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We assessed summation of contrast across eyes and area at detection threshold (Ct). Stimuli were sine-wave gratings
(2.5 c/deg) spatially modulated by cosine- and anticosine-phase raised plaids (0.5 c/deg components oriented at T45-).
When presented dichoptically the signal regions were interdigitated across eyes but produced a smooth continuous grating
following their linear binocular sum. The average summation ratio (Ct1/([Ct1+2]) for this stimulus pair was 1.64 (4.3 dB). This
was only slightly less than the binocular summation found for the same patch type presented to both eyes, and the area
summation found for the two different patch types presented to the same eye. We considered 192 model architectures
containing each of the following four elements in all possible orders: (i) linear summation or a MAX operator across eyes, (ii)
linear summation or a MAX operator across area, (iii) linear or accelerating contrast transduction, and (iv) additive
Gaussian, stochastic noise. Formal equivalences reduced this to 62 different models. The most successful four-element
model was: linear summation across eyes followed by nonlinear contrast transduction, linear summation across area, and
late noise. Model performance was enhanced when additional nonlinearities were placed before binocular summation and
after area summation. The implications for models of probability summation and uncertainty are discussed.

Keywords: vision, masking, contrast gain control, area summation, spatial summation, binocular summation,
psychometric function

Citation: Meese, T. S., & Summers, R. J. (2009). Neuronal convergence in early contrast vision: Binocular summation is
followed by response nonlinearity and area summation. Journal of Vision, 9(4):7, 1–16, http://journalofvision.org/9/4/7/,
doi:10.1167/9.4.7.

Introduction

The initial stages of vision decompose the two retinal
images into local estimates of feature dimensions such as
contrast, size, and orientation. However, (i) normal
observers experience a unitary (binocular) vision of the
world and (ii) the world contains spatially extensive
surfaces and textures whose projections exceed the foot-
prints (receptive fields) of the local retinal analyses, at
least up to layer 4 of V1. Neuronal convergence across
space and eyes is a necessary condition for building
binocular object representations from local monocular
measures, but what is the form of the convergence, and
how is it organized?
One way in which this can be investigated is to measure

contrast detection thresholds as a function of the dimension
of interest, and assess the level of improvement against
various models of the process (Foley, Varadharajan, Koh,
& Farias, 2007; Kersten, 1984; Meese, Georgeson, &
Baker, 2006; Robson & Graham, 1981; Watson, 1979).
However, a difficulty is that the number of model
parameters or potential architectures is not necessarily well

constrained by this approach. For example, in experiments
that increase the size of a patch of grating placed in the
central visual field, potentially confounding variables
include: the level of noise, retinal inhomogeneity, and
uncertainty. Untangling these parameters poses a serious
challenge to interpretation of this kind of experiment.
In a recent study, Meese and Summers (2007) intro-

duced a stimulus set that was designed to overcome these
problems in the spatial (area) domain. The basic idea was
to use a grating-type stimulus with a constant diameter to
encourage contrast integration (by whatever means) over
the same retinal mechanisms in all conditions. If this
could be achieved, then it seemed likely that this would
control all of the problems outlined above. But how can
the diameter of the stimulus be fixed, while allowing its
area to be varied? The answer was to cut holes in the
stimulus, or more accurately, to attenuate interdigitated
patches of the stimulus. Example stimuli are shown in
Figure 1. Figure 1a is a sine-wave grating that has been
modulated by a ‘raised plaid’ (see Methods section for
details) in cosine phase with the center of the stimulus.
Figure 1b is similar, but the modulation is in anticosine
phase. These stimuli were given the nominal titles of ‘white’
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and ‘black’ checks, respectively, as a reference to the
magnitude of the modulator at the center of the display
(unity and zero). Figure 1c is the physical sum of the
stimuli in Figures 1a and 1b and is referred to as the ‘full’
stimulus. It is also the original sine-wave grating without
modulation by the raised plaid. Note then, the sum of
contrast over area (we refer to this as ‘contrast area’) is the
same in Figures 1a and 1b, which is half that in Figure 1c.
At contrast detection threshold, Meese and Summers

(2007) found that sensitivities to the ‘black’ and ‘white’
checks were identical, but that sensitivity to the full
stimulus was almost twice as great (a factor of 1.8). Their
modeling led them to conclude that vision can perform
linear summation (after nonlinear contrast transduction)
over at least seven cycles of sine-wave grating. Using
conventional patches of grating, similarly high levels of
summation (a factor of 1.7) have also been found across
eyes (Baker, Meese, & Summers, 2007; Meese et al.,
2006). This raises the question of whether vision can
perform both of these summation processes together. For
example, if the ‘white’ checks (Figure 1a) were presented
to one eye and the ‘black’ checks (Figure 1b) to the other
eye, then the binocular sum of those stimuli would be the
full stimulus in Figure 1c. While this seems a likely
candidate for area summation, it should be kept in mind
that to achieve this, the visual system must integrate the
contrast signal over different regions in the two eyes.
Evidence either for or against this process would enhance
our understanding of the organization of early human
vision.
As motivated above, our main aim here was to

investigate conjoint summation of contrast over eyes and
area. But for comparison, and by way of constraining our
models, we also revisit the two forms of summation
studied earlier. The logic and design of our three experi-
ments is set out schematically in Figure 2. The shaded
regions denote spatial luminance contrast (the target), and
the open boxes denote potential locations for the contrast
regions in a two-by-two factorial arrangement across eyes
(vertical dimension) and area (horizontal dimension). To
investigate conventional binocular summation the target
was in the left eye alone, the right eye alone, or both eyes,
but always the same spatial location (Figure 2a; the ‘eyes’
experiment). To investigate monocular area summation,
the target was in different or both spatial locations, but
always the same eye (Figure 2b; the ‘area’ experiment).
To investigate summation across eyes and area together
(our main experiment), the target was in either one spatial
location in one eye, the other spatial location in the other
eye, or both of these (Figure 2c; the ‘eyes and area’
experiment).
To interpret our results we performed an extensive

analysis involving all possible (192) arrangements of the
following model components: Linear summation or a
MAX rule across eyes, linear summation or a MAX rule
across area, linear and nonlinear contrast transductions,
and (stochastic) Gaussian noise. Taken together, the most

Figure 1. Stimuli introduced by Meese and Summers (2007) and
used in the three experiments here. In (a) and (b) the sine-wave
grating in (c) has been multiplied by a ‘raised plaid’ (see Methods
section) in cosine and anticosine phase with the center of the
display, respectively. The nominal titles in (a) and (b) refer to the
modulator in the center of the display. All three stimulus types
were used in the ‘area’ experiment (summation across space), but
only those in (a) and (b) were used in the ‘eyes’ experiment
(binocular summation) and the ‘eyes and area’ experiment
(summation across eyes and area together).
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parsimonious interpretation of our results is that summa-
tion occurs across eyes and across area and that it is linear.
The identification of a contrast nonlinearity between the
two stages of summation allows us to conclude that
binocular summation precedes area summation. These
results also have implications for models of uncertainty
and probability summation as we describe in the
Discussion section.
This extends out previous work (Meese et al., 2006;

Meese & Summers, 2007) by (i) considering summation
across eyes and space together and (ii) by providing a
more thorough appraisal of possible models at detection
threshold.

Methods

Observers

Both of the authors (TSM and RJS) and a post-graduate
student (SAW) served as observers. All three were

psychophysically well practiced, wore their normal optical
correction as appropriate, and had functional stereopsis.
TSM and RJS had performed binocular experiments using
similar stimuli previously (Meese & Summers, 2007).

Equipment

Stimuli were viewed through Cambridge Research
Systems (CRS) ferro-electric (FE-1) shutter goggles and
displayed on a Clinton Monoray monitor with a frame rate
of 120 Hz using a CRS ViSaGe stimulus generator. The
mean luminance of the display viewed through the
goggles was 16 cd/m2. The shutter goggles allowed
different stimuli to be presented to the two eyes by
interleaving across frames with a refresh rate of 60 Hz.
Target contrast was controlled by look-up tables and
gamma correction was performed to ensure contrast
linearity. Observers sat at a viewing distance of 96 cm
with their head in a chin and headrest fixating a dark
square point (4.8 arcmin) placed in the center of the
display throughout the experiment. The experiments were
controlled by a PC.

Figure 2. Schematic illustration of example stimulus arrangements for the three summation experiments here. The shaded (green)
symbols provide an abstract representation of the target contrast regions. The open (blank) symbols are place markers in the figure and
do not represent a form of stimulus in the experiments. The three columns denote the component pair and the compound condition for
each of the three experiments (a, b, c). Within each quad of icons the different rows and columns denote stimuli presented to different
eyes and different spatial locations, respectively. (In the experiments, location 1 is instantiated by ‘black’ checks and location 2 by ‘white’
checks.) (a) Binocular summation (‘eyes’ experiment). (b) Area summation (‘area’ experiment). (c) Summation across eyes and area
(‘eyes and area’ experiment). (In the experiments, conditions were counterbalanced across eyes and area as summarized in Table 1.)
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Stimuli

The three different types of stimulus are shown in
Figure 1. The carrier was a horizontal sine-wave grating in
sine phase with the center of the display and a spatial
frequency of 2.5 c/deg. It was modulated by a circular
raised cosine function with a central plateau of 8 deg, and
a blurred boundary of 1 deg, giving a full-width at half-
height of 9 deg (Figure 1c). A ‘raised-plaid’ envelope was
used to produce further modulation for two other stimuli.
The plaid was the sum of two sine-wave grating
components with orientations of T45- and a spatial
frequency of 0.5 c/deg, each with contrasts of 0.5. This
gave minima and maxima of j1 and 1, respectively. The
envelope was then ‘raised’ by adding 1 to each point and
dividing by 2 throughout, giving minima and maxima of 0
and 1. Thus, the equation for the modulator was

env ¼

1þ

cosð2:½ f x cosðEÞ þ f y sinðEÞ� þ 7Þ=2þ

cosð2:½ f x cosðjEÞ þ f y sinðjEÞ� þ 7Þ=2

0
BBBB@

1
CCCCA=2;

ð1Þ
where f is spatial frequency (=0.5 c/deg), E is orientation
(=45-), and 7 is phase. There were two different phases of
modulation: cosine phase (7 = 0-; Figure 1a), and
negative cosine phase (7 = 180-; Figure 1b). These

stimuli were given the nominal titles of ‘white’ and
‘black’ checks, respectively, as a reference to the
magnitude of the modulator at the center of the display
(unity and zero). Note that there are 7.07 cycles of carrier
grating for every two checks (i.e., one cycle of a vertical
cross-section through the envelope).
Stimulus contrast is expressed as Michelson contrast in

% of the carrier (i.e., C = 100[(Lmax j Lmin)/(Lmax +
Lmin)]) or in dB re 1% (=20.log10(C)).

Design

There were three experiments, referred to as ‘eyes,’
‘area,’ and ‘eyes and area’. All three experiments measured
contrast detection thresholds for each of a pair of
components (single targets) and a compound made from
the simultaneous presentation of the two components (dual
targets). The experiments were fully counterbalanced
across eyes and check ‘color’ (the nominal labels, ‘black’
or ‘white’). The set of conditions that formed a single
repetition of each experiment is shown in Table 1
(deviations from this design are described in the Prelimi-
nary results section). A single experimental session (block)
consisted of interleaved trials from either the four conditions
on the left or right of Table 1 within each experiment and
took about 20 minutes to complete. By treating the
sensitivities for the different check ‘colors’ in each eye as
equal (see Results section), a single experimental repetition
delivered four independent estimates of summation (see

Block 1 Block 2

Left eye Right eye Left eye Right eye

‘Eyes’ experiment
Black checks – White checks –

– White checks – Black checks
Black checks Black checks White checks White checks
White checks White checks Black checks Black checks

‘Area’ experiment
Black checks – White checks –

– White checks – Black checks
Full stimulus – Full stimulus
– Full stimulus Full stimulus

‘Eyes and area’ experiment
Black checks – White checks –

– White checks – Black checks
Black checks White checks White checks Black checks
Black checks White checks White checks Black checks

Table 1. Stimulus conditions and design for the three experiments. Each experiment consisted of two blocks of four conditions. Within
each block (session), trials were randomly interleaved from the four different conditions (two single and two dual target conditions). A
single repetition of a single experiment involved sequential runs of the two blocks (in counterbalanced order). Each block contributed to
the estimation of two summation ratios: the ratio (dB difference) of the detection thresholds (!) measured for the conditions in the 1st and
3rd lines and the 2nd and 4th lines. To achieve a balanced design, the same condition appeared twice within a block in the ‘eyes and area’
experiment (lines 3 and 4) and across blocks in the ‘eyes’ and the ‘area’ experiments (lines 3 and 4).

Journal of Vision (2009) 9(4):7, 1–16 Meese & Summers 4

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/933534/ on 10/02/2018



caption of Table 1). Observers performed several repeti-
tions of each experiment. The number (N) of independent
estimates of summation ratios contributing to the mean is
indicated in the results figures as appropriate.

Procedure

In most cases the procedure was as follows. The level of
target contrast was selected using a method of constant
stimuli with five different contrast levels, 3-dB spacing
between them and 30 trials for each level. The levels used
were determined from pilot work so that full psychometric
functions could be measured in all conditions and experi-
ments. We used a two-interval forced-choice (2IFC)
procedure, where a null interval was blank (mean
luminance) and the other interval contained the target.
The onset of each 100 ms interval was indicated by an
auditory tone and the duration between the two intervals
was 400 ms. Observers were required to select the interval
containing the target using one of two buttons to indicate
their response. Correctness of response was provided by
auditory feedback, and the computer selected the order of
the intervals randomly.
The exceptions to the procedure above were the ‘eyes’

and ‘eyes and area’ experiments for TSM. These were the
same as above except that there were six contrast levels
spaced 1.5 dB apart, and the duration between the 2IFC
intervals was 300 ms.
Psychometric functions (<) were estimated by fitting

Weibull functions to each individual run (180 or 150 trials)
using psignifit (Wichmann & Hill, 2001a):

<ðcÞ ¼ 0:5þ ð0:5j 1Þð1j exp½jðC=!Þ"�Þ; ð2Þ

where C is the Michelson contrast of the carrier grating (in
%). This equation has three free parameters. These are the
‘threshold’, ! (the target contrast at 81.6% correct when
1 = 0), psychometric slope ("), and the lapse-error rate, 1.
The lapse-error rate is the proportion of trials in which the
response is incorrect owing to finger errors and other
observer miscues. One problem with the 1 parameter is
that if the observer’s behavior is equivalent to 1 = 0 (i.e.,
observers do not lapse), then this extra degree of freedom
can lead to an oversteep estimation of ". To lessen the
impact of this possibility, 1 was capped at 0.01 in the
fitting, as is appropriate for well-practiced observers
(Wichmann & Hill, 2001b).
To lessen the impact of outliers, estimates of slope were

capped at " = 10 (see Wichmann & Hill, 2001b). Of the
252 psychometric functions that we measured, this
occurred twice.
Summation ratios (SR), or factors, are given by !single/

!dual, where !single and !dual are the thresholds for single
and dual targets, respectively. Alternatively, they are
expressed in decibels thus: SR = 20log10(!single/!dual).

Results

Preliminary results

Pilot work found that for TSM, contrast sensitivity to
the ‘black’ and ‘white’ checks was equal in each eye (i.e.,
sensitivity was the same for all four check conditions),
and this was borne out in the formal part of the study.
For SAW, pilot work revealed that sensitivity was

3.3 dB higher for his left eye than for his right eye. In the
formal experiments we compensated this by attenuating
the left eye contrasts by 3.3 dB. This was successful in
equating the sensitivity of the two eyes. Sensitivity to the
two different check types was the same within eye for this
observer.
During data collection in the formal experiments, it

became apparent that RJS was markedly more sensitive to
the ‘white’ check stimulus in the right eye than the other
three configurations (È3 dB). For this reason, we
restricted the summation analysis to the left eye in the
‘space’ experiment, to the ‘black’ checks in the ‘eyes’
experiment, and to ‘black’ checks in the left eye and
‘white’ checks in the right eye in the ‘space and eyes’
experiment.

Experiment 1 (main): ‘Eyes and area’

The results for the ‘eyes and area’ experiment (our main
experiment) are shown in Figure 3 for each of the three
observers (different large black symbols). The coordinates
of each data point indicate the mean level of summation
(in dB) and the geometric mean of the slope of the
psychometric function (Weibull "). The error bars (in this
and all other plots) indicate the independent estimates of
95% confidence intervals for each of these parameters
(compensated for the use of small samples). For all three
observers, the level of summation is quite high (mean of
4.31 dB; a factor of 1.64) and the slope of the
psychometric function is quite steep (geometric mean of
" = 3.36; look ahead to Table 3 for details of individual
results). The smaller points in Figure 3a (both black and
red) are the predictions made by 62 different models, as
we now describe (see Appendix A for implementation
details).
We begin by restricting out interest to models with four

elements: 1) binocular pooling (POOLeye), 2) spatial
(area) pooling (POOLj), 3) contrast transduction f(), and
4) additive, Gaussian noise (+G). We refer to these as the
‘four-element models’ and consider models containing a
cascade of nonlinear transducers later. In principle, the
four elements could be arranged in any order giving 4! =
24 feed-forward architectures. We first consider two types
of pooling: linear summation (@) and a MAX rule (akin to
probability summation when this follows noisy inputs;
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Pelli, 1985; Tyler & Chen, 2000). There are four possible
combinations of the two types of pooling across eyes and
area and we consider two forms of transducer (linear and
accelerating). This gives 24 � 4 � 2 = 192 different
model configurations. From these we removed the

redundancies (e.g., if summation is MAX across space
and MAX across eyes, adjacent pairings of these oper-
ations can follow in either order), and the equivalences
due to Birdsall’s theorem (see Lasley & Cohn, 1981),
leaving 62 formally different models to be tested (though
several produced very similar predictions). For 13 of
these, the contrast transducer was linear ( f(x) = x),
whereas for the remaining 49 it was nonlinear ( f(x) =
x2.4; Legge & Foley, 1980).
For simplicity we restricted summation in the models to

two full checks of the stimulus (one ‘black’ and one
‘white’). By symmetry, the predictions are the same for
any integer multiple of such pairs of checks. Within each
model, pooling occurred across eyes and space on every
trial. The model simulations (Appendix A) produced
predictions for the slope of the psychometric function
("V) and the summation ratio (SRV).
For some models there were small differences in the

values of "Vpredicted for the single and dual targets (the
differences were always G1 for the models in Figure 3a).
To avoid clutter in Figure 3a we plotted the average of
these two estimates, though we return to this detail later
(e.g., Figure 3b).
For now we are looking for models that produced fair

predictions of both the slope of the psychometric function
and the level of summation. However, as it is straightfor-
ward to reduce the level of summation in the models by
reducing the extent of pooling (Meese & Summers, 2007)
we are not concerned, at this stage, if models over-
predicted summation. The small filled circles (red and
black) in Figure 3a show the 62 model predictions (some
of which superimpose). From visual inspection, the
models clearly fall into two groups. Those where the
slopes of the psychometric functions are far too shallow
(the steepest slope is " = 1.5) and those where the slopes
of the psychometric functions are quite steep (the
shallowest slope is " = 2.3, though " , 3 is more typical).
Within this second group, summation is too low in most
cases. In fact, there are only four models for which
summation is greater than the lower confidence limit of
the observer with the weakest level of summation (SAW).
These are shown by the slightly larger (red) points in
Figure 3a, labeled A, B, C, and D (points C and D
superimpose). In each of these models, the slopes of the
psychometric functions are quite steep (e.g., " 9 3). Only
this group of four models1 produced predictions consistent
with the data according to the rejection criteria outlined
above. The results in Figure 3a reject the other 58 models.
In fact, from Figure 3a, model B is arguably marginal.
However, it is the most successful model that involves the
MAX operation over area, which is akin to spatial
probability summation when it follows noise, as it does
here (Tyler & Chen, 2000). And as models of spatial
probability summation have a long history (e.g., Robson
& Graham, 1981), we retain this model arrangement in
our shortlist and further analyses below.

Figure 3. Results (summation ratios and slopes of the psycho-
metric functions) from the ‘eyes and area’ experiment. Error bars
show 95% confidence intervals. (a) The small points are
predictions made by the 62 models outlined in the text. The four
most successful models (see Results section for selection criteria)
are highlighted in red and have slightly larger symbols than
the rest (points ‘C’ and ‘D’ superimpose; see Table 1 for details).
(b) The same results as in (a) but showing the loci of predictions
for model A (solid curve) and model B (dashed curve) for a range
of contrast transducer exponents p, where p = 1 to 3 from lower to
upper parts of the curves. For the model involving the MAX
operation over area (dashed curves), the predictions for the slope
of the psychometric function were slightly different for the single
(thin long dashed curve) and dual (thin dotted curve) targets. The
thick medium dashed (red) curve between the two is their
geometric mean.
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A shortlist of four models

The four most successful models and their behaviors are
listed in Table 2, and psychophysical behavior (averaged
across the three observers) is shown for comparison in
bold.
Model C (Figure 3a, Table 2) involves perfect linear

summation over eyes and area before nonlinear trans-
duction and late noise. Although not rejected by our data
here, it is inconsistent with results from studies of area
summation where the size of a foveal grating has been
varied (e.g., Foley et al., 2007; Meese, Hess, & Williams,
2005; Meese & Summers, 2007; Rovamo, Luntinen, &
Näsänen, 1993; Summers & Meese, 2007). In those
studies, summation was much less than the log–log
(threshold vs. area) summation slope of j1 predicted by
this linear model (model C). When retinal inhomogeneity
is taken into account (Foley et al., 2007; Meese &
Summers, 2007; Pointer & Hess, 1989) this flexes the
summation curve to a concave shape that resembles the
form of the data in those studies. But the summation slope
remains too steep without the introduction of an accel-
erating (nonlinear) contrast transducer (Foley et al., 2007;
Meese & Summers, 2007) or stimulus uncertainty (Pelli,
1985). Meese and Summers (2007) proposed that noise
propagates from multiple sources before summing over
area (cf. Campbell & Green, 1965 in the binocular
domain), which also reduces the summation slope. In
sum, the linear model (model C) of Table 2 is rejected on
the grounds that it is inconsistent with other published
results of conventional area summation experiments; it

predicts too much summation, even when retinal inhomo-
geneity is included.
Model D in Table 2 involves a MAX operation across

area in each eye, followed by linear summation across
eyes, then nonlinear transduction and late noise. This is a
peculiar arrangement. The MAX operation over area
means that the input to binocular summation arises from
spatially isolated signals across the two eyes that are
displaced by one check width. In the experiment here they
have a disparity of ¾2 deg (equivalent to 3.5 carrier
cycles), well outside the normal range of fusion and strong
binocular summation (Howard, 2002; Rose, Blake, &
Halpern, 1988). Furthermore, operating on mismatched
features across eyes is a poor general strategy for
binocular summation. All this makes model D seem
unlikely. Moreover, this model is rejected outright by
the results from our ‘area’ experiment, as we shall see
below. This leaves only two viable models of our results
(models A and B).
In model A, summation is linear across eyes and area

and nonlinear contrast transduction is placed between the
two. The prediction sits fairly centrally among the three
observers in Figure 3a and is in good agreement with the
average results (Table 2).
Model B is the same as model A except that a MAX

operation is used across area. The prediction is in fair
agreement with the results, though summation is under-
estimated somewhat.2 This model (Table 2) also predicts
that the slope of the psychometric function should be less
for the dual target than for the single target (see also
Meese & Summers, 2007 and Tyler & Chen, 2000). We
found no hint of this in the experiment (not shown) but the
small change in model slope (from "V= 3.9 to "V= 3.0) is
possibly too small to pick up reliably against the
variability in psychophysical data (see confidence limits
of " in Figure 3).
In sum, only 4 out of 62 formally different models are

(broadly) consistent with our data. Two of these (models C
and D) are rejected by considerations outside the present
work (see also the next section), leaving two viable
arrangements (models A and B). These involve linear
summation across eyes followed by a nonlinear transducer,
additive noise, and either linear summation or a MAX
operator across area.

Model predictions for a range of transducer exponents

To investigate the behaviors of models A and B more
thoroughly we reran the models for a range of contrast
transducers. We used f(x) = xp for a range of exponents
where p = 1 to 3. The loci of predictions are shown by the
thick solid (model A) and dashed (model B) red curves in
Figure 3b (p = 1 to 3 from the bottom to the top of the
curves). The data are the same as those in Figure 3a. The
thin dashed gray curves show the different psychometric
slopes ("V) predicted by model B for the dual (short
dashes) and the single (long dashes) targets.

Model code (Figure 3a): A B C D

Model architecture
(order of model elements)

@eye @eye @eye MAXj

x2.4 x2.4 @j @eye
G G x2.4 x2.4

@j MAXj G G

SRV(dB) (model) 4.8 3.2 6.0 6.0
SR (dB) (data) 4.3 4.3 4.3 4.3
"Vsingle (model) 3.1 3.9 3.1 3.1
"Vdual (model) 3.2 3.0 3.2 3.2
"Vaverage (data) 3.4 3.4 3.4 3.4

Table 2. Architectures (top) of the 4 models short-listed for the
quality of their predictions for the ‘eyes and area’ experiment. The
first four rows indicate the order of the four model elements (pooling
over eye [eye], pooling over area [ j ], Gaussian noise [G], and
contrast transduction [xp ]), where the top row is the first element in
the processing stream. Model summation ratios (SRV) and slopes
of the psychometric function ("V) are shown in the main body of
the table and accompanied by the relevant psychophysical
estimates in bold. Note that separate psychometric slopes for
the single and dual conditions are shown for the models, whereas
the average is shown for the psychophysical data.
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The results (Figure 3b) for SAW sit between the two
models and do little to decide between them. However,
the results (Figure 3b) for TSM and RJS clearly favor
model A (@ across area), and those of TSM far exceed the
summation predicted by model B (MAX across area) for
an appropriate slope of the psychometric function.

Experiment 2: ‘Area’

The results for the ‘area’ experiment are shown in
Figure 4. They are similar to the results for the ‘eyes and

area’ experiment (Figure 3), though average summation
here is slightly greater (by 0.67 dB) than before. In Figure 4a,
the predictions for model A and model B are shown as
functions of p, as in Figure 3b. In fact, the curves are
identical to those in Figure 3b because the first stage in both
models is linear summation of contrast across eyes, which
makes the two experiments equivalent for these models.
Model A is clearly the superior model for all three
observers. This extends the findings of Meese and Summers
(2007) regarding area summation of binocular contrast to
the monocular situation here.
Also shown in Figure 4a is the prediction of Model D.

In this model, the MAX response is found over space in
each eye before summing across eyes. As there is signal in
only one eye, this model cannot benefit from the linear
summation across eyes, and so there is no summation
(0 dB), regardless of the transducer exponent and slope
of the psychometric function. As we advised earlier,
this is a further reason to reject Model D.

Minkowski summation

Another form of summation that has been used by
modellers is that of Minkowski summation (Graham,
1989). This is often treated as a model of probability
summation where the Minkowski exponent (+) has a value
of around 3 or 4 (Robson & Graham, 1981). However,
more careful derivations for this form of summation have
been developed from signal detection theory using the
MAX operator (Pelli, 1985; Tyler & Chen, 2000), as in
some of the models here. Nevertheless, Minkowski
summation is convenient and continues to be widely used,
and so for completeness we consider its application to the
results here.
We use a modified form of the equation suggested by

Meese and Summers (2007), where the observer’s internal
response (respobs) to target contrast C is given by

respobsðCÞ ¼
� X

j¼1:n

ðrespjðCÞÞp+
�1=+

; ð3Þ

where respj is the linear response to stimulus contrast C of
the jth of n sensors in a spatial array (see Appendix A for
details), p is the exponent of the contrast transducer, and +
is the Minkowski exponent. Equation 3 was solved for C
assuming a criterion response of unity for single and dual
targets to calculate model summation ratios. The slope of
the psychometric function can be derived by fitting a
Weibull function to the solutions to Equation 3 for a range
of criterion response levels. However, here we used the
direct approximation of Pelli (1987), where " = 1.247p.
Note that + has no effect on the slope of the psychometric
function, as can easily be recognized by considering the
case where n = 1 in Equation 3 and + is cancelled.
Equation 3 is usually (tacitly) used with p = 1. This

Figure 4. Results (summation ratios and slopes of the psycho-
metric functions) from the ‘area’ experiment. Error bars show 95%
confidence intervals. (a) The curves show the same model
predictions as in Figure 3b plus that of model D (vertical locus,
far left). (b) Predictions made by Minkowski summation. Different
curves are for different summation exponents (+) shown at the
bottom of each curve. All model predictions are shown for a range
of contrast transducer exponents, p, where p = 1 to 3 from lower
to upper parts of the curves.
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produces the set of predictions at the lower ends of the
three curves in Figure 4b, which are for three example
values of + (4, 2, and 1). Clearly, all are inadequate in
terms of the slope of the psychometric function. Increas-
ing the value of p brings the predictions much closer to
the data, the best situation shown being for + = 1 (solid red
curve). In fact, that version of Equation 3 is the
deterministic equivalent of model A, the very slight
differences between the (solid red) curves (in Figures 4a
and 4b) owing to the different approximations used in the
two methods of analysis.
For this experiment at least, even the modified version

of Minkowski summation (Equation 3) has nothing to
offer over model A (see also Meese & Summers, 2007).
Furthermore, using Equation 3 with + = 3 or 4, as in the
widely used approximation to probability summation, is
clearly inadequate.

Experiment 3: ‘Eyes’

The results of the ‘eyes’ experiment are shown in
Figure 5. They are similar to the results from the ‘eyes and
area’ experiment (Figure 3), though average summation
here is a little greater (by 0.72 dB) than before.
The solid (red) curve in Figure 5a is the prediction made

by both model A and model B. Both involve linear
summation of contrasts across eyes before nonlinear
contrast transduction, and therefore predict summation of
6 dB (a factor of 2) regardless of the value of p and the
slope of the psychometric function. This slightly over-
estimates the level of binocular summation found in this
and other experiments (e.g., Baker et al., 2007; Meese
et al., 2006).
For completeness, Figure 5b shows predictions for

alternative models (rejected already by the analysis of
Figure 3) where a single stage of contrast transduction (we
now refer to the exponent as m) precedes binocular
pooling and is then followed by spatial pooling and
additive noise. When binocular pooling is a MAX
operator (thick dashed blue curve) the model fails to
reach the requisite levels of summation, regardless of the
slope of the psychometric function, illustrating the
resounding failure of that model (Meese et al., 2006).
When the pooling is linear (solid blue curve), the requisite
levels of summation can be achieved, but the slopes of the
psychometric functions are far too shallow. In fact, the
‘eyes’ result of Figure 5 implies at least two stages of
nonlinear relation between stimulus contrast and response
(Baker et al., 2007). We describe and extend this idea in
the next section.

A three-exponent cascade model of summation

To reduce the amount of binocular summation in the
model (from that in Figure 5a), we inserted an additional

nonlinear contrast transducer before binocular summation
(with exponent m). This is shown in the schematic outline
in Figure 6. With this arrangement it is possible to
calculate the values of m and p that are needed to exactly
fit the summation ratios found in the ‘area’ and the ‘eyes’
experiments (Table 3, middle; see Appendix A for
details). However, this arrangement does not produce
good predictions for the slopes of the psychometric
functions. For example, for TSM and SAW the cascade

Figure 5. Results (summation ratios and slopes of the psycho-
metric functions) from the ‘eyes’ experiment. Error bars show 95%
confidence intervals. (a) The solid vertical red line shows the
predictions for the same two models as in Figures 3b and 4a,
which in this case superimpose. (b) Predictions for alternative
models of binocular summation where the transducer (here
referred to as exponent m) precedes either linear summation
(solid blue curve) or a MAX operation (medium dashed blue
curve). These processes are then followed by area summation
and additive noise. Predictions are for a range of contrast
transducer exponents, m, where m = 1 to 3 from the lower to
upper parts of the curves. The thin dotted and dashed gray curves
are as for Figure 3b.
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of fairly low exponents leads to an underestimation of ".
(Details are not shown, but the overall exponent is equal
to the product of those in the cascade, and from Pelli
(1987), this is multiplied by 1.247 to predict ".) This
problem was addressed by introducing a third and final
exponent (u) placed after the final stage of summation but
before the limiting noise (Table 3 and Figure 6). Thus, to
summarize, m is the exponent needed to fit binocular
summation, mp is the exponent needed to fit area
summation, and mpu is the overall exponent needed to
fit the (average) slope of the psychometric function.
Finally, the limiting noise must be late in order that u
can affect performance, owing to Birdsall’s theorem.
With all model parameters set, predictions were then

derived for the ‘eyes and area’ experiment. These were
very good, as shown in Figure 7 by the close proximity
between the large solid (black) symbols (human data) and
the small solid (red) symbols (model).

The order of summation

For the original four-element models (Figure 3a) it was
important that binocular summation was placed before
area summation (Table 2). When the order was reversed

(in models A and B), the predicted level of summation for
the ‘eyes and area’ experiment was insufficient (G2.7 dB)
for each form of summation (MAX and linear). But with
the limitation of a single transducer relaxed above, do the
results still constrain the order of summation? To answer
this we considered a model similar to that in Figure 6, but
with the two summation stages exchanged (the exponent
order was unchanged). This produced different values for
each of the exponents, m, p, and u (Table 3, bottom) after
fitting to the ‘eyes’ and ‘area’ experiments as before. Most
notably, p is compressive (G1) for this arrangement. More

Figure 6. Cascade model with two stages of summation (eyes and
space) and three exponents, m, p, and u, representing nonlinear
relations between stimulus contrast and response. L and R
denote local contrasts in the left and right eyes respectively, and
the subscripts denote different corresponding points across the
retinae. For the behaviors of the deterministic models in Table 3,
the limiting additive noise was placed immediately before the
decision maker. The decision maker chooses the 2IFC interval
that produces the greatest response.

Observer TSM RJS SAW Average

Experimental results
Eyes SR 4.95 5.87 4.26 5.03
Area SR 5.10 4.83 5.00 4.98
Eyes and area SR 4.40 4.88 3.64 4.31
Eyes " 4.1 2.5 3.6 3.3
Area " 3.8 2.6 3.6 3.3
Eyes and area " 4.0 2.4 4.0 3.6
"
�

3.9 2.5 3.7 3.3
P = ("

�
/1.247) 3.2 2.0 3.0 2.7

Model: Summation across eyes then area
m 1.22 1.03 1.41 1.20
p 1.60 2.26 1.47 1.76
mp 1.95 2.32 2.07 2.11
u = P/(mp) 1.62 0.86 1.45 1.26
Equivalent uncertainty (U) 14 N/A 7 3
Predicted SR for ‘eyes
and area’

4.27 4.69 3.70 4.20

Model: Summation across area then eyes
m 1.95 2.32 2.08 2.11
p 0.62 0.44 0.68 0.57
mp 1.22 1.03 1.41 1.20
u = P/(mp) 2.60 1.94 2.13 2.22
Equivalent uncertainty (U ) 757 51 111 164
Predicted SR for ‘eyes
and area’

4.95 5.87 4.26 5.02

Table 3. Summary of experimental results for each observer and
their average (top), and behaviors of two cascade models
involving two stages of summation and three stages of nonlinear
contrast transduction (middle and bottom). The parameter P is the
effective overall exponent and is estimated from the psychophys-
ical results using Pelli’s (1987) approximation. This is the
(average) estimate of the slope of the psychometric function ( "

�
)

divided by 1.247. In the models, the overall exponent is given by
the product mpu. The exponents m and p were estimated from the
SRs in the ‘eyes’ and ‘area’ experiments respectively, leaving u to
be set by P. The equivalent uncertainty (U ) is described in the
Discussion section. No degrees of freedom remained for predict-
ing the SRs in the (main) ‘eyes and area’ experiment. Note that
the model parameters in the ‘average’ column are not the
averages of those in the other three columns, but the parameters
fit to the data of the average observer.
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importantly, however, this model predicted too much
summation for the ‘eyes and area’ experiment in all cases
(open small [blue] symbols in Figure 7, and Table 3,
bottom), causing it to be rejected in favor of the arrange-
ment in Figure 6.

Discussion

Linear summation of contrast takes place
across eyes before space

The summation results here provide good evidence for a
cascade of contrast pooling operations at detection thresh-
old. In experiment 1 (‘eyes and area’), summation was
found when the dual signal regions were placed in different
spatial locations in different eyes, indicating neuronal
convergence from different eyes and different retinal
locations. We tested 62 formally different four-element
models of the process. Only one of these survived our
detailed consideration of the ‘eyes and area’ experiment
and other results elsewhere. This model (model A) asserted
a strict order to the pooling: linear summation across eyes
takes place before nonlinear contrast transduction and

linear area summation. However, to provide good
accounts of the summation ratios and slopes of the
psychometric functions for all three of our experiments
(‘eyes,’ ‘area,’ and ‘eyes and area’) it was necessary to
introduce a cascade of three transducers (with exponents
m, p, and u; Figure 6). Even so, the overall analysis clearly
favored a scheme in which binocular summation is placed
before area summation, rather than the other way around
(Figure 7 and Table 3).
In a very different type of study, Mansouri, Hess, Allen,

and Dakin (2005) came to the conclusion that binocular
summation precedes the pooling of multiple orientation
signals across space. Hess and Field (1995) found that
spatial contour integration arises after disparity process-
ing, and Huang, Hess, and Dakin (2006) came to a similar
conclusion. All this suggests the possibility of a fairly
general scheme in which higher order spatial computa-
tions follow the early representation of image data
combined from the two eyes.

Probability summation and the MAX operator

Our analysis revealed shortfalls for models of proba-
bility summation, whether implemented by a Minkowski
metric (Figure 4b) or a MAX operator (following noise) in
a four-element model (Figures 3b, 4a, and 5b). However,
with the limit to four model elements relaxed, might an
implementation emerge by which the spatial MAX
operator could survive? The earlier failure of this
operation (model B) in Figure 4a owes to its inability to
predict the slope of the psychometric function. But
suppose that a MAX operation is placed at the area
summation stage in Figure 6 (replacing the linear sum)
following low values of m and p (to fit the high levels of
summation; Figures 4 and 5) and that additive noise is
placed after the transducer p but before the spatial MAX
operator (as in model B; Table 2). Now a high value of u
and subsequent late performance limiting noise (as in
Figure 6) could be included to increase the slope of the
psychometric function without influencing the level of
summation.
Note that this arrangement (not shown) is rather differ-

ent from the usual conceptualization of the MAX
operator, which is placed at the end of the signal
processing chain, just before the decision variable (Pelli,
1985). With that arrangement, the MAX can be treated as
an operation performed by the decision-making process.
For the arrangement offered here, the placement of model
elements (a transducer and performance limiting, additive
noise) between the MAX operation and the decision
variable suggests a MAX operation that forms part of
the sensory pooling. In any case, this is the only arrange-
ment (that is limited by additive noise) in which the
spatial MAX operator can survive in a model of spatial
summation for the type of stimuli used here.

Figure 7. Summation ratios and slopes of the psychometric
functions for the ‘eyes and area’ experiment (top of Table 3),
replotted from Figure 3. Error bars show 95% confidence intervals.
For the average of the three observers (solid black square) this was
calculated using a bootstrapping technique. The small solid (red)
and open (blue) symbols are the cascade model predictions
(no free parameters) for each observer and the average observer
(different shapes). The parameter values for these models are
shown in the middle and bottom parts of Table 3.
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Uncertainty

The models involving MAX operations here include an
implicit component of extrinsic uncertainty for the single
target conditions (consistent with the intermixing of single
and dual conditions in the experiments). One of the effects
of this type of uncertainty is to increase the slope of the
(model) psychometric function (Pelli, 1985; Tyler &
Chen, 2000; see also Table 2, model B, second and
third rows from bottom). Nevertheless, for the models
(Figure 3a) with a linear transducer, the model slopes
were much shallower than those measured in the experi-
ment. In general, this shortcoming was corrected in the
models by including one or more accelerating contrast
transducers that further increased the slope of the
psychometric function. But another approach is to
increase the background level of intrinsic uncertainty
(Pelli, 1985). However, this does not help reinstate the
spatial MAX operator because increasing uncertainty also
decreases the level of summation, in a very similar way to
the nonlinear transducer in Figure 4a (Summers & Meese,
2007; Tyler & Chen, 2000).
In general, when dV is in the range measured in

detection experiments, an accelerating contrast transducer
followed by noise can be replaced with a MAX rule that
operates on noisy input lines, where the level of
uncertainty, U, is the number of input lines that are
monitored by the observer (and the signal is carried by a
single input line). The amount of uncertainty needed
grows exponentially with the transducer exponent for
which it is intended to replace (Pelli, 1985). In fact, there
are good reasons to replace the output stage in Figure 6
(exponent u and late noise) with this arrangement, as
depicted in Figure 8. Because the area summation stage is
linear the limiting noise can be moved to the left-hand
side of that stage, placing it earlier than in Figure 6. This
arrangement was an important part of the Meese and
Summers (2007) model of area summation for the
situation where a central patch of grating is grown in size
and there is no extrinsic uncertainty. In that model, the
region of linear area summation was matched to the size
of the target, following retinal inhomogeneity, a nonlinear
transducer, and additive noise. This predicted the moder-
ate levels of summation found in the experiment owing
partly to the growth of noise with signal area. Thus, we
envisage that the area summation region in Figure 8 can
be matched to the target diameter, at least up to some
range (Meese & Summers, 2007; Summers & Meese,
2007). Whether this involves a flexible mechanism of
variable size, or the selection of an appropriate sized
pooling mechanism within a discrete set, is unclear.
The levels of uncertainty (U) needed for the model in

Figure 8 were estimated using Pelli’s (1985) approxima-
tion (his equation 5.4) and are reported in the middle part
of Table 3. Note that they are quite modest (because u was
quite low), as might be expected for highly trained
observers. (For completeness,U is also reported in Table 3

for the less successful model in which binocular
summation follows area summation. Those values are
much higher.)

Summary and conclusions

For more than 25 years, studies of spatial vision have
been dominated by the view that spatial contrast pooling
is weak at detection threshold (e.g., probability summa-
tion). This view was first challenged in our recent
companion paper (Meese & Summers, 2007), where we
concluded that a signal combination strategy takes place
across several grating cycles at threshold and above. In the
binocular domain, Meese et al. (2006) recently concluded
that contrast summation across eyes is greater than the
factor of ¾2 (3 dB, or quadratic summation) that has often
been supposed (Campbell & Green, 1965). The current
study has extended the inquiry by combining these two
dimensions to investigate pooling of signals presented to

Figure 8. Alternative model to that in Figure 6. This model
incorporates intrinsic uncertainty instead of the output transducer
u. The observer monitors a total of U mechanisms (A1: AU) only
one of which is relevant. The irrelevant mechanisms have
comparable levels of noise, as might occur if they performed
area summation over irrelevant carrier orientations, spatial
frequencies, and so forth. As in Figure 6, the decision maker
chooses the 2IFC interval that produces the greatest response.
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different eyes and different spatial (retinal) locations. Our
results confirm that the pooling strategy involves stimulus
combination across eyes and area together. Our most
successful model indicates a strict order to the pooling:
area pooling follows binocular pooling. A model incor-
porating a spatial MAX operator might survive in an early
sensory context if it is followed by subsequent stages of
contrast response nonlinearity and performance limiting
noise. However, our preferred model (owing to its
relative simplicity) involves linear summation at both
pooling stages with moderately accelerating contrast
transduction before each stage, performance-limiting
noise before area summation, and a late stage of signal
uncertainty (Figure 8).

Appendix A

Four-element model architectures

The models for which predictions are shown in Figure 3a
have four components: 1) binocular pooling (POOLeye), 2)
area pooling (POOLj), 3) contrast transduction f() and 4)
additive, Gaussian noise (+G). We used two types of
pooling: linear summation and a MAX rule, giving POOL
(x1..xn) = @(x1..xn) or POOL(x1..xn) = MAX(x1..xn),
respectively, where xi is the contrast response at the
appropriate stage in the model (see below). For Figure 3a
there were two types of transducer. For the linear
transducer, f(x) = x, and for the nonlinear transducer,
f(x) = x2.4 (Legge & Foley, 1980). (Owing to the
simplification below, x is always Q0.) For the model curves

in Figures 3b, 4a and 5b, the exponent in this expression
was varied over the range 1.0 to 3.0 in steps of 0.2.

Monte Carlo simulations

We assumed that first-order linear filters provided
sufficiently dense sampling over space (and phase) to treat
the contrast envelope as the analytic signal. We performed
the analysis by considering the responses across two-
dimensional arrays of filter elements (sensors, j) over the
region of two whole checks, one ‘black’ and one
‘white’ ( j = 1 to n, where n = 31 � 63 = 1,953, though
this figure is not critical). The left-eye and right-eye linear
sensor responses to unit contrast in the ‘eyes and area’
experiment are shown in Figure A1, and are given by
Lj and Rj. The linear responses to any stimulus contrast
(in %) are given by the product of these terms with
target contrast C.
In all experiments, the single target produced the

response distribution shown by that in the left of
Figure A1. The sensor responses in the right eye were zero.
In the ‘eyes’ experiment the dual target produced a
response distribution in the right eye that was the same
as that in the left eye. In the ‘area’ experiment, the dual
target was a unit response for all sensors in the left eye and
the responses of the right eye sensors were zero.
We added zero-mean, unit-variance3 Gaussian noise (G)

drawn independently on each interval of each simulated
trial for each transmission line at the stage appropriate for
the injection of noise for each model.
The four model components (POOLeye(), POOLj(), f(),

and +G) were combined in each of the orders appropriate
for the various model architectures under test. For

Figure A1. Monocular sensor-response distributions to a unit contrast stimulus of different check phase (‘black’ or ‘white’) in the two eyes,
over two full checks for a dual target (‘eyes and area’ experiment). The linear sum of the two distributions is a unit response for all
sensors. The sensor arrays for the ‘eyes’ and ‘area’ experiments are as described in the text.
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example, the sequence: POOLeye, f(x), G, POOLj, is given
by

respðCÞ ¼

POOLjf f ðPOOLeye½LjðCÞ;RjðCÞ�Þ þ Gjg;
ðA1Þ

where C is target contrast. Note that pooling took place
across eyes and all spatial locations in both 2IFC intervals
in each experiment.
On each simulated 2IFC trial, C appeared in only one

interval. The simulated observer selected the interval that
produced the largest response using the appropriate model
equation (e.g., Equation A1). If the interval contained the
target, then the decision was correct, otherwise it was
incorrect. The simulations were performed for a wide
range of values of C in 0.5 dB steps with 2000 trials at
each level (a simulated method of constant stimuli). This
was done with single and dual increments of C. The
simulated results were fitted with Weibull functions
(Equation 2) to produce predictions for the slopes of the
psychometric functions ("V) and thresholds at 81.6%
correct (!V). Model summation ratios (SRV) were given
by: 20log10(!Vsingle /!Vdual).
Confidence intervals for our stochastic models were

calculated using a bootstrapping method and were
negligible (i.e., 95% confidence intervals typically fell
within T0.2 dB of the reported summation ratio and T0.1
of the reported ").
In Figures 3b, 4a, and 5b, the model predictions were

fitted with third-order polynomials to smooth out very
minor deviations that arose from their stochastic origins.

Minkowski summation

The model curves in Figure 4b were derived by
applying Equation 3 (main body) to the sensor arrays
(see Figure A1) as appropriate for the area experiment.
The model is deterministic (stochastic noise was unneces-
sary) and Equation 3 was solved directly for C, assuming
unit response at detection threshold, to calculate summa-
tion ratios for the single and dual targets. The slope of the
psychometric function (") was estimated using Pelli’s
(1987) approximation where " = 1.247p, and p is the
(overall) exponent of the contrast transducer.

Three-exponent cascade models

Two versions of this model were implemented using
sensor arrays similar to those in Figure A1, as appropriate
for each experiment and condition. In one version, the
sequence of model elements was as shown in Figure 6, for
the other the order of binocular and area summation was

reversed. Both involved three stages of contrast trans-
duction with exponents, m, p, and u in that order. Both
also involved linear summation at the two pooling stages
(see Table 3 and Figure 6) and were therefore imple-
mented deterministically, as for the Minkowski summa-
tion. For the version in which binocular summation
preceded area summation (Table 3, middle), the exponent
was determined by analytic solution of the model for the
empirical summation ratios (SR) in the ‘eyes’ experiment.
The exponent product mp was then solved numerically for
the empirical SR in the ‘area’ experiment. Finally, the
exponent product mpu was solved analytically using
Pelli’s (1987) approximation: mpu = "

�
/1.247, where "

�
is the Weibull slope parameter of the psychometric
function averaged across the three experiments (to achieve
the best possible empirical estimate).
With all model parameters fixed, the predictions for the

‘eyes and area’ experiment were determined numerically
by solving the model equation for C for the single and
dual targets in that experiment. The slopes of the model
psychometric functions were determined by the fitting of
m, p, and u (described above) and were equal to the
average empirical estimate, "

�
.

For the model in which binocular summation followed
area summation (Table 3, bottom), the procedure was the
same as above, except that the exponent m was deter-
mined by numerical solution for the SR from the ‘area’
experiment and mp was then solved analytically from the
SR in the ‘eyes’ experiment.
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Footnotes

1
A fifth model fell just outside the lower summation

bounds in Figure 3a. For this model, the four elements
were arranged in the following order: MAX over eyes, @
over area, transducer p = 2.4, additive noise. As for the
other models, summation could be increased by reducing
the value of p, but this also reduced the slope of the
psychometric function. We could find no adequate trans-
ducer for this arrangement.
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2
Eagle-eyed readers might observe what appears to be a

discrepancy in the analysis of two of our studies. In the
work here the summation ratio (SR) predicted for model B
(spatial MAX operation after a nonlinear exponent of 2.4)
is 3.2 dB (Table 2), whereas in Meese and Summers
(2007), the SR predicted for the same model is 3.5 dB
(Table 1 in that study). The reason for the slight difference
is that the SRs were calculated using different points on
the psychometric functions (P81.6 here and P75 in Meese
& Summers). If the slopes of the model psychometric
functions were the same in the single and dual conditions
the threshold criterion would not matter, but for the MAX
operator the psychometric slope is slightly steeper for the
single target than the dual target because of uncertainty
(Tyler & Chen, 2000). This causes the level of SR to fall
slightly as the calculations are performed at progressively
higher points on the psychometric functions.

3
The choice of unit variance noise was not critical.

Indeed, the individual differences in contrast sensitivity
(not shown) might be attributed to different levels of noise
across observers. However, in this study we are concerned
with ratios of sensitivities (summation ratios), for which
we need assume only that the variance of the noise is the
same for the two conditions contributing to the ratio
(within observer). So long as this assumption holds, the
individual differences in SRs cannot be attributed to
individual differences in the level of internal noise.
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