Computer simulation of liquid flow patterns on distillation trays

Walton, Anthony G. (1995). Computer simulation of liquid flow patterns on distillation trays. PHD thesis, Aston University.

Abstract

This thesis describes work carried out to improve the fundamental modelling of liquid flows on distillation trays. A mathematical model is presented based on the principles of computerised fluid dynamics. It models the liquid flow in the horizontal directions allowing for the effects of the vapour through the use of an increased liquid turbulence, modelled by an eddy viscosity, and a resistance to liquid flow caused by the vapour being accelerated horizontally by the liquid. The resultant equations are similar to the Navier-Stokes equations with the addition of a resistance term.A mass-transfer model is used to calculate liquid concentration profiles and tray efficiencies. A heat and mass transfer analogy is used to compare theoretical concentration profiles to experimental water-cooling data obtained from a 2.44 metre diameter air-water distillation simulation rig. The ratios of air to water flow rates are varied in order to simulate three pressures: vacuum, atmospheric pressure and moderate pressure.For simulated atmospheric and moderate pressure distillation, the fluid mechanical model constantly over-predicts tray efficiencies with an accuracy of between +1.7% and +11.3%. This compares to -1.8% to -10.9% for the stagnant regions model (Porter et al. 1972) and +12.8% to +34.7% for the plug flow plus back-mixing model (Gerster et al. 1958). The model fails to predict the flow patterns and tray efficiencies for vacuum simulation due to the change in the mechanism of liquid transport, from a liquid continuous layer to a spray as the liquid flow-rate is reduced. This spray is not taken into account in the development of the fluid mechanical model. A sensitivity analysis carried out has shown that the fluid mechanical model is relatively insensitive to the prediction of the average height of clear liquid, and a reduction in the resistance term results in a slight loss of tray efficiency. But these effects are not great. The model is quite sensitive to the prediction of the eddy viscosity term. Variations can produce up to a 15% decrease in tray efficiency. The fluid mechanical model has been incorporated into a column model so that statistical optimisation techniques can be employed to fit a theoretical column concentration profile to experimental data. Through the use of this work mass-transfer data can be obtained.

Divisions: Engineering & Applied Sciences > Chemical engineering & applied chemistry
Additional Information: Department: Chemical Engineering and Applied Chemistry If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: Computer simulation,liquid flow patterns,distillation trays,computerised fluid dynamics,tray efficiency,mass transfer
Completed Date: 1995

Download

[img]

Export / Share Citation


Statistics

Additional statistics for this record