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Exemplar Models and Category-Specific Deficits 

 In recent years, there have been numerous reports of patients with brain 

damage who show selective identification or recognition deficits for objects from 

specific categories (see Forde, in press; Humphreys & Forde, 2000, for reviews).  The 

most common deficit appears to be a selective impairment in the identification of 

living things, accompanied by relatively unimpaired recognition or identification of 

artificial or non-living objects. However, despite the large number of reported cases 

with category-specific processing deficits, there is still no agreement on the 

mechanisms that produce these deficits.  It is not even clear whether all such cases 

can be understood in terms of a single process or mechanism, or whether category-

specific deficits can be caused by a variety of different factors.  In this chapter, we 

explore category-specific deficits from a theoretical viewpoint that evolved from 

recent research on perceptual categorization and identification.  Although some 

efforts have been made to model category-specific deficits with connectionist models 

(e.g., Farah & McClelland, 1991; Humphreys, Lamote, & Lloyd-Jones, 1995), we are 

not aware of any attempts to apply classical models of categorization and 

identification1 to the neuropsychological data on category-specificity (with the 

exception of a study by Dixon, Bub, & Arguin, 1997, which will be discussed in 

detail later).   

Current theories of categorization (and identification, which is a special case 

in which each object forms its own category) can be divided into five groups.  The 

first group is that of exemplar models, which assume that categorization of an object 

depends on the similarity of that object to instances in memory (e.g., Estes, 1994; 

Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 1986).  Second, there are 

decision-bound models, which are based on the multidimensional generalisation of 
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classical signal detection theory (Ashby & Lee, 1991; Ashby & Maddox, 1993).  

According to these models, stimuli correspond to points in a multidimensional space.  

The perceptual representations of stimuli are assumed to be variable from trial to trial, 

due to intrinsic noise in the perceptual system.  For categorization, people are 

assumed to establish linear or non-linear category decision bounds in the 

multidimensional stimulus space.  Categorization depends on the position of the 

stimulus representation on a given trial relative to the decision bounds.  Third are the 

models which explain category decisions based on the application of formal rules 

(e.g., Nosofsky, Palmeri, & McKinley, 1994). The fourth group contains various 

connectionist models of categorization (e.g., Gluck & Bower, 1988), which attempt to 

explain categorization in terms of associative links between input information and 

response alternatives.  Finally, there have been recent proposals for combined models 

of categorization, which integrate elements from two or more of the theories listed 

above (e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Erickson & Kruschke, 

1998). 

 In this chapter, we focus exclusively on exemplar models of categorization 

and identification.  There are several reasons for this choice.  Exemplar models have 

an impressive empirical track record.  They can explain categorization and 

identification of a wide range of different stimuli in a wide range of situations (e.g., 

Lamberts, 1994, 1995, 1998, 2000; Lamberts & Freeman, 1999; Medin & Schaffer, 

1978; Nosofsky, 1984, 1986, 1987, 1991-a, 1992; Nosofsky & Palmeri, 1997).  

Conceptually, exemplar models are well developed and understood, and their 

relations with other classes of models have been explored in great detail (e.g., 

Alfonso-Reese & Ashby, 1995; Ashby & Maddox, 1993; Nosofsky, 1991-b).  Finally, 

exemplar models provide a unifying framework for a broad range of seemingly 
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disparate cognitive tasks (e.g., Brockdorff & Lamberts, 2000; Estes, 1994; Lamberts, 

in press; Nosofsky, 1991-a; Nosofsky & Zaki, 1998; Palmeri, 1997).  

 

Exemplar models of categorization and identification 

 

 According to exemplar models, learning involves the storage of instances in 

memory. Exemplar models do not assume that learning involves the computation of 

summary representations for categories or other groups of stimuli (as presumed in 

prototype models or rule-based models).  Instead, it is assumed that each encounter 

with a stimulus leaves a separate trace in memory, and that subsequent categorization, 

identification or recognition depends on the retrieval of these specific memory traces.  

There are usually no constraints on the kind of information that can be contained in a 

memory trace. Exemplar information can be perceptual (referring to structural or 

surface properties of the object; Humphreys, Riddoch, & Quinlan, 1988) or semantic 

(referring to aspects of its meaning). 

 Probably the most successful exemplar model to date is Nosofsky's (1986) 

Generalized Context Model (GCM).  The GCM assumes that stimuli can be defined 

as points in a multidimensional psychological space.  Each dimension of the space 

corresponds to a particular aspect of the stimulus (such as colour, size, etc.).  

Although the GCM is intended primarily as a model of perceptual categorization, 

dimensions can also refer to abstract or semantic stimulus attributes.  Similarity 

between stimuli is defined as a decreasing function of the distance between the stimuli 

in the psychological space.  We will use the following definition of similarity (which 

is a special case of the similarity notion of the GCM, see Nosofsky, 1986): 
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In this equation, the similarity between the representations of two stimuli (i and j) is a 

decreasing exponential function of the weighted sum of differences between the 

stimuli along the stimulus dimensions. wp is the weight of dimension p, and xip and xjp 

are the values of stimulus i and stimulus j on dimension p.  If a dimension is more 

heavily weighted, a difference along that dimension will affect the similarity value 

more than a difference along a dimension with less weight.  The parameter c is an 

index of discriminability. This index determines how quickly similarity decreases as a 

function of the distance between the stimulus representations (see Lamberts, 1994, for 

an extensive discussion of the role of this parameter).  If c is high, stimuli are highly 

discriminable, meaning that even a small difference between them will result in a 

relatively low similarity value. Unless we explicitly note otherwise, we will simply 

omit dimension weights from this equation in our applications of the GCM (thus 

assuming that all dimensions have the same weight). 

 If there are two alternative categories, the GCM assumes that the probability 

that a stimulus is classified in a given category depends on the summed similarity of 

that stimulus to the exemplars of the category on the one hand, and the total similarity 

of the stimulus to all exemplars in both categories on the other hand.  The version of 

the GCM that we will use states that the probability that a stimulus i is classified into 

category C is given by 
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The GCM also applies to identification tasks, in which there are as many response 

alternatives as stimuli (in other words, each stimulus requires a unique response).  The 

only difference with the categorization model is in the choice rule, which becomes  
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This rule states that the probability of a response j to stimulus i is a function of the 

similarity between stimulus i and exemplar j (which has associated response j) on the 

one hand, and the total similarity of stimulus i to all exemplars in memory on the 

other hand.  Because self-similarity is 1 in the GCM, the probability of correct 

identification thus becomes 
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 Although exemplar models have been used primarily to account for 

categorization, identification and recognition in normal individuals, there have been a 

few attempts to apply exemplar models to neuropsychological data.  An important 

application by Dixon, Bub and Arguin (1997) will be discussed later in this chapter.  

Nosofsky and Zaki (1998) have recently shown that an exemplar model can provide 

insight into complex patterns of performance in patients with amnesia.  The starting 

point of their work was a series of experiments by Knowlton and Squire (1993), in 

which groups of normal and amnesic patients categorised or made old/new 

judgements for sets of visual patterns.  The results showed that the normal controls 
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performed much better than the patients on old/new recognition, whereas both groups 

performed at a similar level in categorization.  Knowlton and Squire (1993) 

interpreted this result in terms of multiple memory systems, with an implicit system 

responsible for the acquisition of categorical knowledge, and a declarative system 

responsible for old/new recognition.  In amnesics, the declarative system was 

supposed to be damaged (causing poor recognition performance), but an intact 

implicit system would still allow normal categorization performance.  Nosofsky and 

Zaki (1998) showed that it was not necessary to assume that the dissociation in task 

performance reflected an underlying dissociation in processing systems.  Specifically, 

Nosofsky and Zaki (1998) demonstrated that a single exemplar model explained 

Knowlton and Squire’s (1993) data, if it was assumed that brain damage led to a 

parameter change.  A model in which the discriminability parameter c (see Equation 

1) had a smaller value for amnesic patients than for normal controls produced the 

dissociation between categorization and recognition observed by Knowlton and 

Squire (1993), without having to assume separate subsystems for these tasks.  

Moreover, the model also explained the results from two other studies (Knowlton, 

Mangels, & Squire, 1996; Knowlton, Squire, & Gluck, 1994), on exactly the same 

assumptions. The discriminability parameter (c in Equation 1) determines how steeply 

similarity decreases with increasing distance between stimulus representations.  If c is 

high, processing is very selective, and perfect matches between representations are 

weighted far more in decision making than imperfect matches.  If c is low, even poor 

matches produce relatively high similarity values.  The value of c can have a great 

impact on the behaviour of exemplar models.  For instance, Lamberts (1994) showed 

that changes in discriminability can produce model behaviour that ranges from a 

nearest-neighbour model (in which only the most similar exemplar determines 
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categorization) to a nearly-linear prototype model (in which similarity to the 

“average” or prototype of the category determines choice).  Nosofsky and Zaki’s 

(1998) results show the potential of exemplar models to provide a single-systems 

explanation for dissociations that seem to invite a multiple-systems interpretation.  

The importance of this work for the interpretation of category-specific deficits is 

obvious.  In the past, these deficits too have been explained in terms of multiple 

semantic or memory systems (e.g., Caramazza & Shelton, 1998; Sartori & Job, 1988; 

Silveri & Gainotti, 1988; Silveri, Daniele, Giustolisi, & Gainotti, 1991), and we will 

attempt to show that an exemplar account produces category specificity, without 

having to assume multiple storage or retrieval systems.   

 

Exemplar storage and category-specific deficits 

 

 Now that we have defined the principles of exemplar models, we can explore 

the implications of such models for understanding the category-specific deficits 

reported in the literature.  Although most deficit studies have used identification as 

the main task, we will discuss both identification and categorization.  

An important aspect of any model of neuropsychological deficits is the 

implementation of brain damage in terms of the model's components and processes.  

Because we do not know the physiological mechanisms that might support processes 

such as those defined in exemplar models, we can only postulate plausible ways in 

which neurological damage could alter the characteristics of the psychological model.  

In this chapter, we will investigate two possible effects of neurological damage.  

Following Nosofsky and Zaki (1998), we will explore the effects of decreased 

stimulus discriminability.  We will also investigate the nonselective loss of features of 
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stored exemplars.  Not only are these two plausible consequences of brain damage, 

their effects are also quite similar to those resulting from other possible damage 

processes (such as loss of the ability to process particular dimensions). Of course, it is 

possible that neurological damage has other, unanticipated effects. It is conceivable, 

for instance, that a loss of exemplar information would be accompanied by noise in 

decision making.  For the purpose of clarifying and exploring the predictions of 

exemplar theories for category-specific deficits, assuming that brain damage results in 

random loss of features or decreased discriminability is quite sufficient. 

 Before we could start the modelling work with the GCM, we had to explore 

the structure of the objects within the categories that we were going to study.  The 

stimulus dimensions that may underlie the representations of living and non-living 

objects are unknown, so we had to make apriori assumptions about the structure of the 

living and non-living categories.  These assumptions are crucial for the modelling 

work. Even without formal demonstration, it is obvious that category-specific deficits 

are unlikely to emerge through feature loss (or any other mechanism) if the damage is 

non-selective and the categories have the same underlying structure.  On these 

conditions, category-specific deficits would only occur if the damage somehow 

affected exemplars from one category much more than exemplars from the other 

category.  If damage is non-selective (as we will assume in all the modelling), one 

would expect both categories to suffer to the same extent.  Category-specific deficits 

could only emerge exceptionally, as a result of random variation in the damage 

effects.  However, for categories that are fairly large and that contain objects with a 

large number of features (such as the living and non-living categories), category-

specific deficits would be extremely rare.  Moreover, both categories would have the 

same likelihood of being selectively affected, and this is contradicted by the far higher 
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incidence of category-specific deficits for living things in patients with brain damage.  

From these considerations, it is quite clear that exemplar models will only predict 

systematic category-specific deficits as a consequence of non-selective damage if the 

categories involved are somehow different from each other.  In the following section, 

we explore the differences between living and non-living objects that may be relevant 

for understanding category-specific deficits. 

 

Differences between living and non-living object categories 

 

In many studies in which category-specific deficits were reported, the stimuli 

were taken from Snodgrass and Vanderwart’s (1980) collection of object drawings.  

Snodgrass and Vanderwart (1980) have supplied norms for name agreement, image 

agreement, familiarity and visual complexity for their picture set, so it is relatively 

straightforward to determine whether the living and non-living objects used in studies 

that report category-specific deficits differed on these variables, or to design studies in 

which these variables are controlled. Interestingly, when familiarity, word frequency 

and name agreement were matched for living and non-living stimuli, Funnell and 

Sheridan (1992) found that a disproportionate impairment for living things 

disappeared in one patient. Gaffan and Heywood (1993) and Stewart, Parkin and 

Hunkin (1992) also found that the poorer performance for living things compared to 

non-living things observed in their patient disappeared once word frequency, 

familiarity and visual complexity were matched for the two categories. However, 

Farah, Meyer and McMullen (1996) found that when two of their patients were tested 

on exactly the same set of pictures but with further replications, their selective deficits 

for living things remained. Gainotti and Silveri (1996) and Kurbat (1997) also found 
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that category specific effects occurred in their patients when the normed variables 

were controlled.  Together, these results indicate that category-specific effects are not 

purely due to any differences in familiarity, word frequency and name agreement that 

might exist between the categories of living and non-living things.   

 A potentially far more relevant difference between living and non-living 

object categories concerns the similarity relations that exist between the category 

members. Various studies have suggested that the similarity structures of the living 

and non-living categories in the Snodgrass and Vanderwart (1980) set are not 

equivalent (e.g. Humphreys, Riddoch, & Quinlan, 1988; Gaffan and Heywood, 1993; 

Humphreys, Lamote and Lloyd-Jones, 1995). By similarity, we mean similarity in the 

purely perceptual sense; for instance, pictures of a horse and a dog are perceptually 

similar because they both contain the same components (such as head, neck, body and 

legs). When Humphreys et al. (1988) asked normal participants to list the parts of 

living and non-living things, living things showed up as having more shared parts 

than non-living things. The authors also compared the outline contours of 

standardised drawings from different categories by normalising all the Snodgrass and 

Vanderwart pictures for size and orientation, and then overlaying each picture with 

every other picture from the same category on a grid and calculating the overlap. The 

living things tended to have higher degrees of contour overlap than the non-living 

things. 

Further evidence that perceptual similarity is higher within living categories 

than within non-living categories was provided by Gaffan and Heywood (1993), using 

the Snodgrass and Vanderwart (1980) picture set. Normal subjects made more errors 

naming living than non-living things when stimulus quality was degraded, indicating 

that living things are less visually discriminable (i.e., more perceptually similar) than 
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non-living things. The authors also trained monkeys to make discriminative responses 

to pictures of living and non-living things and found that the monkeys took longer to 

learn the living responses than non-living responses. Specifically, their difficulty in 

distinguishing among living things increased steeply as the number of living things to 

be discriminated increased. The authors concluded that the high levels of perceptual 

overlap in living categories caused the difficulties in discrimination between these 

items. 

We have replicated these findings ourselves. Ten subjects (undergraduate 

students) gave pairwise ratings of perceptual similarity for a randomly chosen set of 

15 living and 15 non-living pictures from the Snodgrass and Vanderwart set. The 

subjects were asked to ignore what the pictures actually represented and to 

concentrate entirely on the perceptual characteristics of the drawings on the screen. 

They were asked to give each pair a rating between 0 and 9, where 0 was for a pair 

that look nothing like each other and 9 was for a pair that was almost identical. The 

living pairs were rated as being more similar to each other than the non-living pairs; 

the mean rating for living pairs was 3.69, compared to 2.49 for the non-living pairs. 

This effect was significant, t(9) = 10.39, p < .001. 

We have also achieved the same result by using the reaction time to decide 

that two pictures were different as a measure of similarity. It was assumed that for two 

very dissimilar pictures, participants would be able to decide very quickly that they 

were different. However, for two very similar pictures, more features would have to 

be processed before the differences became apparent and reaction times would be 

much slower (see Lamberts & Brockdorff, 2000). In this experiment we used 48 of 

the pictures selected by Funnell and Sheridan (1992), where norm values for word 

frequency, familiarity and visual complexity were equivalent for the living and non-
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living pictures. This particular set is useful to judge whether the living and non-living 

categories differ in their similarity profile, even when these other factors are 

controlled. The 24 living pictures and 24 non-living pictures were grouped into pairs 

of  identical and different pictures within the living and non-living categories. The 

mean time taken to correctly decide that 2 pictures were different was significantly 

longer for the living pairs (531 ms) than for the non-living pairs (518 ms), F(1, 19) = 

21.79, p < .001, indicating that the living pictures are more similar to each other than 

the non-living pictures. 

We have outlined good evidence that perceptual similarity is not equivalent 

within living and non-living categories. All the above findings indicate that for the 

Snodgrass and Vanderwart (1980) set, the living pictures are perceptually more 

similar to each other than the non-living pictures. The Snodgrass and Vanderwart set 

is used to test most patients with category-specific deficits.  Therefore, we decided to 

design the categories used in the simulation work with the GCM in such a way that 

one category contained elements that were more similar to each other than the other 

category.   

 

Simulating category-specific deficits 

 

 In all the modelling work that we report in this chapter, two categories of 

simulated objects were used.  Each category contained 20 exemplars, and each 

exemplar consisted of 15 continuous dimensions. The categories were constructed in 

the following way.  First, we defined a prototype for each category.  The prototype of 

the first category had a value of 0 on all 15 dimensions, whereas the prototype of the 

second category had a value of 1 on all dimensions.  Next, the prototypes were used to 
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generate the exemplars within each category (the prototypes themselves were not part 

of the categories).  Exemplars were generated by random distortion of the category 

prototypes.  Each exemplar from the first category was obtained by adding a random 

number to the prototype value for each dimension.  The random numbers for this 

category were drawn from a rectangular distribution with a mean of 0 and range from 

–0.3 to +0.3.  The exemplars from the second category were generated in a similar 

fashion, except that the range of the random numbers was from –1 to +1.  As a result, 

there was more variability in the second category, and the exemplars from this 

category were less similar to each other than the exemplars from the other category.  

We will call the first category the “homogeneous” category, and the second the 

“heterogeneous” category.  Within each category, a total of 20 exemplars were 

generated.   

 The effects of brain damage were first simulated by randomly removing 

features from the 40 exemplars that made up the memory set.  The expected 

proportion of deleted features varied between 0 (intact memory) and 0.9 (severe loss 

of feature information).  At each level of damage, we simulated 1000 cases.  In the 

simulation, the dimension(s) that corresponded to a missing exemplar feature were 

simply omitted from the similarity calculations.  For each case, the GCM was applied 

to generate a predicted proportion of correct identification responses across all the 

exemplars within each category.  The model was also used to predict proportions of 

correct categorization responses across all exemplars within each category.  The only 

model parameter that needed clamping was c, the discriminability index (see Equation 

1).  To obtain a better overview of the model’s range of predictions, we repeated the 

entire simulation experiment with different values of c.   
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 Figure 1 shows the simulation results, separately for identification and 

categorization within the two categories, and for two different values of c (3.0 and 

5.0, respectively).   

------------------------------- 

Insert Figure 1 about here 

------------------------------- 

The simulated results for the identification task showed a strong contrast between the 

two categories.  Loss of features had a stronger detrimental effect on the identification 

of the objects in the homogeneous category than on identification of the objects in the 

heterogeneous category.  For the categorization task, however, the opposite pattern 

occurred.  Categorization of the heterogeneous objects declined more rapidly than 

categorization of the homogeneous objects.  (Note that the absolute difference in 

performance between the identification and categorization tasks is partly due to the 

different levels of expected chance performance in the two tasks).  This pattern 

occurred for both values of c in this simulation, and further modelling work showed 

that it occurred across a wide range of category structures and parameter settings.  

Whenever one category contained exemplars that were more similar to each other 

than the exemplars in the other category, feature loss affected identification 

performance more in the category with similar exemplars, while it affected 

categorization more in the category with relatively dissimilar exemplars.  Intuitively, 

it is easy to understand why this pattern emerges.  Identification, in which each 

stimulus requires a unique response, is more difficult if a stimulus has close 

neighbours.  If features are lost, a stimulus may become less distinguishable from one 

or more other stimuli, and performance will drop. For categorization, however, close 

neighbours help, because the probability of a correct response depends on the total 
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similarity of a stimulus to all exemplars within a category.  If a stimulus has many 

close neighbours, even a large proportion of features can be lost before performance 

drops significantly. 

 Figure 2 summarises the model’s predictions for identification and 

categorization of homogeneous and heterogeneous objects, on the assumption that 

feature memory is intact, but for different levels of stimulus-exemplar discriminability 

(c).  It is immediately clear that the effects of variation in c are almost identical to the 

effects of random feature loss.  This is not surprising, given that random feature loss 

will reduce the average distance between stimuli, just as lower discriminability does. 

------------------------------- 

Insert Figure 2 about here 

------------------------------- 

 The simulation results show that a difference in internal similarity structure is 

sufficient to explain category-specific identification deficits as a consequence of non-

selective damage.  At the same time, the model also shows that an identification 

deficit for a homogeneous category should be accompanied by a categorization deficit 

for a heterogeneous category, if the similarity structure of these two categories is the 

main factor responsible for selective deficits.  In the following sections, we explore 

whether reported patient data are compatible with these predictions. 

 

Identification of living and non-living objects 

 

Case studies of category-specific deficits have concentrated mainly on 

identification performance.  In almost all reported cases, identification is 

disproportionately poor for stimuli from living categories (e.g., Basso, Capitani, & 
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Laiacona, 1988; Caramazza & Shelton,1998; De Renzi & Lucchelli, 1994; Farah & 

Wallace, 1992; Forde, Francis, Riddoch, Rumiati, & Humphreys, 1997; Sartori & Job, 

1984; Sheridan & Humphreys, 1993; Silveri & Gainotti, 1988; Warrington & 

Shallice, 1984). For example, Warrington and Shallice (1984) reported 4 patients with 

difficulties in visual identification. The comprehension capacities of 2 patients (J.B.R 

and S.B.Y.) were examined in detail and a dissociation between living and non-living 

things was observed. J.B.R. correctly identified 6% of living pictures compared to 

90% of non-living pictures. A similar pattern of performance was observed for 

S.B.Y., who correctly identified none of the living pictures and 75% of the non-living 

pictures. Similarly, Farah and Wallace (1992) reported a patient, T.U., whose naming 

was disproportionately poor for fruits and vegetables even when familiarity and name 

frequency were taken into account.  In naming the Snodgrass and Vanderwart line 

drawings, he correctly named 54% of fruits and vegetables compared with 87% of 

other categories. His naming latencies were also much slower for fruits and 

vegetables than for other categories. Caramazza and Shelton (1998) also reported a 

patient, E.W., with a disproportionate impairment in naming living things. For a 

subset of the Snodgrass and Vanderwart pictures, matched for familiarity and name 

frequency, E.W. correctly named 55% of animals and 82% of non-animals. 

In addition to recording absolute identification performance for different 

categories of objects, it is also informative to look at the different types of errors that 

are reported for living and non-living things. Arguin, Bub, and Dudek (1996; see also 

Dixon, Bub, & Arguin, 1997) reported the case of a patient, E.L.M., who showed a 

selective impairment for naming living objects (39% correct responses to 66 pictures 

of animals, birds, insects, fruits, and vegetables), with relatively intact naming of non-

living objects (88% correct responses to 79 pictures of tools, clothing, instruments, 
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etc.). Interestingly, Arguin et al. reported a confusion matrix from a word-picture 

matching task, which showed that ELM tended to confuse the identities of living 

objects with similar shapes (e.g., banana, carrot and cucumber were often confused 

with each other, and also apple, onion, orange and tomato).  This response pattern is 

entirely in agreement with the GCM’s predictions.  According to the model, the 

probability that two individual items are confused depends directly on their similarity, 

and the model therefore predicts clusters of confusion between similar items. 

Several other reports have shown that patients with category-specific deficits 

for living things are more likely to confuse living things with other living things than 

non-living things with other non-living things (e.g., Moss, Tyler, Durrant-Peatfield, & 

Bunn, 1998; Stewart, Parkin, & Hunkin, 1992; Warrington & Shallice, 1984).  For 

instance, Stewart, Parkin and Hunkin’s (1992) patient, H.O., gave the name of another 

object in the same category for 31.6% of the living things that were shown to him, 

whereas only 9.1% of his errors for non-living things were in the same category. 

Moss et al. (1998) tested their patient RC in a word-picture matching task, in which a 

spoken word was presented and the patient had to select the corresponding picture 

from an array of four. In addition to the target, there was always one distracter from 

the same category, and two distracters from other categories.  R.C. was significantly 

more accurate in identifying non-living targets than living targets.  On living targets, 

the vast majority of his errors (86%) were within-category errors, in which he chose 

an alternative from the same category as the target. 

According to the GCM, the probability that an incorrect response will be given 

that corresponds to a stimulus from the same category as the target (which we will 

call a within-category identification error) is given by 
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if the target stimulus belongs to category C and all symbols have the same meaning as 

before.  This probability is exactly the same as the probability of categorization of the 

stimulus into the correct category, minus the probability of identifying the stimulus 

correctly.  The probability of an error outside category for a stimulus i from category 

1 is 
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which is identical to the probability that the stimulus would be categorised into the 

wrong category.  Figure 3 shows the probabilities of identification errors within and 

outside category across the homogeneous and heterogeneous stimuli used in the 

simulation, for different proportions of feature loss.   

------------------------------- 

Insert Figure 3 about here 

------------------------------- 

Within-category identification errors are much more likely than outside-category 

errors for the homogeneous stimuli.  For the heterogeneous stimuli, within-category 

identification errors are still more likely than outside-category errors, but the 

difference is much smaller than for the homogeneous stimuli.  These predictions are 

in agreement with the confusion data that have been discussed. 
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 Arguin, Bub, and Dudek (1996) and Dixon, Bub and Arguin (1997) have 

reported another series of identification experiments with their patient E.L.M., which 

are very relevant to our account of category-specific deficits.  As we noted before, an 

important problem for any similarity-based account of category-specific deficits is 

that the dimensions which are used to encode real objects are unknown.  In 

mainstream categorization research, this problem is overcome by using artificial 

stimuli that vary along well-defined dimensions (e.g., Lamberts, 1995, 1998; 

Lamberts & Freeman, 1999; Medin & Schaffer, 1978), or by using techniques such as 

multi-dimensional scaling to infer the locations of stimuli with continuous dimensions 

in psychological space (e.g., Nosofsky, 1992; Nosofsky & Palmeri, 1997).  Arguin et 

al. (1996) chose the first solution, and overcame the problem of unknown stimulus 

dimensions by using a set of artificial stimuli that varied on three dimensions.  The 

stimuli were computer-generated blobs that varied in bending, elongation and 

tapering.  Four different blobs were simultaneously presented in the four corners of 

the screen, for a short time.  One of these blobs was then centrally presented, and 

E.L.M. was asked to point to that blob’s former location.  The most important 

manipulation in this experiment was the structure of the set of four blobs presented in 

a single trial.  In single-dimension sets, the four blobs differed on one dimension only, 

and all had the same values on the other two dimensions.  In conjunction sets, the 

blobs varied on two dimensions, while the third dimension was held constant.  The 

conjunction sets were designed such that both variable dimensions needed to be 

processed in order to identify the stimulus.  E.L.M. performed consistently better on 

the single-dimension sets (29% errors) than on the conjunction sets (57% errors). 

Arguin et al. further showed that E.L.M. did not have a perceptual problem with 
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processing multiple dimensions, from which they inferred that his problems with 

conjunctive sets were based in memory.   

 Dixon et al. (1997) argued that E.L.M.’s performance in the Arguin et al. 

(1996) study was incompatible with any of the existing neuropsychological theories 

of category-specific deficits.  However, they did show that an exemplar model of 

identification (Kruschke’s, 1992, ALCOVE) could explain the results.  ALCOVE is 

based directly on the GCM.  It is presented as a connectionist model, in which 

backpropagation is used to learn dimension weights and exemplar strengths.  Because 

Dixon et al. (1997) did not attempt to fit learning curves, there is no real need to apply 

ALCOVE to their data, and we will therefore present their arguments in terms of the 

GCM.  Dixon et al. (1997) point out that optimal performance in the single-dimension 

task would be achieved by selectively weighting the relevant dimension more than the 

two irrelevant dimensions.  This is predicted by the attention-optimisation hypothesis 

(see Lamberts, 1999; Nosofsky, 1986), which states that subjects will tend to use 

dimension weights that maximise performance in a given task.  ALCOVE is designed 

explicitly to implement this selective weighing process.  In the conjunctive 

conditions, the same weighting mechanism should emphasise the two relevant 

dimensions.  Dixon et al. (1997) show that the exemplar model predicts E.L.M.’s 

performance, if it is assumed that dimension weights are close to optimal and stimulus 

discriminability is low (which is the same assumption as that of Nosofsky & Zaki, 

1998). Arguin et al.’s (1996) results are thus entirely compatible with our exemplar-

based account.  The exemplar model also explains other, potentially more puzzling 

aspects of E.L.M.’s performance.  In another series of experiments, Dixon et al. 

(1997) showed that the dimensionality effect of the earlier study was modulated by 

semantics. When the same shapes were paired with semantically close or disparate 
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sounds or labels, E.L.M.’s error rates in the conjunctive task showed a strong 

correlation with the semantic proximity of these sounds or labels, whereas there was 

no such relation in the single-dimension task.  An exemplar model predicts these 

effects, if it is assumed that discriminability is low, that optimal weighting occurs, and 

that the stimulus labels form an intrinsic part of the stimulus representation, such that 

similarity depends both on visual and semantic features (Dixon et al., 1997). 

 

Categorization of living and non-living objects 

 

 Although most studies of category-specific deficits have focused on naming or 

identification, it is important for an evaluation of our account to contrast identification 

performance with categorization.  Objects can be categorised at many different levels 

(see Murphy & Lassaline, 1997), and we are not aware of many systematic 

comparisons between categorization performance at different levels in patients with 

category-specific identification deficits.  However, there have been several studies 

that show preserved categorization abilities in categories for which naming deficits 

occurred, as predicted by the GCM. 

Forde, Francis, Riddoch, Rumiati, & Humphreys (1997) carried out a number 

of experiments with their patient S.R.B., and found that his naming ability (tested 

with the Snodgrass and Vanderwart pictures, photographs and real objects) was 

impaired more for living objects than for non-living objects. Reaction times were 

slower and more errors were made for items from living categories and this was not 

confounded by name-frequency, familiarity or visual complexity. Forde et al. (1997, 

Experiment 19) also examined S.R.B.’s ability to categorise living and non-living 

things. He was shown line drawings of fruit, vegetables, animals and tools and asked 
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to classify them into their respective categories. S.R.B. scored very highly in this task.  

His only errors were classifying a watermelon as a vegetable and an artichoke as a 

fruit.  

Caramazza and Shelton (1998) observed that their patient, E.W., made many 

more errors when naming living pictures than non-living pictures. The authors 

commented that the nature of the errors E.W. made for living things were quite 

different to the kinds of errors made for non-living things. In particular, for 34/47 

living pictures, E.W. either said “I have no idea what it is” or produced a semantically 

related response. For example, when shown a picture of a Zebra, E.W. responded, 

“Gorilla, I think but I’m not sure”. By contrast, she only produced 5 of 137 semantic 

or “don’t know” responses to items in other semantic categories. Caramazza and 

Shelton (1998) also observed that E.W. could distinguish animals from artefacts so 

she had no selective impairment in categorising animals. E.W. was also shown to 

have no difficulty in answering questions concerning attributes shared by all members 

of a category. This indicates, again, that her problem lay in distinguishing amongst 

highly similar exemplars whereas she was unimpaired for tasks that require grouping. 

Moss, Tyler, Durrant-Peatfield and Bunn (1998) have looked explicitly at 

categorization versus identification performance for their patient, R.C. Tested with the 

Snodgrass and Vanderwart picture set, R.C. was able to name 50% of the pictures of 

artefacts, compared to only 9% of pictures of living things.  Similar results were 

obtained in a naming task with a different set of stimuli (photographs matched for 

familiarity).  In many cases in which R.C. failed to name the item, he was still able to 

provide some information about it.  For 63% of the naming errors made on the living 

things in the test set, this included the correct superordinate name (e.g., animal for 

donkey, or fruit for peach), which indicates that his categorization abilities with these 
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objects were relatively well preserved.  Superordinate names were hardly ever 

produced for the non-living things. It is interesting to note that Stewart, Parkin and 

Hunkin’s (1992) patient H.O. produced a similar pattern of errors in a naming task. 

For 10.5% of the errors H.O. made to living pictures, he gave the superordinate name 

but did this for only 4.5% of his errors for non-living pictures. This indicates that, for 

the living things, he was sometimes aware of the category the object was from even 

when he could not identify the object. Moss et al. (1998) also carried out a direct test 

of  R.C.’s ability to categorise colour photographs of living and non-living objects 

into their superordinate categories.  R.C. was able to categorise the living things very 

accurately (93% correct), scoring within the normal range.  However, his ability to 

categorise the non-living objects  (83% correct) was below the range for controls.   

To summarise, we have shown that for patients, identification is most often 

worse for living things than for non-living things, whereas classification performance 

shows the opposite trend. Patients can often categorise living things even when the 

individual name is not known. They are often able to identify the superordinate for 

living things and often confuse the target with a member of the same category.  This 

is less often the case for non-living things. In the cases where grouping of living and 

non-living things is compared, patients’ selective deficit for living things disappears 

and in some cases, they perform better for living than non-living things for these 

tasks. The GCM predicts all these differences. 

 

Is a similarity-based account sufficient to explain category-specific deficits? 

 

 Thus far, we have demonstrated that a classical exemplar model of 

categorization and identification predicts significant aspects of category-specific 
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deficits in patients with visual agnosia, if it is assumed that the categories of living 

and non-living objects have a different internal similarity structure.  The question 

remains whether such a simple account is sufficient to explain all aspects of 

performance in patients with category-specific deficits. 

The model that we proposed certainly fails to explain why some patients show 

identification deficits for non-living objects.  Indeed, although the vast majority of 

studies have reported identification deficits for living things, there have been a few 

reports of patients with impaired identification of non-living objects (e.g., Hillis & 

Caramazza, 1991; Sacchett & Humphreys, 1992; Warrington & McCarthy, 1983, 

1987, 1994). Without attempting to dismiss these findings, it is worthwhile to explore 

their implications for our account.  In the three case studies by Warrington and 

McCarthy (1983, 1987, 1994), the stimuli were not matched for a number of potential 

confounds, including frequency, visual complexity and familiarity (see Funnell & 

Sheridan, 1992).  It is possible that one or more of these variables contributed to the 

unusual outcome of the case studies.  However, the same argument does not apply to 

the results reported by Hillis and Caramazza (1991) and Sacchett and Humphreys 

(1992).  Hillis and Caramazza (1991) used the same stimuli and test procedures with 

two patients, one of whom showed a selective deficit for living things, whereas the 

other was impaired on non-living things. Sacchett and Humphreys (1992) controlled 

for a number of confounding variables, and still observed a selective naming deficit 

for non-living things. 

It is clear that the exemplar model that we used cannot explain these last two 

sets of data, without making additional assumptions about the structure of categories 

of living and nonliving objects or about the effects of brain damage.  In fact, the 

model can readily produce a double dissociation like the one reported by Hillis and 
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Caramazza (1991) (or any other dissociation, for that matter) if it is assumed that 

damage is selective and somehow affects exemplars from one category more than 

exemplars from another category.  Alternatively, one could assume that particular 

stimulus dimensions would have different weights in the identification of living and 

nonliving objects.  A commonly cited distinction is that between functional and 

perceptual features, where the former are assumed to be more important for the 

identification of nonliving objects, and the latter have more weight in the 

identification of living things (see Farah & McClelland, 1991; Sacchett & 

Humphreys, 1992; Warrington & Shallice, 1984).  On these assumptions, the model 

can trivially produce a double dissociation between identification of living and non-

living objects by selective damage to the representation or the processing of 

perceptual or functional stimulus dimensions.  However, neither of these accounts are 

very satisfactory.  Apart from being largely ad hoc, they fail to explain why selective 

deficits for non-living objects are so rare. Perhaps it is safest to reserve judgement 

about the importance of deficits for non-living objects, until more cases have been 

documented and the crucial variables that underlie these deficits are better 

understood.   

 Other data that are potentially challenging for the model are those obtained in 

conditions where similarity within categories has been controlled or measured, and in 

which category-specific identification deficits appear unrelated to similarity 

differences between categories. For instance, Sartori, Miozzo and Job (1993) claim 

that higher perceptual similarity between living things is not the cause of their 

patient’s impairment. Sartori et al. (1993) tested their patient, Michelangelo, using 

drawings of animals and artefacts taken from the Snodgrass and Vanderwart set plus 

line drawings in a similar style. 7 subsets of animals and 6 sub-sets of artefacts were 
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chosen with high within-set visual and semantic similarity. Undergraduates rated the 

global similarity of items in each subset and the ratings for animal and artefact subsets 

did not differ significantly. When Michelangelo was asked to name these pictures, his 

selective deficit for living things remained. 

 These results were not confirmed in a number of other studies, in which 

similarity-related effects have been observed directly.  Livingstone (1988) studied a 

patient's  ability to point to a named picture either amongst visually similar or visually 

dissimilar distracters, and found that the patient performed much better when in the 

visually dissimilar condition, even within living categories for which he was 

impaired.  

Forde, Francis, Riddoch, Rumiati and Humphreys (1997) provided direct evidence 

that similarity rather than the living/non-living distinction was the crucial variable in 

S.R.B.’s performance. The authors have taken into account the structural similarity of 

the pictures when testing S.R.B.’s naming ability. They used the 76 Snodgrass and 

Vanderwart pictures from Humphreys et al. (1988), who grouped these pictures into 

structurally similar categories (animals, fruit, vegetables) and structurally different 

categories (clothing, tools, furniture). Structural similarity was determined by the 

number of rated common parts per category and the average percentage of contour 

overlap relative to other objects from the same category. Forde et al. found that S.R.B. 

was significantly more impaired at naming items from structurally similar categories 

(71% correct) compared to structurally dissimilar categories (95% correct). In fact, 

when a regression analysis was carried out on S.R.B.’s reaction time to name 59 

Snodgrass and Vanderwart pictures, the authors found that the living /non-living 

distinction was not a significant predictor of performance when measures of structural 

similarity were taken into account. Instead, degree of contour overlap with other 
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category members was the only significant predictor. Further evidence that structural 

similarity is behind S.R.B.’s deficit is that his subordinate naming of items from 2 

categories of particular interest to him, dogs and cars, was very poor. He was worse 

for dogs (17%) than cars (57%) but this general problem at retrieving subordinate 

names is consistent with the hypothesis that high levels of structural similarity 

between category members make identification difficult. 

Together with the results that we have reviewed in the previous sections, such 

findings suggest that similarity is often at the root of patients’ problems in identifying 

living things. Studies in which a selective deficit remains after similarity is controlled 

run counter to the general trend. In the case of Sartori et al.'s (1993) study, it is 

doubtful as to whether their measure of similarity was adequate. They found that 

when ratings of overall similarity were obtained for sub-sets of pictures, no 

differences between living and non-living sets were found. This certainly does not 

stand up to findings from our own experiments, in which more rigorous measures of 

similarity were made for pictures from the Snodgrass and Vanderwart set. Humphreys 

et al.'s (1998) analyses of shared parts and contour overlap, Gaffan and Heywood’s 

(1993) discriminability analyses, and our own pairwise ratings and reaction time 

experiments all showed the living pictures to be reliably more similar to each other 

than the non-living pictures. The stimuli used by Sartori et al. (1993) mainly included 

Snodgrass and Vanderwart pictures, so it is likely that the average perceptual 

similarity still differed between categories.  Sartori et al.'s (1993) assessment of 

similarity was perhaps not sensitive enough to show relevant differences between the 

categories.  

   

Conclusions 
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 We have demonstrated in this chapter that a classical exemplar model of 

categorization and identification explains many aspects of category-specific deficits in 

patients with brain damage, on the assumption that the categories involved have a 

different similarity structure.  The most important prediction from the model concerns 

the apparent dissociation between identification and categorization.  The 

neuropsychological data that allow a comparison between these two tasks generally 

support the model’s predictions. 

 The exemplar account does have some characteristics that make it an attractive 

alternative for existing models of category-specific deficits.  The model has been 

developed outside the neuropsychological literature, and has become one of the best-

tested and most productive theories of perceptual categorization, identification and 

recognition.  The model’s simplicity and formal rigour are further assets. Of course, 

we cannot claim that exemplar models readily explain all aspects of category-

specificity, but the models’ scope and implications certainly merit further study. 

 Another important topic for further work would be to explore the relation 

between our proposal and other single-systems accounts of category-specific deficits.  

For instance, there is a complex relation between various connectionist models of 

category-specific deficits (e.g., Devlin et al., 1998; McRae et al., 1997; Rogers & 

Plaut, this volume) and our exemplar account.  Several connectionist accounts rely 

heavily on the notion that patterns of correlations between features are important for 

understanding category-specific deficits, and there is independent empirical evidence 

to confirm the importance of these correlation patterns (e.g., McRae, this volume).  

Exemplar models preserve complete information about feature correlations, and they 
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seem therefore excellently suited to explain the role of correlations in category-

specific deficits.   



Lamberts & Shapiro 31 

References 

Alfonso-Reese, L. A., & Ashby, F. G. (1995). Categorization as probability-

density estimation. Journal of Mathematical Psychology, 39, 216-233.  

Arguin, M., Bub, D. & Dudek, G. (1996). Shape integration for visual object 

recognition and its implication in category specific visual agnosia. Visual Cognition, 

3(3), 221-275. 

Ashby, F. G., Alfonso-Reese, L. A., Turken, A.U., & Waldron, E. M. (1998).  

A neuropsychological theory of multiple systems in category learning. Psychological 

Review, 105, 442-481. 

  Ashby, F. G., & Lee, W. W. (1991). Predicting similarity and categorization 

from identification. Journal of Experimental Psychology: General, 120, 150-172. 

Ashby, F. G., & Maddox, T. W. (1993). Relations between prototype, 

exemplar and decision bound models of categorization. Journal of Mathematical 

Psychology, 37, 372-400. 

Basso, A., Capitani, E. & Laiacona, M. (1988). Progressive language impairment 

without dementia: A case study with isolated category-specific semantic defect. Journal 

of Neurology, Neurosurgery and Psychiatry, 51, 1201-1207. 

Brockdorff, N., & Lamberts, K. (2000). A feature-sampling account of the time 

course of old-new recognition judgments. Journal of Experimental Psychology: 

Learning, Memory and Cognition, 26, 77-102. 

Caramazza, A. & Shelton, J.R. (1998). Domain specific knowledge systems in 

the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10(1), 

1-34. 

De Renzi, E. & Lucchelli, F. (1994). Are semantic systems separately represented 

in the brain? The case of living category impairment. Cortex, 30, 3-25. 



Lamberts & Shapiro 32 

Devlin, J., Gonnerman, L., Anderson, E. & Seidenberg, M. (1998). Category-

specific deficits in focal and widespread damage: A computational account. Journal of 

cognitive Neuroscience, 10:1, 77-94. 

Dixon, M.J., Bub, D.N. & Arguin, M. (1997).  The interaction of object form 

and object meaning in the identification performance of a patient with category-

specific visual agnosia. Cognitive Neuropsychology, 14, 1085-1130. 

Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category 

learning. Journal of Experimental Psychology: General, 127, 107-140.  

Estes, W. K. (1994). Classification and cognition. New York: Oxford 

University Press. 

Farah, M. J. & McClelland, J. L. (1991). A computational model of semantic 

memory impairment: Modality specificity and emergent category specificity. Journal of 

Experimental Psychology: General, 120, 339-357. 

Farah, M. J., Meyer, M. M. & McMullen, P. A. (1996). The living/nonliving 

dissociation is not an artifact: Giving an a priori implausible hypothesis a strong test. 

Cognitive Neuropsychology, 13, 137-154. 

Farah, M.J. & Wallace, M.A. (1992). Semantically bounded anomia: Implications 

for the neural implementation of naming. Neuropsychologia, 30(7), 609-621. 

Forde, E.M.E. (in press). Category specific recognition impairments. In G.W. 

Humphreys (Ed.), Case Studies in the Neuropsychology of Vision. Psychology Press. 

Forde, E.M.E., Francis, D., Riddoch, M.J., Rumiati R. & Humphreys, G.W. 

(1997). On the links between visual knowledge and naming: A single case study of a 

patient with a category-specific impairment for living things. Cognitive 

Neuropsychology, 14 (3), 403-458. 



Lamberts & Shapiro 33 

Funnell, E. & Sheridan, J. (1992). Categories of knowledge? Unfamiliar aspects 

of living and nonliving things. Cognitive Neuropsychology, 9, 135-153. 

Gaffan, D. & Heywood, C.A. (1993). A spurious category-specific visual agnosia 

for living things in normal human and nonhuman primates. Journal of Cognitive 

Neuroscience 5, 118-128. 

Gainotti, G., & Silveri, M. C. (1996). Cognitive and anatomical locus of lesion 

in a patient with a category-specific semantic impairment for living beings. Cognitive 

Neuropsychology, 13, 357-389. 

Gluck, M. A. & Bower, G. H. (1988). From conditioning to category learning: 

An adaptive network model. Journal of Experimental Psychology: General, 117, 225-

244. 

Hillis, A.E. & Caramazza, A. (1991). Category-specific naming and 

comprehension impairment: A double dissociation. Brain, 114, 2081-2094. 

Humphreys, G. W., & Forde, E. M. E. (2000). Category-specific deficits: A 

review and presentation of the Hierarchical Interactive Theory (HIT). Manuscript 

submitted for publication.  

Humphreys, G.W., Lamote, C. & Lloyd-Jones, T. J. (1995). An interactive 

activation approach to object processing: Effects of structural similarity, name frequency 

and task in normality and pathology. Memory, 3, 535-586. 

Humphreys, G.W., Riddoch, M.J. & Quinlan, P.T. (1988). Cascade processes in 

picture identification. Cognitive Neuropsychology, 5, 67-103. 

Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit 

learning system in humans. Science, 273, 1399-1402. 

Knowlton, B. J., & Squire, L. R. (1993). The learning of categories: Parallel brain 

systems for item memory and category knowledge. Science, 262, 1747-1749. 



Lamberts & Shapiro 34 

Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification 

learning in amnesia. Learning and Memory, 1, 106-120. 

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of 

category learning. Psychological Review, 99, 22-44. 

Kurbat, M.A. (1997). Can the recognition of living things really be selectively 

impaired? Neuropsychologia, 35(6), 813-827. 

Lamberts, K. (1994). Flexible tuning of similarity in exemplar-based 

categorization. Journal of Experimental Psychology: Learning, Memory and 

Cognition, 20, 1003-1021. 

Lamberts, K. (1995). Categorization under time pressure. Journal of 

Experimental Psychology: General, 124, 161-180. 

Lamberts, K. (1998). The time course of categorization. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 24, 695-711. 

Lamberts, K. (1999). Attention supports perceptual categorization. Visual 

Cognition, 6, 93-99. 

Lamberts, K. (2000). Information-accumulation theory of speeded 

categorization. Psychological Review, 107.  

Lamberts, K. (in press). Feature-sampling models of categorization and 

recognition. Quarterly Journal of Experimental Psychology. 

Lamberts, K., & Brockdorff, N. (2000). A unified model of matching and 

recognition. Manuscript submitted for publication. 

Lamberts, K., & Freeman, R. P. J. (1999). Building object representations 

from parts: Tests of a stochastic sampling model. Journal of Experimental 

Psychology: Human Perception and Performance, 25, 904-926. 



Lamberts & Shapiro 35 

Livingstone, M.S. (1988). Art, illusion and the visual system. Scientific 

American, 258, 78-86. 

McRae K, de Sa, V. R., & Seidenberg M. S. (1997) On the nature and scope of 

featural representation of word meaning. Journal of Experimental Psychology 

General, 126, 99-130 

Medin, D. L. and Schaffer, M. M. (1978). Context theory of classification 

learning. Psychological Review, 85, 207-238. 

Moss, H. E., Tyler, L.K., Durrant-Peatfield, M.R. & Bunn, E. M. (1998). ‘Two 

eyes of a see-through’: Impaired and intact semantic knowledge in a case of a selective 

deficit for living things. Neurocase, 4, 291-310. 

Murphy, G. L., & Lassaline, M. E. (1997). Hierarchical structure in concepts and 

the basic level of categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, 

concepts and categories (pp. 93-131). Hove, UK: Psychology Press. 

Nosofsky, R. M. (1984). Choice, similarity, and the context theory of 

classification. Journal of Experimental Psychology: Learning, Memory and 

Cognition, 10, 104-114. 

Nosofsky, R. M. (1986). Attention, similarity, and the identification-

categorization relationship. Journal of Experimental Psychology: General, 115, 39-57. 

Nosofsky, R. M. (1987). Attention and learning processes in the identification 

and categorization of integral stimuli. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 13, 87-109. 

Nosofsky, R. M. (1991-a). Tests of an exemplar model for relating perceptual 

classification and recognition memory. Journal of Experimental Psychology: Human 

Perception and Performance, 17,  3-27. 



Lamberts & Shapiro 36 

Nosofsky, R. M. (1991-b). Relation between the rational model and the 

context model of categorization. Psychological Science, 2, 416-421. 

Nosofsky, R. M. (1992). Similarity scaling and cognitive process models. 

Annual Review of Psychology, 43, 25-53. 

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk 

model of speeded classification. Psychological Review, 104, 266-300. 

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-

exception model of classification learning. Psychological Review, 101, 53-79. 

Nosofsky, R. M., & Zaki, S. R. (1998). Dissociations between categorization 

and recognition in amnesic and normal individuals: An exemplar-based interpretation. 

Psychological Science, 9, 247-255. 

Palmeri, T. J. (1997). Exemplar similarity and the development of 

automaticity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

23, 324-354. 

Sacchett, C. & Humphreys, G.W. (1992). Calling a squirrel a squirrel but a canoe 

a wigwam: A category-specific deficit for artefactual objects and body parts. Cognitive 

Neuropsychology, 9, 73-86. 

Sartori, G. & Job, R. (1988). The oyster with four legs: A neuropsychological 

study on the interaction of visual and semantic information. Cognitive Neuropsychology, 

5(1), 105-132. 

Sartori, G., Miozzo, M. & Job, R. (1993). Category-specific naming 

impairments? Yes. Quarterly Journal of Experimental Psychology, 46(3), 489-504. 

Sheridan, J. & Humphreys, G.W. (1993). A verbal-semantic category-specific 

recognition impairment. Cognitive Neuropsychology, 10 (2), 143-184. 



Lamberts & Shapiro 37 

Silveri, M.C. & Gainotti, G. (1988). Interaction between vision and language in 

category-specific semantic impairment. Cognitive Neuropsychology, 5(6), 677-709. 

Silveri, M.C., Daniele, A., Giustolisi, L. & Gainotti, G. (1991). Dissociation 

between knowledge of living and nonliving things in dementia of the Alzheimer type. 

Neurology, 41, 545-546. 

Snodgrass, J. G., & Vanderwart, M. (1980). A standardised set of 260 pictures: 

Norms for name agreement, image agreement, familiarity, and visual complexity. 

Journal of Experimental Psychology: Human Learning and Memory, 6, 174-215. 

Stewart, F., Parkin, A. J. & Hunkin, N. M. (1992). Naming impairments 

following recovery from herpes simplex encephalitis. Quarterly Journal of Experimental 

Psychology, 44, 261-284. 

Warrington, E. K. & McCarthy, R. (1983). Category-specific access dysphasia. 

Brain, 106, 859-878. 

Warrington, E. K. & McCarthy, R. (1987). Categories of knowledge: Further 

fractionations and an attempted integration. Brain, 110, 1273-1296. 

Warrington, E. K. & McCarthy, R. (1994). Multiple meaning systems in the 

brain: A case for visual semantics. Neuropsychologia, 32, 1465-1473. 

Warrington, E. K. & Shallice, T. (1984). Category-specific semantic impairment. 

Brain, 107, 829-854. 

 



Lamberts & Shapiro 38 

Footnotes 

1In this chapter, we use the terms categorization, identification and recognition in the 

following way.  Categorization refers to a decision situation, in which objects have to 

be assigned to categories.  The number of categories (i.e., the number of response 

alternatives) is smaller than the number of different objects that can occur, which 

implies that several objects require the same response.  Identification is a special case 

of categorization, in which each object forms its own category.  In an identification 

task, the number of response alternatives is the same as the number of possible 

objects.  Finally, recognition refers specifically to old-new recognition, in which a 

decision is made as to whether an object has been encountered before, regardless of 

its category membership or identity. 
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Figure 1 
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Figure 2 
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Figure 3 
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