will also strongly influence the conventional profitability measures. Product selling price has no effect on production cost, but has a large influence on profitability. As the influence of these two factors on profitability is very important it was decided to study their effect separately from the sensitivity analysis, as discussed in Section 7.4.4.

Gasifier throughput The effect of gasifier throughput and level of technology have been investigated by performing the calculations at throughputs of 1, 2.5, 5 and 10daf t/h, using both high and low capital cost correlations from Section 7.2. The results are shown graphically in Figure 7.4.

Gasifier efficiency Gasifier efficiencies of 45% to 80% have been used, covering the range of efficiencies for both pyrolysis and gasification at all feedstock moisture contents. The results indicate that efficiency has an effect on economics, but this is not as strong as the effects of feedstock cost and scale (Figure 7.5).

Project life Project lives of 3, 5, 10 and 15 years were considered. Project life has no effect on payback times, as long as the payback time is less than the project lives being considered. This is because payback time only measures short-term profitability. However, project life affects
Figure 7.4 Product cost against gasifier throughput

Figure 7.5 Product cost against gasifier efficiency
both product cost, as the capital cost is amortised over a different period, and also DCFRR, as the income of the later years of a project is lost by shortening a project lifetime. Project life is not one of the important factors in project profitability.

Operating hours The base case assumes continuous operation at a 70% load factor, i.e. 6000 hours/year. This is in line with combustion plants. The effect of higher and lower load factors have been investigated by considering operating hours of 4000 and 8000 h/y, while still assuming 4 shift operation. These variations have a moderate effect on productivity, although gasification is still attractive at 4000 h/y.

The effect of three shift (gasifier shut down at weekends), two shift and single shift operation are considered. Three shift and two shift operation are still attractive, but single shift operation must be considered uneconomic. However, the economic model used did not include the extra costs associated with start-up and shut-down, so these results may not be valid if these costs were found to be appreciable.

Feedstock escalation The base case included no differential inflation, all real escalation rates being zero. However, the effect of feedstock cost escalation rate was investigated by performing calculations at -5%, -2.5%, 0%, 2.5% and 5% real escalation rates. The negative escalation rates cover the case where disposal credit for waste is increasing, but pretreatment costs are constant - the cost of the processed waste being above zero, but being reduced by the increase in disposal credit. The positive escalation rates cover possible increases in the cost of feedstocks if a market in them is established, forcing up prices.
Feedstock cost escalation does have an effect on gasifier profitability, the profitability being reduced with increasing real escalation, but it is not a dominating factor in the economics.

Product price escalation The effect of product price escalation was tested by using real escalation rates of -5%, -2.5%, 0%, 2.5% and 5%. There is obviously no effect on product cost, but increasing energy escalation increases profitability, the order of magnitude of the effect being similar to that for feedstock escalation.
<table>
<thead>
<tr>
<th>Conditions</th>
<th>Mean Product Cost £/GJ</th>
<th>Real DCFrr %</th>
<th>Nominal Payback Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straw, 17 % moisture, £17/t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 t/h gasifier</td>
<td>2.83</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>2.5 t/h gasifier</td>
<td>2.27</td>
<td>15.5</td>
<td>4.31</td>
</tr>
<tr>
<td>5 t/h gasifier</td>
<td>2.03</td>
<td>35.1</td>
<td>2.48</td>
</tr>
<tr>
<td>10 t/h gasifier</td>
<td>1.89</td>
<td>54.5</td>
<td>1.69</td>
</tr>
<tr>
<td>Straw, 17 % moisture, £22/t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 t/h gasifier</td>
<td>3.22</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>2.5 t/h gasifier</td>
<td>2.65</td>
<td>-26.7</td>
<td>>10</td>
</tr>
<tr>
<td>5 t/h gasifier</td>
<td>2.42</td>
<td>4.4</td>
<td>6.57</td>
</tr>
<tr>
<td>10 t/h gasifier</td>
<td>2.27</td>
<td>20.4</td>
<td>3.69</td>
</tr>
<tr>
<td>Refuse, 35 % moisture, £0/t disposal credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 t/h gasifier</td>
<td>3.44</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>2.5 t/h gasifier</td>
<td>2.82</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>5 t/h gasifier</td>
<td>2.56</td>
<td>-12.7</td>
<td>>10</td>
</tr>
<tr>
<td>10 t/h gasifier</td>
<td>2.40</td>
<td>6.1</td>
<td>6.12</td>
</tr>
<tr>
<td>Refuse, 35 % moisture, £5/t disposal credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 t/h gasifier</td>
<td>2.74</td>
<td>-19.2</td>
<td>>10</td>
</tr>
<tr>
<td>2.5 t/h gasifier</td>
<td>2.11</td>
<td>23.3</td>
<td>3.37</td>
</tr>
<tr>
<td>5 t/h gasifier</td>
<td>1.86</td>
<td>47.7</td>
<td>2.06</td>
</tr>
<tr>
<td>10 t/h gasifier</td>
<td>1.70</td>
<td>64.9</td>
<td>1.43</td>
</tr>
<tr>
<td>Refuse, 35 % moisture, £10/t disposal credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 t/h gasifier</td>
<td>2.03</td>
<td>22.2</td>
<td>3.48</td>
</tr>
<tr>
<td>2.5 t/h gasifier</td>
<td>1.41</td>
<td>57.7</td>
<td>1.60</td>
</tr>
<tr>
<td>5 t/h gasifier</td>
<td>1.15</td>
<td>85.3</td>
<td>1.11</td>
</tr>
<tr>
<td>10 t/h gasifier</td>
<td>0.99</td>
<td>117.0</td>
<td>0.81</td>
</tr>
</tbody>
</table>
Table 7.7 (continued)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Mean Product Cost £/GJ</th>
<th>Real DCFrr %</th>
<th>Nominal Payback Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refuse, 35 % moisture, £15/t disposal credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 t/h gasifier</td>
<td>1.33</td>
<td>47.8</td>
<td>1.91</td>
</tr>
<tr>
<td>2.5 t/h gasifier</td>
<td>0.71</td>
<td>90.0</td>
<td>1.05</td>
</tr>
<tr>
<td>5 t/h gasifier</td>
<td>0.45</td>
<td>126.0</td>
<td>0.76</td>
</tr>
<tr>
<td>10 t/h gasifier</td>
<td>0.29</td>
<td>168.8</td>
<td>0.56</td>
</tr>
<tr>
<td>Refuse, 35 % moisture dried to 17 % moisture, £10/t disposal credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 t/h gasifier</td>
<td>2.51</td>
<td>-0.8</td>
<td>8.27</td>
</tr>
<tr>
<td>2.5 t/h gasifier</td>
<td>1.95</td>
<td>34.3</td>
<td>2.53</td>
</tr>
<tr>
<td>5 t/h gasifier</td>
<td>1.71</td>
<td>56.5</td>
<td>1.63</td>
</tr>
<tr>
<td>10 t/h gasifier</td>
<td>1.56</td>
<td>80.8</td>
<td>1.17</td>
</tr>
<tr>
<td>Wood, 50 % moisture, £13/t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 t/h gasifier</td>
<td>3.99</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>2.5 t/h gasifier</td>
<td>3.27</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>5 t/h gasifier</td>
<td>2.98</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>10 t/h gasifier</td>
<td>2.79</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>Wood, 50 % moisture, £17/t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 t/h gasifier</td>
<td>4.63</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>2.5 t/h gasifier</td>
<td>3.92</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>5 t/h gasifier</td>
<td>3.62</td>
<td><-90</td>
<td>>10</td>
</tr>
<tr>
<td>10 t/h gasifier</td>
<td>3.44</td>
<td><-90</td>
<td>>10</td>
</tr>
</tbody>
</table>
Table 7.8 Results of the Sensitivity Analysis

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Mean Real Product Cost £/GJ</th>
<th>Real DCFrr %</th>
<th>Nominal Payback Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case</td>
<td>1.41</td>
<td>57.7</td>
<td>1.60</td>
</tr>
<tr>
<td>1 t/h low capital cost</td>
<td>2.03</td>
<td>22.2</td>
<td>3.48</td>
</tr>
<tr>
<td>2.5 t/h low capital cost (base)</td>
<td>1.41</td>
<td>57.7</td>
<td>1.60</td>
</tr>
<tr>
<td>5 t/h low capital cost</td>
<td>1.15</td>
<td>85.3</td>
<td>1.11</td>
</tr>
<tr>
<td>10 t/h low capital cost</td>
<td>0.99</td>
<td>117.0</td>
<td>0.81</td>
</tr>
<tr>
<td>1 t/h high capital cost</td>
<td>3.50</td>
<td>-24.1</td>
<td>>10</td>
</tr>
<tr>
<td>2.5 t/h high capital cost</td>
<td>2.47</td>
<td>4.41</td>
<td>6.58</td>
</tr>
<tr>
<td>5 t/h high capital cost</td>
<td>1.98</td>
<td>17.4</td>
<td>4.05</td>
</tr>
<tr>
<td>10 t/h high capital cost</td>
<td>1.64</td>
<td>29.9</td>
<td>2.82</td>
</tr>
<tr>
<td>45% efficiency (pyrolysis)</td>
<td>2.09</td>
<td>18.5</td>
<td>3.90</td>
</tr>
<tr>
<td>50% efficiency (pyrolysis)</td>
<td>1.90</td>
<td>26.8</td>
<td>3.06</td>
</tr>
<tr>
<td>55% efficiency (pyrolysis)</td>
<td>1.75</td>
<td>34.5</td>
<td>2.51</td>
</tr>
<tr>
<td>60% efficiency</td>
<td>1.62</td>
<td>42.0</td>
<td>2.14</td>
</tr>
<tr>
<td>65% efficiency</td>
<td>1.52</td>
<td>49.2</td>
<td>1.86</td>
</tr>
<tr>
<td>70% efficiency</td>
<td>1.43</td>
<td>56.4</td>
<td>1.64</td>
</tr>
<tr>
<td>75% efficiency</td>
<td>1.35</td>
<td>63.4</td>
<td>1.47</td>
</tr>
<tr>
<td>80% efficiency</td>
<td>1.28</td>
<td>70.4</td>
<td>1.33</td>
</tr>
<tr>
<td>3 year project life</td>
<td>1.94</td>
<td>34.3</td>
<td>1.60</td>
</tr>
<tr>
<td>5 year project life</td>
<td>1.64</td>
<td>50.9</td>
<td>1.60</td>
</tr>
<tr>
<td>15 year project life</td>
<td>1.33</td>
<td>58.3</td>
<td>1.60</td>
</tr>
<tr>
<td>4000 hours/year operation, 4 shift</td>
<td>1.81</td>
<td>28.7</td>
<td>2.91</td>
</tr>
<tr>
<td>8000 hours/year operation, 4 shift</td>
<td>1.21</td>
<td>85.4</td>
<td>1.11</td>
</tr>
<tr>
<td>3 shift operation, 4300 hours/year</td>
<td>1.63</td>
<td>36.8</td>
<td>2.39</td>
</tr>
<tr>
<td>2 shift operation, 4000 hours/year</td>
<td>1.60</td>
<td>35.8</td>
<td>2.44</td>
</tr>
<tr>
<td>1 shift operation, 2000 hours/year</td>
<td>2.41</td>
<td>5.9</td>
<td>6.18</td>
</tr>
</tbody>
</table>
Table 7.8 (continued)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Mean</th>
<th>Real</th>
<th>Real</th>
<th>Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£/GJ</td>
<td>Product Cost</td>
<td>DCFrr</td>
<td>Payback Years</td>
</tr>
<tr>
<td>-5% real escalation of feed cost</td>
<td>1.32</td>
<td>59.7</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>-2.5% real escalation of feed cost</td>
<td>1.36</td>
<td>58.8</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>2.5% real escalation of feed cost</td>
<td>1.46</td>
<td>56.6</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>5% real escalation of feed cost</td>
<td>1.52</td>
<td>55.4</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>-5% real escalation of prod. price</td>
<td>1.41</td>
<td>41.8</td>
<td>1.84</td>
<td></td>
</tr>
<tr>
<td>-2.5% real escalation of prod. price</td>
<td>1.41</td>
<td>50.2</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>2.5% real escalation of prod. price</td>
<td>1.41</td>
<td>64.9</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>5% real escalation of prod. price</td>
<td>1.41</td>
<td>71.6</td>
<td>1.43</td>
<td></td>
</tr>
</tbody>
</table>

7.4.4 Product Price and Feedstock Cost

Product price and feedstock cost both have a strong influence on profitability, but they are also the factors which are most likely to be site specific. Therefore, it was decided to examine the relationship between them, given a specified level of profitability.

In many areas of industry, a project with a payback time of greater than three years would not be considered for implementation, even if other measures of profitability were favourable. It was thus decided to study the relationships between feedstock cost and the product selling price, if a 3 year payback time were required, at a range of throughputs.

Figure 7.6 shows the relationship between product selling price and feedstock cost, for a three year payback period. The capital costs have been estimated using the lower correlation of Section 7.2.2, at throughputs of 1, 2.5, 5 and 10 t/h. All other conditions are as for the
Figure 7.6 Relationship between product selling price and feedstock cost for a 3 year payback time
base case (Table 7.6). This diagram enables the required product selling price to be estimated if the feedstock cost is known, given that a three year payback time is required. Conversely, if a product price has been fixed, the cost of feedstock required to attain a three year payback can be estimated. Similar diagrams could be constructed for other methods of profitability if required.

7.4.5 Production Cost Analysis

A detailed analysis of production costs of fuel gas for a range of cases is shown in Table 7.9. This shows the significance of feed cost in most situations.

Table 7.9 Production Cost Analysis

Scope: 2.5 tonnes/h feed daf basis; unspecified conditions as base case.

<table>
<thead>
<tr>
<th></th>
<th>Total cost</th>
<th>Cap cost</th>
<th>Feed cost</th>
<th>Lab cost</th>
<th>Util O/h & cost</th>
<th>maint</th>
<th>daf cost</th>
<th>screened, classified, classified</th>
<th>daf cost</th>
<th>classified, classified</th>
<th>daf cost</th>
<th>screened, classified, classified</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRAW (78% conversion efficiency at 17% water)</td>
<td></td>
</tr>
<tr>
<td>£22/t delivered (£26/t daf)</td>
<td>2.65</td>
<td>0.28</td>
<td>1.67</td>
<td>0.26</td>
<td>0.24</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£17/t on-farm (£20/t daf)</td>
<td>2.27</td>
<td>0.28</td>
<td>1.28</td>
<td>0.26</td>
<td>0.24</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFUSE -WET (71% conversion efficiency at 35% water)</td>
<td></td>
</tr>
<tr>
<td>£10/t raw refuse disposal credit (£5/t daf, shredded, screened, classified)</td>
<td>1.41</td>
<td>0.30</td>
<td>0.35</td>
<td>0.28</td>
<td>0.24</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£5/t raw refuse disposal credit (£15/t daf, shredded, screened, classified)</td>
<td>2.11</td>
<td>0.30</td>
<td>1.06</td>
<td>0.28</td>
<td>0.24</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFUSE-DRY (78% conversion efficiency at 17% water)</td>
<td></td>
</tr>
<tr>
<td>£10/t raw refuse disposal credit (£15/t daf, shredded, screened, classified, dried)</td>
<td>1.95</td>
<td>0.28</td>
<td>0.96</td>
<td>0.26</td>
<td>0.24</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOOD (62% conversion efficiency at 50% water)</td>
<td></td>
</tr>
<tr>
<td>£17/t delivered (£34/t daf)</td>
<td>3.92</td>
<td>0.35</td>
<td>2.74</td>
<td>0.32</td>
<td>0.24</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£13/t on-site (£26/t daf)</td>
<td>3.27</td>
<td>0.35</td>
<td>2.10</td>
<td>0.32</td>
<td>0.24</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakeven cost (£7.5/t (£15/tdaf)</td>
<td>2.40</td>
<td>0.35</td>
<td>1.22</td>
<td>0.32</td>
<td>0.24</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.5 CONCLUSIONS

Gasifier capital costs have been found to be independent of gasifier geometry. The capital costs of gasifiers of the same throughput can vary by a factor of three, depending on the level of technology and the size of company constructing the gasifier. Gasifier capital costs were found to follow conventional economies of scale, with a scale factor of 0.65.

The most important influences on gasifier profitability have been found to be feedstock cost, product selling price and throughput. Given a throughput of 2.5 tonnes/h, dry basis, the largest element of product gas cost is the feedstock cost. This is also the cost element which is the most variable, varying from £-5/tonne to £+34/tonne for prepared feedstock on a dry basis. 4

Given the economic conditions of late 1985, refuse gasification for the production of producer gas is viable in the UK at throughputs of about 2.5 tonnes/h dry basis and above, in the metropolitan counties. It would be viable at throughputs of about 5 tonnes/h in other areas where refuse disposal costs are lower, if there were sufficient arisings of refuse. Straw gasification was found to be of marginal profitability, and wood gasification was found to be unprofitable, but this would change if there was a change in the relationship between feedstock cost and product gas price.
CHAPTER 8
CONCLUSIONS AND
RECOMMENDATIONS

8.1 MODELLING AND DESIGN OF GASIFIERS

A new type of equilibrium model of gasification has been constructed, the adiabatic carbon boundary model (Chapter 5). This represents an ideal gasifier working at the point where the carbon in the feedstock is completely gasified. The computer program "MODEL" has been written to perform the calculations of this model, as well as those of other equilibrium models of gasification.

The adiabatic carbon boundary model has been used in a sensitivity analysis of the parameters which influence gasification. Of the parameters which can be chosen by the designer, the biomass moisture content and gasifying agent composition were found to have the largest effects on performance, whilst pressure and heat loss had a lesser effect and gasifying agent inlet temperature had a negligible effect.

The results of the carbon boundary model have been compared with the performance of a number of real gasifiers and used to construct a plot of real against ideal product heating value. Most gasifiers show results which are close to, but slightly worse than, ideality.

Fluid bed gasifiers have been modelled by using a stagewise approach, using both equilibrium modelling of gasification and experimentally derived pyrolysis data (Chapter 6). The computer program "FLMOD" has been written and used to test four stagewise models which differ in their treatment of pyrolysis. It was shown that if the
pyrolysis products pass straight to the product gas without reaction then there is a large effect on the product gas composition. If only the hydrocarbon products bypass the gasification reactions then the resulting model predicts well the performance of some fluid bed gasifiers, including the Lurgi CFB gasifier. This model is simple in concept and straightforward to program on the computer.

It has been concluded that pyrolysis and the reactions of pyrolysis products play an important part in the process of fluidised bed gasification, confirming the results of other workers. Yet, even the sophisticated kinetic models of gasification developed by other workers (see Chapter 4) only take account of pyrolysis in a primitive manner.

Sensitivity analyses carried out using the stagewise model show similar trends to those predicted by the adiabatic carbon boundary model.

Both equilibrium and stagewise models can be used in the evaluation of results of real gasifiers, as shown in Chapters 5 and 6. The stagewise model may also be used in the calculation of fluid bed gasifier mass balances for design purposes, assuming that the design of the gasifier allows good mixing of feed into the fluid bed so that the volatile pyrolysis products may undergo reaction. For the sizing of gasification reactors, char gasification is the rate-limiting step and the model of Groeneveld can be used.

8.2 GASIFICATION ECONOMICS

Correlations of gasifier capital costs have been derived, based on actual cost data. The capital costs of gasifiers of the same throughput
can vary by a factor of three, depending on the level of technology and the size of company constructing the gasifier. These correlations exhibit conventional economies of scale, with a scale factor of 0.65.

Two computer programs have been written to model gasifier economics. The most important influences on gasifier profitability have been found to be feedstock cost, product selling price and throughput.

Given the economic conditions of late 1985, refuse gasification for the production of producer gas is viable at throughputs of about 2.5 tonnes/h dry basis and above, in the metropolitan counties of the United Kingdom. It would be viable at throughputs of about 5 tonnes/h in other areas of the UK where refuse disposal costs are lower, if there were sufficient arisings of refuse. Straw gasification was found to be of marginal profitability, and wood gasification was found to be unprofitable.

Given a throughput of above 2.5 tonnes/h dry basis, the largest element of product gas cost is the feedstock cost. This is also the cost element which is the most variable, varying from £-5/tonne to £+34/tonne for prepared feedstock on a dry basis.

8.3 RECOMMENDATIONS FOR FUTURE WORK

The most important recommendation is that future work in gasifier modelling should concentrate on the the construction of robust models of both pyrolysis and the reactions of tar and hydrocarbon degradation. These could then be incorporated in a stagewise model of the whole gasification process.

Gasification processes are complex to analyse and difficult to understand. Consequently, it would be interesting to assess the
applicability of equilibrium-based models in the evaluation of gasification processes based on feedstocks other than biomass, in particular coal, coke, oil and gas. Apart from the evaluation of the performance of existing reactors, such modelling could be used in the development of new processes by providing information about feasible operating regions.

In the field of gasifier economics, there are several areas where work would be valuable:

i. The construction of a capital cost model of gasification systems from first principles by using a conventional costing method, for example process step scoring or factorial estimation.

ii. The comparison of such a model with both existing data and the correlations developed by the author. This would enable the large variations in gasifier capital costs to be better understood.

iii. The extension of the operating cost models of gasification used by the author to include the generation and use of synthesis gas to produce liquid fuels and chemicals.
APPENDIX A

CALCULATION OF EQUILIBRIUM WITH NO SOLID CARBON
The chemical reactions assumed to be in equilibrium are:

\[
\begin{align*}
\text{CO} + \text{H}_2\text{O} & = \text{CO}_2 + \text{H}_2 & \quad [1] \\
2\text{H}_2 + 2\text{CO} & = \text{CH}_4 + \text{CO}_2 & \quad [2]
\end{align*}
\]

Assuming ideal gas behaviour, i.e. at below 50 atmospheres approximately, these chemical reactions give rise to the following equilibrium relationships:

\[
K_4 = \frac{p_{\text{CO}_2} p_{\text{H}_2}}{p_{\text{CO}} p_{\text{H}_2\text{O}}} = \frac{y_{\text{CO}_2} y_{\text{H}_2}}{y_{\text{CO}} y_{\text{H}_2\text{O}}} \quad [3]
\]

\[
K_5 = \frac{p_{\text{CO}_2}^{\frac{1}{2}} p_{\text{CH}_4}^{\frac{1}{2}}}{p_{\text{CO}}^{\frac{1}{2}} p_{\text{H}_2}^{\frac{1}{2}}} = \frac{y_{\text{CO}_2}^{\frac{1}{2}} y_{\text{CH}_4}^{\frac{1}{2}}}{P^{\frac{1}{2}} y_{\text{CO}}^{\frac{1}{2}} y_{\text{H}_2}^{\frac{1}{2}}} \quad [4]
\]

The equilibrium equations are solved together with the element balances in order to calculate the gas composition. One mole of a gas which is not at equilibrium is assumed to react and to reach equilibrium. The molar composition of this gas is specified as \(x_0,\text{H}_2, x_0,\text{CO}, x_0,\text{CO}_2, x_0,\text{CH}_4, x_0,\text{N}_2, x_0,\text{H}_2\text{O}\). In order to reach equilibrium \(\alpha\) moles of CO and \(\alpha\) moles of H\(_2\)O react to form \(\alpha\) moles of CO\(_2\) and \(\alpha\) moles of H\(_2\), according to equation [1]; and 2\(\beta\) moles of H\(_2\) and 2\(\beta\) moles of CO react to form \(\beta\) moles of CO\(_2\) and \(\beta\) moles of CH\(_4\), according to equation [2]. Whilst reaction [1] does not change the total number of moles of gas, equation [2] does, so it is appropriate to first estimate a value of \(\beta\) and then adjust the gas compositions accordingly:

\[
M = 1 - 2\beta \quad [5]
\]

\[
x_{1,\text{H}_2} = \frac{(x_0,\text{H}_2 - 2\beta)}{M} \quad [6]
\]

\[
x_{1,\text{CO}} = \frac{(x_0,\text{CO} - 2\beta)}{M} \quad [7]
\]

\[
x_{1,\text{CO}_2} = \frac{(x_0,\text{CO}_2 + \beta)}{M} \quad [8]
\]

\[
x_{1,\text{CH}_4} = \frac{(x_0,\text{CH}_4 + \beta)}{M} \quad [9]
\]

\[
x_{1,\text{N}_2} = \frac{(x_0,\text{N}_2)}{M} \quad [10]
\]

\[
x_{1,\text{H}_2\text{O}} = \frac{(x_0,\text{H}_2\text{O})}{M} \quad [11]
\]

Reaction [1] is now assumed to take place, and to reach equilibrium. The gas composition will then be:
\[Y_{H2} = x_{1,H2} + \alpha \] [12]
\[Y_{CO} = x_{1,CO} - \alpha \] [13]
\[Y_{CO2} = x_{1,CO2} + \alpha \] [14]
\[Y_{CH4} = x_{1,CH4} \] [15]
\[Y_{N2} = x_{1,N2} \] [16]
\[Y_{H2O} = x_{1,H2O} - \alpha \] [17]

Substituting [12] to [17] in [3] gives the following equation in \(\alpha \):

\[K_4 = \frac{(x_{1,CO2} + \alpha)(x_{1,H2} + \alpha)}{(x_{1,H2O} - \alpha)(x_{1,CO} - \alpha)} \] [18]

Rearranging gives a quadratic in \(\alpha \):

\[0 = (1 - K_4) \alpha^2 + (x_{1,CO2} + x_{1,H2} + K_4 x_{1,CO} + K_4 x_{1,H2O}) \alpha \\
+ (x_{1,CO2} x_{1,H2} + K_4 x_{1,CO} x_{1,H2O}) \] [19]

This quadratic is easily solved for \(\alpha \) and the correct solution selected by calculating both possible gas compositions, and choosing the value of \(\alpha \) which gives a gas composition with all mole fractions between 0 and +1. The calculated gas composition is then back-substituted in equation [4], giving a trial value of \(K_5 \). This trial value of \(K_5 \) is then compared with the actual value calculated from the Gibbs free energies at the required temperature (see Chapter 5, equation [5.9], p 76). The value of \(\beta \) can then be changed and the calculation repeated iteratively until the trial value of \(K_5 \) agrees with the calculated value, giving the equilibrium gas composition.
Nomenclature, Appendix A

K_i Equilibrium constant of chemical reaction i

M Total moles of gas after adjustment for reaction [2]

P Total pressure

p_i Partial pressure of component i

$x_{0,i}$ Initial mole fraction of component i

$x_{1,i}$ Mole fraction of component i after adjustment for reaction [2]

y_i Mole fraction of component i at equilibrium

α Moles of CO converted to CO$_2$ in reaction [1] in order to attain equilibrium of reaction [1]

β Moles of CH$_4$ created by reaction [2] from CO and H$_2$ in order to attain equilibrium of reaction [2]
APPENDIX B

FLOW DIAGRAMS, LISTINGS AND EXAMPLE OUTPUT OF COMPUTER PROGRAMS
Program MODEL

The basic flow diagram of this program is shown as Figure B1. A complete list of subroutines and functions is given below:

Subroutines
CEPP Subroutine used by EQCONC.
CBOUND A dummy subroutine to allow SIMP2D to call FCARB
EQRC Subroutine which calculates the equilibrium concentrations of a gas, with a restricted amount of carbon present.
EQRC2B Subroutine used by EQRC.
FCARB Subroutine which calculates the heat and mass balances of the model where excess carbon is present. Calls EQCONC to calculate equilibrium gas concentrations.
GPHASE Subroutine which performs the restricted carbon calculation by iteration. Heat and mass balances are performed by calling STAGE2.
NORM A general purpose subroutine. Takes an array, and normalises it so that the sum of the elements equals 1.
EQCONC Subroutine which calculates the equilibrium concentrations of a gas, with excess carbon present.
SIMP2D Subroutine for performing simplex iteration in 2 dimensions. Used to perform the iterations of the carbon boundary calculation, where the variables are the temperature (Tcb) and gasifying agent flow (Qga).
STAGE2 Subroutine to perform the heat and mass balances where the amount of carbon is limited. Calls EQRC to calculate equilibrium gas concentration. Called by GPHASE.

Functions
ASHEAT Function which returns the sensible heat of ash at a given temperature. Used in heat balance calculations.
CALVAL Function which calculates the HHV of a gas, to IGU standards.
DELHUF Function to calculate the heat of formation of a C-H-O material, given its HHV.
HHV Function to calculate the HHV of a biomass, using the IGT equation.
SENSH Function which returns the sensible heat of a given component at a given temperature. Used in heat balance calculations.
Appendix B

Program MODEL

Figure B1 Flow Diagram of Program MODEL
Appendix B

Program MODEL

PROGRAM MODEL

PROGRAM TO FIND THE QUANTITY OF GAS REQUIRED
TO GASIFY 1 KMOL OF BIOMASS AT A GIVEN TEMP.
ASSUMING AN ADIABATIC REACTOR AND
EQUILIBRIUM CONCENTRATION OF OUTLET GAS
WITH SECOND STAGE FOR PARTIAL OXIDATION OF OUTLET GAS

TO USE INTERACTIVELY ASSIGN:

20 = NEAT RESULTS FILE
21 = *

DATA REQUIRED: FOLLOW PROMPTS ON SCREEN,
DATA REQUIRED VARIES ON MODE OF OPERATION

REAL V(3,2),VRES(2),LOSSES
REAL NITR,MWBIO,MOLFR(6),XOUT(6)
REAL GASIN(8),DHF(8)
REAL DHC(8),DRYMF(5)
CHARACTER *3 COMP(8)
CHARACTER *6 NORUN
COMMON /FUEL/ X,Y,Z,RMB,MWBIO,BIOHF,HTCOM,ASHWT
COMMON /SYST/ P,LOSSES,MOLFR,TOTMOL
COMMON /INLET/ GASIN,DHF,GAST,ENTHS
COMMON /RCARB/ XOUT,FOUT
EXTERNAL CBOUND

HEATS OF FORMATION OF COMPONENTS
DATA (DHF(I),I=1,8,1) / 0.0,110.5,393.5,74.9,0.0,241.8,
*0.0,0.0/

NAMES OF COMPONENTS
DATA (COMP(I),I=1,8,1) /"H2 ","CO ","CO2","CH4","N2 ","H2O",
*" C ","O2 "/

HEATS OF COMBUSTION OF COMPONENTS
DATA (DHC(I),I=1,8,1) /241.8,283.0,0.,802.2,0.,0.,393.5,0./

X=1.0
Y=1.5
Z=0.7
ASH=1.0

SET UP RESULTS FILE, AND WRITE INTRODUCTION TO
INTERACTIVE TERMINAL

181
N.B. NOTE THE FOLLOWING FILE NUMBERS:

TERMINAL SCREEN (DEFAULT SETTING ON THE HARRIS)

RESULTS FILE

INTERACTIVE INPUT, OR DATA FILE

WRITE(20, '(1H1)')
WRITE(3, '(20(/)," ")')
WRITE(3, '(*5X," *** PROGRAM MODEL ***")')
WRITE(3, '(/," This program is a thermodynamic model of a"
*," Biomass gasifier. "/," The calculation is performed in"
**"several ways.")')

WRITE(3, '(/," Please enter the number of the ",
**"calculation required",
** 1. Carbon Boundary calculation only
** 2. Fixed temperature calculation only
** 3. Carbon Boundary and gas phase calculations
** 4. Fixed temperature and gas phase calculations
** 5. Stop the program")')

READ THE TYPE OF CALCULATION REQUIRED, FROM

THE INTERACTIVE TERMINAL OR DATA FILE

READ(21,*) MODE

IF (MODE.LE.0.OR.MODE.GE.5) STOP

ITOUT=0

WRITE(3, '(/," ENTER RUN NUMBER")')
READ(21, '(A6)') NORUN

INTERACTIVE DATA ENTRY SECTION

(DATA MAY ALSO BE READ FROM A DATA FILE ASSIGNED TO LFN 21)

WRITE(3, '(/," ENTER DATA.... ")')
WRITE(3, '(/," ENTER PRESSURE")')
READ(21,*) P
WRITE(3, '(/," ENTER % HEAT LOSS FROM GASIFIER")')
READ(21,*) LOSSES
WRITE(3, '(/"THE CURRENT BIOMASS SPECIFICATION IS:")')
WRITE(3, '(/"C",Xr," H"," Yr"," O"," Z")')
WRITE(3, '(/"ASH","ASH"," %")')
WRITE(3, '(/"ENTER 1 IF YOU WANT TO CHANGE THIS")')
READ(21,*) IFLAG

IF (IFLAG.NE.1) GOTO 47201
WRITE(3, '(/," ENTER COMPOSITION OF CxHyOz",/
*," ENTER x")')
READ(21,*) X
WRITE(3, '(/" ENTER y")')
READ(21,*) Y
WRITE(3, '(/" ENTER z")')
READ(21,*) Z
WRITE(3, '(/" ENTER % ASH IN BIOMASS DRY ASH FREE BASIS")')
READ(21,*) ASH

MWBIO=X*12.0+Y+Z*16.0
WRITE(3, '(/" IN BIOMASS DRY ASH FREE BASIS")')
READ(21,*) PCMOIST
RMB=PCMOIST*MWBIO/1800.
DO 47999 JK=1,8
GASIN(JK)=0.0

CONTINUE
WRITE(3, '(" FIRST STAGE DATA ")')
WRITE(3,*) 'ENTER A NUMBER TO INDICATE GASIFYING AGENT'
WRITE(3,*) ' 1 FOR AIR'
WRITE(3,*) ' 2 FOR OXYGEN'
WRITE(3,*) ' 3 TO SPECIFY ANOTHER GASIFYING AGENT'
READ(21,*) IGATYP
IF (IGATYP.EQ.3) THEN
 GOTO 48001
ELSE IF (IGATYP.EQ.2)
 GASIN(8)=1.0
ELSE IF (IGATYP.EQ.1)
 GASIN(5)=.79
 GASIN(8)=0.21
ELSE
 STOP ': ERROR, INCORRECT IGATYP'
END IF
GOTO 48002

48001 WRITE(3, '(" ENTER RELATIVE QUANTITIES OF INLET GASES"
 " BY MOLES !")')
DO 1 I=1,8,1
 IF (I.EQ.7) THEN
 GASIN(I)=0.0
 ELSE
 WRITE(3, '(" ENTER FRACTION OF ",A3")') COMP(I)
 READ(21,*) GASIN(I)
 END IF
1 CONTINUE

48002 CALL NORM (GASIN,8)
WRITE(3, '(" ENTER TEMPERATURE OF INLET GASES")')
READ(21,*) GAST
WRITE(3, '(" ENTER ENTHALPY OF INLET STEAM IN kJ/kg"
 " FROM STEAM TABLES")')
READ(21,*) ENTHS
IF (MODE.EQ.2.OR.MODE.EQ.4)
 WRITE(3, '(" ENTER GASIFIER TEMPERATURE ")')
 READ(21,*) T
END IF

C PERFORM CALCULATIONS ON RAW DATA, TO ALLOW IT TO BE USED
C BY LATER CALCULATIONS
ENTHS=ENTHS-2546.6
HTCOM=HHV(X,Y,Z,ASH)
BIOHF=DELFH(X,Y,-MWBIO*HTCOM)
C CALCULATE CHEMICAL POTENTIAL ENERGY ENTERING THE GASIFIER
PCEIN=MWBIO*HTCOM
ASHWT=ASH*MWBIO/100.0

C CARBON BOUNDARY CALCULATION

C SET INITIAL POINTS FOR CORNERS OF THE SIMPLEX IN THE
C CARBON BOUNDARY CALCULATION
V(1,1)=0.3
V(1,2)=1193.0
V(2,1)=0.5
V(2,2)=798.0
Appendix B

Program MODEL

V(3,1)=0.9
V(3,2)=673.0
TOL=1.0
LAB=0

C CALL THE SIMPLEX SUBROUTINE, I.E. PERFORM THE CARBON
C BOUNDARY ITERATION
CALL SIMP2D(V,VRES,YRES,TOL,LAB,CBOUND)

C OUTPUT OF INITIAL DATA AND RESULTS OF PRELIMINARY
C CALCULATIONS
WRITE(20,('(/*,10X,18("*"))'))
WRITE(20,('(9X," RESULTS FROM MODEL ")'))
WRITE(20,('(9X," RUN NUMBER ",A6")') NORUN
WRITE(20,('(10X,18("*")),/*'))
WRITE(20,('(10X,"INPUT CONDITIONS")'))
WRITE(20,('(1H+,9X,16("_")),/*'))
WRITE(20,('(10X,"PRESSURE IS ",F5.1," atm",/)')) P
WRITE(20,('(10X,"HEAT LOSS IS",F5.1," %","/)')) LOSSES
WRITE(20,('(9X," COMPOSITION OF DRY BIOMASS ")'))
WRITE(20,('(9X," C ",F5.3," H ",F5.3," O ",F5.3,"/)')) X,Y,Z
WRITE(20,('(9X," MOISTURE CONTENT OF BIOMASS ",F8.2,
"% dry ash free weight")') FCMOIST
WRITE(20,('(9X," ASH CONTENT OF BIOMASS ",F8.2,
"% dry ash free weight",/)')) ASH
WRITE(20,('(9X," HEAT OF COMBUSTION IS ",F8.2," MJ/kg")'))

*HTCOM
WRITE(20,('(/*,10X,
"FIRST STAGE CONDITIONS",/1H+,9X,22("_"))'))
WRITE(20,('90003') GAST,ENTHS+2546.6
WRITE(20,('90001') COMP(I),I=1,6),COMP(8)
,(GASIN(I),I=1,6),GASIN(8)

C IF ERROR HAS OCCURRED, WRITE ERROR MESSAGE TO TERMINAL
IF (LAB.EQ.1) THEN
WRITE(3,('" TOO MANY ITERATIONS IN CARBON ",
"BOUNDARY CALCULATION"'))
WRITE(20,('(/*,10X," TOO MANY ITERATIONS IN CARBON ",
"BOUNDARY CALCULATION"'))
STOP
END IF

C CALCULATE OUTLET GAS CALORIFIC VALUE, OUTLET CHEMICAL
C POTENTIAL ENERGY, AND HENCE EFFICIENCY OF CHEMICAL ENERGY
C CONVERSION
CVIGU=CALVAL(MOLFR)
DO 86204 I=1,6
PCEIN=PCEIN+DHC(I)*GASIN(I)*VRES(I)
86204 CONTINUE
PCEOUT=0.0
DO 86205 I=1,6
PCEOUT=PCEOUT+TOTMOL*MOLFR(I)*DHC(I)
86205 CONTINUE
CHEMEFF=100.0*PCEOUT/PCEIN
DO 45144 I=1,5
DRYMF(I)=MOLFR(I)
45144 CONTINUE
CALL NORM(DRYMF, 5)

C CARBON BOUNDARY RESULTS
WRITE(20, '(/,10X,"CARBON BOUNDARY CALCULATION","","1H9,9X,22(\"\"\")\")')
WRITE(20,90004) VRES(2)
WRITE(20,90000) VRES(1), TOTMOL, TOTMOL*(1.0-MOLFR(6))
WRITE(20,90005)
WRITE(20,90002) (COMP(I), I=1, 6), (MOLFR(I), I=1, 6)
WRITE(20,90008) (COMP(I), I=1, 5), (DRYM(F(I), I=1, 5)
WRITE(20,90006)
WRITE(20,90002) (COMP(I), I=1, 6), (MOLFR(I)*TOTMOL, I=1, 6)

WRITE(3, '(/,10X,"CARBON BOUNDARY CALCULATION")')
WRITE(3,90004) VRES(2)
WRITE(3,90002) (COMP(I), I=1, 6), (MOLFR(I), I=1, 6)
WRITE(20,90007) CVIGU
WRITE(20, '(/,10X,"CHEMICAL POTENTIAL ENERGY CONVERSION ",
*"EFFICIENCY ",F5.1,"\%")') CHEMEFF

C CHECK MODE OF CALCULATION, AND GO TO NEXT STEP
IF (MDES.EQ.1) GOTO 47200
WRITE(20, '(/,10X,"continued on next page...",/1H1,/,/'))
WRITE(20, '(9X," RESULTS FROM MODEL ")')
WRITE(20, '(9X," RUN NUMBER ",A6," contd.")') NORUN
IF (MDES.EQ.3) THEN
TIN=VRES(2)
GOTO 58001
END IF

C CONSTANT TEMPERATURE FIRST STAGE CALCULATION

WRITE(20, '(/,10X,"FIXED TEMPERATURE CALCULATION",/,
*1H9,9X,29("\"\")\")')
WRITE(20,90004) T
WRITE(3, '(/,10X,"FIRST STAGE CALCULATION")')
WRITE(3,90004) T
IF (VRES(2).EQ.T) THEN
FLOW=VRES(2)
GOTO 56001
END IF

C TEST WHETHER FREE CARBON OF GAS PHASE CALCULATION IS TO BE
C USED
IF (VRES(2).GT.T) THEN
FREE CARBON CALCULATION
QU=VRES(1)
QL=0.0
CALL FCARB(T,QL,ERRORL,PREEC)
CALL FCARB(T,QU,ERRORU,PREEC)
J=0
C MAIN ITERATION FOR FREE CARBON CALCULATION
DO
C CHECK NUMBER OF ITERATIONS
IF (J.GT.50) THEN
WRITE(3,'(" TOO MANY ITERATIONS IN FREE CARBON ",')

185
* "CALCULATION")
WRITE(20,'(/,10X,"TOO MANY ITERATIONS IN FREE ",
* "CARBON CALCULATION")')
GOTO 47200
END IF
C SPLIT RANGE OF ITERATION IN TWO
FLOW=(QU+QL)/2.0
CALL PCARB(T,FLOW,ERROR,FREEC)
C CHECK WHERE SOLUTION LIES, AND SET NEW, SMALLER RANGE OF
C ITERATION
IF (ERRORU*ERROR.GT.0.0) THEN
 QU=FLOW
 ERRORU=ERROR
ELSE
 QL=FLOW
 ERRORSL=ERROR
END IF
C CHECK FOR CONVERGENCE
ERROR=ABS(ERROR)
UNTIL (ERROR.LT.5.0)
WRITE(20,'(/,10X,"CHAR PRODUCED ",11X,F8.4,
 " mol/mol Biomass")') FREEC
WRITE(3,'(/,10X,"CHAR PRODUCED ",F8.4,
 " mol/mol Biomass")') FREEC
ELSE
C GAS PHASE CALCULATION
C CALL "GPHASE" TO PERFORM THIS CALCULATION
CALL GPHASE(VRES(2),T,FLOW,LABEL)
IF (LABEL.NE.0) THEN
WRITE(20,'(/,10X,"ERROR ",I3," IN 1ST STAGE GAS PHASE")')
 LABEL
WRITE(3,'(" ERROR ",I3," IN FIRST STAGE GAS PHASE")')
 LABEL
GOTO 47200
END IF
DO 50007 I=1,6,1
MOLFR(I)=XOUT(I)
50007 CONTINUE
TOTMOL=OUT
FLOW=FLOW+VRES(1)
FREEC=0.0
END IF
56001 TIN=T
C CALCULATE CHEMICAL ENERGY CONVERSION EFFICIENCY, AND
C SET UP VARIABLES FOR POSSIBLE NEXT STEP OF CALCULATION
PCEIN=MWBIO*HTCOM
DO 86206 I=1,6
 PCEIN=PCEIN+DHC(I)*GASIN(I)*FLOW
86206 CONTINUE
PCEOUT=0.0
DO 86207 I=1,6
 PCEOUT=PCEOUT+TOTMOL*MOLFR(I)*DHC(I)
86207 CONTINUE
Appendix B

Program MODEL

PCEOUT=PCEOUT+FREEC*DHCR(7)
CHEMFRP=100.0*PCEOUT/PCEIN
DO 45145 I=1,5
 DRMF(I)=MOLFR(I)
45145 CONTINUE
CALL NORM(DRMYF,5)

C OUTPUT OF RESULTS FROM KNOWN TEMPERATURE CALCULATION
WRITE(20,90000) FLOW,TOTMOL,TOTMOL*(1.0-MOLFR(I))
WRITE(20,90001) C
WRITE(20,90002) (COMP(I),I=1,16), (MOLFR(I),I=1,16)
WRITE(20,90003) (COMP(I),I=1,15), (DRMF(I),I=1,5)
WRITE(20,90004) (COMP(I),I=1,6), (MOLFR(I)*TOTMOL,I=1,6)
CVGU=CALVAL(MOLFR)
WRITE(20,90007) CVGU
WRITE(20,'(/,1X,"CHEMICAL POTENTIAL ENERGY CONVERSION ",
"EFFICIENCY ",F5.1,"%")') CHEMFRP
WRITE(3,90002) (COMP(I),I=1,16), (MOLFR(I),I=1,16)
IF (MODE.EQ.2) GOTO 47200

C ENTER DATA FOR SECOND STAGE CALCULATION

58001 WRITE(3,'(" ENTER TEMPERATURE FOR GAS PHASE")')
READ(21,*) T
C CHECK THAT PARTIAL OXIDATION TEMPERATURE IS ABOVE THE
C CURRENT TEMPERATURE OF THE GAS STREAM
IF (T.LT.TIN) THEN
WRITE(3,'(" GAS PHASE CALCULATION TEMP IS TOO LOW ")')
WRITE(20,'(/,9X" GAS PHASE CALCULATION TEMP IS TOO LOW ")')
GOTO 47200
ENDIF
C ENTER GASIFYING AGENT DATA FOR GAS PHASE
C DO 48099 JK=1,8
 GASIN(JK)=0.0
48099 CONTINUE
WRITE(3,*), 'ENTER A NUMBER TO INDICATE GASIFYING AGENT'
WRITE(3,*), 1 FOR AIR'
WRITE(3,*), 2 FOR OXYGEN'
WRITE(3,*), 3 TO SPECIFY ANOTHER GASIFYING AGENT'
READ(21,*) IGATYP
IF (IGATYP.EQ.3) THEN
GOTO 48101
ELSE IF (IGATYP.EQ.2)
 GASIN(8)=1.0
ELSE IF (IGATYP.EQ.1)
 GASIN(5)=.79
 GASIN(8)=0.21
ELSE
 STOP ': ERROR, INCORRECT IGATYP'
ENDIF
GOTO 48102

187
48101 WRITE(3,'(" ENTER RELATIVE QUANTITIES OF INLET GASES"
 ** BY MOLES !")')
 DO 48201 I=1,8,1
 IF (I.EQ.7) THEN
 GASIN(I)=0.0
 ELSE
 WRITE(3, '(" ENTER FRACTION OF ",A3")') COMP(I)
 READ(21,*) GASIN(I)
 END IF
48201 CONTINUE
48102 CALL NORM (GASIN,8)

WRITE(3,'(" ENTER TEMPERATURE OF INLET GASES")')
READ(21,*) GAST
WRITE(3,'(" ENTER ENTHALPY OF INLET STEAM IN kJ/kg"
 *," FROM STEAM TABLES")')
READ(21,*) ENTHS
ENTHS=ENTHS-2546.6

C SECOND STAGE CALCULATION
C USE "GPHASE" TO PERFORM CALCULATION
CALL GPHASE (TIN,T, FLOW, LABEL)

C ECHO PARTIAL OXIDATION DATA TO RESULTS FILE
WRITE(20,9002)
9002 FORMAT('/,,10X,"GAS PHASE RESULTS",/,,1H1+
 *,9X,17('_'))
 WRITE(20,90001) (COMP(I), I=1,6), COMP(8)
 *(GASIN(I), I=1,6,GASIN(8)
 WRITE(20,90003) GAST, ENTHS+2546.6
 WRITE(20,90004) T
C IF CALCULATION IS NOT SUCCESSFUL, WRITE ERROR MESSAGE
IF (LABEL.NE.0) THEN
 WRITE(20, '('/,,10X,"ERROR ",I3," IN 2ND STAGE GAS PHASE")')
 LABEL
 WRITE(3, '(" ERROR ",I3," IN 2ND STAGE GAS PHASE")')
 LABEL
 GOTO 47200
END IF
C CALCULATE EFFICIENCY ETC.
PCEIN=MWBIO*HTCOM
DO 86208 I=1,6
 PCEIN=PCEIN+DHC(I)*GASIN(I)*FLOW
86208 CONTINUE
PCEOUT=0.0
DO 86209 I=1,6
 PCEOUT=PCEOUT+FOUT*XOUT(I)*DHC(I)
86209 CONTINUE
CHEMEFF=100.0*PCEOUT/PCEIN
DO 45146 I=1,5
 DRYMF(I)=MOLFR(I)
45146 CONTINUE
CALL NORM (DRYMF,5)
C WRITE RESULTS OF PARTIAL OXIDATION TO OUTPUT FILE
WRITE(20,90000) FLOW,FOUT,FOUT*(1.0-XOUT(I))
Appendix B

Program MODEL

WRITE(20,90005)
WRITE(20,90002) (COMP(I),I=1,6),(XOUT(I),I=1,6)
WRITE(20,90008) (COMP(I),I=1,5),(DRYMPF(I),I=1,5)
WRITE(20,90006)
WRITE(20,90002) (COMP(I),I=1,6),(XOUT(I)*FOUT,I=1,6)
CVIGU=CALVAL(XOUT)
WRITE(20,90007) CVIGU
WRITE(3,'(/,'10X,"SECOND STAGE CALCULATION")')
WRITE(3,90004) T
WRITE(3,90002) (COMP(I),I=1,6),(XOUT(I),I=1,6)
WRITE(20,'(/,'10X,"CHEMICAL POTENTIAL ENERGY CONVERSION ", *"EFFICIENCY ",F5.1,"\%"') CHEMEFF

C RETURN TO START TO ALLOW ANOTHER RUN
47200 WRITE(20,'(IH1)')
GOTO 47198

C FORMAT STATEMENTS
90000 FORMAT('(/,'10X,"GASIFYING AGENT FLOWRATE ",F8.4,"
** mol/mol Biomass",/,'10X,"OUTLET GAS FLOWRATE",6X,F8.4,
"** mol/mol Biomass",/,'10X,"OUTLET FLOW (DRY BASIS) ",&
"F8.4," mol/mol Biomass")
90001 FORMAT('(/,'10X,"GASIFYING AGENT COMPOSITION ",&/,'11X,
"(A3,5X),/,'10X,7(F6.4,2X))
90002 FORMAT('(/,'11X,6(A3,5X),/,'10X,6(F6.4,2X))
90003 FORMAT('(/,'10X,"GASIFYING AGENT TEMPERATURE ",F8.2," K",/,
"10X,"GASIFYING STEAM ENTHALPY ",3X,F8.2," kJ/kg")
90004 FORMAT('(/,'10X,"OUTLET TEMPERATURE",10X,F8.2," K")
90005 FORMAT('(/,'10X,"OUTLET GAS COMPOSITION ")
90006 FORMAT('(/,'10X,"OUTLET GAS FLOWRATES, mol/mol Biomass")
90007 FORMAT('(/,'10X,"OUTLET GAS CALORIFIC VALUE (IGU standard)",&
"F8.4," MJ/m**3")
90008 FORMAT('(/,'10X,"OUTLET GAS COMPOSITION, DRY BASIS",/,
"11X,5(A3,5X),/,'10X,5(F6.4,2X))
END

C C C C C

SUBROUTINE FCARB(T,Q,ERROR,FREEC)
REAL NOR,MOLFR(6),LHM,LOSSES
REAL GASIN(8),DHF(8)
REAL MWBIO
COMMON /FUEL/ X,Y,Z,RMB,MWBIO,BIOHF,HTCOM,ASHWT
COMMON /SYST/ P,LOSSES,MOLFR,TOTMOL
COMMON /INLET/ GASIN,DHF,GAST,ENTHS
C SUBROUTINE TO DO HEAT BALANCING, FOR THE CASE WHERE BIOMASS
C IS GASIFIED, ASSUMING THAT THERE IS SOME FREE CARBON IN THE
C EQUILIBRIUM CALCULATION
C Q & T ARE TRANSFERRED AS ARGUMENTS, OTHER DATA ON BIOMASS
C AND GASIFYING AGENT ARE TRANSFERRED BY COMMON BLOCKS
Q=GAS FLOW PER MOLE DRY BIOMASS
T=TEMPERATURE

CALCULATE TOTAL MOLES OF C,H,O,N
TOTO=Z*Q*(GASIN(2)+2.0*GASIN(3)+GASIN(6)+2.0*GASIN(8))+RMB
TOTC=X*Q*(GASIN(2)+GASIN(3)+GASIN(4))
TOTN=Y*Q*(GASIN(5))*2.0
TOTH=Y*Q*2.0*(GASIN(1)+GASIN(4)*2.0+GASIN(6))+2.0*RMB

CALCULATE H,O & N,O RATIOS, AND CALL EQCONC TO CALCULATE EQUILIBRIUM
NOR=TOTN/TOTO
HOR=TOTH/TOTO
CALL EQCONC(HOR,NOR,P,T,MOLFR,LAB)

PERFORM MASS BALANCE TO CALCULATE TOTAL GAS MOLES, AND FREE CARBON
TOMOL=TOTO/(MOLFR(2)+2.0*MOLFR(3)+MOLFR(6))
FREEC=TOTC-TOTMOL*(MOLFR(2)+MOLFR(3)+MOLFR(4))

CALCULATION OF HEAT BALANCE TERMS

SENSIBLE HEAT OF INLET GASES
SHIG=0.0
DO 1 I=1,8,1
IF (I.EQ.6) THEN
SHIG=SHIG+(GASIN(6)*18.0*ENTHS*Q)
ELSE
SHIG=SHIG+SENSH(GAST,I)*Q*GASIN(I)
END IF
1 CONTINUE

HEAT OF REACTION
PRODHR=0.0
DO 2 I=1,6,1
PRODHR=PRODHR-TOMOL*MOLFR(I)*DHF(I)
2 CONTINUE

REACTHR=BIOHF
DO 3 I=1,8,1
REACTHR=REACTHR-Q*GASIN(I)*DHF(I)
3 CONTINUE

REACTHR=REACTHR-RMB*DHF(6)
DELTHR=1000.0*(PRODHR-REACTHR)

LATENT HEAT OF MOISTURE IN BIOMASS
LHM=RMB*18.0*2441.8

SENSIBLE HEAT OF OUTLET GAS
SHOG=0.0
DO 37180 I=1,6,1
SHOG=SHOG+MOLFR(I)*SENSH(T,I)
37180 CONTINUE

SHOG=SHOG+TOTMOL

ADD SENSIBLE HEAT OF CHAR TO THAT OF GAS
IF (FREEC.GT.0.0) THEN
SHOG=SHOG+FREEC*SENSH(T,7)
END IF

ADD SENSIBLE HEAT OF ASH TO THAT OF GAS
SHOG=ASHWT*ASHEAT(T)+SHOG

ALLOW FOR % HEAT LOSS
HLOSS=HTCOM*MWBIO*LOSES*10.0

OVERALL HEAT BALANCE, TO CALCULATE ERROR
ERRCR=DELTHR-SHIG+SHOG+LHM+HLOSS
RETURN

FUNCTION ASHEAT(T)
REAL T,A,B,C,D

DATA A,B,C,D /0.81168,0.00017816,8081.5,284.381/
ASHEAT=A*T+B*T*T+C/T-D
RETURN

SUBROUTINE EQRC(MOLIN,T,P,MOLOUT,LABEL)
REAL MOLIN(6),MOLOUT(6),K(2),KOUT,B(5,6),G(6)

SUBROUTINE TO CALCULATE C-H-O EQUILIBRIA
WITH LIMITED CARBON

DATA ((B(J,I),J=1,5,1),I=1,6,1) /
*0.00000, 0.00000, 0.00000, 0.00000, 0.00000,
*13.61200E3, 1.83170,-2.75840E-3, 0.65360E-6,-0.78772E-10,
*47.28000E3, 0.13220,-0.94025E-3, 0.45112E-6,-0.91901E-10,
* 8.37220E3,-1.07690,-5.64350E-3, 2.90460E-6,-5.23510E-10,
* 0.00000, 0.00000, 0.00000, 0.00000, 0.00000,
* 28.78000E3,-0.69477,-1.42830E-3, 0.74925E-6,-1.37850E-10/

DO 50 I=1,6,1
G(I)=B(1,I)/T+B(2,I)*LOG(T)+B(3,I)*T+B(4,I)*T*T+B(5,I)*T**3
50 CONTINUE

CALCULATE EQUILIBRIUM CONSTANTS K(1) & K(2)
K(1)=EXP(G(3)+G(1)-G(6)-G(2))
K(2)=EXP(G(3)+G(4)-2.0*(G(1)+G(2))

LABEL=0
J=0

SET UPPER AND LOWER BOUNDS FOR THE POSSIBLE VALUES OF BETA
BETAL=-MOLIN(4)
BETAU=(MOLIN(1)+MOLIN(2))/2.0
Appendix B

Program MODEL

300 J=J+1
C IF THERE ARE TOO MANY ITERATIONS, SET LABEL TO SHOW
C ERROR, AND RETURN
IF (J.GT.25) THEN
LABEL=LABEL+100
RETURN
END IF
CALL EQRC2B(MOLIN, MOLOUT, ALPHA, BETAL, K(1), KOUT, P, LABEL)
C ADJUST LOWER BOUND SO THAT CALCULATION IS POSSIBLE
IF (LABEL.NE.0) THEN
BETAL=BETAL*.95
GOTO 300
END IF
C ERRORL IS THE ERROR BETWEEN THE CALCULATED &
C TRIAL EQUILIBRIUM CONSTANTS
ERRORL=K(2) - KOUT
C
400 J=0
J=J+1
IF (J.GT.25) THEN
LABEL=LABEL+200
RETURN
END IF
CALL EQRC2B(MOLIN, MOLOUT, ALPHA, BETAU, K(1), KOUT, P, LABEL)
C ADJUST UPPER BOUND SO THAT THE CALCULATION WILL WORK
IF (LABEL.NE.0) THEN
BETAU=BETAU*.9
GOTO 400
END IF
ERRORU=K(2) - KOUT
C CHECK THAT BETAU & BETAL ARE EITHER SIDE OF THE SOLUTION,
C AND ADJUST IF THEY ARE NOT
IF (ERRORU*ERRORL.GT.0.0) THEN
BETAU=BETAU*1.05
GOTO 400
END IF
C
C MAIN ITERATION LOOP
C THIS WORKS BY SPLITTING THE INTERVAL BETWEEN THE UPPER &
C LOWER BOUNDS, AND THEN DECIDING WHICH HALF THE SOLUTION LIES
C IN THE INTERVAL IS THEN REDUCED TO HALF THE ORIGINAL, AND
C THE PROCESS REPEATED TO THE DESIRED ACCURACY
DO
J=J+1
IF (J.GT.75) THEN
LABEL=300
RETURN
END IF
C FIND THE MID-POINT OF THE INTERVAL
BETA=(BETAL+BETAU)/2.0
C PERFORM THE HEAT BALANCE FOR THE MID POINT
CALL EQRC2B(MOLIN, MOLOUT, ALPHA, BETA, K(1), KOUT, P, LABEL)
APPENDIX B

PROGRAM MODEL

IF (LABEL.NE.0) THEN
 LABEL=400+LABEL
 RETURN
END IF
ERROR=K(2)-KOUT

C TEST FOR WHICH HALF OF THE INTERVAL THE SOLUTION IS IN
C THEN SET THE NEW UPPER & LOWER BOUNDS
IF (ERROR*ERRORU.GT.0.0) THEN
 ERRORU=ERROR
 BETAU=BETA
ELSE
 ERRORL=ERROR
 BETAL=BETA
END IF

C CHECK IF REQUIRED ACCURACY HAS BEEN REACHED
UNTIL (ABS(K(2)-KOUT)/K(2).LT.0.0001)
RETURN
END

SUBROUTINE EQRC2B (MOLIN, MOLOUT, ALPHA, BETA, K1, K2, P, LABEL)
REAL MOLIN(6), MOLOUT(6), K1, K2, X(6,2), ALP(2)
INTEGER IFLAG(2)
C SUBROUTINE TO PERFORM QUADRATIC SOLUTION OF EQUILIBRIUM
C EQUATIONS FOR SUBROUTINE EQRC
IFLAG(1)=0
IFLAG(2)=0
ICORR=0
C SET UP INITIAL CONCENTRATIONS, ALLOWING FOR CONVERSION OF
C BETA IN SECOND EQUILIBRIUM REACTION
A1=MOLIN(3)+BETA
A2=MOLIN(1)-2.0*BETA
A3=MOLIN(2)-2.0*BETA
A4=MOLIN(6)
TOTAL=1.0-2.0*BETA
C CALCULATE QUADRATIC COEFFICIENTS
A=1.0-K1
B=A1+A2+K1*(A3+A4)
C=A1*A2-A3*A4*K1
BRCKT=B*B-4.0*A*C
C CHECK QUADRATIC HAS A REAL SOLUTION, OTHERWISE SET ERROR
C FLAG, AND RETURN
IF (BRCKT.LT.0.0) THEN
 LABEL=1
 RETURN
END IF
BRCKT=SQRT(BRCKT)
C CALCULATE BOTH POSSIBLE QUADRATIC SOLUTIONS
ALP(1)=(-B+BRCKT)/(2.0*A)
ALP(2)=(-B-BRCKT)/(2.0*A)
C CALCULATE A SET OF POSSIBLE COMPOSITIONS FROM EACH SOLUTION
DO 1 I=1,2
 1
Appendix B

Program MODEL

\[X(1, I) = \text{MOLIN}(1) + \text{ALP}(I) - 2.0 \times \text{BETA} \]
\[X(2, I) = \text{MOLIN}(2) - \text{ALP}(I) - 2.0 \times \text{BETA} \]
\[X(3, I) = \text{MOLIN}(3) + \text{ALP}(I) + \text{BETA} \]
\[X(4, I) = \text{MOLIN}(4) + \text{BETA} \]
\[X(5, I) = \text{MOLIN}(5) \]
\[X(6, I) = \text{MOLIN}(6) - \text{ALP}(I) \]

C

TEST EACH SET OF COMPOSITIONS TO FIND THE CORRECT ONE

DO 2 J=1,6
\[X(J, I) = X(J, I) / \text{TOTAL} \]
IF (X(J, I) .LT. 0.0 .OR. X(J, I) .GT. 1.0) IFLAG(I) = 1
2 CONTINUE
1 CONTINUE
IF (IFLAG(1) .EQ. 1) THEN
IF (IFLAG(2) .EQ. 1) THEN
LABEL=2
RETURN
ELSE
ICORR=2
END IF
ELSE
IF (IFLAG(2) .EQ. 1) THEN
ICORR=1
ELSE
LABEL=3
RETURN
END IF
END IF

C

SET ALPHA AND OUTLET MOLE FRACTIONS TO THE CORRECT SOLUTION,

AS FOUND BY THE ABOVE TESTS

DO 3 I=1,6
\[\text{MOLOUT}(I) = X(I, ICORR) \]
3 CONTINUE
\[\text{ALPHA} = \text{ALP}(ICORR) \]

C

CALCULATE A TRIAL VALUE OF K2 FOR USE BY EQRC

\[K2 = (\text{MOLOUT}(4) \times \text{MOLOUT}(3)) / (\text{MOLOUT}(1) \times \text{MOLOUT}(2) \times \text{F})^{**2} \]
LABEL=0
RETURN
END

C

SUBROUTINE CBOUND(V, YOUT)
REAL V(2), ERROR, FREEC
C DUMMY SUBROUTINE TO ALLOW "SIMP2D" TO CALL "FCARB"
CALL FCARB(V(2), V(1), ERROR, FREEC)
YOUT = ABS(ERROR) + 1.0E5 * ABS(FREEC)
RETURN
END
SUBROUTINE STAGE2(TIN,T,Q,ERROR,LABEL)
REAL XOUT(6),MOLFR(6),INFLOW(6),LOSSES
REAL GASIN(8),DFH(8)
COMMON /SYST/ P,LOSSES,MOLFR,TOTMOL
COMMON /INLET/ GASIN,DFH,GAST,ENTHS
COMMON /RCARB/ XOUT,FOUT

SUBROUTINE TO DO ENERGY BALANCING FOR RESTRICTED CARBON EQUILIBRIA, USING SUBROUTINE EQRC TO CALCULATE EQUILIBRIA

CALCULATE TOTAL MOLES OF EACH COMPONENT IN
DO 1 I=1,6,1
INFLOW(I)=MOLFR(I)*TOTMOL
1 CONTINUE

INLET GAS SENSIBLE HEAT
SHIG=0.0
DO 3 I=1,6,1
SHIG=SHIG+SENSH(TIN,I)*INFLOW(I)
3 CONTINUE

HEAT OF FORMATION OF INLET GAS
HFIG=0.0
DO 101 I=1,6,1
HFIG=HFIG-INFLOW(I)*DFH(I)
101 CONTINUE

ADD GASIFYING AGENT TO GAS
DO 201 I=1,6,1
INFLOW(I)=INFLOW(I)+GASIN(I)*Q
201 CONTINUE

ADD O2 BY REACTING IT WITH CO TO FORM CO2
INFLOW(3)=INFLOW(3)+2.0*GASIN(8)*Q
INFLOW(2)=INFLOW(2)-2.0*GASIN(8)*Q

CALCULATE TOTAL MOLES OF CARBON ENTERING
CARBIN=INFLOW(2)+INFLOW(3)+INFLOW(4)

NORMALISE REVISED INLET FLOWS TO GIVE REVISED INLET COMPOSITION
CALL NORM(INFLOW,6)

CALCULATE EQUILIBRIUM
LABEL=0
CALL EQRC(INFLOW,T,P,XOUT,LABEL)

IF EQUILIBRIUM CALCULATION HAS FAILED, SET ERROR FLAG, AND RETURN
IF (LABEL.NE.0) THEN
LAB=LABEL
RETURN
END IF

MASS BALANCE TO CALCULATE TOTAL GAS MOLES OUT
C FOUT*CARBOUT=CARBIN
 CARBOUT=XOUT(2)+XOUT(3)+XOUT(4)
 FOUT=CARBIN/CARBOUT
C
C OUTLET GAS SENSIBLE HEAT
 SHOG=0.0
 DO 4 I=1,6,1
 SHOG=SHOG+SENSH(T,I)*FOUT*XOUT(I)
 4 CONTINUE
C
C GASIFYING AGENT SENSIBLE HEAT
 SHGA=0.0
 DO 102 I=1,8,1
 IF (I.EQ.6) THEN
 SHGA=SHGA+Q*GASIN(6)*18.0*ENTHS
 ELSE
 SHGA=SHGA+Q*GASIN(I)*SENSH(GAST,I)
 END IF
 102 CONTINUE
C
C HEAT OF FORMATION OF OUTLET GAS
 HFOG=0.0
 DO 103 I=1,6,1
 HFOG=HFOG-XOUT(I)*DHF(I)*FOUT
 103 CONTINUE
C
C HEAT OF FORMATION OF GASIFYING AGENT
 HFGA=0.0
 DO 104 I=1,8,1
 HFGA=HFGA-Q*DHF(I)*GASIN(I)
 104 CONTINUE
C
C HEAT OF REACTION
 DELTHR=1000.0*(HFOG-HFIG-HFGA)
C
C CALCULATION OF ERROR IN HEAT BALANCE
 ERROR=DELTHR-SHIG-SHGA+SHOG
C
 LAB=0
 RETURN
 END

C Subroutine NORM(X,N)
 REAL X(N),TOTAL
C Subroutine TO NORMALISE COMPOSITIONS
C
 TOTAL=0.0
 DO 1000 I=1,N,1
 TOTAL=TOTAL+X(I)
 1000 CONTINUE
 DO 1001 I=1,N,1
 X(I)=X(I)/TOTAL
Appendix B

Program MODEL

1001 CONTINUE
RETURN
END

C C
FUNCTION CALVAL(X)
REAL X(6),CV(5)
C A FUNCTION TO FIND THE CALORIFIC VALUE OF A GAS IN MJ/m**3
C DRY BASIS, INTERNATIONAL GAS UNION STANDARD
C BY MULTIPLYING THE I.G.U. CALORIFIC VALUE FOR EACH COMPONENT
C BY ITS MOLE FRACTION, DRY BASIS
DATA (CV(I),I=1,5,1) /12.10,11.97,0.0,37.69,0.0/
TOTAL=0.0
CALVAL=0.0
DO 1 I=1,5,1
 TOTAL=TOTAL+X(I)
1 CONTINUE
DO 2 I=1,5,1
 CALVAL=CALVAL+X(I)*CV(I)/TOTAL
2 CONTINUE
RETURN
END

C C

FUNCTION HHV(X,Y,Z,ASH)
REAL X,Y,Z,TOTM,MASSX,MASSY,MAZZ
C
FUNCTION TO CALCULATE HIGHER HEATING VALUE OF BIOMASS
C USING IGT EQUATION
C
TOTM=X*12.0+Y+Z*16.0
A=ASH/100.0
C CONVERT CxHyOz FORM OF COMPOSITION TO MASS %
MASSX=(1.0-A)*1200.0*X/TOTM
MASSY=(1.0-A)*100.0*Y/TOTM
MAZZ=(1.0-A)*1600.0*Z/TOTM
C
USE IGT EQUATION TO CALCULATE HIGHER HEATING VALUE
HHV=146.58*MASSX+568.78*MASSY+29.45-51.53*MAZZ-6.58*ASH
C CONVERT FROM BTU/LB TO MJ/KG
HHV=HHV*2.326E-3
RETURN
END

C
FUNCTION DELHF(X,Y,HC)
C FUNCTION TO CALCULATE HEAT OF FORMATION
C FOR A CxHyOz MATERIAL
C GIVEN HEAT OF COMBUSTION
REAL X,Y,HC
DELHF=-Y*285.8/2-X*393.5-HC
RETURN
END

C

197
FUNCTION SENSH(T, I)
FUNCTION TO CALCULATE SENSIBLE HEAT
FOR ONE MOLE OF COMPONENT I
REAL C(4:8)
DATA ((C(J,I), J=1,4), I=1,8,1) /
* 6.620000, 0.000810, 0.000000, 0.000000,
* 6.600000, 0.001200, 0.000000, 0.000000,
* 10.340000, 0.002740, 0.000000, 195500.0,
* 5.340000, 0.011500, 0.000000, 0.000000,
* 6.500000, 0.001000, 0.000000, 0.000000,
* 8.220000, 0.000150, 0.000000134, 0.000000,
* 2.673000, 0.002617, 0.00000, 116900.0,
* 8.270000, 0.000258, 0.000000, 187700.0/
TD=298.15
CALCULATE ENTHALPY AT T
HT=C(1,I)*T+C(2,I)*T*T/2.0+C(3,I)*T*T*T/3.0+C(4,I)/T
SUBTRACT ENTHALPY AT BASIS TEMPERATURE, 298.15 KELVIN
HT=HT-C(1,I)*TD-C(2,I)*TD*TD/2.0-C(3,I)*TD*TD*TD/3.0
* -C(4,I)/TD
CONVERT FROM CALORIES/MOL TO KJ/MOL
SENSH=HT*4.1868
RETURN
END

SUBROUTINE EQCONC(HORR,NOR,P,T,X,LABEL)
SUBROUTINE TO CALCULATE EQUILIBRIUM CONCENTRATIONS
FROM CARBON HYDROGEN OXYGEN SYSTEMS
USING METHOD OF BARON, PORTER & HAMMOND
REAL K(3),PP(6),X(6),G(6)
REAL B(5,6)
REAL PPL(6),PPU(6),PPM(6),NOR

DATA ((B(J,I), J=1,5), I=1,6,1) /
* 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
* 13.61200E3, 1.83170,-2.75840E-3, 0.65360E-6,-0.78772E-10,
* 47.28000E3, 0.13220,-0.94025E-3, 0.45112E-6,-0.91901E-10,
* 8.37220E3,-1.07690,-5.64350E-3, 2.90460E-6,-5.23510E-10,
* 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
* 28.78000E3,-0.69477,-1.42830E-3, 0.74925E-6,-1.37850E-10/

CALCULATION OF GIBBS FREE ENERGIES
DO 1000 I=1,6,1
G(I)=B(1,I)/T+B(2,I)*LOG(T)+B(3,I)*T+B(4,I)*T*T+B(5,I)*T**3
1000 CONTINUE
CALCULATE EQUILIBRIUM CONSTANTS USING FREE ENERGIES
K(1)=EXP(G(1)+G(2)-G(6))
K(2)=EXP(G(1)+G(3)-G(2)-G(6))
Appendix B

Program MODEL

\[K(3) = \exp(G(4) - 2G(1)) \]
\[\text{LABEL} = 0 \]
\[J = 0 \]

C

C SET UPPER AND LOWER BOUNDS FOR ITERATION
C
HRU = 1.0E6
HRL = 1.0E-6
CALL CEPP(HRL, NOR, K, P, PPL, HORL, L)
IF (L.EQ.1) THEN
LABEL = 1
RETURN
END IF

100 CONTINUE
CALL CEPP(HRU, NOR, K, P, PPU, HORU, L)
C CHECK THAT UPPER BOUND HAS BEEN FOUND IN LESS THAN 50
C ITERATIONS
C IF (L.EQ.1) THEN
C J = J + 1
C IF (J.GT.50) THEN
LABEL = 1
RETURN
END IF
C
C ADJUST VALUE OF UPPER BOUND SO THAT CALCULATION "CEPP"
C MAY BE PERFORMED
110 HRU = HRU / 10.0
GOTO 100
END IF
C
C CHECK THAT UPPER AND LOWER BOUNDS ARE EITHER SIDE OF
C SOLUTION
C IF ((HORU-HORR)*(HORL-HORR).GT.0.0) THEN
HRU = HRU * 9.0
GOTO 100
END IF
C
C MAIN ITERATION TO GIVE CORRECT H TO O RATIO
C
DO
C SPLIT RANGE OF ITERATION IN TWO, BY TAKING GEOMETRIC
C MEAN OF UPPER & LOWER BOUNDS
HRM = SQRT(HRU*HRL)
CALL CEPP(HRM, NOR, K, P, PPM, HORM, L)
IF (L.EQ.1) THEN
LABEL = 1
RETURN
END IF
C CHECK WHETHER SOLUTION IS ABOVE OR BELOW THE MIDDLE POINT,
C IN ORDER TO SET BOUNDS ON NEW, SMALLER RANGE
C IF ((HORM-HORR)*(HORL-HORR).LT.0.0) THEN
HRU = HRM
HORU = HORM
ELSE
HRL = HRM
HORL = HORM
END IF
C
C CHECK IF REQUIRED ACCURACY HAS BEEN OBTAINED
TOL = ABS((HORU-HORL)/HORL)
UNTIL (TOL.LT.0.00001)
HRM = SQRT(HRU*HRH)
CALL CEPP (HRM,NOR,K,P,PP,HOR,L)

C

CONVERSION OF PARTIAL PRESSURES TO MOLE FRS.
4000 DO 410 I=1,6,1
 X(I)=PP(I)/P
410 CONTINUE
RETURN
END

C

SUBROUTINE CEPP (H,NR,EK,P,PP,OR,L)
C SOLUTION OF QUADRATIC EQUATION IN P(H2) TO GENERATE A SET OF
C PARTIAL PRESSURES, GIVEN A H2:H2O RATIO
C THIS IS USED BY EQCONC
REAL EK(3), PP(6), NR
L=0
C
CALCULATE COEFFICIENTS OF QUADRATIC EQUATION
A = EK(3)
B = 1+H*(1+NR/2)
C = EK(1)*H*(1+NR/2)+EK(1)*EK(2)*H*H*(1+NR)-P
BRCKT = B+B-4*A*C
IF (BRCKT.LT.0.0) THEN
 L=1
 OR=0
GOTO 6000
END IF
C
CALCULATE BOTH POSSIBLE SOLUTIONS TO QUADRATIC
XP = (-B+SQRT(BRCKT))/(2*A)
XM = (-B-SQRT(BRCKT))/(2*A)
C
CHOOSE THE REQUIRED SOLUTION
IF (XP.GT.0.0.AND.XP.LE.P) THEN
 PP(1)=XP
ELSE IF (XM.GE.0.0.AND.XM.LE.P)
 PP(1)=XM
ELSE
 L=1
 OR=0
END IF
C
FROM THE SOLUTION, CALCULATE OTHER PARTIAL PRESSURES
PP(2)=EK(1)*H
PP(3)=EK(1)*EK(2)*H*H
PP(4)=EK(3)*PP(1)*PP(1)
PP(6)=H*PP(1)
PP(5)=NR*(PP(2)+PP(6)+2*PP(3))/2
C
CALCULATE THE TRIAL H2O RATIO
OR=2*(PP(1)+PP(6)+2*PP(4))/(PP(2)+PP(6)+2*PP(3))
6000 CONTINUE
RETURN
END

C

C

200
SUBROUTINE SIMP2D(V, VRES, YRES, TOL, LABEL, FUNCT)
REAL V(3, 2), Y(3), VRES(2)
REAL YRES, VCENT(2), VR(2), VE(2), VDUM(2), VC(2)
INTEGER LABEL
C SUBROUTINE TO PERFORM MODIFIED SIMPLEX ITERATION IN TWO
C DIMENSIONS. LOOKS FOR A MINIMUM, WHERE THE VALUE OF
C THE DEPENDENT VARIABLE EQUALS ZERO
C
C FIND THE VALUE OF THE DEPENDENT VARIABLE AT THE THREE
C CORNERS OF THE SIMPLEX, BY CALLING THE SUBROUTINE SUPPLIED
C AS AN ARGUMENT
DO 1 I=1, 3, 1
DO 2 J=1, 2, 1
VDUM(J)=V(I, J)
2 CONTINUE
CALL FUNCT(VDUM, Y(I))
1 CONTINUE
ILOOP=0
C
C MAIN ITERATIVE LOOP
DO
ILOOP=ILOOP+1
C CHECK CONVERGENCE IS NOT TOO SLOW
IF (ILOOP.GT.100) THEN
LABEL=1
RETURN
END IF
IM=1
IT=1
IS=1
C SORT THE THREE POINTS TO FIND THE HIGHEST AND LOWEST
C VALUES OF THE DEPENDENT VARIABLE
DO 3 I=2, 3, 1
IF (Y(I).LT.Y(IM)) THEN
IM=I
ELSE IF (Y(I).GT.Y(IS)) THEN
IS=I
END IF
3 CONTINUE
DO 35 I=1, 3, 1
IF (I.NE.IS.AND.I.NE.IM) THEN
IT=I
END IF
35 CONTINUE
C IF PRINTING OF EACH ITERATION IS REQUIRED, THEN WRITE TO LFN
6 IF (LABEL.EQ.2) THEN
WRITE(6, ('"SIMP2D... ITERATION ",I3')) ILOOP
WRITE (6, ('" IM",I2, " IS",I2, " IT",I2 ')) IM, IS, IT
WRITE(6, ('" I V(I,1) ",3(I3," ",E12.4)'))
* (I, V(I,1), I=1, 3, 1)
WRITE(6, ('" I V(I,2) ",3(I3," ",E12.4)'))
* (I, V(I,2), I=1, 3, 1)
WRITE(6, ('" I Y(I) ",3(I3," ",E12.4)'))
* (I, Y(I), I=1, 3, 1)
WRITE(6, '(//')
END IF

C FIND THE CENTROID OF THE SIMPLEX
DO 4 I=1,2,1
 VCENT(I) = (V(IM,I)+V(IT,I))/2.0
 CONTINUE

C REFLECTION, CONTRACTION, OR EXPANSION OF SIMPLEX, AS
C REQUIRED

C DO 5 I=1,2,1
 VR(I) = 2.0*VCENT(I) - V(IS,I)
 CONTINUE
 CALL FUNCT(VR,YR)
 IF (YR.GT.Y(IM).AND.Y(IT).GT.YR) THEN
 DO 6 I=1,2,1
 V(IS,I) = VR(I)
 CONTINUE
 Y(IS) = YR
 ELSE IF (YR.LT.Y(IM)) THEN
 DO 7 I=1,2,1
 VE(I) = 2.0*VR(I) - VCENT(I)
 CONTINUE
 CALL FUNCT(VE,YE)
 IF (YE.LT.YR) THEN
 DO 8 I=1,2,1
 V(IS,I) = VE(I)
 CONTINUE
 Y(IS) = YE
 ELSE
 DO 9 I=1,2,1
 V(IS,I) = VR(I)
 CONTINUE
 Y(IS) = YR
 ELSE IF (YR.GT.Y(IS)) THEN
 DO 10 I=1,2,1
 VDUM(I) = V(IS,I)
 CONTINUE
 YDUM = Y(IS)
 ELSE
 DO 11 I=1,2,1
 VDUM(I) = VR(I)
 CONTINUE
 YDUM = YR
 END IF
 DO 12 I=1,2,1
 VC(I) = 0.5*VDUM(I) + 0.5*VCENT(I)
 CONTINUE
 CALL FUNCT(VC,YC)
 IF (YC.LT.YDUM) THEN
 DO 13 I=1,2,1
 V(IS,I) = VC(I)
 CONTINUE
 Y(IS) = YC
ELSE
DO 14 I=1,2,1
IF (I.NE.IM) THEN
DO 15 J=1,2,1
V(I,J)=0.5*(V(I,J)+V(IM,J))
VDUM(J)=V(I,J)
15 CONTINUE
CALL FUNCT(VDUM,Y(I))
END IF
14 CONTINUE
END IF END IF
YTEST=0.0
C CHECK FOR CONVERGENCE TO REQUIRED TOLERANCE
DO 16 I=1,3,1
YTEST=YTEST+ABS(Y(I))
16 CONTINUE
UNTIL (YTEST.LT.TOL)
VRES(1)=0.0
VRES(2)=0.0
DO 19 I=1,3,1
DO 20 J=1,2,1
VRES(J)=V(I,J)/3.0+VRES(J)
20 CONTINUE
19 CONTINUE
CALL FUNCT(VRES,YRES)
RETURN
END
C
C SUBROUTINE GPHASE(TIN,T,FLOW,LABEL)
C SUBROUTINE TO ITERATE THE GAS PHASE CASE
C
C SET UPPER AND LOWER BOUNDS TO GASIFYING AGENT FLOW RATE
FLOWU=20.0
FLOWL=0.0
C
LABEL=0
CALL STAGE2(TIN,T,FLOWL,ERRORL,LABEL)
IF (LABEL.NE.0) THEN
LABEL=LABEL+10
RETURN
END IF
J=0
9520 LABEL=0
CALL STAGE2(TIN,T,FLOWU,ERRORU,LABEL)
J=J+1
IF (J.GE.20) THEN
LABEL=20
RETURN
END IF
C CHECK THAT "STAGE2" HAS WORKED FOR UPPER BOUND, ELSE
C ADJUST UPPER BOUND
IF (LABEL.NE.0) THEN
FLOWU=FLOWU/2.0
GOTO 9520
END IF
C CHECK UPPER & LOWER BOUNDS ARE ON EITHER SIDE OF THE
C SOLUTION
IF (FLOWU*FLOWL.GT.0.0) THEN
FLOWU=FLOWU*1.9
GOTO 9520
END IF
J=0
C
C MAIN ITERATIVE LOOP
DO
J=J+1
C CHECK NUMBER OF ITERATIONS
IF (J.GE.50) THEN
LABEL=30
RETURN
END IF
C SPLIT THE RANGE OF ITERATION
FLOW=(FLOWU+FLOWL)/2.0
LABEL=0
CALL STAGE2(TIN,T,FLOW,ERROR,LABEL)
IF (LABEL.NE.0) THEN
LABEL=40+LABEL
RETURN
END IF
C SET NEW, SMALLER RANGE OF ITERATION
IF (ERRORU*ERROR.GT.0.0) THEN
ERRORU=ERROR
FLOWU=FLOW
ELSE
ERRORL=ERROR
FLOWL=FLOW
END IF
ERROR=ABS(ERROR)
C TEST FOR CONVERGENCE
UNTIL (ERROR.LT.5.0)
RETURN
END
Appendix B

Example Printout:

RESULTS FROM MODEL
RUN NUMBER EG M 4

INPUT CONDITIONS

PRESSURE IS 1.0 atm
HEAT LOSS IS 2.5 %

COMPOSITION OF DRY BIOMASS
C 1.000 H 1.500 O 0.700

MOISTURE CONTENT OF BIOMASS 10.00% dry ash free weight
ASH CONTENT OF BIOMASS 1.00% dry ash free weight

HEAT OF COMBUSTION IS 19.03 MJ/kg

FIRST STAGE CONDITIONS

GASIFYING AGENT TEMPERATURE 298.00 K
GASIFYING STEAM ENTHALPY 2780.00 kJ/kg

GASIFYING AGENT COMPOSITION
H2 CO CO2 CH4 N2 H2O O2
0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 0.9000

CARBON BOUNDARY CALCULATION

OUTLET TEMPERATURE 962.44 K

GASIFYING AGENT FLOWRATE 0.3216 mol/mol Biomass
OUTLET GAS FLOWRATE 1.8477 mol/mol Biomass
OUTLET FLOW (DRY BASIS) 1.6673 mol/mol Biomass

OUTLET GAS COMPOSITION
H2 CO CO2 CH4 N2 H2O
0.3612 0.3575 0.1643 0.0194 0.0000 0.0976

OUTLET GAS COMPOSITION, DRY BASIS
H2 CO CO2 CH4 N2
0.4002 0.3962 0.1821 0.0215 0.0000

OUTLET GAS FLOWRATES, mol/mol Biomass
H2 CO CO2 CH4 N2 H2O
0.6673 0.6605 0.3036 0.0358 0.0000 0.1804

OUTLET GAS CALORIFIC VALUE (IGU standard) 10.3946 MJ/m**3
CHEMICAL POTENTIAL ENERGY CONVERSION EFFICIENCY 80.2%

continued on next page...
Appendix B

RESULTS FROM MODEL
RUN NUMBER EG M 4 contd.

FIXED TEMPERATURE CALCULATION

OUTLET TEMPERATURE 1073.00 K

GASIFYING AGENT FLOWRATE 0.3600 mol/mol Biomass
OUTLET GAS FLOWRATE 1.9202 mol/mol Biomass
OUTLET FLOW (DRY BASIS) 1.6776 mol/mol Biomass

OUTLET GAS COMPOSITION
H2 CO CO2 CH4 N2 H2O
0.3529 0.3741 0.1459 0.0008 0.0000 0.1263

OUTLET GAS COMPOSITION, DRY BASIS
H2 CO CO2 CH4 N2
0.4039 0.4282 0.1670 0.0009 0.0000

OUTLET GAS FLOWRATES, mol/mol Biomass
H2 CO CO2 CH4 N2 H2O
0.6776 0.7183 0.2602 0.0015 0.0000 0.2425

OUTLET GAS CALORIFIC VALUE (IGU standard) 10.0467 MJ/m**3
CHEMICAL POTENTIAL ENERGY CONVERSION EFFICIENCY 78.4%

GAS PHASE RESULTS

GASIFYING AGENT COMPOSITION
H2 CO CO2 CH4 N2 H2O O2
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

GASIFYING AGENT TEMPERATURE 298.00 K
GASIFYING STEAM ENTHALPY 2780.00 kJ/kg

OUTLET TEMPERATURE 1273.00 K

GASIFYING AGENT FLOWRATE 0.0332 mol/mol Biomass
OUTLET GAS FLOWRATE 1.9232 mol/mol Biomass
OUTLET FLOW (DRY BASIS) 1.5909 mol/mol Biomass

OUTLET GAS COMPOSITION
H2 CO CO2 CH4 N2 H2O
0.3072 0.3873 0.1327 0.0000 0.0000 0.1728

OUTLET GAS COMPOSITION, DRY BASIS
H2 CO CO2 CH4 N2
0.4039 0.4282 0.1670 0.0009 0.0000

OUTLET GAS FLOWRATES, mol/mol Biomass
H2 CO CO2 CH4 N2 H2O
0.5909 0.7448 0.2552 0.0000 0.0000 0.3323

OUTLET GAS CALORIFIC VALUE (IGU standard) 10.0981 MJ/m**3
CHEMICAL POTENTIAL ENERGY CONVERSION EFFICIENCY 75.3%
Program FLMOD

The basic flow diagram of this program is shown as Figure B2. A complete list of subroutines and functions is given below:

Subroutines

DUMP Subroutine to dump the values of all arrays to an output file, to help with debugging.

HTBAL Main heat balance subroutine. Calls POX to perform the gasification mass balances.

INPUT Subroutine to perform the interactive data entry.

INIT Subroutine to initialise all of the arrays used in the program.

ITER Subroutine to perform iteration. Used in the iteration of the heat balance.

NORM A general purpose subroutine. Takes an array, and normalises it so that the sum of the elements equals 1.

OPINP Subroutine to open the results files.

POX Subroutine to calculate the mass balances of the gasification step. Calls WGSEQ to calculate the equilibrium gas composition.

PYROL Subroutine which reads pyrolysis data from the pyrolysis data file and loads the pyrolysis products into the product gas array.

RESPRI Subroutine to print the results.

TERM Subroutine to terminate the running of the program.

WGSEQ Subroutine to perform the calculation of gas composition, using equilibrium of the homogeneous water-gas shift reaction.

Functions

HHVCHO Function to calculate the HHV of a biomass, using the IGT equation.

SHEAT Function which returns the sensible heat of a given component at a given temperature. Used in heat balance calculations.

WGSKEQ Function to calculate the equilibrium constant of the homogeneous water gas shift reaction at a given temperature.
Figure B2 Flow Diagram of Program FLMOD
PROGRAM FLMOD

C
C**:
C
C FLUIDISED BED GASIFIER MODEL
C BASED ON MODIFIED EQUILIBRIUM METHOD
C TAKING PYROLYSIS, AND TAR CRACKING INTO ACCOUNT
C
C WRITTEN BY J M DOUBLE
C ASTON UNIVERSITY
C
C**

C NO ASSIGNMENTS ARE NEEDED WHEN RUNNING THE PROGRAM -
C ALL FILES ARE OPENED FROM WITHIN THE PROGRAM

C REAL GAFLOW
CHARACTER*12 RUN*12,GASIFIER*12,BIOFIL*8
EXTERNAL HTBAL
DO 100 I=1,13
 WRITE(3,*) ' '
100 CONTINUE
 WRITE(3,*) ' PROGRAM FLMOD'
 WRITE(3,*) ' '
 WRITE(3,*)'Fluidised bed gasifier model by J.M.Double'
DO 101 I=1,13
 WRITE(3,*) ' '
101 CONTINUE
CALL OPINP
CALL INIT(RUN,GASIFIER,BIOFIL)
1000 CALL INPUT('FLMOD ',RUN,GASIFIER,BIOFIL)
 CALL DUMP('BEFORE PYROL ',25)
 CALL PYROL(BIOFIL)
 CALL DUMP('AFTER PYROL ',25)
 CALL ITER(GAFLOW,0.01,0.1,HTBAL)
 CALL DUMP('AFTER ITER ',25)
 CALL RESPRI(GAFLOW)
GOTO 1000
END

C
C
SUBROUTINE NORM(X,N)
REAL X(N),TOTAL

C
C SUBROUTINE TO NORMALISE COMPOSITIONS

TOTAL=0.0
DO 1000 I=1,N,1
TOTAL=TOTAL+X(I)
1000 CONTINUE
 DO 1001 I=1,N,1
 X(I)=X(I)/TOTAL
1001 CONTINUE
RETURN
END

FUNCTION HHVCHO (CMOL, HMOL, OMOL, NMOL, ASH)
REAL CMOL, HMOL, OMOL, NMOL, ASH, C, H, O, N, A
REAL TOTMAS, HHV

C FUNCTION TO CALCULATE HIGHER HEATING VALUE OF BIOMASS
USING IGT EQUATION
C
C CMOL, HMOL, OMOL, NMOL ARE MOLE COMPOSITION OF C, H, O, N
ASH IS MASS OF ASH PER KG DRY ASH FREE BIOMASS
C
C CALCULATE MASS FRACTIONS
C = CMOL*12.0
H = HMOL
O = OMOL*16.0
N = NMOL*14.0
A = ASH
TOTMAS = C + H + O + N + A
C CALCULATE DRY WEIGHT COMPOSITION IN PERCENT
C = 100.0*C/TOTMAS
H = 100.0*H/TOTMAS
O = 100.0*O/TOTMAS
N = 100.0*N/TOTMAS
A = 100.0*A/TOTMAS
C CALCULATE HEAT OF COMBUSTION OF BIOMASS, USING IGT EQUATION.
HHV = 146.58*C + 568.78*H + 29.45 - 6.58*A - 51.53*(O + N)
C CONVERT FROM BTU/LB TO MJ/KG
HHV = HHV*2.326B-3
C CONVERT TO ASH FREE BASIS, IE HHV FOR 1 KG OF DRY BIOMASS +
C ASSOCIATED ASH
HHV = HHV/(1.0 - A/100.0)
C LOAD RESULT AS RETURN VALUE OF FUNCTION
HHVCHO = HHV
RETURN
END
SUBROUTINE OPINP
C

* SUBROUTINE TO OPEN OUTPUT FILES

C
OPEN(UNIT=20,FILE=' B1',STATUS='UNKNOWN')
OPEN(UNIT=25,FILE=' B9',STATUS='UNKNOWN')
RETURN
END
C
FUNCTION SHEAT(T,I)
C
FUNCTION TO CALCULATE GAS PHASE SENSIBLE HEAT FOR EACH COMPONENT
C AT TEMPERATURE T
C
REAL T
REAL A(22), B(22), C(22), D(22), E(22), F(22)
DATA (A(J),J=1,22) /6.88,6.92,5.14,5.04,7.07,8.10,2.46,3*0.,
*7.20,4*0.,6.22,2.673,0.5,0.22275,0.45,0.,0.194088/
DATA (B(J),J=1,22) /-0.022,-0.65,15.4,9.32,-1.32,-0.72,36.1,
*3*0.,3.60,4*0.,2.71,2.617,0.,0.21803,2*0.,0.04108/
DATA (C(J),J=1,22) /0.21,2.8,-9.94,8.87,3.31,3.63,-7.0,8*0.,
*0.37,6*0./
DATA (D(J),J=1,22) /0.13,-1.14,2.42,-5.37,-1.26,1.16,-0.46,
*8*0.,-0.22,6*0./
DATA (E(J),J=1,22) /16*0.,116900.,0.,9741.7,2*0.,1933.37/
DATA (F(J),J=1,22) /8582.2,8609.98,8906.13,8339.83,8691.22,
*10100.83,9518.41,3*0.,9646.57,4*0.,8245.36,5459.00,623.43,
*454.92,561.09,0.,0.,276.76/
SHEAT=A(I)*T+1.0E-3*B(I)*T*T/2.+1.0E-6*C(I)*T*T*T/3.+
*1.0E-10*D(I)*T*T*T*T/4.+ E(I)/T
SHEAT=SHEAT*4.182-F(I)
RETURN
END
C
C
SUBROUTINE ITER(X,SCALE,TOL,DUMMY)
REAL ERROR,SCALE,TOL,X
EXTERNAL DUMMY
REAL XLOW,XHIGH,ERRORL,ERRORH
TOL=ABS(TOL)
C INITIALISE LOWER BOUND
DO 100 XLOW=0.0,SCALE*10.,SCALE/100.
CALL DUMMY(XLOW,ERRORL,LAB)
IF (ABS(ERRORL).LT.TOL) THEN
 X=XLOW
 RETURN
END IF
IF (LAB.EQ.0) GOTO 200
100 CONTINUE
 CALL TERM('CANNOT GET A LOWER BOUND IN ITER')
C INITIALISE UPPER BOUND
200 DO 300 XHIGH=XLOW,XLOW+SCALE*10.,SCALE/5.
 CALL DUMMY(XHIGH,ERRORH,LAB)
 IF (ABS(ERRORH).LT.TOL) THEN
 X=XHIGH
 RETURN
 END IF
 IF (LAB.NE.0) CALL TERM('ERROR WITH UPPER BOUND IN ITER')
 IF (ERRORL*ERRORH.LT.0) GOTO 400
300 CONTINUE
 CALL TERM('CANNOT GET UPPER BOUND IN ITER')
C MAIN ITERATION LOOP
400 DO 500 I=1,100
 X=(XHIGH+XLOW)/2.0
 CALL DUMMY(X,ERROR,LAB)
 IF (ABS(ERROR).LT.TOL) RETURN
 IF (ERROR*ERRORL.LT.0.) THEN
 ERRORH=ERROR
 XHIGH=X
 ELSE
 ERRORL=ERROR
 XLOW=X
 END IF
500 CONTINUE
 CALL TERM('TOO MANY ITERATIONS IN ITER')
END
C C C
C SUBROUTINE DUMP (POSITION,LFN)
CHARACTER*30 POSITION
INTEGER LFN
C **
C SUBROUTINE TO PRINT OUT CONTENTS OF COMMON BLOCKS
C INTO A FILE ASSIGNED TO CHANNEL 'LFN'
C **
C C COMMON BLOCK OPCOND CONTAINS OPERATING CONDITIONS OF THE
GASIFIER
 REAL P,T,HLOSS,GASIN(22),GAST,ENTHS,BIOT
 COMMON /OPCOND/ P,T,HLOSS,GASIN,GAST,ENTHS,BIOT
C COMMON BLOCK FLOWS CONTAINS MOLAR FLOWRATES OF EACH COMPONENT IN
C A NUMBER OF MATERIAL FLOWS IN THE GASIFIER
 REAL BIOFLO(22),POXIN(22),OUT1(22),OUT2(22),ASHFLO(22)
 COMMON /FLOWS/ BIOFLO,POXIN,OUT1,OUT2,ASHFLO
C COMMON BLOCK PROPS CONTAINS DATA ON EACH COMPONENT

212
REAL DELHC(22), COMPC(22), COMPH(22), COMPO(22), COMPMW(22)
REAL COMPN(22)
CHARACTER COMPONENT(22) *5
COMMON /PROPS/ DELHC, COMPC, COMPH, COMPO, COMPN,
*COMPMW, COMPONENT

C
C TITLE THE TABLE OF VALUES
WRITE(LFN, 99999) POSITION
C
C PRINT OUT THE VALUE OF GASIFIER TEMPERATURE
WRITE(LFN, 90000) T
C
C PRINT OUT OPERATING CONDITIONS
WRITE(LFN, 99998) P, HLOSS, GAST, ENTHS, BIOT
C
C PRINT THE HEADINGS FOR THE TABLE
WRITE(LFN, 99997)
C
C PRINT THE TABLE OF VALUES
WRITE(LFN, 99996) (COMPONENT(J), COMPMW(J), DELHC(J), COMPC(J),
*COMPH(J), COMPO(J), COMPN(J), GASIN(J), BIOFLO(J),
*POXIN(J), OUT1(J), OUT2(J), ASHFLO(J), J=1,22)
C
RETURN
99999 FORMAT(' 1 DUMP OF VALUES OF VARIABLES AT POSITION: ', A30)
*F7.2, ' H for steam = ', F7.1, ' Biomass Temp = ', F7.2)
*4X, 'GASIN BIOFLO POXIN OUT1 OUT2 ASHFLO', /,
*101('='))
99996 FORMAT(22('0', A5, 2X, F5.2, 1X, F6.1, 5(1X, F6.4), 5(1X, F7.4), /))
90000 FORMAT(' 0 GASIFIER TEMPERATURE = ', F7.2)
END

C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE RESPRI(GAFLOW)
REAL GAFLOW
C COMMON BLOCK OPCODEN CONTAINS OPERATING CONDITIONS OF THE
C GASIFIER
REAL P, T, HLOSS, GASIN(22), GAST, ENTHS, BIOT
COMMON /OPCODEN/ P, T, HLOSS, GASIN, GAST, ENTHS, BIOT
C COMMON BLOCK FLOWS CONTAINS MOLAR FLOWRATES OF EACH COMPONENT IN
C A NUMBER OF MATERIAL FLOWS IN THE GASIFIER
REAL BIOFLO(22), POXIN(22), OUT1(22), OUT2(22), ASHFLO(22)
COMMON /FLOWS/ BIOFLO, POXIN, OUT1, OUT2, ASHFLO
C COMMON BLOCK PROPS CONTAINS DATA ON EACH COMPONENT
REAL DELHC(22), COMPC(22), COMPH(22), COMPO(22), COMPMW(22)
REAL COMPN(22)
CHARACTER COMPONENT(22) *5
Appendix B

Program FLMOD

COMMON /PRPS/, DELHC, COMP, COMPH, COMPO, COMPAN,*COMPMW, COMPONENT
C
REAL OUTFLO, OUTMF (22), OUTDTF (22), HHVGAS
INTEGER IGC (8)
C
C COMPONENTS IN GAS STREAM
DATA (IGC (J), J=1,8) /1,2,3,4,5,6,7,20/
C
C
C CALCULATION OF DRY TAR FREE GAS ETC.
DO 100 I=1,22
 OUTDTF (I)=OUT2 (I)
 OUTMF (I)=OUT2 (I)
100 CONTINUE
OUTDTF (6)=0.
OUTDTF (20)=0.
OUTFLO=0.
DO 150 I=1,22
 OUTFLO=OUTFLO+OUTDTF (I)
150 CONTINUE
CALL NORM (OUTDTF, 22)
CALL NORM (OUTMF, 22)
HHVGAS=0.0
DO 200 I=1,22
 HHVGAS=HHVGAS+OUTDTF (I)*DELHC (I)
200 CONTINUE
HHVGAS=HHVGAS/22.4
C
C
C PRINT HEADING
WRITE (20, 90000)
WRITE (20, 90001)
C
C PRINT GAS FLOWS
WRITE (20, 90004) GAPFLOW, GAFLOW*22.4, OUTFLO, OUTFLO*22.4
C
C PRINT GAS HEATING VALUE
WRITE (20, 90005) HHVGAS
C
C PRINT GAS COMPOSITION ETC.
 WRITE (20, 90006) (COMPONENT (IGC (J)), J=1,8),
 *(OUT2 (IGC (J)), J=1,8), (OUTMF (IGC (J)), J=1,8),
 *(OUTDTF (IGC (J)), J=1,8)
 WRITE (20, 90010) ASHFLO (22), ASHFLO (17) * COMPMW (17)
 WRITE (20, 90000)
 WRITE (3, *) 'RESULTS HAVE BEEN PRINTED'
RETURN
90000 FORMAT (5X, 67 ('*'))
90001 FORMAT (/,'GAS FLOWS', 'Gasifying agent:', 'mol/kg biomass', 'nm3/kg biomass', 'Outlet gas', 'mol/kg biomass', 'dry tar free', 'nm3/kg biomass',)
90005 FORMAT (5X, 'Outlet gas HHV: ', 'F7.2', 'MJ/nm3',)
90006 FORMAT (5X, 'Outlet GAS DATA', 'composition by ', 'mole fraction', 'component flows in mol/kg biomass', 'gas flows', 8 (F5.3, 1X), 'Compositions', 5X, 'raw gas', 7X, F5.3, 1X),
Appendix B

Program FLMOD

* 'dry tar free ',8(F5.3,1X))
90010 FORMAT(13,5X,'ASH FLOW - kg Ash/kg Biomass',/5X,'Ash : ',
 *F6.4,10X,'Carbon contained in ash: ',F6.4,/) END

C C C C

SUBROUTINE HTBAL(GAFLOW,ERROR,LABEL)
C
C **
C SUBROUTINE TO PERFORM HEAT BALANCE
C **

C BASIS FOR THE HEAT BALANCE IS:
C BASE TEMPERATURE = 25 DEG C
C BASE STATE OF EACH COMPOUND IS ITS USUAL STATE AT 25 DEG C
C (E.G. WATER - LIQUID, TAR - LIQUID, H2 - GAS ETC.)

C COMMON BLOCK OPCOND CONTAINS OPERATING CONDITIONS OF THE
C GASIFIER
REAL P,T,HLOSS,GASIN(22),GAST,ENTHS,BIOT
COMMON /OPCOND/ P,T,HLOSS,GASIN,GAST,ENTHS,BIOT

C COMMON BLOCK FLOWS CONTAINS MOLAR FLOWRATES OF EACH COMPONENT IN
C A NUMBER OF MATERIAL FLOWS IN THE GASIFIER
REAL BIOFL0(22),POXIN(22),OUT1(22),OUT2(22),ASHFLO(22)
COMMON /FLOWS/ BIOFL0,POXIN,OUT1,OUT2,ASHFLO

C COMMON BLOCK PROPS CONTAINS DATA ON EACH COMPONENT
REAL DELHC(22),COMPC(22),COMPH(22),COMPO(22),COMPMW(22)
REAL COMPN(22)
CHARACTER COMPONENT(22)*5
COMMON /PROPS/ DELHC,COMPC,COMPH,COMPO,COMPMW,
*COMPN,COMPONENT

C LATENT HEATS OF VAPOURISATION
REAL HVAP(22)
DATA (HVAP(1),I=1,22) /5*0.,43952.4,13*0.,4182.,2*0. /

C C C

C PERFORM EQUILIBRIUM CALCULATION ON PYROLYSIS PRODUCTS
C
CALL POX(GAFLOW,LABEL)
IF (LABEL.NE.0) THEN
 ERROR=1.E32
 WRITE(3,*) 'SUBROUTINE HTBAL, LABEL = ',LABEL
 RETURN
END IF

C C

C INITIALISE HEAT FLOWS TO ZERO
CEIN=0.
CEOUT=0.
SHIN=0.
SHOUT=0.

C C

C EVALUATE CHEMICAL HEAT OF GASIFYING AGENT

215
DO 100 I=1,22
 CEIN=CEIN+GAFLOW*GASIN(I)*DELHC(I)
100 CONTINUE
C
C ADD CHEMICAL HEAT OF BIOMASS TO THIS
DO 200 I=1,22
 CEOUT=CEOUT+OUT2(I)*DELHC(I)
200 CONTINUE
C
C EVALUATE CHEMICAL HEAT OF OUTLET GAS
DO 300 I=1,22
 CEOUT=CEOUT+OUT2(I)*DELHC(I)
300 CONTINUE
C
C ADD CHEMICAL HEAT OF ASH TO THIS
DO 350 I=1,22
 CEOUT=CEOUT+ASHFLO(I)*DELHC(I)
350 CONTINUE
C
C CONVERT CHEMICAL HEATS FROM MJ TO KJ
CEIN=CEIN*1000.
CEOUT=CEOUT*1000.
HEATLOSS=10.*HLOSS*DELHC(10)
C
C CALCULATE SENSIBLE HEAT OF GASIFYING AGENT
DO 400 I=1,22
 IF (I.EQ.6) GOTO 399
 SHIN=SHIN+GAFLOW*GASIN(I)*SHEAT(GAST,I)
399 CONTINUE
400 CONTINUE
C
C ADD STEAM ENTHALPY TO THIS
 SHIN=SHIN+GAFLOW*GASIN(6)*(ENTHS-104.8)*COMPMW(6)
C
C ADD BIOMASS ENTHALPY TO THIS
DO 450 I=1,22
 SHIN=SHIN+BIOFLO(I)*SHEAT(BIOT,I)
450 CONTINUE
C
C CALCULATE SENSIBLE HEAT OF OUTLET GAS
DO 500 I=1,22
 SHOUT=SHOUT+OUT2(I)*(SHEAT(T,I)+HVAP(I))
500 CONTINUE
C
C ADD SENSIBLE HEAT OF ASH
DO 600 I=1,22
 SHOUT=SHOUT+ASHFLO(I)*SHEAT(T,I)
600 CONTINUE
C
C PERFORM HEAT BALANCE
ERROR=CEIN+SHIN-HEATLOSS-CEOUT-SHOUT
WRITE(3,*) 'SUBROUTINE HTBAL, GAFLOW = ',GAFLOW,
* ' ERROR = ',ERROR
RETURN
END

SUBROUTINE INPUT(PROG, RUN, GASIFIER, BIOFIL)
CHARACTER*6 PROG
CHARACTER BIOFIL*8, GASIFIER*12, RUN*12

**
SUBROUTINE TO READ INPUT DATA
**

**
COMMON BLOCK OPCOND CONTAINS OPERATING CONDITIONS OF THE GASIFIER
REAL P, HLOSS, GASIN(22), GST, ENTHS, BIOT
COMMON /OPCOND/ P, T, HLOSS, GASIN, GST, ENTHS, BIOT

COMMON BLOCK FLOWS CONTAINS MOLAR FLOWRATES OF EACH COMPONENT IN
A NUMBER OF MATERIAL FLOWS IN THE GASIFIER
REAL BIOFLO(22), POXIN(22), OUT1(22), OUT2(22), ASHFLO(22)
COMMON /FLOWS/ BIOFLO, POXIN, OUT1, OUT2, ASHFLO

COMMON BLOCK PROPS CONTAINS DATA ON EACH COMPONENT
REAL DELHC(22), COMPCC(22), COMPH(22), COMPO(22), COMPMW(22)
REAL COMPN(22)
COMMON /PROPS/ DELHC, COMPCC, COMPH, COMPO, COMPN,
*COMPMW, COMPONENT

COMMON BLOCK KWGS CONTAINS THE EQUILIBRIUM CONSTANT FOR
THE WATER GAS SHIFT REACTION
REAL KWGS
COMMON /KWGS/ KWGS

GAFLOW=0.
DO 1 I=1, 22
 POXIN(I)=0.
 OUT1(I)=0.
 OUT2(I)=0.
 ASHFLO(I)=0.
1 CONTINUE
WRITE(3,*) 'Enter name or number of run'
READ(0, 99999) RUN
10000AIR=GASIN(5)/0.79
OXYGEN=GASIN(16)-AIR*0.21
STEAM=GASIN(6)
WRITE(3,*) 'THE VALUES OF THE OPERATING VARIABLES ARE:',
* ' CURRENTLY: '
WRITE(3,90004) GASIFIER, RUN
WRITE(3,90006) BIOFIL
WRITE(3,90007) AIR, OXYGEN, STEAM, GST=273.15, ENTHS
WRITE(3,90008) P, T=273.15, HLOSS
WRITE(3,90001)
WRITE(3,*) ' 0. Stop the program'
WRITE(3,*) ' 1. Change the gasifier name'
WRITE(3,*) ' 2. Change the biomass'
WRITE(3,*) ' 3. Change the gasifying agent composition'
WRITE(3,*) ' 4. Change the gasifying agent temperature $',
 '*steam enthalpy'
WRITE(3,*) ' 5. Change the gasifier pressure'
WRITE(3,*) ' 6. Change the gasifier temperature'
WRITE(3,*) ' 7. Change the gasifier heat loss'
WRITE(3,*) ' 8. Perform the calculation for this data set'
WRITE(3,*) 'ENTER THE NUMBER OF THE ACTION REQUIRED'
READ(0,*) ICHANG
GOTO (10001,10002,10003,10004,10005,10006,10007,10008)
 * ICHANG
 IF (ICHANG.EQ.0) CALL TERM('NORMAL END OF PROGRAM ')
 CALL TERM('INCORRECT SELECTION OF ITEM ')
10001 WRITE(3,*) 'Enter name of gasifier'
 READ(0,99999) GASIFIER
 GOTO 10000
10002 WRITE(3,*) 'Enter Biomass type'
 READ(0,99998) BIOFIL
 GOTO 10000
C
C GASIFYING AGENT
10003 WRITE(3,*) 'Enter type of gasifying agent'
 WRITE(3,*) ''
 WRITE(3,*) ' 1. Air'
 WRITE(3,*) ' 2. Oxygen'
 WRITE(3,*) ' 3. Steam'
 WRITE(3,*) ' 4. Mixture of Air, Oxygen and Steam'
 WRITE(3,*) ''
 WRITE(3,*) 'Enter the number of the option required'
 READ(0,*) IGATYP
 AIR=0.
 OXYGEN=0.
 STEAM=0.
 IF (IGATYP.EQ.1) THEN
 AIR=1.0
 ELSE IF (IGATYP.EQ.2)
 OXYGEN=1.0
 ELSE IF (IGATYP.EQ.3)
 STEAM=1.0
 ELSE IF (IGATYP.EQ.4)
 WRITE(3,*) 'Enter relative quantities of air, oxygen and steam'
 WRITE(3,*) 'Enter fraction of air'
 READ(0,*) AIR
 WRITE(3,*) 'Enter fraction of oxygen'
 READ(0,*) OXYGEN
 WRITE(3,*) 'Enter fraction of steam'
 READ(0,*) STEAM
 ELSE
 CALL TERM('INVALID GASIFYING AGENT ')
 END IF
 TOT=AIR+STEAM+OXYGEN
 AIR=AIR/TOT
 OXYGEN=OXYGEN/TOT
 STEAM=STEAM/TOT
GASIN(5) = 0.79*AIR
GASIN(16) = 0.21*AIR+OXYGEN
GASIN(6) = STEAM
GOTO 10000
C
C
10004 WRITE(3,*), 'Enter gasifying agent temperature'
READ(0,*) GAST
IF (GASIN(6).GT.0.00001) THEN
 WRITE(3,*), 'Enter gasifying steam enthalpy (kJ/kg)'
 READ(0,*) ENTHS
ELSE
 ENTHS = 0.
END IF
GAST = GAST+273.15
GOTO 10000
C
10005 WRITE(3,*), 'Enter gasifier pressure (Bar)'
READ(0,*) P
GOTO 10000
C
10006 WRITE(3,*), 'Enter gasifier temperature, deg C'
READ(0,*) T
T = T+273.15
GOTO 10000
C
10007 WRITE(3,*), 'Enter gasifier heat loss, expressed as % of '
 *, biomass HHV'
READ(0,*) HLOSS
GOTO 10000
C
10008 KWGS = WGSKEQ(T)
C
C
C ECHO DATA TO RESULTS FILE
WRITE(20,90000)
WRITE(20,90002)
WRITE(20,90003), PROG
WRITE(20,90001)
WRITE(20,90004), GASIFIER, RUN
WRITE(20,90002)
WRITE(20,90005)
WRITE(20,90006), BIOFIL
WRITE(20,90001)
WRITE(20,90007), AIR, OXYGEN, STEAM, GAST-273.15, ENTHS
WRITE(20,90001)
WRITE(20,90008), P, T-273.15, HLOSS
WRITE(20,90001)
RETURN
90000 FORMAT('1',/)
90001 FORMAT(1X)
90002 FORMAT(5X,67(''))
90003 FORMAT(5X, 'PROGRAM ', A6, 5X, 'GASIFIER MODEL RESULTS',
 *6X, 'J.M.DOUBLE', 5X, 'ASTON')
Appendix B

Program FLMOD

90004 FORMAT(5X,'GASIFIER: ',A12,28X,'RUN: ',A12)
90005 FORMAT(/,5X,'INPUT DATA'/,'+',4X,10('_'),/)
90006 FORMAT(5X,'BIOMASS DATA FROM FILE ',A8)
90007 FORMAT(5X,'GASIFYING AGENT DATA - Mole fractions',
 '/*',6X,'Air',7X,'O2',7X,'Steam',5X,'T degC',
 '*4X,'Enths',/5X,3(F5.3,5X),2(F6.1,4X))
90008 FORMAT(5X,'OPERATING PARAMETERS',/5X,'Pressure = ',F4.1,
 '* Bar',5X,'Temperature = ',F6.1,5X,'Heat Loss = ',F4.1,' %')
99998 FORMAT(A8)
99999 FORMAT(A12)
 END

C C C

C SUBROUTINE INIT(RUN,GASIFIER,BIOFIL)
C
C ***
C SUBROUTINE TO INITIALISE OPERATING VARIABLES
C ***

CHARACTER RUN*12,GASIFIER*12,BIOFIL*8
C COMMON BLOCK OPCOND CONTAINS OPERATING CONDITIONS OF THE
C GASIFIER
 REAL P,T,HLoss,GASIN(22),GAST,ENTHS,BIOT
 COMMON /OPCOND/ P,T,HLoss,GASIN,GAST,ENTHS,BIOT
C COMMON BLOCK FLOWS CONTAINS MOLAR FLOWRATES OF EACH COMPONENT IN
C A NUMBER OF MATERIAL FLOWS IN THE GASIFIER
 REAL BIOFLO(22),POXIN(22),OUT1(22),OUT2(22),ASHFLO(22)
 COMMON /FLOWS/ BIOFLO,POXIN,OUT1,OUT2,ASHFLO
C COMMON BLOCK PROPS CONTAINS DATA ON EACH COMPONENT
 REAL DELHC(22),COMPC(22),COMPH(22),COMPO(22),COMPMW(22)
 REAL COMPN(22)
 CHARACTER COMPONENT(22)*5
 COMMON /PROPS/ DELHC,COMPC,COMPH,COMPO,COMPN,
 *COMPMW,COMPONENT
 DATA (COMPONENT(I),I=1,22) /' H2 ', ' CO ', ' CO2 ', ' CH4 ',
 '* N2 ', ' H2O ', ' C2+ ', '8* ', ' O2 ',
 '* C ', 'Biom ', 'Char ', ' Tar ', 'Resi ', ' Ash '/
 DATA (COMPMW(I),I=1,22) /28.0,28.0,44.0,16.0,28.0,18.0,
 *8*10000.0,32.0,12.0,5*1.0/
 DATA (DELHC(I),I=1,22) /285.8,283.0,289.0,4.0,0.0,1411.0,
 *9*0.0,393.5,5*0.0/
 DATA (COMPC(I),I=1,22) /0.3*1.0,0.0,2.9*0.0,1.5*0.0/
 DATA (COMPH(I),I=1,22) /2.0,0.4,0.2,4.0,15*0.0/
 DATA (COMPO(I),I=1,22) /0.1*2.0,0.0,1.9*0.2,2.6*0.0/
 DATA (COMPN(I),I=1,22) /4*0.2,17*0.0/
 RUN= 'GASIFIER = 'FLUID BED'
 BIOFIL= "WOODBASE"
 DO 100 I=1,22
 BIOFLO(I)=0.
 GASIN(I)=0.
 100 CONTINUE

C C

220
C GASIFYING AGENT - OXYGEN
 GASIN(16)=1.0
C
C INITIAL INLET TEMPERATURES ARE 25 DEG C
 BIOT=298.15
 GAST=298.15
C
C GASIFYING STEAM ENTHALPY IS THAT OF SATURATED STEAM AT 10 BAR
 ENTHS=2778.
C
C HEAT LOSS IS 5% OF BIOMASS CALORIFIC VALUE (DRY BASIS)
 HLOSS=5.00
C
C PRESSURE IS 1 BAR
 P=1.0
C
C TEMPERATURE IS 780 DEG C
 T=1053.15
 RETURN
 END
C
C
C SUBROUTINE TERM(MESSAGE)
 CHARACTER*30 MESSAGE
 WRITE(20,90001)
 CALL DUMP(MESSAGE,25)
 CLOSE(20)
 CLOSE(25)
 WRITE(3,90000) MESSAGE
 STOP
 RETURN
90000 FORMAT(' PROGRAM STOP BECAUSE ',',A30)
90001 FORMAT('1')
 END
C
C
C SUBROUTINE WGSEQ(C,H,O,N,X,LABEL)
 REAL C,H,O,N,X(22)
 INTEGER LABEL
 REAL KWGS
 COMMON /EQUK/ KWGS
C **
C
C
C SUBROUTINE WGSEQ
C **
C
C SUBROUTINE TO CALCULATE A GAS COMPOSITION,
C GIVEN:
C NUMBER OF MOLES OF CARBON
C
221
HYDROGEN
OXYGEN
NITROGEN

EQUILIBRIUM CONSTANT OF WATER–GAS SHIFT

LABEL IS ERROR INDICATOR
X(22) IS CALCULATED GAS COMPOSITION
REACTION CONSIDERED IS:

CO + H2O = CO2 + H2

REAL AA, BB, CC, BRCKT, XX(2, 6), TOTAL(2)
LOGICAL ROOT(2)

INITIALISE GAS COMPOSITION TO ZERO

DO 10 J=1,22
 X(J)=0.
10 CONTINUE

CALCULATE QUADRATIC CONSTANTS OF QUADRATIC EQUATION IN
NUMBER OF MOLES H2

AA=1.-KWGS
BB=0-C-(H/2.)+KWGS*(H+2.*C-O)
CC=-KWGS*(H/2.)*(2.*C-O+H/2.)

SOLVE QUADRATIC EQUATION FOR BOTH ROOTS,
FIRST TESTING THAT THERE ARE REAL SOLUTIONS

BRCKT=BB*BB-4.*AA*CC
IF (BRCKT.LT.0.) THEN
 LABEL=1
 RETURN
END IF
BRCKT=SQR(T(BRCKT)
XX(1,1)=(-BB+BRCKT)/(2.*AA)
XX(2,1)=(-BB-BRCKT)/(2.*AA)

CALCULATE NUMBER OF MOLES OF OTHER SPECIES FOR EACH ROOT

DO 100 I=1,2
 XX(I,3)=O-C-H/2.+XX(I,1)
 XX(I,2)=C-XX(I,3)
 XX(I,6)=H/2.-XX(I,1)
 XX(I,4)=0.
 XX(I,5)=N/2.
100 CONTINUE

CONVERT NUMBER OF MOLES OF EACH SPECIES TO MOLE FRACTION

DO 200 I=1,2
 TOTAL(I)=0.
 DO 198 J=1,6
 TOTAL(I)=TOTAL(I)+XX(I,J)
198 CONTINUE
Appendix B

Program FLMOD

DO 199 J=1,6
 XX(I,J)=XX(I,J)/TOTAL(I)
199 CONTINUE
200 CONTINUE

"TEST BOTH POSSIBLE SETS OF ANSWERS FOR THE CORRECT ROOT"

DO 300 I=1,2
 ROOT(I)=.TRUE.
 DO 299 J=1,6
 <FUNCTION>
 299 CONTINUE
300 CONTINUE

IF ((.NOT.ROOT(1)).AND.(.NOT.ROOT(2))) THEN
 LABEL=2
 RETURN
END IF
IF (ROOT(1).AND.ROOT(2)) THEN
 LABEL=3
 RETURN
END IF
DO 400 I=1,2
 IF (ROOT(I)) THEN
 DO 399 J=1,6
 X(J)=XX(I,J)
399 CONTINUE
 END IF
400 CONTINUE
LABEL=0
RETURN
END

FUNCTION WGSSEQ(T)

FUNCTION TO CALCULATE EQUILIBRIUM CONSTANT FOR THE REACTION

CO + H2O = CO2 + H2

FREE ENERGY DATA FROM BARON, PORTER & HAMMOND

REAL T,B1,B2,B3,B4,B5,G
DATA B1,B2,B3,B4,B5 /4888,-1.00473,
*3.24645E-3,-0.95173E-6,1.24721E-10/
G=B1/T+B2*LOG(T)+B3*T+B4*T*T+B5*T*T*T
WGSKEQ=EXP(G)
RETURN
END

SUBROUTINE PYROL(BIOFIL)
CHARACTER*8 BIOFIL
CHARACTER*16 FILEN
REAL CMOL, HMOL, OMOL, NMOL, MOIST, ASH
REAL TOTC, TOTH, TOTO, TOTN
REAL BIOC, BIOH, BIOO, BION

SUBROUTINE TO READ IN BIOMASS DATA AND PYROLYSIS
AND TAR CRACKING OUTPUT GASES, AND TO LOAD THE DATA
INTO THE RELEVANT VARIABLES

COMMON BLOCK FLOWS CONTAINS MOLAR FLOWRATES OF EACH COMPONENT IN
A NUMBER OF MATERIAL FLOWS IN THE GASIFIER
REAL BIOFLO(22), POXIN(22), OUT1(22), OUT2(22), ASHFLO(22)
COMMON /FLOWS/ BIOFLO, POXIN, OUT1, OUT2, ASHFLO

COMMON BLOCK PROPS CONTAINS DATA ON EACH COMPONENT
REAL DELHC(22), COMPC(22), COMPH(22), COMPO(22), CMPMN(22)
REAL COMPN(22)
CHARACTER COMPONENT(22)*5
COMMON /PROPS/ DELHC, COMPC, COMPH, COMPO, COMPN,
*CMPMN, COMPONENT

OPEN THE BIOMASS DATAPFILE
FILEN=' //BIOFIL
OPEN(UNIT=30, FILE=FILEN, STATUS='OLD')

READ THE BIOMASS DATA
CMOL, HMOL ETC ARE THE MOLES OF C, H ETC PER KG DRY
ASH FREE BIOMASS
READ(30,*) CMOL, HMOL, OMOL, NMOL
MOIST, ASH ARE THE KG OF MOISTURE AND ASH PER
KG DRY ASH FREE BIOMASS
READ(30,*) MOIST, ASH

LOAD BIOMASS DATA INTO PROPERTIES OF COMPONENT 18
COMPC(18)=CMOL
COMPH(18)=HMOL
COMPO(18)=OMOL
COMPN(18)=NMOL

SET UP BIOFLO
BIOFLO(18)=1.0
BIOFLO(22)=ASH
BIOFLO(6)=MOIST/18.0
CALCULATE HEATING VALUE OF BIOMASS
DELHC(18)=HHVCHO(CMOL, HMOL, OMOL, NMOL, ASH)
C CALCULATE TOTAL C,H,O,N IN BIOMASS, INCLUDING MOISTURE ETC.
 BIOC=0.0
 BIOH=0.0
 BINO=0.0
 BION=0.0
 DO 10 I=1,22
 BIOC=BIOC+BIOFLO(I)*COMPC(I)
 BIOH=BIOH+BIOFLO(I)*COMPH(I)
 BINO=BINO+BIOFLO(I)*COMPO(I)
 BION=BION+BIOFLO(I)*COMPN(I)
 10 CONTINUE
C
C READ TAR COMPOSITION
C CMOL,HMOL ETC ARE THE MOLES OF C, H ETC PER KG TAR
 READ(30,*) CMOL,HMOL,OMOL,NMOL
C
C LOAD TAR DATA INTO PROPERTIES OF COMPONENT 20
 COMPC(20)=CMOL
 COMPH(20)=HMOL
 COMPO(20)=OMOL
 COMPN(20)=NMOL
C
C CALCULATE HEATING VALUE OF TAR
 DELHC(20)=HHVCHO(CMOL,HMOL,OMOL,NMOL,0.0)
C
C READ THE YIELDS OF THE VARIOUS COMPONENTS WHICH
C PASS STRAIGHT TO THE EXIT STREAM
C YIELD IS YIELD IN MOLES PER KG DRY ASH FREE BIOMASS
 DO 100 I=1,22
 READ(30,*') OUT1(I)
 100 CONTINUE
C
C CLOSE THE INPUT DATA FILE
 CLOSE 30
C
C
C DO MASS BALANCE TO CALCULATE AMOUNT PASSING TO PARTIAL OXIDATION
C
C CALCULATE TOTAL C,H,O,N PASSING STRAIGHT TO EXIT GAS
 TOTC=0.0
 TOTH=0.0
 TOTO=0.0
 TOTN=0.0
 DO 200 I=1,22
 TOTC=TOTC+OUT1(I)*COMPC(I)
 TOTH=OTHT+OUT1(I)*COMPH(I)
 TOTO=TOTO+OUT1(I)*COMPO(I)
 TOTN=TOTN+OUT1(I)*COMPN(I)
 200 CONTINUE
C
C TEST MASS BALANCE
 IF ((TOTC.GT.BIOC).OR.(TOTH.GT.BIOH).OR.
 *(TOTO.GT.BINO).OR.(TOTN.GT.BION)) THEN
 CALL TERM(’BAD MASS BALANCE IN PYROL ’)
 END IF
Appendix B

C
C LOAD REMAINDER OF MATERIAL INTO RESIDUE IN POXIN
C INITIALISE POXIN
 DO 300 I=1,22
 POXIN(I)=0.0
 CONTINUE
 POXIN(21)=1.0
 POXIN(22)=BIOFLO(22)
C
C LOAD RESIDUE FLOWS OF C,H,O,N INTO PROPERTIES OF
C COMPONENT 21
 COMPC(21)=BIOC-TOTC
 COMPH(21)=BIOH-TOTH
 COMPO(21)=BIOO-TOTO
 COMPN(21)=BION-TOTN
 COMPMW(21)=COMPC(21)*12.0+COMPH(21)+
 * COMPO(21)*16.0+COMPN(21)*14.0
C
C RETURN
END
C
C SUBROUTINE POX(GAFLOW, LABEL)
C***
C SUBROUTINE TO PERFORM PARTIAL OXIDATION MASS BALANCE,
C USING EQUILIBRIUM TO CALCULATE GAS COMPOSITIONS
C***
C
REAL GAFLOW
INTEGER LABEL
REAL TOTC,TOTH,TOTO,TOTN,COMPMOLES,EQH
REAL EQMF(22)
C COMMON BLOCK OPCOND CONTAINS OPERATING CONDITIONS OF THE
C GASIFIER
 REAL P,T,HLOSS,GASIN(22),GAST,ENTHS,BIOT
 COMMON /OPCOND/ P,T,HLOSS,GASIN,GAST,ENTHS,BIOT
C COMMON BLOCK FLOWS CONTAINS MOLAR FLOWRATES OF EACH COMPONENT IN
C A NUMBER OF MATERIAL FLOWS IN THE GASIFIER
 REAL BIOFLO(22),POXIN(22),OUT1(22),OUT2(22),ASHFLO(22)
 COMMON /FLOWS/ BIOFLO,POXIN,OUT1,OUT2,ASHFLO
C COMMON BLOCK PROPS CONTAINS DATA ON EACH COMPONENT
 REAL DELHC(22),COMPC(22),COMPH(22),COMPO(22),COMPMW(22)
 REAL COMPN(22)
 CHARACTER COMPONENT(22)*5
 COMMON /PROPS/ DELHC,COMPC,COMPH,COMPO,COMPN,
 *COMPMW,COMPONENT
C
C INITIALISE NEW OUTLET MOLAR FLOWS WITH THOSE FROM PYROLYSIS ETC.
 DO 100 I=1,22
 OUT2(I)=OUT1(I)
 ASHFLO(I)=0.0
 CONTINUE
C
226
C INITIALISE TOTAL NUMBER OF MOLES OF C,H,O,N IN CALCULATION
 TOTC=0.
 TOTH=0.
 TOTO=0.
 TOTN=0.
 DO 200 I=1,22
 COMPMOLES=GASIN(I)*GAFLOW+POXIN(I)
 TOTC=TOTC+COMPC(I)*COMPMOLES
 TOTH=TOTH+COMPH(I)*COMPMOLES
 TOTO=TOTO+COMPO(I)*COMPMOLES
 TOTN=TOTN+COMPN(I)*COMPMOLES
200 CONTINUE
C
C CALL WGSEQ TO CALCULATE EQUILIBRIUM GAS COMP
 CALL WGSEQ(TOTC,TOTH,TOTO,TOTN,EQMF,LABEL)
 IF (LABEL.NE.0) RETURN
C
C HYDROGEN BALANCE TO CALCULATE OUTLET GAS FLOW
 EQH=2.*((EQMF(1)+EQMF(6)+2.*EQMF(4))
 GASOUT=TOTH/EQH
C
C LOAD RESULTING GAS COMPOSITION INTO OUT2
 DO 400 I=1,6
 OUT2(I)=OUT2(I)+GASOUT*EQMF(I)
400 CONTINUE
C
C LOAD ASH INTO ASHPLO
 ASHPLO(22)=POXIN(22)
 RETURN
END
Example Printout:

**
PROGRAM FLMOD GASIFIER MODEL RESULTS J.M.DOUBLE ASTON
**
GASIFIER: FLUID BED RUN: EXAMPLE RUN
**

INPUT DATA

BIOMASS DATA FROM FILE WOOD3

GASIFYING AGENT DATA - Mole fractions
Air O2 Steam T degC Enths
0.000 1.000 0.000 25.0 2778.0

OPERATING PARAMETERS
Pressure = 1.0 Bar Temperature = 780.0 Heat Loss = 5.0 %

**

RESULTS

GAS FLOWS
Gasifying agent: 0.0125 mol/kg biomass
0.2802 nm3/kg biomass
Outlet gas: 0.0610 mol/kg biomass
(dry tar free) 1.3668 nm3/kg biomass
Outlet gas HHV: 11.83 MJ/nm3

OUTLET GAS DATA
- composition by mole fraction
- component flows in mol/kg biomass

<table>
<thead>
<tr>
<th></th>
<th>H2</th>
<th>CO</th>
<th>CO2</th>
<th>CH4</th>
<th>N2</th>
<th>H2O</th>
<th>C2+</th>
<th>Tar</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas flows</td>
<td>0.020</td>
<td>0.021</td>
<td>0.015</td>
<td>0.004</td>
<td>0.000</td>
<td>0.012</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Compositions</td>
<td>raw gas</td>
<td>0.275</td>
<td>0.292</td>
<td>0.206</td>
<td>0.050</td>
<td>0.000</td>
<td>0.166</td>
<td>0.011</td>
</tr>
<tr>
<td>dry tar free</td>
<td>0.330</td>
<td>0.350</td>
<td>0.247</td>
<td>0.060</td>
<td>0.000</td>
<td>0.000</td>
<td>0.013</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ASH FLOW - kg Ash/kg Biomass
Ash: 0.0080 Carbon contained in ash: 0.0000

**

228
Program EVAL1

The basic flow diagram of this program is shown as Figure B3. A complete list of subroutines is given below:

Subroutines

CAPPBT Subroutine to calculate the capital cost required to result in a given payback time for the project.

DCFRR Subroutine to calculate the Discounted Cash Flow rate of return of the project, given a cash flow table. Uses NPV in its iterations.

FINISH Subroutine to close the output files and terminate the program.

FIN1 Subroutine to spool the results file to the printer, if required.

INITIAL Subroutine to read the base case data from the data file.

INPUT Subroutine for interactive data entry.

NPV Subroutine to calculate the Net Present Value of the project, given a cash flow table.

PAYBAK Calculates the payback time of the project.

REQPBT Calculates the annual cash flow required to be added to the cash flow table of the project to result in a given payback time for the project.

REQPB2 Subroutine used by REQPBT.
Start

call INITIAL to read base case and initialise variables

call INPUT to perform interactive data entry

echo input data to results file

calculate nominal cash flows for each year of project life

calculate mean product cost

call NPV to calculate Net Present Value of project

call DCFRR to calculate the Discounted Cash Flow rate of return

call PAYBAK to calculate the payback time of the project, nominal terms

call RECPBT to calculate the feedstock cost and product price required to give a 3, 5 and 10 year payback

call CAPPBT to calculate the maximum allowable capital cost to give a 3, 5 and 10 year payback

print results

print cash flow tables

Stop

Figure B3 Flow Diagram of Program EVAL1
PROGRAM EVAL1
REAL UTILYR, LABYR, OVDHYR, MAINYR, RAWYR, PRYR, GJOUT,
 +FRESV, DCF, PBK
REAL RAWFL(0:25), PRFL(0:25), UTILFL(0:25), MAINFL(0:25),
 +RCASFL(0:25), CAPFL(0:25), OVDHFL(0:25), LAFL(0:25),
 +CASFL(0:25)
REAL INFAT
REAL QRAWY3, QRAWY5, QPRY3, QPRY5, QRAWC3, QRAWC5, QPRC3, QPRC5,
 +QRYW10, QPRY10, QRAWC10, QPRC10, QCAP3, QCAP5, QCAP10
REAL FLXRAW(0:25), FLXPR(0:25)
REAL TEMP, AMORT, RELTOT, AVPRC
REAL OTHCOS(25), TOTCOS(25), NOMPRC(25), RELPRC(25)
CHARACTER*80 AGAIN, RUNNO
REAL CAPCOS, CAPCTY, RAWHHV, EFF, RAWCOS, PRCOS, UTCOS, OVERHD,
 +NUMMEN, MAINTC, MANCOS, RDISC, NOMINT,
 +INFL, ESCRAW, ESCLAB, ESCPR, ESCUT, ESCOVH, ESCMTC
INTEGER PRJLIF, HRPYR
COMMON /BDATA/ CAPCOS, CAPCTY, RAWHHV, EFF, RAWCOS, PRCOS, UTCOS,
 +MAINTC, OVERHD, NUMMEN, MANCOS, PRJLIF, HRPYR, RDISC, NOMINT,
 +INFL, ESCRAW, ESCLAB, ESCPR, ESCUT, ESCOVH, ESCMTC

C
C A PROGRAM TO PERFORM FINANCIAL CALCULATIONS FOR GASIFICATION
C SYSTEMS
C ALL CALCULATIONS ARE BEFORE TAX, IN REAL TERMS
C
C GLOBAL VARIABLES ARE AS FOLLOWS:
C CAPCTY CAPACITY OF GASIFIER T/H
C RAWHHV HHV OF RAW MATERIAL, MJ/KG
C EFF EFFICIENCY OF GASIFIER %
C (DEFINED AS HEATING VALUE OF TOTAL PRODUCT
C DIVIDED BY HEATING VALUE OF FEEDSTOCK)
C NUMMEN NUMBER OF SHIFTS
C PRJLIF PROJECT LIFE, YEARS
C HRPYR NUMBER OF HOURS OF OPERATION EACH YEAR
C CAPCOS CAPITAL COST OF GASIFIER
C RAWCOS COST OF RAW MATERIAL, £/T
C PRCOS PRODUCT PRICE, £/GJ
C UTCOS UTILITIES COST, £/GJ PRODUCT GAS
C MAINTC MAINTENANCE COST/YEAR, £/£CAPITAL COST
C OVERHD OVERHEADS/YEAR, £/£CAPITAL COST
C MANCOS TOTAL COST OF EACH SHIFT, £/YEAR
C RDISC REAL TARGET DISCOUNT RATE
C NOMINT NOMINAL COST OF CAPITAL
C INFL RATE OF INFLATION
C ESCRAW REAL ESCALATION RATE OF FEEDSTOCK
C ESCPR REAL ESCALATION RATE OF PRODUCT PRICE
C ESCUT REAL ESCALATION RATE OF UTILITIES
C ESCMTC REAL ESCALATION RATE OF MAINTENANCE
C ESCOVH REAL ESCALATION RATE OF OVERHEADS
C ESCLAB REAL ESCALATION RATE OF LABOUR COST
C
C LOCAL VARIABLES ARE AS FOLLOWS:
C CASFL(0:25) CASHFLOWS FOR 25 YEARS OF PROJECT, NOMINAL
Appendix B

Program EVAL1

C RCASFL(0:25) YEARLY REAL CASH FLOWS
C RAWFL(0:25) FEEDSTOCK YEARLY CASH FLOWS, NOMINAL
C PREFL(0:25) PRODUCT YEARLY CASH FLOWS, NOMINAL
C UTILFL(0:25) UTILITIES YEARLY CASH FLOWS, NOMINAL
C MAINFL(0:25) MAINTENANCE YEARLY CASH FLOWS, NOMINAL
C OVHDFL(0:25) OVERHEADS YEARLY CASH FLOWS, NOMINAL
C LABFL(0:25) LABOUR YEARLY CASH FLOWS, NOMINAL
C CAPFL(0:25) YEARLY CAPITAL CASH FLOWS, NOMINAL
C UTILYR UTILITY COST PER YEAR, REAL TERMS, NO ESC.
C LABYR LABOUR COST PER YEAR, AS UTILYR
C OVHYR OVERHEADS PER YEAR, AS UTILYR
C MAINYR MAINTENANCE PER YEAR, AS UTILYR
C RAWYR RAW MATERIAL COST PER YEAR, AS UTILYR
C PRYR REVENUE FROM PROD. SALE PER YR, AS UTILYR
C GJOUT CAPACITY OF GASIFIER, GJ PRODUCT GAS/HOUR
C PRESV NET PRESENT VALUE OF PROJECT
C DCF DCF OF PROJECT, REAL TERMS
C DCFNOM DCF OF PROJECT, NOMINAL TERMS
C PBK PAYBACK TIME YEARS
C INFLAT MULTIPLYING FACTOR FOR INFLATION, CASH FLOW CALC.
C TEMP TEMPORARY VARIABLE IN AMORTISATION CALC.
C AMORT YEARLY AMORTISATION
C OTHCOS(25) NOMINAL YEARLY COSTS, EXCLUDING AMORTISATION
C TOTCOS(25) NOMINAL YEARLY COSTS, INCLUDING AMORTISATION
C NOMPRC(25) NOMINAL PRODUCT COST
C RELPRC(25) REAL PRODUCT COST
C RELTOT RUNNING TOTAL OF REAL PRODUCT COSTS, TO CALC MEAN
C AVPRC MEAN REAL PRODUCT COST, £/GJ
C QRAWY3 VALUE OF RAWYR TO GIVE 3 YEAR PAYBACK
C QRAWY5 VALUE OF RAWYR TO GIVE 5 YEAR PAYBACK
C QRAWY10 VALUE OF RAWYR TO GIVE 10 YEAR PAYBACK
C QPRY3 VALUE OF PRYR TO GIVE 3 YEAR PAYBACK
C QPRY5 VALUE OF PRYR TO GIVE 5 YEAR PAYBACK
C QPRY10 VALUE OF PRYR TO GIVE 10 YEAR PAYBACK
C QRAWC3 VALUE OF RAWCOS TO GIVE 3 YEAR PAYBACK
C QRAWC5 VALUE OF RAWCOS TO GIVE 5 YEAR PAYBACK
C QRAWC10 VALUE OF RAWCOS TO GIVE 10 YEAR PAYBACK
C QPRC3 VALUE OF PRCOS TO GIVE 3 YEAR PAYBACK
C QPRC5 VALUE OF PRCOS TO GIVE 5 YEAR PAYBACK
C QPRC10 VALUE OF PRCOS TO GIVE 10 YEAR PAYBACK
C QCAP3 VALUE OF CAPITAL COST TO GIVE 3 YEAR PAYBACK
C QCAP5 VALUE OF CAPITAL COST TO GIVE 5 YEAR PAYBACK
C QCAP10 VALUE OF CAPITAL COST TO GIVE 10 YEAR PAYBACK
C FLXRAW(0:25) YEARLY CASH FLOWS, EXCL. FEEDSTOCK COST
C FLXPR(0:25) YEARLY CASH FLOWS, EXCL. PRODUCT SALES

OPEN (UNIT=20, FILE='2299JMD'RE: EVAL', STATUS='OLD')
CALL INITIAL

232
Appendix B

Program EVAL1

10 CALL INPUT
 WRITE(3,*) ' ', 'ENTER A RUN NUMBER TO IDENTIFY THIS RUN'
 READ(0,89999) RUNNO
 GJOUT=EFF*RAWHV*CAPCTY/100.0
 UTILYR=GJOUT*HRPYR*UTCOS
 MAINYR=MAINTC*CAPCOS
 OVHDYR=OVERHD*CAPCOS
 PRYR=PRCOS*GJOUT*HRPYR
 RAWYR=RAWCOS*CAPCTY*HRPYR
 LABYR=NUMMEN*MANCOS

C ECHO DATA TO RESULTS FILE BEFORE PERFORMING CALCULATION
 WRITE(20,90000) RUNNO
 WRITE(20,90001) CAPCTY
 WRITE(20,90002) RAWHV
 WRITE(20,90003) EFF
 WRITE(20,90004) NUMMEN
 WRITE(20,90005) PRJLIF
 WRITE(20,90006) HRPYR
 WRITE(20,90009) CAPCOS
 WRITE(20,90010) RAWCOS
 WRITE(20,90011) PRCOS
 WRITE(20,90012) UTCOS
 WRITE(20,90013) MAINTC
 WRITE(20,90014) OVERHD
 WRITE(20,90015) MANCOS
 WRITE(20,90016) RDISC
 WRITE(20,90017) NOMINT
 WRITE(20,90018) INFL
 WRITE(20,90019) ESCRAW
 WRITE(20,90020) ESCPR
 WRITE(20,90021) ESCUT
 WRITE(20,90022) ESCMTC
 WRITE(20,90023) ESCOH
 WRITE(20,90024) ESCLAB

C CALCULATE YEARLY CASH FLOWS, NOMINAL TERMS
 RAWFL(0)=0.0
 PRFL(0)=0.0
 UTILFL(0)=0.0
 MAINFL(0)=0.0
 OVHDFL(0)=0.0
 LABFL(0)=0.0
 CAPFL(0)=CAPCOS
 CASHFL(0)=CAPFL(0)
 RCAFFL(0)=CAPFL(0)
 FLXFRN(0)=CAPFL(0)
 FLXPR(0)=CAPFL(0)
 DO 100 IYEAR=1,PRJLIF
 INFLAT=(1.0+INFL/100.0)**IYEAR
 RAWFL(IYEAR)=-RAWYR*INFLAT*((1.0+ESCRW/100.0)**IYEAR)
 PRFL(IYEAR)=-PRYR*INFLAT*((1.0+ESCPR/100.0)**IYEAR)
 UTILFL(IYEAR)=-UTILYR*INFLAT*((1.0+ESCUT/100.0)**IYEAR)
 MAINFL(IYEAR)=-MAINYR*INFLAT*((1.0+ESCMTC/100.0)**IYEAR)
 OVHDFL(IYEAR)=-OVHDYR*INFLAT*((1.0+ESCOVH/100.0)**IYEAR)
 LABFL(IYEAR)=-LABYR*INFLAT*((1.0+ESCLAB/100.0)**IYEAR)
 100 CONTINUE
APPENDIX B

Program EVAL1

CAPFL(IYEAR) = 0.0
CASHFL(IYEAR) = CAPFL(IYEAR) + RAWFL(IYEAR) + PRLF(IYEAR) +
+ UTILFL(IYEAR) + MAINFL(IYEAR) + OVHDFL(IYEAR) + LABFL(IYEAR)
FLXRAW(IYEAR) = CASHFL(IYEAR) - RAWFL(IYEAR)
FLXPRI(IYEAR) = CASHFL(IYEAR) - PRLF(IYEAR)
RCASFL(IYEAR) = CASHFL(IYEAR) / INFLAT

100 CONTINUE
C
C PERFORM PRODUCT COST CALCULATIONS
C
C CALCULATE YEARLY AMORTISATION
 TEMP = (1. + NOMINT/100.) * PRJLIF
 AMORT = CAPCOS * ((NOMINT/100.) * TEMP) / (TEMP - 1.)
C CALCULATE YEARLY COSTS, AND HENCE PRODUCT COSTS FOR EACH YEAR
 RELTOT = 0.0
 DO 200 IYEAR = 1, PRJLIF
 OTHCOS(IYEAR) = (RAWFL(IYEAR) + UTILFL(IYEAR) + MAINFL(IYEAR) +
 + OVHDFL(IYEAR) + LABFL(IYEAR))
 TOTCOS(IYEAR) = AMORT + OTHCOS(IYEAR)
 NOMPFRC(IYEAR) = TOTCOS(IYEAR) / (GJOUT*HRPYR)
 RELPFRC(IYEAR) = NOMPFRC(IYEAR) / ((1. + INFL/100.)**IYEAR)
 RELTOT = RELTOT + RELPFRC(IYEAR)
200 CONTINUE
C CALCULATE MEAN PRODUCT COST
 AVPFRC = RELTOT / (PRJLIF*1.0)
C
C CALL NET PRESENT VALUE SUBROUTINE
 CALL NPV(RCASFL, PRJLIF, RDISC, PRESV)
C CALL DISCOUNTED CASH FLOW RATE OF RETURN SUBROUTINE
 LAB1 = 0
 CALL DCFRR(RCASFL, PRJLIF, DCF, LAB1)
C CALL PAYBACK TIME SUBROUTINE
 LAB2 = 0
 CALL PAYBAK(CASHFL, PRJLIF, PBAK, LAB2)
C PERFORM CALCULATIONS OF FEEDSTOCK COST OR PRODUCT PRICE
C OR CAPITAL COST FOR 3, 5, & 10 YEAR PAYBACK PERIODS
C
C 3 YEAR PAYBACK
 IF (PRJLIF .GE. 3) THEN
 CALL REQPB3 (3.0, FLXRAW, PRJLIF, INFL, ESRAW, QRAWY3, LAB31)
 IF (LAB31.EQ.0) QRAWC3 = QRAWY3 / (CAPCTY*HRPYR)
 CALL REQPB3 (3.0, FLXPRI, PRJLIF, INFL, ESCHR, QPRY3, LAB32)
 IF (LAB32.EQ.0) QPRC3 = QPRY3 / (GJOUT*HRPYR)
 CALL CAPPB3 (3.0, CASHFL, PRJLIF, QCAP3)
 END IF
C 5 YEAR PAYBACK
 IF (PRJLIF .GE. 5) THEN
 CALL REQPB5 (5.0, FLXRAW, PRJLIF, INFL, ESRAW, QRAWY5, LAB51)
 IF (LAB51.EQ.0) QRAWC5 = QRAWY5 / (CAPCTY*HRPYR)
 CALL REQPB5 (5.0, FLXPRI, PRJLIF, INFL, ESCHR, QPRY5, LAB52)
 IF (LAB52.EQ.0) QPRC5 = QPRY5 / (GJOUT*HRPYR)
 CALL CAPPB5 (5.0, CASHFL, PRJLIF, QCAP5)
 END IF
C 10 YEAR PAYBACK
Appendix B

Program EVAL1

IF (PRJLIF.GE.10) THEN
 CALL RENPBT(10.0,FLXRAW,PRJLIF,INFL,ESCREW,QRWY10,LAB101)
 IF (LAB101.EQ.0) QRC10=-QRWY10/(CAPCTY*HRPYR)
 CALL RENPBT(10.0,FLXRPR,PRJLIF,INFL,ESCP,QRPRY10,LAB102)
 IF (LAB102.EQ.0) QPRC10=QRPRY10/(GJOUT*HRPYR)
 CALL CAPPBT(10.0,CASHFL,PRJLIF,QCAP10)
END IF

C
C PRINT RESULTS
C
C
DO 10000 IOUT=3,20,17
 WRITE(IOUT,99000) RDISC,PRESV
 IF (LAB1.EQ.0) THEN
 DCFNOM=(1+DCF/100.)*(1+INFL/100.)-1.0
 DCFNOM=DCFNOM*100.
 WRITE(IOUT,99001) DCF,DCFNOM
 ELSE IF (LAB1.LT.0)
 WRITE(IOUT,99999)
 ELSE
 WRITE(IOUT,99998)
 END IF
 IF (LAB2.EQ.0) THEN
 WRITE(IOUT,99002) PBAK
 ELSE
 WRITE(IOUT,99997)
 END IF
 WRITE(IOUT,99003) AVPRC
 IF (PRJLIF.GE.3) THEN
 WRITE(IOUT,99004) 3
 IF (LAB31.EQ.0) THEN
 WRITE(IOUT,99005) QRAWC3
 ELSE
 WRITE(IOUT,99996) LAB31
 END IF
 IF (LAB32.EQ.0) THEN
 WRITE(IOUT,99006) QPRC3
 ELSE
 WRITE(IOUT,99996) LAB32
 END IF
 WRITE(IOUT,99007) QCAP3
 END IF

 IF (PRJLIF.GE.5) THEN
 WRITE(IOUT,99004) 5
 IF (LAB51.EQ.0) THEN
 WRITE(IOUT,99005) QRAWC5
 ELSE
 WRITE(IOUT,99996) LAB51
 END IF
 IF (LAB52.EQ.0) THEN
 WRITE(IOUT,99006) QPRC5
 ELSE
 WRITE(IOUT,99996) LAB52
 END IF

235
Appendix B

Program EVAL1

WRITE (IOUT, 99007) QCAP5
END IF

C

IF (PRJLIF .GE. 10)
WRITE (IOUT, 99004) 10
ELSE IF (LAB101 .EQ. 0)
WRITE (IOUT, 99005) QWRC10
ELSE
WRITE (IOUT, 99996) LAB101
ENDIF
IF (LAB102 .EQ. 0)
WRITE (IOUT, 99006) QPRC10
ELSE
WRITE (IOUT, 99996) LAB102
ENDIF
WRITE (IOUT, 99007) QCAP10
ENDIF

10000 CONTINUE
C

C PRINT CASH FLOW TABLE FOR NPV CALCULATIONS
WRITE (20, 99900) RUNNO
DO 500 IYEAR = 0, PRJLIF
WRITE (20, 99901)
IYEAR, CAPPFL (IYEAR), PRL (IYEAR), RAWFL (IYEAR),
+ UTILFL (IYEAR), MAINFL (IYEAR), OTHDFL (IYEAR), LABFL (IYEAR),
+ CASHFL (IYEAR), RCASFL (IYEAR)
500 CONTINUE
C

C PRINT CASH FLOW TABLE FOR PRODUCT COSTS
WRITE (20, 99902)
DO 600 IYEAR = 1, PRJLIF
WRITE (20, 99903)
IYEAR, AMORT, OTHCOS (IYEAR), TOTCOS (IYEAR),
+ NOMPRC (IYEAR), RELFRC (IYEAR)
600 CONTINUE
WRITE (3, *) 'PRESS <RETURN> TO CONTINUE'
READ (0, 89999) AGAIN
GOTO 10
C

C

89999 FORMAT (A80)
90000 FORMAT ('1', 14X, 45(''), /, 15X, 'PROGRAM EVAL - ',
+ 'GASIFIER EVALUATION PROGRAM', /, 15X, '(', '
+ 'J M Double ', 16(''), /, '0', 9X, 'RUN NUMBER: ', A80, /,
+ '0', 9X, 'DATA USED FOR CALCULATION ', /, 15X,
+ '(for £ read Pounds Sterling, all tonnes are d.a.f. basis)')
90001 FORMAT ('0', 14X, 'Gasifier throughput', 23X, F5.2, ' tonnes/h')
90002 FORMAT (15X, 'Feedstock heating value', 19X, F5.2, ' PJ/tonne')
90003 FORMAT (15X, 'Gasifier efficiency', 23X, F5.2, ' %')
90004 FORMAT (15X, 'Number of shifts', 5X, F5.1)
90005 FORMAT (15X, 'Project life', 30X, I2, 5X, 'years')
90006 FORMAT (15X, 'Number of operating hours per year', 6X, I4)
90009 FORMAT ('0', 14X, 'Capital cost (inc working capital) ',
+ F12.2, ' £')
90010 FORMAT (15X, 'Feedstock cost', 28X, F5.2, ' £/tonne')
90011 FORMAT (15X, 'Product selling price', 21X, F6.3, ' £/GJ')

236
Appendix B

Program EVAL1

90012 FORMAT(15X,'Utilities cost',28X,F6.3,' £/GJ')
90013 FORMAT(15X,'Yearly maintenance cost','+
fraction capcost',F5.3)
90014 FORMAT(15X,'Yearly overheads, fraction capcost',9X,F5.3)
90015 FORMAT(15X,'Total cost of labour per shift',8X,F9.2
+' £/year')
90016 FORMAT('0',14X,'Target real discount rate',17X,F5.2,' %')
90017 FORMAT(15X,'Nominal cost of capital',19X,F5.2,' %')
90018 FORMAT(15X,'Inflation rate',28X,F5.2,' %')
90019 FORMAT(15X,'Feedstock cost real escalation rate',7X,
'+F5.2,' %')
90020 FORMAT(15X,'Product price real escalation rate',8X,
'+F5.2,' %')
90021 FORMAT(15X,'Utilities cost real escalation rate',7X,
'+F5.2,' %')
90022 FORMAT(15X,'Maintenance cost real escalation rate',5X,
'+F5.2,' %')
90023 FORMAT(15X,'Overheads real escalation rate',12X,F5.2,' %')
90024 FORMAT(15X,'Labour cost real escalation rate',10X,
'+F5.2,' %')
90000 FORMAT(/,'0',9X,'RESULTS/',
+'0',14X,'NPV at ',F6.2,' % real discount rate is £',
+F14.2)
90001 FORMAT(15X,'DCF rate of return is ',F6.2,
+' % real',',F6.2,' % nominal')
90002 FORMAT(15X,'Payback time is ',F5.2,' years from start-up',
+' % nominal basis')
90003 FORMAT(15X,'Mean real product cost over project life is ',
+F6.3,' £/GJ')
90004 FORMAT('0',14X,'FOR A ',I2,' YEAR PAYBACK TIME:')
90005 FORMAT(15X,'Either FEEDSTOCK COST must be ',F7.2,' £/tonne')
90006 FORMAT(19X,'or PRODUCT SELLING PRICE must be ',F5.2,' £/GJ')
90007 FORMAT(19X,'or CAPITAL COST must be £',F14.2)
99000 FORMAT('1RUN NUMBER',',A80,/
+'3OMINAL CASH FLOW TABLE FOR N.P.V. CALCULATIONS',
+'(all cash flows expressed in Pounds Sterling)',
+'Year',6X,'Capital Product Feedstock',
+'TOTAL NOMINAL',6X,'TOTAL REAL')
99001 FORMAT(6X,I2,2X,F12.2,6(I1X,F11.2),2X,2(I2X,F14.2))
99002 FORMAT('3OMINAL CASH FLOW TABLE FOR PRODUCT COST',
+'CALCULATIONS',
+'(all cash flows expressed in Pounds Sterling)',
+\/5X,'Year Amortisation',5X,'Other costs',5X,
+'Total costs Product cost £/GJ',\29X,'(see above)',
+\29X,'Nominal',6X,'Real')
99003 FORMAT(6X,I2,3(2X,F14.2),2(4X,F6.3))
99996 FORMAT(20X,'ERROR NUMBER',',I2', 'IN CALLING REQPBT')
99997 FORMAT(15X,'Payback time is greater than project life')
99998 FORMAT(15X,'DCF rate of return is greater than ',
+'500.00 % real')
99999 FORMAT(15X,'DCF rate of return is less than -90.00 % real')

END
SUBROUTINE INITIAL
REAL CAPCOS, CAPCTY, RAHHHV, EFF, RAWCOS, PRCOS, UTCOS, OVERHD,
+NUMMEN, MAINTC, MANCOS, RDISC, NOMINT,
+INFL, ESCRAW, ECLLAB, ESCPR, ESCUT, ESCOVH, ESMTC
INTEGER PRLIF, HRPYR
COMMON /BDATA/ CAPCOS, CAPCTY, RAHHHV, EFF, RAWCOS, PRCOS, UTCOS,
+MAINTC, OVERHD, NUMMEN, MANCOS, PRLIF, HRPYR, RDISC, NOMINT,
+INFL, ESCRAW, ECLLAB, ESCPR, ESCUT, ESCOVH, ESMTC
OPEN(UNIT=21, FILE='D: EVAL1', STATUS='OLD')
READ(21, *) CAPCTY
READ(21, *) EFF
READ(21, *) NUMMEN
READ(21, *) PRLIF
READ(21, *) HRPYR
READ(21, *) CAPCOS
READ(21, *) RAWCOS
READ(21, *) PRCOS
READ(21, *) UTCOS
READ(21, *) MAINTC
READ(21, *) OVERHD
READ(21, *) MANCOS
READ(21, *) RDISC
READ(21, *) NOMINT
READ(21, *) INFL
READ(21, *) ESCRAW
READ(21, *) ESCPR
READ(21, *) ESCUT
READ(21, *) ESMTC
READ(21, *) ESCOVH
READ(21, *) ECLLAB
CLOSE 21
RETURN
END

SUBROUTINE FINISH
WRITE(20, 900000)
CLOSE 20
CALL FIN1
STOP
900000 FORMAT(‘1’)
END

SUBROUTINE INPUT
REAL CAPCOS, CAPCTY, RAHHHV, EFF, RAWCOS, PRCOS, UTCOS, OVERHD,
+NUMMEN, MAINTC, MANCOS, RDISC, NOMINT,
+INFL, ESCRAW, ECLLAB, ESCPR, ESCUT, ESCOVH, ESMTC
INTEGER PRLIF, HRPYR
COMMON /BDATA/ CAPCOS, CAPCTY, RAHHHV, EFF, RAWCOS, PRCOS, UTCOS,
+MAINTC, OVERHD, NUMMEN, MANCOS, PRLIF, HRPYR, RDISC, NOMINT,
Appendix B

Program EVAL1

+INFL, ESCRAW, ESCLAB, ESCPR, ESCUT, ESCOVH, ESCMTC

10 DO 11 I=1,3
 WRITE(3,*) ' '
11 CONTINUE
 WRITE(3,*) ' *** PROGRAM EVAL '/
 +' - GASIFIER ECONOMIC CALCULATIONS ***
 WRITE(3,90000)
 WRITE(3,90001) CAPCTY, PRJLIF
 WRITE(3,90002) RAWHHY, HRPYR
 WRITE(3,90003) EFF
 WRITE(3,90004) NUMMEN
 WRITE(3,90005)
 WRITE(3,90006) CAPCOS
 WRITE(3,90007) RAWCOS, ESCRAW
 WRITE(3,90008) PRCOS, ESCPR
 WRITE(3,90009) UTCOS, ESCUT
 WRITE(3,90010) MAINTC, ESCMTC
 WRITE(3,90011) OVERHD, ESCOVH
 WRITE(3,90012) MANCEOS, ESCLAB
 WRITE(3,90013) RDISC
 WRITE(3,90014) NOMINT
 WRITE(3,90015) INFL
 WRITE(3,90016)
 WRITE(3,90017)
 WRITE(3,90018)
 WRITE(3,90019)
 WRITE(3,90020)
 READ(0,*) ICHANG
 IF (ICHANG.EQ.0) CALL FINISH
 IF (ICHANG.EQ.98) GOTO 9800
 IF (ICHANG.EQ.99) GOTO 9900
 IF (ICHANG.EQ.100) RETURN
 GOTO(100,200,300,400,500,600,700,800,900,1000,1100,
 +1200,1300,1400,1500,1600,1700,1800,1900,2000,
 +2100,2200,2300,2400) ICHANG
 WRITE(3,*) ' INCORRECT INPUT, TRY AGAIN'
 GOTO 10

100 WRITE(3,*) ' THE CAPACITY OF THE GASIFIER IS ',CAPCTY,' t/h'
 WRITE(3,*) ' ENTER THE NEW CAPACITY'
 READ(0,*) CAPCTY
 GOTO 900

200 WRITE(3,*) ' THE FEEDSTOCK HEATING VALUE IS ',RAWHHY,' MJ/kg'
 WRITE(3,*) ' ENTER THE NEW HEATING VALUE'
 READ(0,*) RAWHHY
 GOTO 10

300 WRITE(3,*) ' THE GASIFIER EFFICIENCY IS ',EFF,' %'
 WRITE(3,*) ' ENTER THE NEW EFFICIENCY'
 READ(0,*) EFF
 GOTO 10

400 WRITE(3,*) ' THERE ARE ',NUMMEN,' EMPLOYED ON THE GASIFIER'
 WRITE(3,*) ' ENTER THE NEW NUMBER OF MEN'
 READ(0,*) NUMMEN
 GOTO 10

500 WRITE(3,*) ' THE PROJECT LIFE IS ',PRJLIF,' years'
 WRITE(3,*) ' ENTER THE NEW PROJECT LIFE'
 READ(0,*) PRJLIF
Appendix B

Program EVAL1

GOTO 10
600 WRITE(3,*) 'HRPYR, ' HOURS ARE WORKED EACH YEAR'
WRITE(3,*) 'ENTER THE NEW HOURS/YEAR'
READ(0,*), HRPYR
GOTO 10
700 WRITE(3,*) 'INCORRECT INPUT, TRY AGAIN'
GOTO 10
800 WRITE(3,*) 'INCORRECT INPUT, TRY AGAIN'
GOTO 10
900 WRITE(3,*) 'CAPITAL COST IS CURRENTLY £',CAPCOS
WRITE(3,*) 'ENTER THE NEW CAPITAL COST'
READ(0,*), CAPCOS
GOTO 10
1000 WRITE(3,*) 'THE FEEDSTOCK COST IS £/tonne'
WRITE(3,*) 'ENTER THE NEW FEEDSTOCK COST'
READ(0,*), RAWCOS
GOTO 10
1100 WRITE(3,*) 'THE PRODUCT COST IS £/GJ'
WRITE(3,*) 'ENTER THE NEW PRODUCT COST'
READ(0,*), PRGCOS
GOTO 10
1200 WRITE(3,*) 'THE UTILITIES COST IS £/GJ PRODUCT'
WRITE(3,*) 'ENTER THE NEW UTILITY COST'
READ(0,*), UTCOS
GOTO 10
1300 WRITE(3,*) 'THE MAINTENANCE COST IS £/ CAPTICAL COST'
WRITE(3,*) 'ENTER THE NEW MAINTENANCE COST'
READ(0,*), MAINTC
GOTO 10
1400 WRITE(3,*) 'THE OVERHEADS ARE £/GJ OVERHD'
WRITE(3,*) 'ENTER THE NEW OVERHEADS'
READ(0,*), OVERHD
GOTO 10
1500 WRITE(3,*) 'THE COST PER MAN IS £/MANCOS'
WRITE(3,*) 'ENTER THE NEW COST PER MAN'
READ(0,*), MANCOS
GOTO 10
1600 WRITE(3,*) 'THE TARGET REAL DISCOUNT RATE IS %'
WRITE(3,*) 'ENTER THE NEW TARGET DISCOUNT RATE'
READ(0,*), RDISC
GOTO 10
1700 WRITE(3,*) 'THE NOMINAL COST OF CAPITAL IS %'
WRITE(3,*) 'ENTER THE NEW COST OF CAPITAL'
READ(0,*), NOMICAT
GOTO 10
1800 WRITE(3,*) 'THE INFLATION RATE IS %'
WRITE(3,*) 'ENTER THE NEW INFLATION RATE'
READ(0,*), INFL
GOTO 10
1900 WRITE(3,*) 'THE FEEDSTOCK REAL ESCALATION IS %'
WRITE(3,*) 'ENTER THE NEW FEEDSTOCK ESCALATION'
READ(0,*), ESCRAW
GOTO 10

240
2000 WRITE(3,*) 'THE PRODUCT PRICE REAL ESCALATION IS ', EscPr, + '%'
 WRITE(3,*) 'ENTER THE NEW PRODUCT PRICE ESCALATION'
 READ(0,*) EscPr
 GOTO 10
2100 WRITE(3,*) 'THE UTILITIES REAL ESCALATION IS ', EscUt, + '%'
 WRITE(3,*) 'ENTER THE NEW UTILITIES ESCALATION'
 READ(0,*) EscUt
 GOTO 10
2200 WRITE(3,*) 'THE MAINTENANCE REAL ESCALATION IS ', EscMtc, + '%'
 WRITE(3,*) 'ENTER THE NEW MAINTENANCE ESCALATION'
 READ(0,*) EscMtc
 GOTO 10
2300 WRITE(3,*) 'THE OVERHEADS REAL ESCALATION IS ', EscOvh, + '%'
 WRITE(3,*) 'ENTER THE NEW OVERHEADS ESCALATION'
 READ(0,*) EscOvh
 GOTO 10
2400 WRITE(3,*) 'THE LABOUR COST REAL ESCALATION IS ', EscLab, + '%'
 WRITE(3,*) 'ENTER THE NEW LABOUR ESCALATION'
 READ(0,*) EscLab
 GOTO 10
9800 CALL INITIAL
 GOTO 10
9900 OPEN(UNIT=21,FILE='2299JMD*D:EVAL1',STATUS='OLD')
 WRITE(21,*) CAPCty
 WRITE(21,*) RAWHHV
 WRITE(21,*) EFF
 WRITE(21,*) NUMMEN
 WRITE(21,*) PRJLIF
 WRITE(21,*) HRPYR
 WRITE(21,*) CAPCOS
 WRITE(21,*) RAWCOS
 WRITE(21,*) PRCOS
 WRITE(21,*) UTCOS
 WRITE(21,*) MAINTC
 WRITE(21,*) OVERHD
 WRITE(21,*) MANGOS
 WRITE(21,*) RDISC
 WRITE(21,*) NOMINT
 WRITE(21,*) INF
 WRITE(21,*) ESCRAW
 WRITE(21,*) ESCPR
 WRITE(21,*) ESCUT
 WRITE(21,*) ESCMTC
 WRITE(21,*) ESCOvh
 WRITE(21,*) ESCLab
 CLOSE 21
 GOTO 10
90000 FORMAT(' ENTER THE NUMBER OF THE VARIABLE TO BE CHANGED', + ' OR ACTION REQUIRED: ')
90001 FORMAT(' 1. Gasifier throughput',9X,F6.2,' t/h ', + '5. Project life, years',4X,I3)
90002 FORMAT(' 2. HHV of feedstock',12X,F6.2,' GJ/t ', + '6. Working hours / year ',I4)
90003 FORMAT(' 3. Gasifier efficiency',9X,F5.1,' %')
Appendix B

Program EVAL1

90004 FORMAT(' 4. Total number of shifts ',F5.1)
90005 FORMAT(' FINANCIAL DATA:')
90006 FORMAT(' 9. Capital cost',10X,F12.2,' £')
90007 FORMAT(' 10. Feedstock cost',14X,F6.2,' £/t ',
 +'19. Feedstock escalation',4X,F5.2,'%')
90008 FORMAT(' 11. Product cost',17X,F6.3,'£/GJ ',
 +'20. Product cost escalation',F5.2,'%')
90009 FORMAT(' 12. Utilities',20X,F6.3,'£/GJ ',
 +'21. Utilities escalation',4X,F5.2,'%')
90010 FORMAT(' 13. Maintenance (frac cap cost)',F5.3,6X,
 +'22. Maintenance escalation',F5.2,'%')
90011 FORMAT(' 14. Overheads (frac cap cost)',5X,F5.3,6X,
 +'23. Overheads escalation',4X,F5.2,'%')
90012 FORMAT(' 15. Total cost per shift',5X,F9.2,' £/yr 24. ',
 +'Labour escalation',7X,F5.2,'%')
90013 FORMAT(' 16. Real target discount rate',3X,F6.2,'%')
90014 FORMAT(' 17. Nominal cost of capital',5X,F6.2,'%')
90015 FORMAT(' 18. Inflation rate',14X,F6.2,'%')
90016 FORMAT(' 0. STOP THE PROGRAM')
90017 FORMAT(' 98. GO BACK TO THE BASE CASE')
90018 FORMAT(' 99. STORE THESE FIGURES AS THE NEW BASE CASE')
90019 FORMAT(' 100. START THE CALCULATION')
90020 FORMAT(' ** ENTER THE NUMBER OF THE ACTION REQUIRED **')
END

C

C

C SUBROUTINE NPV(CASFLO,PRLIFE,DISRAT,PRVAL)
REAL CASFLO(0:PRLIFE),PRVAL,DISRAT
INTEGER PRLIFE
C SUBROUTINE TO PERFORM NET PRESENT VALUE CALCULATION, GIVEN
C CASH FLOW TABLE.
C VARIABLES:
C CASFLO(0:PRLIFE) CASH FLOWS FOR EACH YR OF PROJ LIFE
C PRLIFE NUMBER OF YEARS OF PROJECT LIFE
C DISRAT DISCOUNT RATE
C PRVAL NET PRESENT VALUE

C

PRVAL=0
DO 200 I=0,PRLIFE
 PRVAL=PRVAL+CASFLO(I)/(1+DISRAT/100.0)**I
200 CONTINUE
RETURN
END

C

C SUBROUTINE DCFRR(CASFLO,PRLF,DCF,LABEL)
REAL DCF,CASFLO(0:PRLF)
INTEGER PRLF,LABEL
C SUBROUTINE TO PERFORM DCF CALCULATION, GIVEN
C CASH FLOW TABLE
C VARIABLES:
C CASFLO(0:PRLF) CASH FLOWS FOR EACH YEAR OF PROJ LIFE
C DCF FINAL CALCULATED VALUE OF DCF
C DCFL LOWER BOUND OF DCF FOR ITERATION

242
Appendix B

Program EVAL1

C DCFU
C PRLIF
C LABEL

DCFU=500.0
CALL NPV(CASFL0,PRLIF,DCFU,PRV)
IF (PRV.LE.0.0) THEN
 LABEL=-1
 DCF=DCFU
 RETURN
END IF
CALL NPV(CASFL0,PRLIF,DCFU,PRV)
IF (PRV.GT.0.0) THEN
 LABEL=1
 DCF=DCFU
 RETURN
END IF
DO 1000 I=1,100
 DCF=(DCFU+DCF)/2.0
 CALL NPV(CASFL0,PRLIF,DCF,PRV)
 IF (ABS(PRV).LT.0.0001) RETURN
 IF (PRV.GT.0.0) THEN
 DCF=DCF
 ELSE
 DCFU=DCF
 END IF
1000 CONTINUE
WRITE(3,*) 'DCF CALCULATION HAS NOT CONVERGED'
CALL FINISH
END

C
C

SUBROUTINE PAYBAK(CASHFL,PRLIF,PBACKT,LABEL)
REAL CASHFL(0:PRLIF)
REAL PBACKT
INTEGER PRLIF,LABEL

C A SUBROUTINE TO CALCULATE PAYBACK TIME GIVEN A CASH FLOW TABLE
C ASSUMES CUMULATIVE CASHFLOW CURVE IS A STRAIGHT LINE BETWEEN
C YEAR ENDS

C VARIABLES:
C CASHFL(0:PRLIF) ARRAY CONTAINING CASH FLOW TABLE
C PBACKT PAYBACK TIME
C PRLIF PROJECT LIFE IN YEARS
C LABEL LABEL INDICATING FAILURE OF CALCULATION
C
C CUMCF=0
DO 20 I=0,PRLIF
 CUMCF=CUMCF+CASHFL(I)
 IF (CUMCF.GT.0.0) GOTO 30
20 CONTINUE
C IF THIS LOOP HAS BEEN COMPLETED, THEN THE PROJECT NEVER PAYS
C BACK ITS CAPITAL. SET PAYBACK TIME TO PROJECT LIFE + 1 YEAR,
C AND SET LABEL (ERROR INDICATOR) TO 1
PBACKT=PRLIF+1.0
LABEL=1
RETURN
C INTERPOLATE USING STRAIGHT LINE INTERPOLATION TO
C GET EXACT PAYBACK TIME
30 XX=CUMCF/CASHFL(I)
PB2ACT=I-XX
LABEL=0
RETURN
END

C C
C C SUBROUTINE REQPBT(RPBT,CFL0,PRJLIF,INFL,ESC,ANSW,LAB)
REAL RPBT,CFL0(0:PRJLIF),INFL,ESC,ANSW
INTEGER PRJLIF
REAL ANSL,ANSU,PBTL,PBTU,PBTM
C SUBROUTINE TO CALCULATE YEARLY CASH FLOW NEEDED TO GIVE A
C REQUIRED PAYBACK TIME, GIVEN A TABLE OF THE SUM OF THE OTHER
C CASH FLOWS, AND ESCALATION AND INFLATION RATES
C C THIS SUBROUTINE USES SUBROUTINE REQP2 DURING THE ITERATIVE
C PROCEDURE
C C VARIABLES USED:
C RPBT REQUIRED PAYBACK TIME
C CFL0(0:PRJLIF) TABLE OF TOTAL CASH FLOWS, EXCLUDING
C THE VARIABLE TO BE FOUND
C PRJLIF PROJECT LIFE, YEARS
C INFL OVERALL INFLATION RATE, %
C ESC REAL ESCALATION RATE OF ITERATED
C VARIABLE, %
C ANSW RESULT OF THE CALCULATION
C LOCAL VARIABLES
C ANSL LOWER LIMIT OF ITERATED VARIABLE
C PBTL PAYBACK TIME AT ANSL
C ANSU UPPER LIMIT OF ITERATED VARIABLE
C PBTU PAYBACK TIME AT ANSU
C PBTM PAYBACK TIME AT ANSW, DURING ITERATIONS
C
C CALCULATE PAYBACK TIME FOR CASHFLOWS IN CFL0, WITHOUT ADDITION
C OF ITERATED VARIABLE. THIS IS USED TO DETERMINE WHETHER THE
C SOLUTION WILL BE NEGATIVE OR POSITIVE
C
C ANSL=0.0
LABELL=0
CALL REQP2(CFL0,PRJLIF,INFL,ESC,ANSL,PBTL,LABELL)
C
C CHECK THAT PBTL IS NOT NEAR ENOUGH TO BE A SOLUTION
TEST=ABS(RPBT-PBTL)
IF (TEST.LT.0.001) THEN
ANSW=ANSL
LAB=0
RETURN
END IF
C TEST FOR PAYBACK TIME GREATER THAN PROJECT LIFE (LABELL.NE.0),
C OR PAYBACK TIME GREATER THAN RPBT, IN WHICH CASE POSITIVE CASH
C FLOWS MUST BE ADDED, IN ORDER TO REDUCE THE PAYBACK TIME.
C HENCE SET ANSU LARGE POSITIVE NUMBER, AND TEST FOR PBTU < RPBT
IF ((LABELL.NE.0).OR.(PBTL.GT.RPBT)) THEN
 ANSU=1.E10
 DO 200 I=1,10
 LABELU=0
 CALL REQPB2(CFLO,PRJLIF,INFL,ESC,ANSU,PBTU,LABELU)
C TEST IF ANSU IS A SOLUTION
 TEST=ABS(PBTU-RPBT)
 IF (TEST.LT.0.001) THEN
 ANSW=ANSU
 LAB=0
 RETURN
 END IF
 IF ((PBTU.LT.RPBT).AND.(LABELU.EQ.0)) GOTO 1000
 ANSU=ANSU*2.
200 CONTINUE
 LAB=1
 RETURN
C IN THE OTHER CASE, A NEGATIVE CASH FLOW IS REQUIRED TO BE ADDED
C TO THE EXISTING CASH FLOWS TO OBTAIN THE REQUIRED PAYBACK TIME.
C HENCE SET ANSU TO A LARGE NEGATIVE NUMBER, AND TEST FOR
C PBTU > RPBT.
ELSE
 ANSU=-1.E10
 DO 300 I=1,10
 LABELU=0
 CALL REQPB2(CFLO,PRJLIF,INFL,ESC,ANSU,PBTU,LABELU)
C TEST IF ANSU IS A SOLUTION
 TEST=ABS(PBTU-RPBT)
 IF (TEST.LT.0.001) THEN
 ANSW=ANSU
 LAB=0
 RETURN
 END IF
 IF ((PBTU.GT.RPBT).OR.(LABELU.NE.0)) GOTO 1000
 ANSU=ANSU*2.
300 CONTINUE
 LAB=2
 RETURN
END IF
C
C PERFORM ITERATIVE CALCULATION
C
1000 DO 1100 I=1,100
 ANSW=(ANSW+ANSU)/2.
 LABEL=0
 CALL REQPB2(CFLO,PRJLIF,INFL,ESC,ANSW,PBTM,LABEL)
C TEST FOR A SOLUTION
 TEST=ABS(RPBT-PBTM)
 IF (TEST.LT.0.001) THEN
 LAB=0
 RETURN
 END IF
C SET NEW VALUE OF ANSL OR ANSU, AS APPROPRIATE
 IF (LABEL.NE.0) THEN
 IF ((LABELL.NE.0).OR. (PBTL.GT.RPBT)) THEN
 LABELL=LABEL
 ANSL=ANSW
 PBTL=PBTM
 ELSE
 LABELU=LABEL
 ANSU=ANSW
 PBTU=PBTM
 END IF
 ELSE
 TEST=(RPBT-PBTM) *(RPBT-PBTU)
 IF (TEST.GT.0) THEN
 LABELU=LABEL
 ANSU=ANSW
 PBTU=PBTM
 ELSE
 LABELL=LABEL
 ANSL=ANSW
 PBTL=PBTM
 END IF
 END IF
1100 CONTINUE
 LAB=3
 RETURN
END

C C C

SUBROUTINE REQPB2(CFLO, PRJLIF, INFL, ESC, VAR, ANS, LABEL)
REAL CFLO(0:PRJLIF), INFL, ESC, VAR, ANS
REAL CASFLO(0:25)
INTEGER PRJLIF, LABEL
C SUBROUTINE USED BY REQPB TO FIND THE VALUE OF A VARIABLE
C REQUIRED TO GIVE A SPECIFIED PAYBACK TIME
C THIS SUBROUTINE PERFORMS THE CASH FLOW CALCULATION, AND
C CALCULATES THE PAYBACK TIME BY CALLING SUBROUTINE PAYBAK
C
C VARIABLES:
C CFLO(0:PRJLIF) TOTAL YEARLY CASH FLOWS EXCLUDING THE
C PRJLIF PROJECT LIFE, YEARS
C INFL INFLATION RATE, %
C ESC REAL ESCALATION RATE OF ITERATED
C VARIABLE
C VAR VALUE OF THE ITERATED VARIABLE FOR THIS
C ITERATION
C ANS PAYBACK TIME FOR THIS VALUE OF VAR
C LABEL LABEL TO INDICATE WHETHER CALCULATION
C HAS BEEN SUCCESSFUL
C
C C LOCAL VARIABLES:
C CASFLO(0:25) ARRAY USED TO PASS VALUES OF TOTAL CASH
Appendix B

FLOWS TO PAYBAK
TEMP = TEMPORARY STORAGE

C ASFLO(0) = CFLO(0)
DO 100 IYEAR = 1, PRJLIF
 TEMP = ((1. + INFL/100.)**IYEAR) * ((1. + ESC/100.)**IYEAR)
 ASFLO(IYEAR) = CFLO(IYEAR) + VAR*TEMP
100 CONTINUE
CALL PAYBAK(CASFLO, PRJLIF, ANS, LABEL)
RETURN
END

C SUBROUTINE CAPPBT(RPBT, CASFLO, PRJLIF, CAPCOS)
REAL RPBT, CASFLO(0:PRJLIF), CAPCOS
INTEGER PRJLIF
C SUBROUTINE TO CALCULATE CAPITAL COST, GIVEN A CASH FLOW TABLE
C AND A REQUIRED PAYBACK TIME
C
C VARIABLES:
C RPBT = REQUIRED PAYBACK TIME
C CASFLO(0:PRJLIF) = CASH FLOW TABLE
C PRJLIF = PROJECT LIFE
C CAPCOS = CALCULATED CAPITAL COST

C CAPCOS = 0.0
DO 100 IYEAR = 1, RPBT
 CAPCOS = CAPCOS + CASFLO(IYEAR)
100 CONTINUE
RETURN
END

C SUBROUTINE FIN1
CHARACTER*80 ANS
WRITE(3,*) 'DO YOU WANT TO PRINT THE RESULTS'
READ(0,90001) ANS
IF (ANS(1:1).EQ.'Y') THEN
 WRITE(3,*) 'ENTER THE PRINTER NUMBER REQUIRED, 6 OR 7'
 READ(0,*) K
 CALL SPOOL(14H2299JMD*R:EVAL,K,IERR)
 IF (IERR.EQ.0) THEN
 WRITE(3,*) 'R:EVAL HAS BEEN PASSED TO THE PRINTER'
 ELSE
 WRITE(3,*) 'ERROR PASSING R:EVAL TO PRINTER',
 + ' ERROR NO.', IERR
 END IF
END IF
RETURN
90001 FORMAT(A80)
END
Example Printout:

**
PROGRAM EVAL - GASIFIER EVALUATION PROGRAM
*************************** J M Double ********************

RUN NUMBER: EXAMPLE

DATA USED FOR CALCULATION
(for £ read Pounds Sterling, all tonnes are d.a.f. basis)
Gasifier throughput 1.00 tonnes/h
Feedstock heating value 20.00 GJ/tonne
Gasifier efficiency 70.00 %
Number of shifts 1.0
Project life 10 years
Number of operating hours per year 6000

Capital cost (inc working capital) 528000.00 £
Feedstock cost 20.00 £/tonne
Product selling price 2.400 £/GJ
Utilities cost 0.300 £/GJ
Yearly maintenance cost, fraction capcost 0.025
Yearly overheads, fraction capcost 0.080
Total cost of labour per shift 40000.00 £/year
Target real discount rate 10.00 %

Nominal cost of capital 12.00 %
Inflation rate 5.00 %
Feedstock cost real escalation rate 0.00 %
Product price real escalation rate 0.00 %
Utilities cost real escalation rate 0.00 %
Maintenance cost real escalation rate 0.00 %
Overheads real escalation rate 0.00 %
Labour cost real escalation rate 0.00 %

RESULTS
NPV at 10.00 % real discount rate is £ -767883.90
DCF rate of return is less than 90.00 % real
Payback time is greater than project life
Mean real product cost over project life is 3.724 £/GJ

FOR A 3 YEAR PAYBACK TIME:
Either FEEDSTOCK COST must be -13.09 £/tonne
or PRODUCT SELLING PRICE must be 4.76 £/GJ
or CAPITAL COST must be £ -129227.28

FOR A 5 YEAR PAYBACK TIME:
Either FEEDSTOCK COST must be -1.68 £/tonne
or PRODUCT SELLING PRICE must be 3.95 £/GJ
or CAPITAL COST must be £ -226506.68

FOR A 10 YEAR PAYBACK TIME:
Either FEEDSTOCK COST must be 6.83 £/tonne
or PRODUCT SELLING PRICE must be 3.34 £/GJ
or CAPITAL COST must be £ -515592.97
RUN NUMBER: EXAMPLE

NOMINAL CASH FLOW TABLE FOR N.P.V. CALCULATIONS

<table>
<thead>
<tr>
<th>Year</th>
<th>Capital</th>
<th>Product</th>
<th>Feedstock</th>
<th>Utilities</th>
<th>Maintenance</th>
<th>Overheads</th>
<th>Labour</th>
<th>TOTAL NOMINAL</th>
<th>TOTAL REAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-528000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-528000.00</td>
<td>-528000.00</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>211680.00</td>
<td>-126000.00</td>
<td>-26400.00</td>
<td>-13880.00</td>
<td>-44352.00</td>
<td>-42000.00</td>
<td>-40992.00</td>
<td>-39040.00</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>222264.00</td>
<td>-132300.00</td>
<td>-27783.00</td>
<td>-14553.00</td>
<td>-46568.60</td>
<td>-44100.00</td>
<td>-43041.60</td>
<td>-39040.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>233377.20</td>
<td>-139915.00</td>
<td>-29172.15</td>
<td>-15280.65</td>
<td>-48998.08</td>
<td>-46305.00</td>
<td>-45191.68</td>
<td>-39040.00</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>245046.06</td>
<td>-136860.75</td>
<td>-30630.76</td>
<td>-16044.68</td>
<td>-51342.98</td>
<td>-48620.25</td>
<td>-47453.36</td>
<td>-39040.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>257298.36</td>
<td>-151353.79</td>
<td>-32162.30</td>
<td>-16846.92</td>
<td>-53910.13</td>
<td>-51051.26</td>
<td>-49826.03</td>
<td>-39040.00</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>270163.28</td>
<td>-160811.48</td>
<td>-33770.41</td>
<td>-17689.28</td>
<td>-56605.64</td>
<td>-53603.83</td>
<td>-52317.33</td>
<td>-39040.00</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>283671.45</td>
<td>-168852.05</td>
<td>-35458.93</td>
<td>-18573.73</td>
<td>-59435.92</td>
<td>-56286.02</td>
<td>-54993.20</td>
<td>-39040.00</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>297855.02</td>
<td>-177294.65</td>
<td>-37231.88</td>
<td>-19502.41</td>
<td>-62407.72</td>
<td>-59098.22</td>
<td>-57679.86</td>
<td>-39040.00</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>312747.77</td>
<td>-186159.39</td>
<td>-39093.47</td>
<td>-20477.53</td>
<td>-65528.10</td>
<td>-62053.13</td>
<td>-60563.85</td>
<td>-39040.00</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>328385.16</td>
<td>-195467.36</td>
<td>-41069.14</td>
<td>-21501.41</td>
<td>-68804.51</td>
<td>-65155.79</td>
<td>-63592.05</td>
<td>-39040.00</td>
</tr>
</tbody>
</table>

NOMINAL CASH FLOW TABLE FOR PRODUCT COST CALCULATIONS

<table>
<thead>
<tr>
<th>Year</th>
<th>Amortisation</th>
<th>Other costs (see above)</th>
<th>Total costs</th>
<th>Product cost £/GJ</th>
<th>Nominal</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93447.64</td>
<td>252672.00</td>
<td>34619.64</td>
<td>4.126</td>
<td>3.924</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>93447.64</td>
<td>265305.60</td>
<td>358753.24</td>
<td>4.271</td>
<td>3.874</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>93447.64</td>
<td>278570.88</td>
<td>372018.52</td>
<td>4.429</td>
<td>3.826</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>93447.64</td>
<td>292499.42</td>
<td>385947.06</td>
<td>4.595</td>
<td>3.780</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>93447.64</td>
<td>307124.40</td>
<td>400572.03</td>
<td>4.769</td>
<td>3.736</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>93447.64</td>
<td>322480.61</td>
<td>415928.25</td>
<td>4.932</td>
<td>3.695</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93447.64</td>
<td>338604.65</td>
<td>432052.28</td>
<td>5.143</td>
<td>3.655</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>93447.64</td>
<td>355334.88</td>
<td>448982.52</td>
<td>5.345</td>
<td>3.618</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>93447.64</td>
<td>373311.62</td>
<td>466759.26</td>
<td>5.557</td>
<td>3.582</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>93447.64</td>
<td>391977.20</td>
<td>485424.84</td>
<td>5.779</td>
<td>3.548</td>
<td></td>
</tr>
</tbody>
</table>
Program EVAL2

The basic flow diagram of this program is shown as Figure B4. A complete list of subroutines is given below:

Subroutines

- **FINISH** Subroutine to close the output files and terminate the program.
- **FIN1** Subroutine to spool the results file to the printer, if required.
- **INITIAL** Subroutine to read the base case data from the data file.
- **INPUT** Subroutine for interactive data entry.

![Flow Diagram of Program EVAL2](image)

Figure B4 Flow Diagram of Program EVAL2
PROGRAM EVAL2
C A PROGRAM TO PERFORM FINANCIAL CALCULATIONS FOR GASIFICATION
C SYSTEMS
C ALL CALCULATIONS ARE BEFORE TAX, IN REAL TERMS
C
C DECLARE GLOBAL VARIABLES
REAL CAPCTY, RAWHV, EFF
INTEGER PRJLIF, HRPYR
REAL CAPCOS, RAWMAT, UTILS, MAINTC, OVERHD, MANCOS, NOMINT
REAL INF, ESCRAW, ESCUT, ESCMTC, ESCOVH, ESCLAB, NUMMEN
COMMON /INDATA/ CAPCTY, RAWHV, EFF, NUMMEN, PRJLIF, HRPYR,
+CAPCOS, RAWMAT, UTILS, MAINTC, OVERHD, MANCOS, NOMINT, INF, ESCRAW,
+ESCUT, ESCMTC, ESCOVH, ESCLAB
C
C GLOBAL VARIABLES ARE AS FOLLOWS:
C CAPCTY CAPACITY OF GASIFIER T/H
C RAWHV HHV OF RAW MATERIAL, MJ/KG
C EFF EFFICIENCY OF GASIFIER %
C (DEFINED AS HEATING VALUE OF TOTAL PRODUCT
C DIVIDED BY HEATING VALUE OF FEEDSTOCK)
C PRJLIF PROJECT LIFE, YEARS
C HRPYR NUMBER OF HOURS OF OPERATION EACH YEAR
C NUMMEN NUMBER OF MEN REQUIRED TO OPERATE PLANT
C CAPCOS CAPITAL COST OF GASIFIER
C RAWMAT COST OF RAW MATERIAL, £/T
C UTILS UTILITIES COST, £/GJ PRODUCT GAS
C MAINTC MAINTENANCE COST/YEAR, £/£/CAPITAL COST
C OVERHD OVERHEADS/YEAR, £/£/CAPITAL COST
C MANCOS TOTAL COST OF EMPLOYING ONE MAN, £/YEAR
C NOMINT NOMINAL COST OF CAPITAL
C INF RATE OF INFLATION
C ESCRAW REAL ESCALATION RATE OF FEEDSTOCK
C ESCUT REAL ESCALATION RATE OF UTILITIES
C ESCMTC REAL ESCALATION RATE OF MAINTENANCE
C ESCOVH REAL ESCALATION RATE OF OVERHEADS
C ESCLAB REAL ESCALATION RATE OF LABOUR COST
C
C DECLARE LOCAL VARIABLES
REAL AMTROT, RAWT, UTTOT, OVHTOT, LABT, TOTTOT, PCTTOT
REAL AVRC, AMTC, RAWC, UTPC, OHVC, LABPC, MTC, MTTOT
REAL ULYR, LABYR, OYHR, MAINYR, RAWYR, GJOUT, TEMP, AMORT
REAL AMTCOS(25), RAWCOS(25), UTPCOS(25), OHVCOS(25), LABCOS(25)
REAL TOCOS(25), RELR(25), MTCOS(25)
REAL PRCKWE, TOTGJ
CHARACTER*80 RUNNO, AGAIN
C
C LOCAL VARIABLES ARE AS FOLLOWS:
C UTILYR UTILITY COST PER YEAR, REAL TERMS, NO ESC.
C LABYR LABOUR COST PER YEAR, AS UTILYR
C OYHR OVERHEADS PER YEAR, AS UTILYR
C MAINYR MAINTENANCE PER YEAR, AS UTILYR
C RAWYR RAW MATERIAL COST PER YEAR, AS UTILYR
C GJOUT CAPACITY OF GASIFIER, GJ PRODUCT GAS/HOUR
C TEMP TEMPORARY VARIABLE IN AMORTISATION CALC.
Appendix B
Program EVAL2

C AMORT
C AMTcos (25)
C RAWcos (25)
C UTCos (25)
C MTcos (25)
C OVCos (25)
C LABcos (25)
C TOTcos (25)
C RpRPRC (25)
C AMTOT
C RAWTOT
C UTTOT
C MTCTOT
C OVHTOT
C LABTOT
C TOTTOT
C PRCTOT
C AVPRC
C AMTPC
C RAWPC
C UTPC
C MTPC
C OVCPC
C LABPC
C PRCKWE
C TOTGJ
C RUNNO
C AGAIN
C
C OPEN(UNIT=20, FILE='2299JMD*R: EVAL', STATUS='OLD')
CALL INITIAL
10 CALL INPUT
WRITE(3,*) ' C ENTER A RUN NUMBER TO IDENTIFY THIS RUN'
READ(0,89999) RUNNO
GJOUT=EFF*RAWHHV*CAPCTY/100.0
UTILYR=GJOUT*HRPYR*UTILS
MAINTYR=MAINTC*CAPCOS
OVHYR=OVERHD*CAPCOS
RAWYR=RAWMAT*CAPCTY*HRPYR
LABYR=NUMMEN*MANCOS
C ECHO DATA TO RESULTS FILE BEFORE PERFORMING CALCULATION
WRITE(20,90000) RUNNO
WRITE(20,90001) CAPCTY
WRITE(20,90002) RAWHHV

252
program eval2

write(20,90003) eff
write(20,90004) num
write(20,90005) prj
write(20,90006) hpy
write(20,90009) capcos
write(20,90010) rawmat
write(20,90012) util
write(20,90013) main
write(20,90014) overhd
write(20,90015) mancos
write(20,90017) nomint
write(20,90018) infl
write(20,90019) escraw
write(20,90021) escut
write(20,90022) escmtc
write(20,90023) escovh
write(20,90024) esclab

C PERFORM PRODUCT COST CALCULATIONS
C
C CALCULATE YEARLY AMORTISATION
 temp=(1.+nomint/100.)*prj
 amor2=capcos*((nomint/100.)*temp)/(temp-1.)
C CALCULATE YEARLY COSTS, AND HENCE PRODUCT COSTS FOR EACH YEAR
 prctot=0.0
 tottot=0.0
 rawtot=0.0
 uttot=0.0
 mtctot=0.0
 ovhtot=0.0
 labtot=0.0
 amttot=0.0
 do 100 i=1,prj
 amtcos(i)=amort/((1.0+infl/100.))*i
 rawcos(i)=rawyr*(1.0+escraw/100.0)*i
 utcos(i)=utlyr*(1.0+escut/100.0)*i
 mtccos(i)=mainyr*(1.0+escmtc/100.0)*i
 ovhclos(i)=ovhycos*(1.0+escovh/100.0)*i
 labcos(i)=labyr*1.0+esclab/100.0)*i
 totcos(i)=amtcos(i)+rawcos(i)+utcos(i)+mtccos(i)+
 ovhclos(i)+labcos(i)
 amttot=amttot+amtcos(i)
 rawtot=rawtot+rawcost(i)
 uttot=uttot+utcost(i)
 mtctot=mtctot+mtccos(i)
 ovhtot=ovhtot+ovhclos(i)
 labtot=labtot+labcos(i)
 tottot=tottot+totcos(i)
 reinf(i)=totcos(i)/(hpy*grand)
 prctot=prctot+relfic(i)
 100 continue
C CALCULATE MEAN PRODUCT COST
 avpc=prctot/(prj*1.0)
 totgj=grand*hpy*prj
 labpc=labtot/totgj

253
Appendix B

Program EVAL2

RAWPC=RAWTOT/TOTGJ
UTPC=UTTOT/TOTGJ
MTCPC=MTCTOT/TOTGJ
OVHPC=OVHTOT/TOTGJ
AMTPC=AMTTOT/TOTGJ
PRCKWE=TOTTOT/(1000.*CAPCTY*HRPYR*FRJLIF)

C

C PRINT RESULTS
DO 200 IOUT=3,20,17
 WRITE(IOUT,99000) AVPRC
 WRITE(IOUT,99001) AMTPC
 WRITE(IOUT,99002) RAWPC
 WRITE(IOUT,99003) UTPC
 WRITE(IOUT,99004) MTCPC
 WRITE(IOUT,99005) OVHPC
 WRITE(IOUT,99006) LABPC
 WRITE(IOUT,99007) MTCPC+OVHPC
 WRITE(IOUT,99008) RAWPC+UTPC+MTCPC+OVHPC+LABPC
 WRITE(IOUT,99010) PRCKWE*100.0
200 CONTINUE
 WRITE(20,99000) RUNNO
DO 300 I=1,PRJLIF
 WRITE(20,99001) I,AMTCOS(I),RAWCOS(I),UTCOS(I),MTTCOS(I),
 OVHCOS(I),LABCOS(I),TOTCOS(I),RELPRC(I)
300 CONTINUE

C WRITE(3,*),'PRESS <RETURN> TO CONTINUE'
READ(0,89999) AGAIN
GOTO 10

C

89999 FORMAT(A80)
90000 FORMAT('1',14X,45('**'),/,'15X','PROGRAM EVAL2 - ','
 +'GASIFIER EVALUATION PROGRAM',/,'15X','17('**'),
 +'J M Double',16('**'),/,'0',9X,'RUN NUMBER: ',A80,/
 +'0',9X,'DATA USED FOR CALCULATION ',
 '+',15X,'(for £ read Pounds Sterling, ')
 +',15X,'all tonnes are d.a.f. basis')
90001 FORMAT('0',14X,'Gasifier throughput',23X,F5.2,' tonnes/h')
90002 FORMAT(15X,'Feedstock heating value',19X,F5.2,' GJ/tonne')
90003 FORMAT(15X,'Gasifier efficiency',23X,F5.2,' %')
90004 FORMAT(15X,'Number of shifts',6X,F4.1)
90005 FORMAT(15X,'Project life',30X,I2,5X,'years')
90006 FORMAT(15X,'Hours of operation per year',13X,I4)
90009 FORMAT('0',14X,'Capital cost (inc working capital) ','
 +F12.2,' £')
90010 FORMAT(15X,'Feedstock cost',28X,F5.2,' £/tonne')
90011 FORMAT(15X,'Product selling price',21X,F6.3,' £/GJ')
90012 FORMAT(15X,'Utilities cost',28X,F6.3,' £/GJ')
90013 FORMAT(15X,'Yearly maintenance cost',
 +',F5.3)
90014 FORMAT(15X,'Yearly overheads, fraction capcost',9X,F5.3)
90015 FORMAT(15X,'Total cost of labour per shift',8X,F9.2)
Appendix B Program EVAL2

 + ' £/year')
90017 FORMAT ('0',14X,'Nominal cost of capital',19X,F5.2,' %')
90018 FORMAT (15X,'Inflation rate ',19X,F5.2,' %')
90019 FORMAT (15X,'Feedstock cost real escalation rate',7X,
 +F5.2,' %')
90020 FORMAT (15X,'Product price real escalation rate',8X,
 +F5.2,' %')
90021 FORMAT (15X,'Utilities cost real escalation rate',7X,
 +F5.2,' %')
90022 FORMAT (15X,'Maintenance cost real escalation rate',5X,
 +F5.2,' %')
90023 FORMAT (15X,'Overheads real escalation rate',12X,F5.2,' %')
90024 FORMAT (15X,'Labour cost real escalation rate',10X,
 +F5.2,' %')
99000 FORMAT (/,'0',9X,'RESULTS',/,
 +'0',14X,'Mean real product cost is ',F7.3,' £/GJ')
99001 FORMAT ('0',14X,'BREAKDOWN OF PRODUCT COST',
 +' (averaged over project life)')
99002 FORMAT (20X,'Capital costs ',F6.3,' £/GJ')
99003 FORMAT (20X,'Feedstock ',F6.3,' £/GJ')
99004 FORMAT (20X,'Utilities ',F6.3,' £/GJ')
99005 FORMAT (20X,'Maintenance ',F6.3,' £/GJ')
99006 FORMAT (20X,'Overheads ',F6.3,' £/GJ')
99007 FORMAT (20X,'Labour ',F6.3,' £/GJ')
99008 FORMAT ('0',19X,'Overheads + maintenance ',F6.3,' £/GJ')
99009 FORMAT ('0',19X,'Subtotal, variable costs ',F6.3,' £/GJ')
99010 FORMAT (/,'0',14X,'Electricity cost ',F6.2,' p/kWh')
99900 FORMAT ('1',/,'0' RUN NUMBER: ',A80,/, '0 ',
 +'TABLE OF YEARLY COSTS, AND PRODUCT COST EACH YEAR. ',
 +'All figures are in Pounds Sterling, real terms',/,
 +' Year',4X,'Amortisation',5X,'Feedstock',5X,'Utilities',
 +3X,'Maintenance',5X,'Overheads',8X,'Labour',6X,
 +'TOTAL COSTS',5X,'PRODUCT COST',/,'121X,£/GJ')
99901 FORMAT (6X,I2,3X,6(2X,F12.2),4X,F14.2,7X,F6.3)
END

C
C

SUBROUTINE INITIAL
C SUBROUTINE TO READ IN THE BASE CASE VALUES FROM FILE
C 2299JMD*D:EVAL2
C DECLARE GLOBAL VARIABLES
REAL CAPCTY,RAWHHV,EFF
INTEGER PJLIF,HRPYR
REAL CAPCOS,RAWMAT,UTILS,MAINTC,OVERHD,MANCOS,NOMINT
REAL INFL,ESCRN,ESCU,ESCMTC,ESCOV,ESCLAB,NUMMEN
COMMON /INDATA/ CAPCTY,RAWHHV,EFF,NUMMEN,PJLIF,HRPYR,
 +CAPCOS,RAWMAT,UTILS,MAINTC,OVERHD,MANCOS,NOMINT,INFL,ESCRN,
 +ESCU,ESCMTC,ESCOV,ESCLAB
OPEN(UNIT=21,FILE='2299JMD*D:EVAL2',STATUS='OLD')
READ (21,*) CAPCTY
READ (21,*) RAWHHV
READ (21,*) EFF
READ (21,*) PJLIF
READ (21,*) HRPYR

255
PROGRAM EVAL2

READ (21,*) NUMMEN
READ (21,*) CAPCOS
READ (21,*) RAWMAT
READ (21,*) UTILS
READ (21,*) MAINTC
READ (21,*) OVERHD
READ (21,*) MANCOS
READ (21,*) NOMINT
READ (21,*) INFL
READ (21,*) ESCRAW
READ (21,*) ESCUT
READ (21,*) ESCMTC
READ (21,*) ESCOVH
READ (21,*) ESCLAB
CLOSE 21
RETURN
END

C

SUBROUTINE FINISH
WRITE (20, 90000)
CLOSE 20
CALL FIN1
STOP
90000 FORMAT ('1')
END

C

C

C SUBROUTINE INPUT
C SUBROUTINE TO ENABLE DATA FOR RUN TO BE ENTERED INTERACTIVELY
C BY CHANGING VALUES OF VARIABLES FROM THE BASE CASE
C
C DECLARE GLOBAL VARIABLES
REAL CAPCTI, RAWHV, EFF
INTEGER PRJLIF, HRPYR
REAL CAPCOS, RAWMAT, UTILS, MAINTC, OVERHD, MANCOS, NOMINT
REAL INFL, ESCRAW, ESCUT, ESCMTC, ESCOVH, ESCLAB, NUMMEN
COMMON /INDATA/
CAPCTI, RAWHV, EFF, NUMMEN, PRJLIF, HRPYR, CAPCOS,
+RAWMAT, UTILS, MAINTC, OVERHD, MANCOS, NOMINT, INFL, ESCRAW,
+ESCUT, ESCMTC, ESCOVH, ESCLAB

DO 11 I=1,7
 WRITE (3,*) '
11 CONTINUE
WRITE (3,*) ' *** PROGRAM EVAL2 ',
+"- GASIFIER ECONOMIC CALCULATIONS ***
WRITE (3,90000)
WRITE (3,90001) CAPCTI, PRJLIF
WRITE (3,90002) RAWHV, HRPYR
WRITE (3,90003) EFF, NUMMEN
WRITE (3,90005)
WRITE (3,90006) CAPCOS
WRITE(3,90007) RAWMAT, ESCRAW
WRITE(3,90009) UTILS, ESCUT
WRITE(3,90010) MAINTC, ESMTC
WRITE(3,90011) OVERHD, ESCOVH
WRITE(3,90012) MANCOS, ESMCLAB
WRITE(3,90014) NOMINT
WRITE(3,90015) INFL
WRITE(3,90016)
WRITE(3,90017)
WRITE(3,90018)
WRITE(3,90019)
WRITE(3,90020)
READ(0,*) ICHANG
IF (ICHANG.EQ.0) CALL FINISH
IF (ICHANG.EQ.98) GOTO 9800
IF (ICHANG.EQ.99) GOTO 9900
IF (ICHANG.EQ.100) RETURN
GOTO(100,200,300,400,500,600,700,800,900,1000,1100,
+1200,1300,1400,1500,1600,1700,1800,1900) ICHANG
WRITE(3,*), 'INCORRECT INPUT, TRY AGAIN'
GOTO 10

100 WRITE(3,*), 'THE CAPACITY OF THE GASIFIER IS ', CAPCTY, ' t/h'
WRITE(3,*), 'ENTER THE NEW CAPACITY'
READ(0,*) CAPCTY
GOTO 10

200 WRITE(3,*), 'THE FEEDSTOCK HEATING VALUE IS ', RAWHV, ' MJ/kg'
WRITE(3,*), 'ENTER THE NEW HEATING VALUE'
READ(0,*) RAWHV
GOTO 10

300 WRITE(3,*), 'THE GASIFIER EFFICIENCY IS ', EFF, ' %'
WRITE(3,*), 'ENTER THE NEW EFFICIENCY'
READ(0,*) EFF
GOTO 10

400 WRITE(3,*), 'THE PROJECT LIFE IS ', PRJLIF, ' years'
WRITE(3,*), 'ENTER THE NEW PROJECT LIFE'
READ(0,*) PRJLIF
GOTO 10

500 WRITE(3,*), HRPYR, ' HOURS ARE WORKED EACH YEAR'
WRITE(3,*), 'ENTER THE NEW HOURS/YEAR'
READ(0,*) HRPYR
GOTO 10

600 WRITE(3,*), 'THERE ARE ', NUMMEN, ' SHIFTS'
WRITE(3,*), 'ENTER THE NEW NUMBER OF SHIFTS'
READ(0,*) NUMMEN
GOTO 10

700 WRITE(3,*), 'CAPITAL COST IS CURRENTLY £', CAPCOS
WRITE(3,*), 'ENTER THE NEW CAPITAL COST'
READ(0,*) CAPCOS
GOTO 10

800 WRITE(3,*), 'THE FEEDSTOCK COST IS ', RAWMAT, ' £/tonne'
WRITE(3,*), 'ENTER THE NEW FEEDSTOCK COST'
READ(0,*) RAWMAT
GOTO 10

900 WRITE(3,*), 'THE UTILITIES COST IS ', UTILS, ' £/GJ PRODUCT'
WRITE(3,*), 'ENTER THE NEW UTILITY COST'

257
READ(0,*) UTILS
GOTO 10
1000 WRITE(3,*) 'THE MAINTENANCE COST IS ',MAINTC,' FRACTION', + ' OF CAPITAL COST'
 WRITE(3,*) 'ENTER THE NEW MAINTENANCE COST'
 READ(0,*) MAINTC
 GOTO 10
1100 WRITE(3,*) 'THE OVERHEADS ARE ',OVERHD,' FRACTION OF ', + 'CAPITAL COST'
 WRITE(3,*) 'ENTER THE NEW OVERHEADS'
 READ(0,*) OVERHD
 GOTO 10
1200 WRITE(3,*) 'THE COST PER SHIFT IS ',MANCOS,' £/year'
 WRITE(3,*) 'ENTER THE NEW COST PER MAN'
 READ(0,*) MANCOS
 GOTO 10
1300 WRITE(3,*) 'THE NOMINAL COST OF CAPITAL IS ',NOMINT,' %'
 WRITE(3,*) 'ENTER THE NEW COST OF CAPITAL'
 READ(0,*) NOMINT
 GOTO 10
1400 WRITE(3,*) 'THE INFLATION RATE IS ',INFL,' %'
 WRITE(3,*) 'ENTER THE NEW INFLATION RATE'
 READ(0,*) INFL
 GOTO 10
1500 WRITE(3,*) 'THE FEEDSTOCK REAL ESCALATION IS ',ESCRAW,' %'
 WRITE(3,*) 'ENTER THE NEW FEEDSTOCK ESCALATION'
 READ(0,*) ESCRAW
 GOTO 10
1600 WRITE(3,*) 'THE UTILITIES REAL ESCALATION IS ',ESCUU,' %'
 WRITE(3,*) 'ENTER THE NEW UTILITIES ESCALATION'
 READ(0,*) ESCUT
 GOTO 10
1700 WRITE(3,*) 'THE MAINTENANCE REAL ESCALATION IS ',ESCMTC,' %'
 WRITE(3,*) 'ENTER THE NEW MAINTENANCE ESCALATION'
 READ(0,*) ESCMTC
 GOTO 10
1800 WRITE(3,*) 'THE OVERHEADS REAL ESCALATION IS ',ESCOVH,' %'
 WRITE(3,*) 'ENTER THE NEW OVERHEADS ESCALATION'
 READ(0,*) ESCOVH
 GOTO 10
1900 WRITE(3,*) 'THE LABOUR COST REAL ESCALATION IS ',ESCLAB,' %'
 WRITE(3,*) 'ENTER THE NEW LABOUR ESCALATION'
 READ(0,*) ESCLAB
 GOTO 10
9800 CALL INITIAL
 GOTO 10
9900 OPEN(UNIT=21,FILE='2299JMD*D:_EVAL2',STATUS='OLD')
 WRITE(21,*) CAPCTY
 WRITE(21,*) RAWHHV
 WRITE(21,*) EFF
 WRITE(21,*) PRJLIF
 WRITE(21,*) HRPYR
 WRITE(21,*) NUMMIN
 WRITE(21,*) CAPCOS
 WRITE(21,*) RAWMAT
APPENDIX B

PROGRAM EVAL2

WRITE(21,*) UTILS
WRITE(21,*) MAINTC
WRITE(21,*) OVERHD
WRITE(21,*) MANCOS
WRITE(21,*) NOMINT
WRITE(21,*) INFL
WRITE(21,*) ESCRAW
WRITE(21,*) ESCUT
WRITE(21,*) ESCMTC
WRITE(21,*) ESCOVK
WRITE(21,*) ESCLAB
CLOSE 21
GOTO 10

90000 FORMAT(' ENTER THE NUMBER OF THE VARIABLE TO BE CHANGED', + OR ACTION REQUIRED: ')
90002 FORMAT(' 2. HHV of feedstock',12X,F6.2,' GJ/t ', +5. Working hours / year ',I4)
90003 FORMAT(' 3. Gasifier efficiency',9X,F5.1,' %',6X, +6. Number of shifts ',F4.1)
90005 FORMAT(' FINANCIAL DATA: ')
90006 FORMAT(' 7. Capital cost',10X,F12.2,' £')
90007 FORMAT(' 8. Feedstock cost',14X,F6.2,' £/t ', +15. Feedstock escalation',4X,F5.2,' %)
90010 FORMAT(' 10. Maintenance (frac cap cost') ',F5.3,6X, +17. Maintenance escalation ',F5.2,' %)
90011 FORMAT(' 11. Overheads (frac cap cost'),5X,F5.3,6X, +18. Overheads escalation',4X,F5.2,' %)
90012 FORMAT(' 12. Cost per shift ',7X,F9.2,' £/yr 19.', + Labour escalation',7X,F5.2,' %)
90014 FORMAT(' 13. Nominal cost of capital',5X,F6.2,' %')
90016 FORMAT(' 0. STOP THE PROGRAM')
90017 FORMAT(' 98. GO BACK TO THE BASE CASE')
90018 FORMAT(' 99. STORE THESE FIGURES AS THE NEW BASE CASE')
90019 FORMAT(' 100. START THE CALCULATION')
90020 FORMAT(' ** ENTER THE NUMBER OF THE ACTION REQUIRED **')

END

C
C
C

SUBROUTINE FINI
CHARACTER*80 ANS
WRITE(3,*) 'DO YOU WANT TO PRINT THE RESULTS'
READ(0,90001) ANS
IF (ANS(1:1).EQ.'Y') THEN
WRITE(3,*) 'ENTER THE PRINTER NUMBER REQUIRED, 6 OR 7'
READ(0,*) K
CALL SPOOL(14H2299JMD*R:EVAL,K,IERR)
IF (IERR.EQ.0) THEN
WRITE(3,*) 'R:EVAL HAS BEEN PASSED TO THE PRINTER'
ELSE
WRITE(3,*) 'ERROR PASSING R:EVAL TO PRINTER'
Appendix B

Program EVAL2

+ ' ERROR NO.', IERR
END IF
END IF
RETURN
90001 FORMAT (A80)
END
Appendix B

Example Printout:

PROGRAM EVAL2 - GASIFIER EVALUATION PROGRAM

RUN NUMBER: EXAMPLE

DATA USED FOR CALCULATION
(for £ read Pounds Sterling, all tonnes are d.a.f. basis)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasifier throughput</td>
<td>1.00 tonnes/h</td>
</tr>
<tr>
<td>Feedstock heating value</td>
<td>20.00 GJ/tonne</td>
</tr>
<tr>
<td>Gasifier efficiency</td>
<td>70.00 %</td>
</tr>
<tr>
<td>Number of shifts</td>
<td>1.0</td>
</tr>
<tr>
<td>Project life</td>
<td>10 years</td>
</tr>
<tr>
<td>Hours of operation per year</td>
<td>6000</td>
</tr>
<tr>
<td>Capital cost (inc working capital)</td>
<td>£352000.00</td>
</tr>
<tr>
<td>Feedstock cost</td>
<td>£20.00/tonne</td>
</tr>
<tr>
<td>Utilities cost</td>
<td>£0.20 GJ</td>
</tr>
<tr>
<td>Yearly maintenance cost, fraction capcost</td>
<td>£0.025</td>
</tr>
<tr>
<td>Yearly overheads, fraction capcost</td>
<td>£0.080</td>
</tr>
<tr>
<td>Total cost of labour per shift</td>
<td>£25000.00</td>
</tr>
<tr>
<td>Nominal cost of capital</td>
<td>12.00 %</td>
</tr>
<tr>
<td>Inflation rate</td>
<td>5.00 %</td>
</tr>
<tr>
<td>Feedstock cost real escalation rate</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Utilities cost real escalation rate</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Maintenance cost real escalation rate</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Overheads real escalation rate</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Labour cost real escalation rate</td>
<td>0.00 %</td>
</tr>
</tbody>
</table>

RESULTS

mean real product cost is 2.939 £/GJ

BREAKDOWN OF PRODUCT COST (averaged over project life)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost (£/GJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital costs</td>
<td>0.573</td>
</tr>
<tr>
<td>Feedstock</td>
<td>1.429</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.200</td>
</tr>
<tr>
<td>Maintenance</td>
<td>0.105</td>
</tr>
<tr>
<td>Overheads</td>
<td>0.335</td>
</tr>
<tr>
<td>Labour</td>
<td>0.298</td>
</tr>
<tr>
<td>Overheads + maintenance</td>
<td>0.440</td>
</tr>
<tr>
<td>Subtotal, variable costs</td>
<td>2.366</td>
</tr>
</tbody>
</table>

Electricity cost 4.11 p/kWh
RUN NUMBER: EXAMPLE

TABLE OF YEARLY COSTS, AND PRODUCT COST EACH YEAR. All figures are in Pounds Sterling, real terms

<table>
<thead>
<tr>
<th>Year</th>
<th>Amortisation</th>
<th>Feedstock</th>
<th>Utilities</th>
<th>Maintenance</th>
<th>Overheads</th>
<th>Labour</th>
<th>TOTAL COSTS</th>
<th>PRODUCT COST £/GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9331.83</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>258091.83</td>
<td>3.073</td>
</tr>
<tr>
<td>2</td>
<td>56506.51</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>255266.51</td>
<td>3.039</td>
</tr>
<tr>
<td>3</td>
<td>53815.72</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>252575.72</td>
<td>3.007</td>
</tr>
<tr>
<td>4</td>
<td>51253.07</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>250013.07</td>
<td>2.976</td>
</tr>
<tr>
<td>5</td>
<td>48812.45</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>247572.45</td>
<td>2.947</td>
</tr>
<tr>
<td>6</td>
<td>46488.04</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>245248.04</td>
<td>2.920</td>
</tr>
<tr>
<td>7</td>
<td>44274.33</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>243034.33</td>
<td>2.893</td>
</tr>
<tr>
<td>8</td>
<td>42166.03</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>240926.03</td>
<td>2.868</td>
</tr>
<tr>
<td>9</td>
<td>40158.12</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>238918.12</td>
<td>2.844</td>
</tr>
<tr>
<td>10</td>
<td>38245.83</td>
<td>120000.00</td>
<td>16800.00</td>
<td>8800.00</td>
<td>28160.00</td>
<td>25000.00</td>
<td>237005.83</td>
<td>2.821</td>
</tr>
</tbody>
</table>
APPENDIX C

FURTHER RESULTS OF THE CARBON BOUNDARY MODEL SENSITIVITY ANALYSIS
Figure C1 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFYING AGENT H2 MOLE FRACTION OXYGEN GASIFIER
Figure C2 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFYING AGENT CO MOLE FRACTION OXYGEN GASIFIER
Figure C3 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFYING AGENT CO2 MOLE FRACTION OXYGEN GASIFIER
Figure C4 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFYING AGENT CH4 MOLE FRACTION OXYGEN GASIFER
Figure C5 THEORETICAL GASIFIER PERFORMANCE AGAINST HYDROGEN CONTENT OF BIOMASS AIR GASIFIER
Figure C6 THEORETICAL GASIFIER PERFORMANCE AGAINST OXYGEN CONTENT OF BIOMASS
AIR GASIFIER
Figure C7 THEORETICAL GASIFIER PERFORMANCE AGAINST BIOMASS ASH CONTENT AIR GASIFIER
Figure C8 THEORETICAL GASIFIER PERFORMANCE AGAINST MOISTURE CONTENT OF BIOMASS AIR GASIFIER
Figure C9 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFYING STEAM:AIR RATIO
AIR GASIFIER
Figure C10 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFYING AGENT TEMPERATURE
AIR GASIFIER
Figure C11: Theoretical Gasifier Performance Against Gasifier Heat Loss Air Gasifier
Figure C12 THEORETICAL GASIFIER PERFORMANCE AGAINST GASIFIER PRESSURE AIR GASIFIER
APPENDIX D

GASIFIER CAPITAL COST DATA
<table>
<thead>
<tr>
<th>No</th>
<th>Company / Trade Name</th>
<th>Cap. daft/h</th>
<th>Date</th>
<th>Equip. Cost Original Units</th>
<th>Equip. Cost 1985 £</th>
<th>Notes</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>John Brown/Wellman</td>
<td>5.0</td>
<td>10/84</td>
<td>£873 800</td>
<td>907 400</td>
<td>Total Plant = £2 037 500</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>ODG Twin Fluid Bed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applied Engineering</td>
<td>1.45</td>
<td>1982</td>
<td>Can $ 800 000</td>
<td>550 300</td>
<td>Includes burner for retrofit</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Co. Updraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Century Research Inc</td>
<td>1.9</td>
<td>1982</td>
<td>Can $ 300 000</td>
<td>206 400</td>
<td>Very rough estimate. Installed cost = 1.66 x DEC</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Updraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EZ Manufacturing</td>
<td>0.22</td>
<td>1982</td>
<td>Can $ 65 000</td>
<td>44 700</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Updraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Forest Fuels</td>
<td>0.35</td>
<td>1980</td>
<td>US $147 000</td>
<td>131 600</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Updraft moving grate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Biomass Corporation</td>
<td>0.17</td>
<td>1982</td>
<td>Can $155 000</td>
<td>106 600</td>
<td>Installed cost = 1.15 to 1.2 x DEC</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Downdraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Biomass Corporation</td>
<td>0.43</td>
<td>1982</td>
<td>Can $194 000</td>
<td>133 500</td>
<td>Installed cost = 1.15 to 1.2 x DEC</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Downdraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Biomass Corporation</td>
<td>0.67</td>
<td>1982</td>
<td>Can $241 350</td>
<td>166 000</td>
<td>Installed cost = 1.15 to 1.2 x DEC</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Downdraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Duvant Moteurs Diesel</td>
<td>0.18</td>
<td>1982</td>
<td>Can $ 84 000</td>
<td>57 800</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Downdraft Model GA10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Duvant Moteurs Diesel</td>
<td>0.45</td>
<td>1982</td>
<td>Can $130 000</td>
<td>89 400</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Downdraft Model GA10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Duvant Moteurs Diesel</td>
<td>0.7</td>
<td>1982</td>
<td>Can $320 000</td>
<td>220 700</td>
<td>Cost fob France</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Downdraft model GA20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Company / Trade Name</td>
<td>Cap. daft/h</td>
<td>Date</td>
<td>Equip. Cost Original Units</td>
<td>Equip. Cost 1985 £</td>
<td>Notes</td>
<td>Ref</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------------</td>
<td>-------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>12</td>
<td>Energy Equipment Engineering Downdraft</td>
<td>0.3</td>
<td>1982</td>
<td>Guilders 180 000</td>
<td>43 600</td>
<td>Cost fob Netherlands</td>
<td>43</td>
</tr>
<tr>
<td>13</td>
<td>Fritz Werner Downdraft</td>
<td>0.11</td>
<td>1982</td>
<td>Can $86 000</td>
<td>59 200</td>
<td>Cost fob Canada</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>Imbert Energietechnik Downdraft</td>
<td>0.29</td>
<td>1982</td>
<td>Can $285 000</td>
<td>196 100</td>
<td>Cost fob Germany Add 7% delivery</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>Pillard Downdraft</td>
<td>0.62</td>
<td>1982</td>
<td>Can $150 000</td>
<td>103 200</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>Pillard Downdraft</td>
<td>0.11</td>
<td>1982</td>
<td>Can $190 000</td>
<td>130 700</td>
<td>Includes 110kWe engine/generator</td>
<td>43</td>
</tr>
<tr>
<td>17</td>
<td>Pyrenco Downdraft</td>
<td>0.30</td>
<td>1982</td>
<td>US $250 000</td>
<td>223 800</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>18</td>
<td>Pyrenco Downdraft</td>
<td>0.52</td>
<td>1982</td>
<td>US $335 000</td>
<td>299 800</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>19</td>
<td>Vyncke Warmetechnik Downdraft</td>
<td>0.12</td>
<td>1982</td>
<td>Can $110 000</td>
<td>75 700</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>20</td>
<td>National Synfuels Stirred Bed</td>
<td>1.2</td>
<td>1982</td>
<td>US $600 000</td>
<td>537 000</td>
<td>Includes microprocessor control</td>
<td>43</td>
</tr>
<tr>
<td>21</td>
<td>National Synfuels Stirred Bed</td>
<td>1.8</td>
<td>1982</td>
<td>US $650 000</td>
<td>581 800</td>
<td>Includes microprocessor control</td>
<td>43</td>
</tr>
<tr>
<td>22</td>
<td>National Synfuels Stirred Bed</td>
<td>4.1</td>
<td>1982</td>
<td>US $950 000</td>
<td>850 300</td>
<td>Includes microprocessor control</td>
<td>43</td>
</tr>
<tr>
<td>No</td>
<td>Company / Trade Name</td>
<td>Cap. daft/h</td>
<td>Date</td>
<td>Equip. Original Units</td>
<td>Equip. Cost 1985 £</td>
<td>Notes</td>
<td>Ref</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>23</td>
<td>Alberta Industrial Development Fluid Bed</td>
<td>2</td>
<td>1982</td>
<td>US $200 000</td>
<td>179 000</td>
<td>Based on data for fluid bed peat pyrolyser (below)</td>
<td>43</td>
</tr>
<tr>
<td>24</td>
<td>Energy Products of Idaho; Fluid Bed</td>
<td>1.6</td>
<td>1982</td>
<td>US $300 000</td>
<td>268 500</td>
<td>Slightly adapted fluid bed combustor</td>
<td>43</td>
</tr>
<tr>
<td>25</td>
<td>Sur-Lite Fluid Bed</td>
<td>0.59</td>
<td>1982</td>
<td>US $150 000</td>
<td>134 300</td>
<td>Skid mounted system with Cyclone gas cleaning</td>
<td>43</td>
</tr>
<tr>
<td>26</td>
<td>Sur-Lite Fluid Bed</td>
<td>2.4</td>
<td>1982</td>
<td>US $400 000</td>
<td>358 000</td>
<td>Skid mounted system with Cyclone gas cleaning</td>
<td>43</td>
</tr>
<tr>
<td>27</td>
<td>Sur-Lite Fluid Bed</td>
<td>4.7</td>
<td>1982</td>
<td>US $650 000</td>
<td>581 800</td>
<td>Skid mounted system with cyclone gas cleaning</td>
<td>43</td>
</tr>
<tr>
<td>28</td>
<td>Pyro-Sol Klin Pyrolyser</td>
<td>2.3</td>
<td>1982</td>
<td>US $672 000*</td>
<td>601 400*</td>
<td>*Installed plant cost</td>
<td>43</td>
</tr>
<tr>
<td>29</td>
<td>Alberta Industrial Developments Fluid Bed Pyrolyser</td>
<td>1.7</td>
<td>1982</td>
<td>Can $200 000</td>
<td>137 600</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>30</td>
<td>KHD model DUM 506 Downdraft</td>
<td>0.1</td>
<td>7/85</td>
<td>DM674 000</td>
<td>174 800</td>
<td>Package units mounted in iso-container</td>
<td>101</td>
</tr>
<tr>
<td>31</td>
<td>KHD model DUM 509 Downdraft</td>
<td>0.2</td>
<td>7/85</td>
<td>DM864 000</td>
<td>224 000</td>
<td>Package units mounted in iso container</td>
<td>101</td>
</tr>
<tr>
<td>No</td>
<td>Company / Trade Name</td>
<td>Cap. daft/h</td>
<td>Date</td>
<td>Equip. Cost Original Units</td>
<td>Equip. Cost 1985 £</td>
<td>Notes</td>
<td>Ref</td>
</tr>
<tr>
<td>----</td>
<td>------------------------------</td>
<td>------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>32</td>
<td>KHD model DUM 514 Downdraft</td>
<td>0.36</td>
<td>7/85</td>
<td>DM1 14 000</td>
<td>288 900</td>
<td>Package units mounted in iso container</td>
<td>101</td>
</tr>
<tr>
<td>33</td>
<td>Ebara Pyrolyser for RDF</td>
<td>4x10.4</td>
<td>1984</td>
<td>US $24 326 000</td>
<td>20 540 900</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>34</td>
<td>Ebara Pyrolyser for sorted refuse</td>
<td>3x10</td>
<td>1984</td>
<td>US $33 077 000</td>
<td>27 930 200</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>35</td>
<td>TNEE</td>
<td>7</td>
<td>7/83</td>
<td>FF30 000 000*</td>
<td>3 051 000*</td>
<td>* Installed plant cost</td>
<td>101</td>
</tr>
<tr>
<td>36</td>
<td>CPC Fluid Bed</td>
<td>2.6</td>
<td>10/84</td>
<td>US $950 000</td>
<td>802 200</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 mBTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>ADENAP Fluid Bed (Sur-Lite)</td>
<td>0.55t</td>
<td>1/83</td>
<td>US $160 000</td>
<td>139 600</td>
<td>Skid mounted units feed to Hot Clean Gas. cf 25,26,27</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 mBTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>ADENAP Fluid Bed (Sur-Lite)</td>
<td>1.1t</td>
<td>1/83</td>
<td>US $255 000</td>
<td>222 500</td>
<td>Skid mounted units feed to hot clean gas, cf 25,26,27</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 mBTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>ADENAP Fluid Bed (Sur-Lite)</td>
<td>1.6t</td>
<td>1/83</td>
<td>US $355 000</td>
<td>309 700</td>
<td>Skid mounted units feed to Hot Clean Gas, cf 25,26,27</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mBTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>ADENAP Fluid Bed (Sur-Lite)</td>
<td>2.1t</td>
<td>1/83</td>
<td>US $410 000</td>
<td>357 800</td>
<td>Skid mounted units feed to Hot Clean Gas, cf 25,26,27</td>
<td>102</td>
</tr>
<tr>
<td>No</td>
<td>Company / Trade Name</td>
<td>Cap. daft/h</td>
<td>Date</td>
<td>Equip. Cost Original Units</td>
<td>Equip. Cost 1985 £</td>
<td>Notes</td>
<td>Ref</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------</td>
<td>------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>--------------------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>41</td>
<td>ADENAP Fluid Bed (Sur-Lite)</td>
<td>3.2t 60 mBTU</td>
<td>1/83</td>
<td>US $545 000</td>
<td>475 600</td>
<td>Skid mounted units feed to Hot Clean Gas, cf 25,26,27</td>
<td>102</td>
</tr>
<tr>
<td>42</td>
<td>ADENAP Fluid Bed (Sur-Lite)</td>
<td>4.2t 80 mBTU</td>
<td>1/83</td>
<td>US $660 000</td>
<td>575 900</td>
<td>Skid mounted units feed to Hot Clean Gas, cf 25,26,27</td>
<td>102</td>
</tr>
<tr>
<td>43</td>
<td>Energy Equipment Engineering Downdraft</td>
<td>0.15</td>
<td>1983</td>
<td>US $50 000</td>
<td>42 900</td>
<td>US $60 000 including storage</td>
<td>102</td>
</tr>
<tr>
<td>44</td>
<td>Energy Products of Idaho Fluid Bed</td>
<td>2.8t 53 mBTU</td>
<td>1983</td>
<td>US $1 580 000*</td>
<td>1 345 000*</td>
<td>* Total plant cost including boiler retrofit, cf 24</td>
<td>102</td>
</tr>
<tr>
<td>45</td>
<td>Foster Wheeler Power Fluid Bed</td>
<td>7.0</td>
<td>1985</td>
<td>£1 710 000*</td>
<td>1 710 000*</td>
<td>* Total plant cost</td>
<td>101</td>
</tr>
<tr>
<td>46</td>
<td>Alternate Energy Industries Horizontal Moving Bed Pyrolyser</td>
<td>1.0</td>
<td>1985</td>
<td>£225 000</td>
<td>225 000</td>
<td>cf 28</td>
<td>101</td>
</tr>
<tr>
<td>47</td>
<td>Alternate Energy Industries Horizontal Moving Bed Pyrolyser</td>
<td>4.5</td>
<td>1985</td>
<td>£425 000</td>
<td>425 000</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>48</td>
<td>Battelle Columbus</td>
<td>20.8</td>
<td>1981</td>
<td>US $2 594 500</td>
<td>2 562 800</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>No</td>
<td>Company / Trade Name</td>
<td>Cap. daft/h</td>
<td>Date</td>
<td>Equip. Cost Original Units</td>
<td>Equip. Cost 1985 £</td>
<td>Notes</td>
<td>Ref</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>-------------</td>
<td>------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>49</td>
<td>Buck Rogers</td>
<td>0.2</td>
<td>1985</td>
<td>US $57 000</td>
<td>45 000</td>
<td>Includes transport at 10%</td>
<td>101</td>
</tr>
<tr>
<td>No</td>
<td>Company and/or Trade Name</td>
<td>Cap. daft/h</td>
<td>Total Plant Cost Original Units</td>
<td>Total Plant Cost in 1985 £</td>
<td>Notes</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>John Brown/Wellman ODG Twin Fluid Bed</td>
<td>5.0</td>
<td>£1 962 000</td>
<td>2 037 500</td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Applied Engineering Updraft</td>
<td>1.45</td>
<td>Taken as 1.75 x Equipment</td>
<td>963 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Century Research Inc Updraft</td>
<td>1.9</td>
<td>1.66 x Equipment</td>
<td>342 624</td>
<td>1.66 x Equipment quoted with costs</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EZ Manufacturing Updraft</td>
<td>0.22</td>
<td>Taken as 1.75 x Equipment</td>
<td>78 225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Forest Fuels Updraft moving grate</td>
<td>0.35</td>
<td>Taken as 1.75 x Equipment</td>
<td>230 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Biomass Corporation Downdraft</td>
<td>0.17</td>
<td>1.2 x Equipment</td>
<td>127 900</td>
<td>1.15 to 1.2 x Equip. quoted with costs</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Biomass Corporation Downdraft</td>
<td>0.43</td>
<td>1.2 x Equipment</td>
<td>160 200</td>
<td>1.15 to 1.2 x Equip. quoted with costs</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Biomass Corporation Downdraft</td>
<td>0.67</td>
<td>1.2 x Equipment</td>
<td>199 200</td>
<td>1.15 to 1.2 x Equip. quoted with costs</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Duvant Moteurs Diesel Downdraft Model GA10</td>
<td>0.18</td>
<td>Taken as 1.75 x Equipment</td>
<td>101 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Duvant Moteurs Diesel Downdraft Model GA10</td>
<td>0.45</td>
<td>Taken as 1.75 x Equipment</td>
<td>156 450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Duvant Moteurs Diesel Downdraft model GA20</td>
<td>0.7</td>
<td>Taken as 1.75 x Equipment</td>
<td>386 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Energy Equipment Engineering Downdraft</td>
<td>0.3</td>
<td>1.75 x Equipment</td>
<td>See No 43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Company and/or Trade Name</td>
<td>Cap. daft/h</td>
<td>Total Plant Cost Original Units</td>
<td>Total Plant Cost In 1985 £</td>
<td>Notes</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>-------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Fritz Werner Downdraft</td>
<td>0.11</td>
<td>Taken as 1.2 x Equipment</td>
<td>71 040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Imbert Energietechnik Downdraft</td>
<td>0.29</td>
<td>Taken as 1.27 x Equipment</td>
<td>249 047</td>
<td>1.2 x Equipment + 7% for delivery</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pillard Downdraft</td>
<td>0.62</td>
<td>Taken as 1.75 x Equipment</td>
<td>180 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pillard Downdraft</td>
<td></td>
<td></td>
<td></td>
<td>Not applicable - includes generator</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Pyrenco Downdraft</td>
<td>0.30</td>
<td>Taken as 1.75 x Equipment</td>
<td>391 650</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Pyrenco Downdraft</td>
<td>0.52</td>
<td>Taken as 1.75 x Equipment</td>
<td>524 650</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Vyncke Warmetechnik Downdraft</td>
<td>0.12</td>
<td>Taken as 1.2 x Equipment</td>
<td>90 840</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>National Synfuels Stirred Bed</td>
<td>1.2</td>
<td>Taken as 2.25 x Equipment</td>
<td>1 208 250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>National Synfuels Stirred Bed</td>
<td>1.8</td>
<td>Taken as 2.25 x Equipment</td>
<td>1 309 050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>National Synfuels Stirred Bed</td>
<td>4.1</td>
<td>Taken as 2.25 x Equipment</td>
<td>1 913 175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Alberta Industrial Developments Fluid Bed</td>
<td>2.0</td>
<td>Taken as 2.25 x Equipment</td>
<td>402 800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Energy Products of Idaho; Fluid Bed</td>
<td>1.6</td>
<td>Taken as 2.25 x Equipment</td>
<td>604 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Company and/or Trade Name</td>
<td>Cap. daft/h</td>
<td>Total Plant Cost Original Units</td>
<td>Total Plant Cost In 1985 £</td>
<td>Notes</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Sur-Lite Fluid Bed</td>
<td>0.59</td>
<td>Taken as 1.2 x Equipment</td>
<td>161 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Sur-Lite Fluid Bed</td>
<td>2.4</td>
<td>Taken as 1.2 x Equipment</td>
<td>429 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Sur-Lite Fluid Bed</td>
<td>4.7</td>
<td>Taken as 1.2 x Equipment</td>
<td>698 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Pyro-Sol Klin Pyrolyser</td>
<td>2.3</td>
<td>US $672 000</td>
<td>601 400</td>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Alberta Industrial Developments Fluid Bed Pyrolyser</td>
<td>1.7</td>
<td>Taken as 2.25 x Equipment</td>
<td>309 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>KHD model DUM 506 Downdraft</td>
<td>0.1</td>
<td>Taken as 1.2 x Equipment</td>
<td>209 760</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>KHD model DUM 509 Downdraft</td>
<td>0.2</td>
<td>Taken as 1.2 x Equipment</td>
<td>268 800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>KHD model DUM 514 Downdraft</td>
<td>0.36</td>
<td>Taken as 1.2 x Equipment</td>
<td>346 680</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Ebara Twin fluid bed</td>
<td>4x10.4</td>
<td>2 310 000 Cost of 1 system @ 45% total system cost</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Ebara Twin fluid bed</td>
<td>3 x 10</td>
<td>4 190 000 Cost of 1 system @ 45% total system cost</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>TNEE</td>
<td>7</td>
<td>FF30 000 000</td>
<td>3 051 000</td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Company and/or Trade Name</td>
<td>Cap. daft/h</td>
<td>Total Plant Cost Original Units</td>
<td>Total Plant Cost In 1985 £</td>
<td>Notes</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>-------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>CPC Fluid Bed</td>
<td>2.6t</td>
<td>Taken as 2.25 x Equipment</td>
<td>1 805 000</td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>ADENAP (Sur-Lite) Fluid Bed</td>
<td>0.55t</td>
<td>Taken as 1.2 x Equipment</td>
<td>167 520 cf 25,26,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>ADENAP (Sur-Lite) Fluid Bed</td>
<td>1.1t</td>
<td>Taken as 1.2 x Equipment</td>
<td>267 000 cf 25,26,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>ADENAP (Sur-Lite) Fluid Bed</td>
<td>1.6t</td>
<td>Taken as 1.2 x Equipment</td>
<td>371 600 cf 25,26,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>ADENAP (Sur-Lite) Fluid Bed</td>
<td>2.1t</td>
<td>Taken as 1.2 x Equipment</td>
<td>429 400 cf 25,26,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>ADENAP (Sur-Lite) Fluid Bed</td>
<td>3.2t</td>
<td>Taken as 1.2 x Equipment</td>
<td>570 700 cf 25,26,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>ADENAP (Sur-Lite) Fluid Bed</td>
<td>4.2t</td>
<td>Taken as 1.2 x Equipment</td>
<td>691 100 cf 25,26,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Energy Equipment Engineering Downdraft</td>
<td>0.15</td>
<td>US $74 000</td>
<td>63 500 Includes boiler retrofit, cf 12</td>
<td></td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Energy Products of Idaho Fluid Bed</td>
<td>2.8</td>
<td>US $1 580 000</td>
<td>1 345 000 Includes boiler retrofit, cf 24</td>
<td></td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Foster Wheeler Power Fluid Bed</td>
<td>7.0</td>
<td>£1 710 000</td>
<td>1 710 000</td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Alternate Energy Ind. Horizontal Moving Bed Pyrolyser</td>
<td>1.0</td>
<td>Taken as 2.25 x Equipment</td>
<td>506 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Company and/or Trade Name</td>
<td>Cap. daft/h</td>
<td>Total Plant Cost Original Units</td>
<td>Total Plant Cost in 1985 £</td>
<td>Notes</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Alternate Energy Ind. Horizontal Moving Bed Pyrolyser</td>
<td>4.5</td>
<td>Taken as 2.25 x Equipment</td>
<td>956 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Battelle Columbus</td>
<td>20.8</td>
<td>US $4 874 400</td>
<td>4 819 932</td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Buck Rogers</td>
<td>0.2</td>
<td>Taken as 1.75 x Equipment</td>
<td>79 000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of References

38 Imbert Manufacturers Literature in the possession of AV Bridgwater.

39 KHD Manufacturers Literature in the possession of AV Bridgwater.

43 B H Levelton & Associates Ltd, Enfor project C-258, "A Comparative Assessment of Forest Biomass Conversion to Energy Forms. Volume V, Data Book of Unit Processes for Primary Conversion by Thermal, Chemical and Biological Methods", Canada.

292

82 Combustion Power Company Manufacturers Literature, in possession of AV Bridgwater.

101 Manufacturers literature in the possession of A V Bridgwater.

103 Foley, G and Barnard, G "Biomass Gasification in Developing Countries", Earthscan (1983).

104 Watt Committee: Working Party on Gasification; "The Cost and Competitiveness of Low Calorific Value Fuel Gas from Coal".

105 Energy Efficiency Demonstration Scheme Project Profile, Data file 23, UK Department of Energy

106 Energy Efficiency Demonstration Scheme Project Profile, Data file 43, UK Department of Energy

107 Energy Efficiency Demonstration Scheme Project Profile, Data file 74, UK Department of Energy

108 Energy Efficiency Demonstration Scheme Project Profile, Data file 82, UK Department of Energy

109 Energy Efficiency Demonstration Scheme Project Profile, Data file 128, UK Department of Energy
110 Energy Efficiency Demonstration Scheme Project Profile, Data file 143, UK Department of Energy
111 Energy Efficiency Demonstration Scheme Project Profile, Data file 144, UK Department of Energy
112 Energy Efficiency Demonstration Scheme Project Profile, Data file 155, UK Department of Energy
114 Energy Technology Support Unit, "Energy Technologies for the United Kingdom", 1986 appraisal of research, development and demonstration.