
Neural Computing Research Group
Aston University

Birmingham B4 7ET
United Kingdom

Tel: +44 (0)121 333 4631
Fax: +44 (0)121 333 4586

http://www.ncrg.aston.ac.uk/

Emulation of dynamic computer
models with multivariate output

Remi BARILLEC, Alexis BOUKOUVALAS, Dan CORNFORD

Unassigned Technical Report April 21, 2009

Abstract

This preliminary report describes work carried out as part of work package 1.2 of
the MUCM research project. The report is split in two parts: the first part (Sec-
tions 1 and 2) summarises the state of the art in emulation of computer models,
while the second presents some initial work on the emulation of dynamic models.
In the first part, we describe the basics of emulation, introduce the notation and
put together the key results for the emulation of models with single and multiple
outputs, with or without the use of mean function. In the second part, we present
preliminary results on the chaotic Lorenz 63 model. We look at emulation of a
single time step, and repeated application of the emulator for sequential predic-
tion. After some design considerations, the emulator is compared with the exact
simulator on a number of runs to assess its performance. Several general issues
related to emulating dynamic models are raised and discussed. Current work on
the larger Lorenz 96 model (40 variables) is presented in the context of dimension
reduction, with results to be provided in a follow-up report. The notation used in
this report are summarised in appendix.

Emulation of dynamic computer models with multivariate output 1

Contents
1 Single output emulation 2

1.1 Without mean function . 2
1.2 With mean function . 3

2 Multi-output emulation 4
2.1 Without mean function . 5
2.2 With mean function . 6
2.3 Conclusion . 9

3 Emulation of dynamic models 9
3.1 Overview . 9
3.2 Emulation of the Lorenz ’63 model . 10
3.3 Emulation of the Lorenz ’96 model . 16
3.4 Open questions . 20

4 Conclusions 21

A Notations 23
A.1 General notations . 23
A.2 Training set . 23
A.3 Test set . 23
A.4 Prediction . 24
A.5 Mean function . 24

1 Single output emulation

In this section, we summarise the methods for the emulation of a univariate sim-
ulator η : Rn → R. The simulator is run on a set of inputs X = {x1, ...,xN} ∈
Rn,N , yielding a set of target outputs y = {y1, ..., yN}. The set of input/output
pairs (xi, yi)i=1:N is used to train an emulator f : Rn → R (i.e. a Gaussian
Process) and is referred to as training set. Prediction consists in using the emu-
lator to predict target outputs y∗ = {y∗1, ..., y∗M} at a given set of input points
X∗ = {x∗1, ...,x∗M}. The set of input/output pairs (x∗i, y∗i)i=1:M is referred to
as test set.

1.1 Without mean function

We first consider the case of a zero-mean Gaussian Process. See for instance
Bishop (2006); Rasmussen and Williams (2006). A covariance function k defines
the correlations between inputs, so that the covariance between two inputs x and
x′ is given by the scalar k(x,x′). More generally, for two given sets of inputs
X and X′ of sizes N and N ′ respectively, k induces an N × N ′ covariance
matrix K = k(X,X′). In particular, we denote K = k(X,X) the covariance
matrix for the training set. The parameters of the covariance function (also called
hyperparameters) are denoted θ.

1.1.1 Prediction

For a single test point x∗, the predicted output (as given by the emulator) has a Prediction at a single
point

Emulation of dynamic computer models with multivariate output 2

Gaussian distribution p(y∗|x∗,X, θ) with mean µ∗ and covariance σ2
∗ given by:

µ∗
1,1

= kT

1,N

K−1

N,N

y
N,1

(1)

σ2
∗

1,1
= k∗

1,1
− kT

1,N

K−1

N,N

k
N,1

, (2)

where k = k(X,x∗) and k∗ = k(x∗,x∗). This is easily extended to the case of Prediction at a set of
pointsmultiple test points:

µ∗
M,1

= kT

M,N

K−1

N,N

y
N,1

(3)

Σ∗
M,M

= k∗
M,M

− kT

M,N

K−1

N,N

k
N,M

, (4)

where k = k(X,X∗) and k∗ = k(X∗,X∗). Note that it is common in the Ma-
chine Learning community to only compute the diagonal of the matrix Σ∗.

1.1.2 Estimation of the hyperparameters

‘Optimal’ values for the hyperparameters can be estimated from the training data Marginal maximum like-
lihoodthrough maximisation of the marginal likelihood (or its logarithm, which is equiv-

alent but simplifies the computation):

ln p(y|X,θ) = −1
2
yTK−1y − 1

2
ln |K| − N

2
ln 2π. (5)

The minimisation usually requires computation of the derivatives: Derivatives of the
marginal maximum
likelihood

∂

∂θj
ln p(y|X,θ) =

1
2
yTK−1 ∂K

∂θj
K−1y − 1

2
Tr(K−1 ∂K

∂θj
) (6)

=
1
2
Tr

(
(ααT −K−1)

∂K
∂θj

)
with α = K−1y (7)

1.2 With mean function

Following Rasmussen and Williams (2006), the mean function can be represented
by a set of q basis functions h = (h1, ..., hq)T with regression coefficients β to be
estimated from the data. This yields a Gaussian Process g defined as:

g(x) = h(x)T
1,q

β
q,1

+ f(x) (8)

where f(x) is a zero-mean Gaussian Process.

1.2.1 Prediction (informative prior)

Given a prior on β ∼ N (b,B), the uncertainty in β can be integrated out, giving Prediction with mean
function (prior)the predicted distribution for a test set X∗:

µ′
∗

M,1

= HT
∗

M,q

β̄
q,1

+ kT

M,N

K−1

N,N

(y
N,1

−HT

N,q

β̄
q,1

) (9)

= µ∗
M,1

+RTβ̄ (10)

Σ′
∗

M,M

= Σ∗
M,M

+RT(B−1 + HK−1HT)−1R (11)

Emulation of dynamic computer models with multivariate output 3

where

H
q,N

= h(X) (12)

H∗
q,M

= h(X∗) (13)

R
q,M

= H∗
q,M

− H
q,N

K−1

N,N

k
N,M

, (14)

β̄
q,1

= (B−1

q,q
+ H

q,N

K−1

N,N

HT

N,q

)−1(H
q,N

K−1

N,N

y
N,1

+ B−1

q,q
b
q,1

). (15)

1.2.2 Prediction (uninformative prior)

In the case of an uninformative prior, i.e. when B−1 → 0, the expressions simplify
to: Prediction with mean

function (no prior)
µ′
∗ = µ∗ + RTβ̄ (16)

Σ′
∗ = Σ∗ + RT(HK−1HT)−1R (17)

where

β̄ = (HK−1HT)−1HK−1y. (18)

1.2.3 Estimation of the hyperparameters (informative prior)

The marginal log-likelihood is given by: MLL with mean function
(prior)

ln p(y|X,θ,b,B) =− 1
2
(HTb− y)T(K + HTBH)−1(HTb− y)

− 1
2

ln |K + HTBH| − N

2
ln 2π

(19)

∝− 1
2

dTG−1d− 1
2

ln |G| (20)

where we used d = HTb− y and G = K + HTBH .

The corresponding derivatives follow: Derivatives of MLL with
mean function (prior)

∂

∂θj
ln p(y|X,θ,b,B) =

1
2
Tr

(
(ααT −G−1)

∂G

∂θj

)
(21)

with α = G−1d. It is worth observing that:

∂G

∂θj
=

∂K
∂θj

. (22)

1.2.4 Estimation of the hyperparameters (uninformative prior)

In the case of an uninformative prior, the marginal log-likelihood becomes (Ras- MLL with mean function
(no prior)mussen and Williams, 2006):

ln p(y|X,θ) =− 1
2
yTK−1y − 1

2
log |K|

+
1
2
yTCy − 1

2
log |A| − n−m

2
log 2π,

(23)

Emulation of dynamic computer models with multivariate output 4

where:

m = rank(H), (24)

A = HK−1HT, (25)

C = K−1HTA−1HK−1. (26)

The derivative of the marginal log-likelihood is given by:

∂

∂θj
ln p(y|X,θ) =

1
2
yTK−1 ∂K

∂θj
K−1y − 1

2
Tr(K−1 ∂K

∂θj
)+

1
2
yT ∂C

∂θj
y − 1

2
Tr(A−1 ∂A

∂θj
)

(27)

with
∂C
∂θj

= (−2K−1 + C)
∂K
∂θj

C (28)

∂A
∂θj

= −HK−1 ∂K
∂θj

K−1HT (29)

2 Multi-output emulation

The aim of the method described in this section is the emulation of a mapping η
from an n-dimension input space to an p-dimension output space. For each input
x ∈ Rn, η gives an output y = η(x) ∈ Rp. Typically, the emulator is trained
using a training set of N input/output pairs. The training inputs are stored as the
columns of a design matrix X = (x1, . . . ,xN) ∈ Rn,N while the training outputs
are stored in a similar matrix Y = (y1, . . . ,yN) ∈ Rp,N . It is convenient, for
computation purposes, to vectorise the p×N output matrix into a pN × 1 vector
ỹ .

We consider here the case of a separable emulator, in which the covariance on
the output is separated from the covariance on the input. A covariance function
k is specified on the input space just as in the single output case. The covari-
ance between outputs is specified by a fixed covariance matrix Kf indicating the
correlation between output components (i.e. output dimensions), so that for two
input points, the covariance of corresponding emulator’s responses is given by:
〈f(x), f(x′)〉 = Kf × k(x,x′). Further assuming that the input covariance func-
tion is isotropic, we have: 〈f(x), f(x)〉 = Kf .

2.1 Without mean function

2.1.1 Prediction

Single test point The emulator f is used to predict the output at a new input
x∗, giving a test input-output pair y∗ = f(x∗). In the absence of noise on the
output, the marginal distribution of the test output y∗ is (Bonilla et al., 2007) Prediction at a single

pointp(y∗|x∗,X,Y) = N (µ∗,Σ∗), with:

µ∗
p,1

= kT

p,pN

K−1

pN,pN

ỹ
pN,1

(30)

Σ∗
p,p

= k∗
p,p
− kT

p,pN

K−1

pN,pN

k
pN,p

(31)

Emulation of dynamic computer models with multivariate output 5

where k denotes the covariance between the test point and the training set, K
denotes the training set’s covariance and k∗ is the covariance of the test point. We
use the following shortcut notations for the various covariance matrices:

K
pN,pN

= Kf
p,p

⊗ Kx
N,N

(32)

k
pN,p

= Kf
p,p

⊗ k(X,x∗)
N,1

(33)

k∗
p,p

= Kf
p,p

⊗ k(x∗,x∗)
1,1

. (34)

Multiple test points The emulator f is used to predict the output at a set of M Prediction at a set of
pointsnew inputs X∗, giving outputs Y∗ = f(X∗), i.e. (y∗1, . . . ,y∗M) = (f(x∗1), . . . ,

f(x∗M)). We denote ỹ∗ the vectorised set of test outputs. In the most general
case, the predicted output admits a distribution p(ỹ∗|X∗,X,Y) = N (µ∗,Σ∗),
with:

µ∗
pM,1

= kT

pM,pN

K−1

pN,pN

ỹ
pN,1

(35)

Σ∗
pM,pM

= k∗
pM,pM

− kT

pM,pN

K−1

pN,pN

k
pN,pM

(36)

where k denotes the covariance between the test point and the training set, K
denotes the training set’s covariance and k∗ is the covariance of the test point. We
use the following notation:

k
pN,pM

= Kf
p,p

⊗ k(X,X∗)
N,M

(37)

k∗
pM,pM

= Kf
p,p

⊗ k(X∗,X∗)
M,M

. (38)

For a separable emulator, the prediction equations can be rewritten using the fol- Separable case
lowing matrix identities (Petersen and Pedersen, 2008):

(A⊗B) vec(X) = vec
[
B XAT

]
(39)

A⊗B + A⊗ C = A⊗ (B + C) (40)

to give:

µ∗ = vec
[
k(X,X∗)T K−1

x Y
]
, (41)

Σ∗ = Kf ⊗
[
k(X∗,X∗)− k(X,X∗)T K−1

x k(X,X∗)
]
. (42)

Note that µ∗ is the vectorised form of the single output predicted mean from Equa-
tion (3) while the second term in the Kronecker product for Σ∗ is the single output
predicted covariance from Equation (4).

2.1.2 Estimation of the hyperparameters (separable case)

The marginal log-likelihood is given by: Marginal log-likelihood

ln p(ỹ|X,θ) =− 1
2
ỹTK−1ỹ − 1

2
ln |K| − pN

2
ln 2π (43)

=− 1
2
ỹTvec

[
K−1

x YK−1
f

]
− N

2
log |Kf |

− p

2
log |Kx| −

pN

2
ln 2π

(44)

Emulation of dynamic computer models with multivariate output 6

where we have used Equation (39) and the following identity (Petersen and Ped-
ersen, 2008):

log |Kf ⊗Kx| = log
(
|Kf |N |Kx|p

)
(45)

= N log |Kf |+ p log |Kx| (46)

If Kf and Kx have parameters θf and θx respectively and these parameters are Derivatives of MLL
disjoint, we can express the derivatives of the marginal log-likelihood as:

∂

∂θf
ln p(ỹ|X,θ) =

1
2
ỹTvec

[
K−1

x YK−1
f

∂Kf

∂θf
K−1

f

]
− N

2
Tr

(
K−1

f

∂Kf

∂θf

)
,

(47)

∂

∂θx
ln p(ỹ|X,θ) =

1
2
ỹTvec

[
K−1

x

∂Kx

∂θx
K−1

x YK−1
f

]
− p

2
Tr

(
K−1

x

∂Kx

∂θx

)
.

(48)

Note that, because of the separable nature of the covariance function, these deriva-
tives only require inversion of the Kf and Kx matrices (not the full K).

2.2 With mean function

Following Fricker (2008), the mean function can be represented by a set of uni-
variate basis functions h with a matrix of regression coefficients B to be deter-
mined from the data.

If we assume that the same basis functions are shared by all outputs, the mean
function for the set of points h(X)TB can be rewritten HTβ̃ where β̃ = vec [B]
and HT = Ip ⊗ HT. Ip is the p × p identity matrix. We also use the notations
H = Ip ⊗H and HT

∗ = Ip ⊗HT
∗ .

2.2.1 Prediction (informative prior)

If prior knowledge about the regression coefficients is available, i.e. β̃ ∼ N (b,B), Prediction with mean
function (prior)the equations for the predicted mean and variance are given by:

µ′
∗

pM,1

= HT

pN,pq

β̄
pq,1

+ kT

pM,pN

K−1

pN,pN

(ỹ
pN,1

− HT

pN,pq

β̄
pq,1

) (49)

= µ∗
pM,1

+ RT

pM,pq

β̄
pq,1

(50)

Σ′
∗

pM,pM

= Σ∗
pM,pM

+ RT

pM,pq

(B−1

pq,pq
+ H

pq,pN

K−1

pN,pN

HT

pN,pq

)−1 R
pq,pM

(51)

where:

R
pq,pM

= H∗
pq,pM

− H
pq,pN

K−1

pN,pN

k
pN,pM

, (52)

β̄
pq,1

= (B−1

pq,pq
+ HT

pN,pq

K−1

pN,pN

H
pq,pN

)−1 (H
pq,pN

K−1

pN,pN

ỹ
pN,1

+B−1

pq,pq
β̃). (53)

In the case of a separable emulator , we have the further identities: Separable case

R = Ip ⊗
[
H∗ −HK−1

x k
]

= Ip ⊗R, (54)

HTK−1H = K−1
f ⊗

[
HK−1

x HT
]

(55)

HK−1ỹ = vec
[
HK−1

x YK−1
f

]
(56)

Emulation of dynamic computer models with multivariate output 7

However, this is not sufficient to obtain a fully separable expression of β̄. Even if Using a prior on β̄

breaks the separable as-
sumption

one chose a separable prior over β̃, so that B = Bf ⊗ Bx, one would still need
to inverse a pq × pq matrix in the computation of β̄, thus limiting the benefits
of using a separable emulator. Only if the separable prior was chosen such that
B = Kf ⊗ Bx would a separable expression of β̄ be obtained. However, there
is no reason why one should want to constraint B on Kf , especially since Kf is
likely to be estimated from the data (while the prior covariance matrix B should
not).

2.2.2 Prediction (uninformative prior)

For an uninformative prior on β̃, i.e. B−1 → 0, the predicted distribution is Prediction with mean
function (no prior)obtained by extending the single output case to multivariate outputs. This gives

the predicted mean and variance:

µ′
∗

pM,1

= HT
∗

pM,pq

β̄
pq,1

+ kT

pM,pN

K−1

pN,pN

(ỹ
pN,1

− HT

pN,pq

β̄
pq,1

) (57)

= µ∗
pM,1

+ RT

pM,pq

β̄
pq,1

(58)

Σ′
∗

pM,pM

= Σ∗
pM,pM

+ RT

pM,pq

(H
pq,pN

K−1

pN,pN

HT

pN,pq

)−1 R
pq,pM

(59)

where β̄ is now given by

β̄
pq,1

= (H
pq,pN

K−1

pN,pN

HT

pN,pq

)−1 H
pq,pN

K−1

pN,pN

ỹ
pN,1

. (60)

The expression for β̄ factorises in the case of a separable emulator, as follows: Separable case

β̄ = vec
[(

HK−1
x HT

)−1
HK−1

x Y
]

= vec
[
B̄

]
. (61)

This leads to the fully separable prediction equations:

µ′
∗ = vec

[
HT

∗ B + k(X,X∗)TK−1
x (Y −HB)

]
(62)

= µ∗ + vec
[
RTB

]
(63)

Σ′
∗ = Σ∗ + Kf ⊗

[
RT(HK−1

x HT)−1R
]
. (64)

2.2.3 Estimation of the parameters (informative prior)

The marginal log-likelihood is given by: MLL with mean function
(prior)

ln p(ỹ|X,θ,b,B) =− 1
2
(HTb− ỹ)T(K + HTBH)−1(HTb− ỹ)

− 1
2

ln |K + HTBH| − pN

2
ln 2π

(65)

∝− 1
2

dTG−1d− 1
2

ln |G| (66)

where

d = HTb− ỹ, (67)

G = K + HTBH. (68)

Emulation of dynamic computer models with multivariate output 8

2.2.4 Estimation of the parameters (uninformative prior)

In the case of an uninformative prior, the marginal log-likelihood is given by:

ln p(ỹ|X,θ) =− 1
2
ỹTK−1ỹ − 1

2
log |K|

+
1
2
ỹTCỹ − 1

2
log |A| − p(n−m)

2
log 2π,

(69)

where:

m = rank(H), (70)

A = HK−1HT (71)

C = K−1HTA−1HK−1. (72)

In the separable case, we can rewrite A and C:

A = K−1
f ⊗

[
HK−1

x HT
]

= K−1
f ⊗A, (73)

C = K−1
f ⊗K−1

x HTA−1HK−1
x = K−1

f ⊗ C, (74)

and the marginal log-likelihood becomes:

ln p(ỹ|X,θ) ∝− 1
2
ỹTvec

[
(K−1

x − C)YK−1
f

]
− N − q

2
log |Kf |

− p

2
log |Kx| −

p

2
log |A|

(75)

The derivatives follow easily:

∂

∂θf
ln p(ỹ|X,θ) =

1
2
ỹTvec

[
(K−1

x − C)YK−1
f

∂Kf

∂θf
K−1

f

]
− N − q

2
Tr

(
K−1

f

∂Kf

∂θf

)
, (76)

∂

∂θx
ln p(ỹ|X,θ) =

1
2
ỹTvec

[(
K−1

x

∂Kx

∂θx
K−1

x +
∂C

∂θx

)
YK−1

f

]
− p

2
Tr

(
K−1

x

∂Kx

∂θx
+ A

∂A

∂θx

)
. (77)

The derivatives of C and A are obtained from Equations (28) and (29).

2.3 Conclusion

We have presented a summary of emulation, giving the key results for emulator
with and without mean function, with univariate and multivariate output. In par-
ticular, the separable assumption on the covariance function for the multivariate
case provides an interesting framework in which the computations can be kept
manageable by involving matrix operations in input space or output space only,
rather than in the much larger joint input/output space. We note that several de-
sirable features such as the use of a prior on the regression coefficients in the
mean function or the addition of a noise (nugget) term in the covariance function
break the separable assumption. This can be seen as a limitation of the separable
emulator framework.

In the following section, we look at the application of separable emulators to the
case where the simulator is a dynamic model.

Emulation of dynamic computer models with multivariate output 9

3 Emulation of dynamic models

3.1 Overview

Dynamic models are a specific class of computer models which simulate the
evolution in time of the state of a system. Such a simulator takes as an input
the state of the system at a time t and outputs the state at a later time t + dt:
xt+dt = η(xt,dt)

Several approaches to emulating a dynamic simulator can be found in Conti and
O’Hagan (2007):

• Emulate the trajectory of the state given its initial condition. The input is the
state at a time t and the output is the time-series {xt+dt,xt+2dt, ...,xt+τdt}.
This method provides an efficient way to compute the trajectory of the state
(single prediction step) but can be computationally demanding depending
on the dimension of the output (pτ).

• Emulate the transition from xt to xt+dt. This keeps the dimension of the
problem relatively low. A time-series of future states can still be generated
by repeated application of the emulator from some initial condition.

• Emulate time and state jointly. Although the most flexible in theory, this ap-
proach is extremely inefficient in practice due to the impractical dimension
of the joint state time space.

In this study, we focus on building an emulator for a single time step of the sim-
ulator (method 2), for a fixed dt, i.e. the input space is the space spanned by xt

and the output space is the space spanned by xt+dt.

3.2 Emulation of the Lorenz ’63 model

The Lorenz ’63 model is a 3-variable non-linear chaotic model. The evolution of
the state is governed by the set of differential equations:

dx1

dt
= σ(x2 − x1) (78)

dx2

dt
= x1(ρ− x3)− x2 (79)

dx3

dt
= x1x2 − βx3 (80)

where xi denotes the ith dimension of x. The parameters σ, ρ and β are set to
their default values, respectively 10, 28 and 8/3.

3.2.1 Design considerations

Like many dynamic models, the L63 model Lorenz (1963) presents attractors,
meaning that repeated application of the simulator generates a state trajectory
which does not explore the whole state space, but only a subspace of it we refer
to as the manifold (i.e. the subset of possible “realistic” values taken by xt as a
result of propagating it forward in time). We thus want to restrict our training set

Emulation of dynamic computer models with multivariate output 10

to points lying on the manifold. To estimate that manifold, we consider a long
run of the model from some initial condition and discard the initial part of the
trajectory during which the state has not yet converged to the manifold (“burn in”
phase).

Initial experiments have looked at training sets sampled uniformly (in time) from
the state’s trajectory. However, better schemes exist if we believe that the changes
undergone by the state during a single time step vary in different regions of the
state space. For instance, the L63 model has two attractors, resulting in state
either orbiting around one of the attractors or transiting from one attractor to the
other. These transition phases are typically harder to capture with an emulator ;
it thus makes sense to use a training set in which more observations (i.e. training
points) are made in the regions where transitions occur and fewer in the more
stable regions where the state orbits around one of the attractors.

Unfortunately, we are not able to identify such regions prior to running the simu-
lator. An alternative method consists in adding points to the training set in regions
where the variance, as predicted by the emulator, is maximal, i.e. where we know
the least about the simulator. The parameters of the emulator are re-estimated by
maximising the marginal likelihood of the data every time a new design point is
added (for a small number of iterations only, e.g. 10).

In this experiment, the model is integrated forward with an inner time step of 0.01
time units, for a total of 800 time steps (8 time units). We look at emulating a
fixed time step dt = 0.05 time units with a multivariate separable emulator. The
emulator has a linear mean function and a squared exponential covariance function
with parameters to be determined from the data. Our training set is generated by
selecting 30 design points as explained previously. The resulting training set is
shown on Figure 1 (dots) along with the underlying simulator run (dashed line).

Figure 3 shows, on the left plot, how the predicted covariance decreases as the
number of points increases (in log-space). The covariance is averaged over time
and dimensions. At the end of the training phase, the covariance is about 10−4. On
the right hand side, the estimation of the length scale parameters (in log space) is
plotted against the number of training points. We observe that there is a minimum Can we get a theoretical

estimate of this thresh-
old?

training size (around 15 in this example) below which the emulator acts in a very
“conservative” way (small length scales), while above that threshold, it becomes
more confident in the data and starts interpolating smoothly (large length scales).
Although this behaviour can be expected, it is worth noting that the transition be-
tween the conservative and smooth regimes is not even, but rather discontinuous.

3.2.2 One step ahead prediction using the emulator

Figure 2 shows the same information as Figure 1, along with the emulator’s pre-
diction (mean: solid black line, covariance: dashed black line). Figure 4 shows
the same information but the output is plotted against time. It is almost impossible
to distinguish between the emulator and the simulator, and the predicted covari-
ance remains very small over the whole run. Note that 200 time steps (from 6
time units onwards) have been kept aside and left unobserved in order to assess
the quality of emulator outside the training set. The emulator shows very good
prediction skill in that area, which suggests it has learnt the model. However, al-

Emulation of dynamic computer models with multivariate output 11

Figure 1: Lorenz ’63 – A single run of the model generating the well-known “butterfly” trajectory (dashed
line). Training points (dots) are selected using a minimum predicted variance approach.

Figure 2: Lorenz ’63 – The same data as in Figure 1, plotted along with the emulator’s mean response
(black line) and predicted variance (dotted line). The emulator’s prediction is indistinguishable from the
true output.

Figure 3: Lorenz ’63 – Average predicted variance (left) and length-scale parameters (right) as the
number of design points increases. The predicted variance is averaged over dimension and time. Both
the variance and the length-scales are plotted in log scale.

Emulation of dynamic computer models with multivariate output 12

Figure 4: Lorenz ’63 – Emulated trajectory (projected onto each dimension). Given a true trajectory of
the state at time t, the emulator is used to compute the future trajectory at t + dt (i.e. each point on the
trajectory is propagated forward using the emulator). The simulated trajectory at time t + dt is shown as
a dashed red line, while the emulated mean trajectory is shown as a solid black line. Note that the black
line shadows the red line almost perfectly, with variance almost zero everywhere. Red stars denote the
observed points used to train the emulator.

though this area is unobserved in time, it is likely to be close to observed data in Is there a better way
to select an unobserved
region away from the
training data in space
rather than in time? This
is what we really want
in order to assess the
emulator’s extrapolation
skill.

input space, hence conclusions about the emulation skill when extrapolating (in
time) must be taken with caution.

3.2.3 Sequential prediction using the emulator

Propagation of the state forward in time is achieved by sequential application of
the forward model to the state. In order to assess the emulator’s ability to propa-
gate the state forward, we can similarly apply the emulator repeatedly to the state.
However, the uncertainty introduced by the emulator needs to be propagated too.
This can be done in two ways: using approximate analytic methods, whereby an
estimate of the propagated uncertainty is derived, or using Monte-Carlo methods,
whereby a sample of realisations is propagated through the emulator and the prop-
agated uncertainty is estimated from the sample. We resort to the latter method as
it is conceptually simpler, though more demanding computationally. Propagation
of the uncertainty is summarised in the following algorithm:

Emulation of dynamic computer models with multivariate output 13

Figure 5: Lorenz ’63 – Sequential emulation

1. Select an initial condition xt = x0

2. Propagate xt through the emulator, giving the predicted distribution p(xt+dt)

3. Sample N realisations xi
t+dt from p(xt+dt)

4. At each time t, propagate each sample xi
t through the emulator, giving a

predicted distribution p(xi
t+dt)

5. Sample xi
t+dt from p(xi

t+dt)

6. Repeat steps 4 and 5 to desired lead time

It is clear that the performance of the emulator for sequential prediction is strongly
related to the initial condition x0 chosen, and to the chosen sample of realisations
if its size is small. In order to take these considerations into account when assess-
ing the emulator’s performance, we need to average over several initial conditions,
and possibly several samples. The latter can be avoided by choosing a sample of
large enough size. In the following experiment, we propagate the state forward
in time from 50 different initial conditions (taken from the same true simulator
trajectory the data was generated from), and chose a sample size of 100 which we
believe is sufficient for sampling effects to be negligible. Figure 5 shows the mean
trajectory of the state from a given initial condition (t0 = 1 time unit) along with
2 standard deviation error bars, as estimated from the sample.

Emulation of dynamic computer models with multivariate output 14

Figure 6: Lorenz ’63 – Sequential emulation of xt+dt = f(xt). This plot shows the distribution of the
Mean Square Error between the simulated and emulated trajectories as a function of increasing lead
time. 100 sample trajectories are computed using the emulator, from 50 different initial conditions (5000
trajectories in total). The distribution of the error is calculated over these 5000 trajectories.

Figure 7: Sequential emulation of xt+dt = xt + f(xt). This plot shows the same information as Figure 6
for the case where the variation in xt is emulated rather than xt+dt itself.

Emulation of dynamic computer models with multivariate output 15

We then measure, for each sample trajectory, the Mean Square Error (MSE) to the
true trajectory (as given by the simulator). Figure 6 summarises the distribution
of the MSE as a function of lead time (from 1 to 71 time steps in the ahead,
with 20 steps corresponding to 1 time unit). As expected, the error increases as
a function of lead time but remains, for most samples, within acceptable bounds
up to 50 time steps (2.5 time units) ahead. This demonstrates that the emulator is
able to reproduce the true dynamics of the simulator, although having seen only
30 simulator runs. There is, however, an important number of outliers, showing
that the emulator fails to produce realistic trajectories for some choices of initial
conditions and samples. This is a limitation due to the approximations performed
in the emulator, but which could be improved on by increasing the number of
training points.

The same experiment was repeated, but this time the change in xt, i.e. ∆xt =
xt+dt − xt is considered, rather than the propagated state xt+dt. Figure 7 shows
that emulating ∆xt leads to similar results to emulating xt+dt.

3.2.4 Further design considerations

The emulator has been shown to give good results when trying to emulate a single
run of the model. If one knows the state of the system at an initial time, then
because the system is deterministic, considering a single run of the model from
that initial condition is a sensible approach. However, there might be parts of
the system space that this unique trajectory does not explore, and the emulator
can be expected to perform poorly when run from a different realistic, but unob-
served, initial condition. We want to compare the performace of two emulators,
one trained on a single model run, and one trained on several model runs from
different initial conditions, in order to compare their performances when gener-
alising to unobserved initial conditions. We choose two emulators, each trained
using a design set of 100 points. The first emulator selects its design points from
a single run of 8000 time steps of the model. The second selects its design points
from 10 runs of the model, each 800 time steps long (so that both emulators are
given the same amount of data to select from). We then compare their perfor-
mance from 50 different initial conditions (selected at random from another 10
runs of the model). Figure 8 shows the distribution of the Mean Square Error for
the first (top) and second (bottom) designs. In this case, the second design causes
the emulator to fail to reproduce the model’s dynamics. The first design shows
good, consistent results. In particular, the MSE remains below 40, which corre-
sponds roughly to the true model’s amplitude and suggests that the trajectories
generated, although wrong, are still consistent with the model’s dynamics.

3.3 Emulation of the Lorenz ’96 model

Our next aim is dynamic emulation of the Lorenz 96 (L96) model Lorenz (1996).
The L96 model is a 40-variable model representing 40 atmospheric sensors lo-
cated around a latitude. The system is governed by the set of equations:

∂xi

∂t
= (xi+1 − xi−2)xi−1 − xi + F (81)

indicating that the observation at each sensor is linked to the observations at the 3
closest neighbours. F is a constant forcing term.

Emulation of dynamic computer models with multivariate output 16

Figure 8: Lorenz ’63 – Comparison of sequential emulation for 2 different designs. The top plot shows
the Mean Square Error to the simulator for a design based on a single long run of the simulator. The
bottom plot shows the same information for a design based on several short runs of the simulator from
slightly different conditions.

Our initial aim was the application of dimension reduction methods, in particular
Principal Components Analysis (PCA), to the emulation of the L96 model. Fig-
ure 9 shows the variance of ∆xt as provided by PCA (normalised). There is no
clear cut in the eigenspectrum, which suggests that very few components can be
neglected when emulating the system. Similar observations can be made when
applying PCA to the input data.

However, it is questionable whether considering the input or the output separately
is sensible in the first place. What we are really interested in is the dimension of
the mapping from input to output. In the worst case, this dimension is p × p, i.e.
every dimension of the input space affects every dimension of the output space.
Yet, we know that only a subset of the dimension of x is responsible for the output
∆xi. Further work will look at Canonical Correlation Analysis, where both the
input and the output are considered.

Preliminary work on the L96 model focused on emulating a single run of the
model. A sequence of input points xt is generated by running the model forward
from some initial condition for 1000 time steps with an internal time step of 0.01

Emulation of dynamic computer models with multivariate output 17

Figure 9: Lorenz ’96 – Principal components analysis of the output data

time units. For each of these points, we consider the output ∆xt = xt+dt − xt

where dt = 0.05 time units. 80 design points are selected from the first 800
inputs using a minimum predicted variance approach, keeping the last 200 inputs
(i.e. the last 2 time units) unobserved to assess the emulator’s extrapolation skill.
The output covariance Kf is considered diagonal for simplicity, although future
experiments will look at improved covariance structures. The covariance on the
input uses an isotropic squared exponential kernel. Using a single length scale
parameter for all dimensions is justified by the symmetric nature of the L96 model.

Figure 10, left, shows the average covariance per input as the size of the design set
increases. Figure 10, right, shows the length scale parameter (solid blue line) and
the first two output variances (dashed lines) as a function of the number of design
points. Here again, note that we observe a critical threshold of about 75-80 points
necessary for the predicted variance to drop and for the covariance parameters to
converge. Note that in this experiment, the parameters were re-estimated every 5
new design points only (for speed purposes).

Figure 11 shows the output of the emulator plotted against time, with projections
onto the 5 first dimensions shown from top to bottom. The emulator (solid black
line) closely matches the simulator (red dashed line) in the observed region, but
quickly diverges from it in the unobserved region. Further experiments need to
look at larger training sets from longer runs of the model, as it is clear that on
this short example, the design chosen does not explore the 40 dimensional space
properly.

These preliminary results are to be extended with more experiments in order to
understand better the issues of dynamic emulation in high dimensions and the

Emulation of dynamic computer models with multivariate output 18

Figure 10: Lorenz ’96 – Average predicted variance (left) and covariance parameters (right). Both are
plotted in log scale as a function of the number of design points.

Figure 11: Lorenz ’96 – Emulation of a single model trajectory

Emulation of dynamic computer models with multivariate output 19

Figure 12: Mean function issue: the mean function (green) seems to be “pushed away” from the data
(red crosses). The prediction (in blue) is made at points taken from a run of the model (hence the
trajectory line). Each plot shows the output (∆xt) against the input (xt), projected onto each of the 3
input dimensions (left to right) and each of the 3 output dimensions (top to bottom).

potential benefits of dimension reduction methods in that context.

3.4 Open questions

3.4.1 Issue with mean function

The following phenomenon has been observed when training the emulator: when
the size of the design set becomes sufficiently large and the emulator’s response
becomes very close to the simulator’s, the mean function seems to be “pushed
away” from the data, as seen on Figure 12. Although this is of little concern in
well observed regions of input space, where the Gaussian process accounts for the
discrepancy, it is important in unobserved regions, where the emulator defaults to
the mean function.

This issue seems to be related to the fact that the uncertainty in the emulator’s
response becomes small, and accordingly the length scale parameters in the co-
variance function become large. However, it is unclear at this stage exactly why
this causes the regression coefficients H to be badly estimated. One possible
reason is that both large length scales and large data sets could induce large cross-
correlations between data points, leading to an ill-conditioned Kx matrix. Fur-
ther investigation to better understand the mean function problem is critical (these

Emulation of dynamic computer models with multivariate output 20

could include, for example, monitoring the condition number of the Kx matrix as
the emulator’s confidence increases).

A possible solution to prevent the mean function from being shifted away from the
data would be to systematically centre the data (i.e. substract the mean) and get rid
of the constant terms in the linear mean function. Another option is to constrain
the coefficients of the constant term to remain small via the use of an appropriate
prior. A third, possibly better option, would consist in using a prior on the length
scale parameters to prevent them from getting to large (i.e. use maximum a poste-
riori instead of the maximum likelihood when estimating these parameters). This
could also help achieving a smoother estimation of these parameters, rather than
the jump observed with maximum likelihood (Figure 3, right plot).

3.4.2 Unbounded uncertainty with mean function

A second remark, linked to the previous, has to do with predicted variance. It is
easy to see, from the expression of the variance in Equation (64) that as x∗ moves
away from the data, its predicted variance is dominated by the second term, which
is proportional to the square of H∗ through R (all the rest being fixed with respect
to x∗). In consequence, if the mean function uses unbounded regressors such
as polynomials, the predicted variance is unbounded too. This also applies to
the predicted mean, which can be problematic when emulating a physical system
evolving within a bounded domain (as many physical system do). Note that this
phenomenon can be aggravated by poor estimation of the regression coefficients
(as a result of the previous remark).

To address this issue, one might want to put a prior on the regression coefficients
β to ensure they remain small. However, eliciting such a prior in high-dimension
can be difficult. Furthermore, using an informative prior on the β partially breaks
the separability of the emulator and could raise computational costs considerably.

3.4.3 Multiple minima for marginal likelihood

A last remark concerns the estimation of the covariance parameters. We have
observed, in many cases, that when a large number of parameters need to be es-
timated, the marginal likelihood presents several local minima, and the “optimal”
value of the parameters can depend strongly on their initial value. This is more no-
ticeable in high dimension, where we try to estimate the full Kf matrix (p(p+1)/2
parameters). Although this is the most flexible approach, it is also the most ex-
pensive, and a good choice of initial parameters is critical. This is less the case
when using simpler covariance structures, such as band diagonal and diagonal
(the latter being equivalent to emulating along each dimension of the output inde-
pendently). However, prior specification of the output covariance structure might
only be possible in cases where the simulator is known (i.e. computer model).

4 Conclusions

This report aimed at providing a clear account of the past and current work on
dimension reduction methods applied to emulation of dynamic models. It is clear
that, at this stage, most of the work has focused on learning about the emulator

Emulation of dynamic computer models with multivariate output 21

framework (Sections 1 and 2) and applying it to simple dynamic models (Section
3). This has provided some insight into several unexpected issues (Section 3.4),
which are to be explored further in future developments. The dimension reduction
aspect has only been briefly outlined, but it is the focus of ongoing work and more
detailed results will be provided in a future report.

The author is particularly grateful to Alexis Boukouvalas for his proof-reading of,
and useful comments on, this report.

References

C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

E.V. Bonilla, K.M.A. Chai, and C.K.I. Williams. Multi-task Gaussian Process
Prediction. In Advances in Neural Information Processing Systems. MIT Press,
2007.

S. Conti and A. O’Hagan. Bayesian emulation of complex multioutput and dy-
namic computer models. Research report, 569(07), 2007.

T. Fricker. Multiple-Output Emulators: First Year PhD report. Technical report,
January 2008.

Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric
Science, 20:130–141, 1963.

Edward N. Lorenz. Predictability – A problem partly solved. Proc. seminar on
predictability, 1996.

K. B. Petersen and M. S. Pedersen. The matrix cookbook, oct 2008. URL
http://matrixcookbook.com. Version 20081110.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, 2006.

Emulation of dynamic computer models with multivariate output 22

A Notations

This section summarises the notation used in this work. The symbols and their
explanations are given along with their LATEX command name (available on the
repository as a style file gp.sty).

A.1 General notations

Symbol LATEX Meaning Dimension
n \dimin Dimension of input space
p \dimout Dimension of output space
η \GPsimul Simulator/Model n → p
f \GPemul Emulator with zero mean n → p
g \GPemulmf Emulator with mean function n → q

A.2 Training set

Symbol LATEX Meaning Dimension
N \dimtrn Size of training set
x \GPin Training input n,1
y \GPout Training output p,1
X \GPIn Training design matrix n,N
Y \GPOut Training set output p,N
ỹ \GPOutVec Vectorised training set output pN

k \covfin Covariance function on the input
Kx \covmin Covariance between input training points N ,N
Kf \covmout Covariance between output components p,p

A.3 Test set

Symbol LATEX Meaning Dimension
M \dimtst Size of test set
x∗ \GPinTest Test input n,1
y∗ \GPoutTest Test output p,1
X∗ \GPInTest Test set input n,M
Y∗ \GPOutTest Test set output p,M
ỹ∗ \GPOutTestVec Vectorised test set output pM
K \GPCovmTrain Covariance of training set pN ,pN

Emulation of dynamic computer models with multivariate output 23

A.4 Prediction

Symbol LATEX Meaning Dimension
µ∗ \GPmeanPred Mean of single predicted output p,1
Σ∗ \GPcovmPred Covariance of single predicted output p,p
k \GPcovmTrainTest Covariance between training set and test point pN ,p
k∗ \GPcovmTest Covariance of test point p,p
µ∗ \GPMeanPred Mean of predicted output set pM
Σ∗ \GPCovmPred Covariance of predicted output set pM ,pM
k \GPCovmTrainTest Covariance between training and test sets pN ,pM
k∗ \GPCovmTest Covariance of test set pM ,pM

A.5 Mean function

Symbol LATEX Meaning Dimension
h(x) \gpmf(\GPin) Mean function basis functions q,1

β \gpmfcoeff Mean function regression coefficients q,1
b \gpmfcoeffmean Prior on regression coefficients - mean q,1
B \gpmfcoeffcovm Prior on regression coefficients - covariance q,q
β̄ \gpmfcoeffpred Optimal regression coefficients - mean q,1

