Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown policy and contact the service immediately (openaccess@aston.ac.uk)
SIMULATION OF POWER STATION PROTECTION EQUIPMENT

LOI LEI LAI

Thesis submitted to the

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

THE UNIVERSITY OF ASTON IN BIRMINGHAM

For the degree of

DOCTOR OF PHILOSOPHY

MAY 1984
Acknowledgments

I wish to thank those who have given help in this project, particularly the following:

My supervisor Dr R C Johnson.
My associate supervisor Dr A L Bowden, and
Mr J G Hadwick for their interesting discussions and useful contributions.

Finally, the financial support from the University of Aston in Birmingham, the Central Electricity Generating Board and the Committee of Vice Chancellors and Principals of the Universities of the United Kingdom is gratefully appreciated.
Simulation of Power Station Protection Equipment

Summary

Computer programs have been developed to enable the coordination of fuses and overcurrent relays for radial power systems under estimated fault current conditions. The grading curves for these protection devices can be produced on a graphics terminal and a hard copy can be obtained. Additional programs have also been developed which could be used to assess the validity of relay settings (obtained under the above conditions) when the transient effect is included.

Modelling of a current transformer is included because transformer saturation may occur if the fault current is high, and hence the secondary current is distorted. Experiments were carried out to confirm that distorted currents will affect the relay operating time, and it is shown that if the relay current contains only a small percentage of harmonic distortion, the relay operating time is increased.

System equations were arranged to enable the model to predict fault currents with a generator transformer incorporated in the system, and also to include the effect of circuit breaker opening, arcing resistance, and earthing resistance. A fictitious field winding was included to enable more accurate prediction of fault currents when the system is operating at both lagging and leading power factors prior to the occurrence of the fault.

Keywords: overcurrent protection, optimal relay settings, current transformer, synchronous generator modelling, circuit breaker opening

Author: LOI LEI LAI

For the degree of DOCTOR OF PHILOSOPHY

May 1984
Contents

List of symbols viii
Matrix definition xii
List of figures xvii

Chapter 1 Introduction 1
1.1 Objectives of research 1
1.2 Research background 2
1.3 Approaches in research 4
1.4 Work layout 6

Chapter 2 Overcurrent protection 7
2.1 Inverse time overcurrent relays 7
2.1.1 Types of relays 7
2.1.2 Construction and operation 8
2.2 High set instantaneous overcurrent relay 9
2.3 System description 10
2.4 Factors influencing settings 11
2.4.1 Time grading 11
2.4.2 Current grading 12
2.4.3 Time multiplier setting (TMS) 13
2.4.4 Pickup setting 13
2.5 Discrimination criteria 13
2.6 The template method 15
2.7 Summary 16

Chapter 3 Coordination and plotting programs 18
6.2.1 With d.c. current 74
6.2.2 Exponential current 74
6.2.3 50 Hz sinusoidal current 74
6.2.4 Distorted current 75
6.2.5 Relays tests with 3rd and 5th harmonic currents 75
6.3 Discussion 75
6.4 Summary 77

Chapter 7 Results on protection and fault analysis 78
7.1 Results on protection coordination 78
7.1.1 Relay pickup and operating time 78
7.1.2 Position of minimum time difference 78
7.1.3 Practical solution 81
7.1.4 Transient effect on relay operating time and \(i^2t\) 81
7.2 Results on fault analysis 83
7.2.1 Open circuit condition 83
7.2.2 Loading conditions 83
7.2.2.1 Effect due to saturation 85
7.2.2.2 Effect due to the iron rotor 86
7.2.2.3 Effect due to circuit breaker opening 91
7.2.2.4 Effect due to arcing resistance 95
7.3 Summary 97

Chapter 8 Conclusions 98
8.1 Achievements of the project 98
8.2 Suggestions for further work 99
8.2.1 Modelling review 99
8.2.2 Generator saturation 100
8.2.3 Governor and voltage regulator
8.2.4 Resetting of relays
8.2.5 Inclusion of induction motors
8.2.6 Relay operating time calculation
8.2.7 Assessing the validity of relay settings

Appendix A Current distribution in a current transformer
Appendix B Per-unit system
Appendix C Relationship between (a,b,c) and (d,q) parameters
Appendix D Runge Kutta and Predictor Corrector methods
Appendix E Determination of initial conditions for the generator
Appendix F Derivation of electrical torque, T_e
Appendix G Voltages and currents in a delta/star transformer
Appendix H Voltage equation and swing equation
Appendix I Definition of fault, switching and connection matrices for faults of the particular type
Appendix J Computer programs

References
List of symbols

Ce connection matrix

H inertia constant (MW secs. on machine rating)

\(x_d \) direct axis synchronous reactance (p.u. on machine rating)

\(x_d' \) direct axis transient reactance (p.u. on machine rating)

\(x_d'' \) direct axis subtransient reactance (p.u. on machine rating)

\(x_q \) quadrature axis synchronous reactance (p.u. on machine rating)

\(x_q' \) quadrature axis transient reactance (p.u. on machine rating)

\(x_q'' \) quadrature axis subtransient reactance (p.u. on machine rating)

\(x_a \) armature leakage reactance in (d,q) parameters (p.u. on machine rating)

\(x_{sa} \) armature leakage reactance in (a,b,c) parameters (p.u. on machine rating)

\(x_o \) zero sequence reactance (p.u. on machine rating)

\(T_d \) direct axis transient short circuit time constant (sec.)

\(T_d' \) direct axis subtransient short circuit time constant (sec.)

\(T_q \) quadrature axis transient short circuit time constant (sec.)

\(T_q'' \) quadrature axis subtransient short circuit time constant (sec.)

\(T_L \) loss torque due to friction and windage

\(T_e \) electrical air gap torque (p.u. on machine rating)

\(T_m \) mechanical torque
\[T_a \] accelerating torque

\[p \frac{d}{d\tau} = w_o \frac{d}{d\tau} \]

\[\tau \] time in radians

\[r_a \] armature resistance (p.u. on machine rating)

\[r_e \] earthing resistance (p.u. on machine rating)

\[r_{fd} \] d-axis field winding resistance (p.u. on machine rating)

\[r_{fq} \] q-axis field winding resistance (p.u. on machine rating)

\[r_{kd} \] d-axis damper winding resistance (p.u. on machine rating)

\[r_{kq} \] q-axis damper winding resistance (p.u. on machine rating)

\[x_p \] leakage reactance of the generator transformers delta connected windings.

\[x_s \] leakage reactance of the generator transformer star connected windings.

\[r_p \] resistance of the generator transformer delta connected windings

\[r_s \] resistance of the generator transformer star connected windings

\[n \] generator transformer tap ratio

\[r_T \] equivalent resistance of the generator transformer as seen from the system side

\[x_T \] equivalent reactance of the generator transformer as seen from the system side

\[r_L \] equivalent resistance of the transmission system
x_L equivalent reactance of the transmission system

e_a armature voltage - phase a

i_a armature current - phase a

v_a infinite busbar voltage at phase a

i_o zero sequence current in the generator

i_{fd} field current in the direct axis

i_{kd} direct axis damper winding current

i_{fq} field current in the quadrature axis

i_{kq} quadrature axis damper winding current

e_{fd} field voltage in the direct axis

x_{afdo} direct axis field/armature mutual reactance (unsaturated)

x_{fdl} field winding leakage reactance

x_{kdl} damper winding leakage reactance

S_{1s} switching matrix for faults on LV side of the transformer.

S_{2s} switching matrix for faults on HV side of the transformer.

M_{1s}^{-1} connection matrix for faults on LV side of the transformer.

M_{2s}^{-1} connection matrix for faults on HV side of the transformer.

$(M_{is}^{-1})^T$ the transpose of M_{is}^{-1} where i can be 1 or 2.

k_j constant voltage across the arc used to simulate arcing resistance, where j will be a, b, and c depending on phase opening.
w_o nominal system angular frequency, radian/second

λ_a flux linkages - phase a

λ_{fd} flux linkages - direct axis field winding

λ_{kd} flux linkages - direct axis damper winding

λ_{fq} flux linkages - quadrature axis field winding

λ_{kq} flux linkages - quadrature axis damper winding

θ the angle of the direct axis with respect to phase a

s the angle between the direct axis and the synchronously rotating reference of the infinite busbar.
Matrix definition

The inductance matrix \(L \) is a 7x7 matrix and consists of \(X \) and \(Y \).

\[
L = \begin{bmatrix}
-x_{aa} & -x_{ab} & -x_{ac} & x_{afd} & \cos\theta \\
-x_{ab} & -x_{bb} & -x_{bc} & x_{afd} & \cos(\theta - \frac{2}{3} \pi) \\
-x_{ac} & -x_{bc} & -x_{cc} & x_{afd} & \cos(\theta + \frac{2}{3} \pi) \\
-x_{afd} & -x_{afd} & -x_{afd} & x_{afd} & \cos(\theta - \frac{2}{3} \pi) - x_{afd} & \cos(\theta + \frac{2}{3} \pi) & x_{fdl} + x_{afd} \\
x_{afq} & x_{afq} & x_{afq} & x_{afq} & \sin(\theta - \frac{2}{3} \pi) & \sin(\theta + \frac{2}{3} \pi) & x_{afq} \\
x_{afq} & x_{afq} & x_{afq} & x_{afq} & \sin(\theta - \frac{2}{3} \pi) & \sin(\theta + \frac{2}{3} \pi) & x_{afq}
\end{bmatrix}
\]

\[
X = \begin{bmatrix}
x_{afd} & -x_{afq} & x_{afq} & -x_{afq} & x_{afq} \\
-x_{afd} & x_{afq} & x_{afq} & -x_{afq} & x_{afq} \\
-x_{afd} & -x_{afq} & -x_{afq} & x_{afq} & x_{afq} \\
x_{afq} & x_{afq} & x_{afq} & x_{afq} & -x_{afd} \\
x_{afq} & -x_{afq} & -x_{afq} & x_{afq} & x_{afq}
\end{bmatrix}
\]

\[
Y = \begin{bmatrix}
-x_{afq} & x_{afq} & x_{afq} & -x_{afq} & x_{afq} \\
x_{afd} & x_{afd} & x_{afd} & -x_{afd} & x_{afd} \\
x_{afq} & x_{afq} & x_{afq} & -x_{afq} & x_{afq}
\end{bmatrix}
\]

\[
x_{aa} = x_{aao} + x_{aao} \cos 2\theta, \quad x_{ab} = -x_{abo} + x_{aao} \cos(2\theta - \frac{2}{3} \pi)
\]

\[
x_{bb} = x_{aao} + x_{aao} \cos(2\theta + \frac{2}{3} \pi), \quad x_{bc} = -x_{abo} + x_{aao} \cos 2\theta
\]
\[x_{cc} = x_{aao} + x_{aa2} \cos(2\theta - \frac{2}{3}\pi), \quad x_{ca} = -x_{abo} + x_{aa2} \cos(2\theta + \frac{2}{3}\pi) \]

\[x_{aao} = \frac{x_d + x_g + x_o}{3}, \quad x_{abo} = \frac{x_d + x_g - 2x_o}{6}, \quad x_{aa2} = \frac{x_d - x_g}{3} \]

\[
\begin{bmatrix}
 r_a + r_e & r_e & r_e \\
 r_e & r_a + r_e & r_e \\
 r_e & r_e & r_a + r_e
\end{bmatrix}
\]

\[
\begin{bmatrix}
 -r_{fd} & 0 & 0 & 0 \\
 0 & -r_{kd} & 0 & 0 \\
 0 & 0 & -r_{fq} & 0 \\
 0 & 0 & 0 & -r_{kq}
\end{bmatrix}
\]

\[
R = \begin{bmatrix}
 r_s & 0 \\
 0 & r_r
\end{bmatrix}
\]

\[
C = \frac{1}{\sqrt{3}} \begin{bmatrix}
 1 & -1 & 0 \\
 0 & 1 & -1 \\
 -1 & 0 & 1
\end{bmatrix}, \quad C^t = \frac{1}{\sqrt{3}} \begin{bmatrix}
 1 & 0 & -1 \\
 -1 & 1 & 0 \\
 0 & -1 & 1
\end{bmatrix}
\]

\[
R_T = \begin{bmatrix}
 r_T & 0 & 0 \\
 0 & r_T & 0 \\
 0 & 0 & r_T
\end{bmatrix}, \quad L_T = \begin{bmatrix}
 l_T & 0 & 0 \\
 0 & 1_T & 0 \\
 0 & 0 & 1_T
\end{bmatrix}
\]

- xiii -
\[
\begin{bmatrix}
 r_L & 0 & 0 \\
 0 & r_L & 0 \\
 0 & 0 & r_L
\end{bmatrix}
\]

\[R_L = \begin{bmatrix}
 l_L & 0 & 0 \\
 0 & l_L & 0 \\
 0 & 0 & l_L
\end{bmatrix}\]

\[
T_s = (i_a, i_b, i_c)^t
\]

\[
\bar{e}_s = (e_a, e_b, e_c)^t
\]

\[
\bar{v} = (v_a, v_b, v_c)^t
\]

\[
\bar{e}_T = (e_{Ta}, e_{Tb}, e_{Tc})^t
\]

\[
\bar{T}_T = (i_{Ta}, i_{Tb}, i_{Tc})^t
\]

\[
\bar{r} = (i_{fd}, i_{kd}, i_{fq}, i_{kq})^t
\]

\[
\bar{e}_r = (e_{fd}, 0, 0, 0)^t
\]

\[
\bar{e}_L = (e_{La}, e_{Lb}, e_{Lc})^t
\]

\[
\bar{I}_L = (i_{La}, i_{Lb}, i_{Lc})^t
\]

\[
\bar{\lambda}_s = (\lambda_a, \lambda_b, \lambda_c)^t
\]

\[
\bar{\lambda}_r = (\lambda_{fd}, \lambda_{kd}, \lambda_{f}, \lambda_{kq})^t
\]

\[
\bar{\lambda} = (\lambda_a, \lambda_b, \lambda_c, \lambda_{fd}, \lambda_{kd}, \lambda_{f}, \lambda_{kq})^t
\]
\[\bar{e}_1 = (e_{a1}, e_{b1}, e_{c1})^t \]

\[\bar{i}_1 = (i_{a1}, i_{b1}, i_{c1})^t \]

\[\bar{k} = (k_a, k_b, k_c)^t \]

\[\bar{k} = (k_a, k_b, k_c, \emptyset, \emptyset, \emptyset, \emptyset)^t \]

\[\bar{e} = (e_a, e_b, e_c, e_{fd}, \emptyset, \emptyset, \emptyset)^t \]

\[\bar{i} = (i_a, i_b, i_c, i_{fd}, i_{kd}, i_{fq}, i_{kq})^t \]

\[\bar{v} = (v_a, v_b, v_c, e_{fd}, \emptyset, \emptyset, \emptyset)^t \]

\[\bar{p}\bar{i} = (p_i a, p_i b, p_i c, p_i fd, p_i kd, p_i fq, p_i kq)^t \]

\[\bar{p}\bar{i}_s = (p_i a, p_i b, p_i c)^t \]

\[\bar{e}_T = (e_{Ta}, e_{Tb}, e_{Tc}, e_{fd}, \emptyset, \emptyset, \emptyset)^t \]

\[\bar{i}_T = (i_{Ta}, i_{Tb}, i_{Tc}, i_{fd}, i_{kd}, i_{fq}, i_{kq})^t \]

\[\bar{p}\bar{i}_T = (p_i_{Ta}, p_i_{Tb}, p_i_{Tc}, p_i_{fd}, p_i_{kd}, p_i_{fq}, p_i_{kq})^t \]

\[\bar{p}\bar{i}_T = (p_i_{Ta}, p_i_{Tb}, p_i_{Tc})^t \]

\(U_4 \) is a 4 X 4 unit matrix, \(\emptyset_4 \) is a 4x4 zero matrix.

\(X_{lsr}, X_{2sr}, C_T^t, R_{TL}^I, L_{TL}^I \) are 7 X 7 matrices, \(X \) can be F or S.
\[X_{1st} = \begin{bmatrix} X_{1s} & 0 \\ 0 & U_4 \end{bmatrix} \]

\[c_T^T = \begin{bmatrix} c^T & 0 \\ 0 & U_4 \end{bmatrix} \]

\[X_{2st} = \begin{bmatrix} X_{2s} & 0 \\ 0 & U_4 \end{bmatrix}, \quad L'_{TL} = \begin{bmatrix} F_{2s}L_L + L_T & 0 \\ 0 & 0_4 \end{bmatrix} \]

\[R'_{TL} = \begin{bmatrix} F_{2s}R_L + R_T & 0 \\ 0 & 0_4 \end{bmatrix} \]

\[C_{e_T} = \begin{bmatrix} C_e & 0 \\ 0 & U_4 \end{bmatrix} \]

\[M^{-1}_{ist} = \begin{bmatrix} M_{is}^{-1} & 0 \\ 0 & U_4 \end{bmatrix} \]

i can be 1 or 2.
List of figures

1.1 Circuit diagram for fault analysis 5
2.1 Simplified power station overcurrent protection diagram 9
2.2 Relays and fuses connection diagram 13
2.3 Same description as in figure 2.2 13
2.4 Same description as in figure 2.2 13
3.1a Relay coordination procedure 20
3.1b Searching for the minimum time difference 20
3.2 A typical example for the calculation of T 21
3.3 An alternative example for the calculation of T 21
3.4 Effect of pickup on relay operating time 23
3.5a Flow diagram for coordination program 25
3.5b Continuation of flow diagram for coordination program 27
3.6 Flow diagram for plotting program 28
4.1 Schematic layout of the windings of the synchronous machine 30
4.2 Fault at B, b to earth, phase a is opened 46
4.3 Fault at A, b to earth, phase b is opened 49
4.4 Fault at D, b to c, phase a is opened 51
4.5 Flow chart for program calculating fault currents for faults occurring on LV side and with circuit breaker opening included 51
4.6 Flow chart for program calculating fault currents for a generator on open circuit 51
4.7 Flow chart for program calculating the relay operating
time under transient conditions

5.1 Equivalent circuit for a current transformer
5.2 Hysteresis loop of core material
5.3 A sinusoidal current applied to a CT
5.4 Phasor diagram to represent the current phasors in figure 5.3
5.5 Approximate magnetisation characteristic of CT
5.6 Flow diagram for current transformer modelling
6.1 Circuit diagram for testing relay with different operating currents
6.2 Relay operating time with distorted and pure third and fifth harmonic currents
6.3 The waveform of a distorted current
7.1 Relay curves
7.2 Same description as in figure 7.1 but with different specification
7.3 Field current for a double line (phases b & c) to earth fault
7.4 Accelerating torque when a three phase to earth fault occurs on a loaded generator
7.5 Effect of variation in inertia constant on angular velocity
7.6 Effect of variation in inertia constant on rotor angle
7.7 Effect of variation of mutual reactance due to saturation on armature current
7.8 Effect of variation in armature leakage reactance
7.9 Current in phase a when a three phase to earth fault occurs at the generator terminals
7.10 Same description as in figure 7.9 except that no fictitious field winding is included
7.11 Effect of leading power factor operation on fault current in phase a
7.12 Effect of leading power factor operation on fault current in phase b
7.13 Effect of leading power factor operation on fault current in phase c
7.14 Same description as in figure 7.13 but current in phase a is shown and no fictitious field winding is included
7.15 Fault current in phase b when no fictitious field winding is included and it is a leading power factor operation before the fault occurs
7.16 Same description as in figure 7.15 except that current in phase b is shown
7.17 Effect of circuit breaker opening in phase c on fault current in phase a. No fictitious field winding is included and it is a lagging power factor operation before the fault occurs
7.18 Same description as in figure 7.17 except that fault current in phase b is shown
7.19 Effect of earthing resistance on fault current in phase a
7.20 Effect of earthing resistance on fault current in phase b
7.21 Effect of circuit breaker opening on fault current in phase a. It is a leading power factor operation before the fault occurs and no fictitious field winding is included.

7.22 Same description as in figure 7.21 except that the current in phase b is shown.

7.23 Fault current in phase b when arcing resistance is included. It is a lagging power factor operation before the fault occurs and no fictitious field winding is included.

7.24 Same description as in figure 7.21 but with arcing resistance included.

7.25 Fault current in phase b when arcing resistance is included. It is a leading power factor operation before the fault occurs and no fictitious field winding is involved.

C1 Equivalent circuit for the generator in the direct axis under subtransient condition.

C2 Equivalent circuit for the generator in the direct axis under transient condition.

C3 Equivalent circuit for the generator in the direct axis under steady state condition.

C4 Equivalent circuit used to determine the transient short circuit time constant.

C5 Equivalent circuit used to determine the subtransient short circuit time constant.

E1 Phasor diagram for the transmission of power through a
series impedance

E2 Phasor diagram

E3 Flow chart for the program calculating the initial conditions

G1 Circuit diagram for obtaining the voltages and currents between the star and delta sides of a transformer

H1 Angles between the d, D and a axes
Chapter 1

Introduction

This chapter deals with the research background, showing why my research has been done and describing my research approaches.

1.1 Objectives of research

Discussions with the CEGB have pointed to the need for a computer program which will calculate the relay settings, plot the coordination curves and check the validity of the settings by using a transient model. Part of the research will develop this program and be concerned principally with auxiliary power supply systems in power stations and industrial power systems. In such systems the transient d.c. and the a.c. decrement components may be significant and their effect on relay performance should be considered. In addition the heat generated at junctions and the thermal ratings of cabling is dependent on the

(\text{transient current component})^2 \text{ and should be included in design considerations. To meet the more complex operating conditions, transient studies and the inclusion of the characteristic of auxiliary devices, such as current transformers, must be included. My research restricts consideration to the case when the relay current contains a negligible harmonic component only. This can be justified because, in general, the waveforms of short-circuit current will approach a pure sine wave; and also the current transformer is assumed not to be saturated. The research, however, shows how the current transformer (CT) saturation can be included and a brief investigation indicates that harmonics affect the relay operations. Another main objective of}
the research is to study how the circuit breaker opening affects the translation to a current zero.

1.2 Research background

Inverse Definite Minimum Time Overcurrent Protection is widely used in the main and backup protection of power stations. The inverse definite minimum time (IDMT) relay is relatively cheap, very reliable, and robust.

IDMT overcurrent protection to a radial system has been applied for more than fifty years. The philosophy associated with protection system designs is that the circuit breaker which trips first is the one on the source side and nearest to the fault. In complex power systems where a fault may occur at several intermediate points between relays, it is necessary for just one relay to be selected and operated first. It is possible to obtain such discrimination by varying the current and time settings of each IDMT relay.

Coordination of protective devices by manual methods is a tedious process which is time consuming and does not allow for the numerous changes which occur between design data and data obtained during final commissioning. Non-manual methods such as computers can provide immediate feedback by producing graphical displays of all the protective device curves together with the boundaries on the coordination ranges for the devices being considered. Various protection devices, ratings, coordination margins, and coordination philosophies can be easily investigated. The usual method of plotting coordinated curves is to use a template curve. Since the selection of
device parameters follows well-defined rules, it is possible to
develop computer programs that will select the settings and trace the
curves. As a result, a number of computer programs have been written
for coordinating these devices. But they only provide numerical output,
so manual procedures are still required to obtain the grading
curves. More recently, computer graphic routines have been incorporated
into a coordination program to provide a graphical display [107,108].

To use the procedures described in [108], a large computer and
considerable computation time is required. In [107], a small computer
and reduced computation time are achieved. One of the main reasons for
the differences between the approaches of these authors is due to the
way the relay characteristics are represented. The assumption usually
made in the study and application of protective relay schemes is that
the transient component of fault currents can be neglected. This
assumption may not be true and the transient effect has to be taken
into account. A method for finding the operating time of relays under
transient conditions is described in [102], this method is
particularly useful when the relay setting is unknown. It requires the
slope of the relay characteristic to be computed.

A study of circuit breaker opening is required due to the fact that
nuclear power stations use circuit breakers at the generator
terminals. These circuit breakers have to interrupt highly inductive
currents with X/R ratios of typically 100/1; and because of extreme
offset due to large dc components, there are at least one or possibly
two phases in which the current does not reach zero for many cycles.
The circuit breakers are not designed to interrupt currents which do
not pass through a current zero and hence the operating time of protective relays has to be delayed in some cases (e.g. Delay in relay operating occurs on the LV side of a generator transformer where the inductive current is high). This phenomenon prevents normal circuit breaker opening, with possible damage to the system. In practice, for a three-phase short circuit, at least one phase current will pass through zero within the first cycle and the appropriate circuit breaker will first interrupt the current in this phase. A reduction of the dc component is then achieved in the phase with the maximum dc offset and so the zero transition will occur much earlier and faster protection can be obtained [33, 34]. Simulation of circuit breaker opening was described briefly in [92], but it did not include a transformer, so that the modified matrices introduced in that paper were easier to find. With a delta star transformer connected between the generator and the transmission line, the conditions will become more complicated. In [95], the authors simulated the open phases by means of infinite inductance.

1.3 Approaches in research

In [107] the representation of relay characteristics is by polynomial functions but this involves excessive computation time and only coordination of relays are considered. In my research they are represented by hyperbolic functions [106] which can minimize computation time. The coordination of fuses are also involved in the discrimination of protective devices. [107] was published after I had completed this part of my research.
The relay operating time under transient conditions is obtained by using a step-by-step method, since this method does not require the slope of the relay characteristic to be known.

The heat produced during the fault time can be calculated from the already computed short circuit current and the time of relay operation as the current squared multiplied by time \((i^2t)\).

To study the delay in reaching a current zero, the rate of change of rotor current with respect to time cannot be ignored otherwise there will be no d.c. component in the calculated stator currents and hence the study would have no practical validity. The (d,q) method is usually adopted because it saves computing time as compared with the phase coordinate method. But in the (d,q) method, it is assumed that the effects due to the change of rotor currents is so small that they can be neglected; and computing time can be saved. If the change of rotor currents is not ignored, the (d,q) method does not provide any significant advantage when compared with the phase coordinate method.

It is thought that with the introduction of fault, connection and switching matrices, the transient analysis can be made more flexible. Arc resistances [35] may be taken into account by assuming that there is a constant voltage [117] across the arc during the period between the occurrence of the fault and the instant at which currents go through zero.
1.4 Work layout

This chapter has explained the reason for doing this research. In chapter 2, a typical auxiliary overcurrent protection system is examined. The criteria that are required for protection are described. Chapter 3 deals with the development of a coordination program and plotting program for fuses and relays. Optimisation of relay operating time under different conditions are considered. After the settings have been calculated under the steady state conditions, their validity can be assessed under transient conditions by carrying out a fault study. The radial system is basically composed of circuits as shown in figure 1.1. A detailed analysis on this system is carried out in chapter 4. The system is analysed under different fault conditions with the inclusion of circuit breaker opening using matrix methods. In the same chapter programs are also developed for calculating the relay operating time under transient conditions. Chapter 5 deals with current transformer modelling, where a simple model is used to check whether saturation exists or not. In chapter 6, experiments describe how the d.c. and distorted currents affect the operation of IDMT relays. Results obtained from the developed programs and experimental work are given in chapters 6-7. Finally, the conclusions are presented in chapter 8 together with the achievements of the project and suggestions for further work.
Figure 1.1 Circuit diagram for fault analysis
Chapter 2

Overcurrent protection

This chapter deals with three topics. The first one is an examination of both relays and an auxiliary overcurrent protective system. The second is a description of the discrimination criteria used for relays and fuses. The last one is a look at the manual method which is usually used for protective devices coordination.

2.1 Inverse time overcurrent relays

Inverse time overcurrent relays are available with a wide variety of characteristics, providing a range that is suitable for all forms of inverse time graded protection of transformers, machines or feeders. They all have the following advantages:

(a) High torque, ensuring consistent timing even under adverse conditions.

(b) Very low overshoot.

(c) Simple construction.

2.1.1 Types of relays

The following three types are usually used in overcurrent protection. They are the inverse time, the very inverse time and the extremely inverse time relays.

(a) The inverse time relay gives selective phase and earth fault protection on time graded systems, ensuring that the minimum number of circuit breakers is tripped to clear a faulted section.
(b) The very inverse time relay provides greater time selectivity than the inverse time relay and is used where the fault current at any point does not vary too widely with system conditions.

(c) The extremely inverse time relay has an even steeper time-current characteristic than the very inverse time relay, permitting a graded setting in conjunction with fuses. Its characteristics most closely match the heating characteristics of the protected apparatus.

2.1.2 Construction and operation

The relays mentioned above have an aluminium disc which is rotated by the torque exerted upon it by a C-shaped pole electromagnet. This electromagnet normally has copper shading rings. The relay disc is shaped so that as it rotates, the driving torque increases and offsets the changing restraining torque of the return spring. This feature, together with the high level of torque produced by the electromagnet, ensures good contact pressure even at currents near pickup.

Damping of the disc movement is by a removable permanent magnet of high retentivity steel. Sometimes, in addition to this, a damping flux is provided by a third pole on the electromagnet so that when the fault current is interrupted, the relay resets more rapidly.

A unique method of winding the operating coil ensures that the time/current characteristics are identical on each of the seven current taps. Selection of the required current setting is by means of a plug setting bridge which has a single insulated plug. When the plug
is withdrawn from the bridge the maximum current tap is automatically connected, allowing the setting to be changed under load without risk of open circuiting the current transformers. Adjustment of the relay operating time is by movement of the disc backstop which is controlled by rotating a wheel at the base of the graduated time multiplier scale.

There are two general ways of obtaining a torque in induction type relays. One is by arranging the physical position of the flux-producing poles so that the flux of the pole reacts with that portion of the eddy currents induced by a second pole lying in the field of the first. The second method uses the shaded-pole principle. A short circuited turn around a part of the pole causes the flux under the turn to lag the flux in the rest of the pole. This results in a sweeping of the flux across the air gap under the pole, which induces eddy currents in the disc. The reaction of the induced currents with the pole flux produces the torque.

The torque of these relays is proportional to the sine product of the two magnetic fluxes cutting the disc. If both fluxes are produced by the same quantity of current, the torque is also proportional to the square of the current, i.e. $T = K I^2$, K decreases with increase of current owing to magnetic saturation and is used to give a definite minimum time feature to the characteristics of the overcurrent relays.
Figure 2.1 Simplified power station overcurrent protection diagram
2.2 High set instantaneous overcurrent relay

The overcurrent relays can be provided with a high set instantaneous overcurrent unit. If there is no high set element then the grading is carried out at the maximum fault level. But if there is a high set element then the grading is carried out at the high set value. The important difference between them is that both the tripping time at high fault level and the time setting at all stations are reduced.

2.3 System description

A system which is typical of most CEBG power stations with voltage levels at 400 KV to 415 V is shown in figure 2.1. A description of the system and method of operation is given in [111]. This chapter is concerned with the grading between protective devices such as fuses and relays. The 415 V circuits are mainly protected by HRC fuses, the 3.3 KV circuits by fuse switching devices or circuit breakers while the 11 KV circuits only use circuit breaker control. In order to provide fast clearance of faults on the HV side of the transformer, all overcurrent relays have high set, overcurrent elements with low transient overreach. The elements must be set above the maximum throughput capability of the transformer in order to maintain discrimination with the relays on the LV side. All motors switched by the circuit breakers have instantaneous high set overcurrent elements to protect cables and connections to the motor. The elements are set above the motor starting current to allow healthy motor starting and give adequate short circuit protection to the supply cable and motor itself.
Fuses are used in the 415 V circuits or in circuits with lower voltage levels because they operate faster and also reduce effective fault level compared with circuit breakers of similar rating and breaking capacity. The most common fuse ratings are 25 and 35 MVA.

Circuit breakers are used at the higher voltage level because it takes less time to reclose a circuit breaker than to replace a fuse. In general, protective devices are easily graded with each other if they have similar operating characteristics. Since just the extremely inverse relay has a similar operating characteristic to that of a fuse, only it can provide the best means of coordination with the fuse. The relatively long operating time characteristic of the relay also makes it a suitable device for protecting circuits which are subjected to peak currents on switching, such as supplying power to pumps. In the 11KV circuits, standard inverse relays are used.

2.4 Factors influencing settings

The following factors will influence the coordination settings. They are the time multiplier setting and the pickup value.

2.4.1 Time grading

The time interval between the operation of two adjacent relays depends on the relay performance and the operating speed of the circuit breakers.

If we assume that each inverse time overcurrent relay complies with error class E 7.5 defined as normal British practice in [109], then
the time interval t' required between relay and relay can be represented by the following relationship:

$$t' = 0.25t + 0.25 \text{ seconds, where } t \text{ is the time for the first protective device to operate. The variable time takes into account the effects of temperature, frequency and departure from reference setting. Although the normal limits of error for an E 7.5 relay are } 7.5\%, \text{ a total effective error of } 15\% \text{ should be used. A further } 10\% \text{ should be added for the overall current transformer error, hence the variable time value can be obtained. The fixed time value is made up of } 0.1s \text{ for the fault current interrupting time of the circuit breaker, } 0.05s \text{ for the delay overshoot time and } 0.1s \text{ for the safety margin [110].}

As far as the time interval t' between the relay and the fuse is concerned, the following expression is used.

$$t' = 0.4t + 0.15 \text{ seconds, where } t \text{ is the nominal operating time of a fuse.}

The result is also based on the previous criteria, except that there is no circuit breaker time. Hence the fixed time value is 0.15s. The variable time has been based on a 30% error for the fuse and 10% for the relay.

2.4.2 Current grading

Assuming a safety margin of 20% [109,110] to allow for relay errors and a further 10% for variations in the system, at least a factor of 1.3 is required between the pickup values of relays. A factor of 2 is required between the normal ratings of fuses and a factor of 3 is
required between the pickup value of a relay and the normal rating of a fuse.

2.4.3 Time multiplier setting (TMS)

The time setting must be high enough to prevent operation with starting and inrush currents but low enough to trip the breaker when the short circuit withstand rating of the protected cables or equipment is exceeded. The contact travel should not be made too small, in order to avoid the possibility of operation by mechanical shock.

2.4.4 Pickup setting

The pickup current setting should be high enough to permit the continuous maximum load current to flow but low enough to provide for their overload protection, and below the short circuit current level for a fault at the most remote downstream protective device under minimum fault conditions with the fewest number of generators and parallel lines in operation.

2.5 Discrimination criteria

The coordination of protective devices is determined by calculation from the lowest voltage level and related through intermediate voltage levels back to the power source. Time discrimination will be explained in terms of branches. A branch is defined as a circuit with protective elements, for example in figure 2.1, there is a single branch between the 23.5 KV and 11 KV busbars. The criteria described in this section
may only be applied to the case where the operating time difference is a minimum at the maximum fault level.

The single branch representation is assumed to apply to the case where a busbar has only one infeed circuit, but one or many outfeed circuits. It requires discrimination between the infeed and outfeed circuits.

1) If a fault occurs at F (see figure 2.2) then relay B has to operate but not relay A. Relay A operates only when there is a fault at G or if it is used for backup protection when relay B or its controlled circuit breaker fails to operate. These conditions also apply when relay B is replaced by a fuse.

2) Consider the two protective devices, B and C, which are connected in parallel (see figure 2.3). B and C can be either a relay or a fuse. Three different cases can be considered.

a) If B and C are both fuses, then relay A will grade with the fuse having the largest normal current rating.

b) If B and C are both relays, then relay A will be current graded with the one with the higher pickup value.

c) If B is a relay and C is a fuse, then whichever of these has the highest operating time at the maximum fault level at which relay A must discriminate, will be chosen for coordination purposes.

3) Figure 2.4 represents part of the circuit shown in figure 2.1. To obtain discrimination between relays, three different conditions need consideration:

a) During a starting process[111], there will be power flow from R to S; therefore relay 4 has to be discriminated from relay 3.
Typically A could be relay 1 and B could be a 200A fuse

Figure 2.2

Typically A could be relay 3, B could be a fuse switching device and C could be relay 1

Figure 2.3

Figure 2.4
Simplified relays and fuses connection diagrams related to figure 2.1
(b) A current will flow from P to R if a fault occurs at R, therefore coordination is required between relay 6 and 4.

(c) During the normal operating condition, there is power flow from P to S, therefore relay 6 must discriminate from relay 3.

If the three cases are combined then relay 3 must discriminate from relay 4 which in turn discriminates from relay 6.

(4) No discrimination between relay 3 and relay 4 is required if there is no current flow between R and S.

The multiple branches representation is assumed to apply to the case where a busbar has more than one infeed circuit and one or more outfeed circuits. To obtain discrimination between infeed and outfeed circuits, it is required that the relay in the outfeed circuit which produces the longest operating time with any relay in the infeed circuits is chosen for grading with all the relays in the infeed circuits.

2.6 The Template method

The template method has been used for a numbers of years [114] for graphically coordinating overcurrent relays. An overcurrent relay characteristic curve is a plot of contact closing time versus the magnitude of operating current. The setting of the time dial positions the fixed contact of the relay, and thereby sets the angle the induction disc requires to travel before the moving contact associated with it touches the fixed contact. If it is assumed that the time-current curves are related by ratios of time, then on a logarithmic time scale, a specific ratio of time values spans the same distance
along the time axis regardless of where these values are. For example, the distance between 0.1 and 0.2 second ordinates is the same as the distance between 1.5 and 3 seconds. Therefore, with the logarithmic time scale, changes in the time setting multiplier shift the curves in a direction parallel to the time axis but do not otherwise change the curves.

The same argument can be applied to the current scale. Since the relay operation is independent of pickup, it is convenient to plot characteristic curves with the current axis dimensioned in multiples of pickup. On a logarithmic scale a given ratio of currents will span the same distance along the axis regardless of where the currents occur. A change in pickup current values will shift the time-current curves in a direction parallel to the current axis but does not change the curve.

It is this property which forms the basis for the use of templates to coordinate relays. An example is given in [114] of how to use this method for finding the relay settings.
2.7 Summary

The discrimination criteria for overcurrent protection and the manual method used to obtain the coordination settings and plot the grading curves have been discussed. This process is tedious and non-manual methods involving computers can achieve the coordination of protective devices faster and easier. In the next chapter, the development of software for these purposes is explained in detail.
Chapter 3
Coordination and plotting programs

This chapter deals with the development of programs that can be used for relay and fuse coordination and also with characteristics of these protective devices which can be plotted by using computers. In order to use a computer, the template curve has to be translated into an equation and, of course, the simpler the equation, the easier it is for programming. The decision of whether to use a mathematical representation for the device curves, or to store the device curves in the form of a table in memory or on disc, was based on the consideration of the accuracy and storage requirements of the methods used.

In the past, operating characteristics of overcurrent relays expressed in the form of either polynomial or hyperbolic equations have been used in computer programs for determining relay settings.

3.1 Representation of relay characteristics

3.1.1 The polynomial model

Albrecht, et al.[112] suggested that the operating characteristics of an overcurrent relay can be expressed as a polynomial in two variables, the time multiplier setting and multiples of pickup.

\[T = \sum_{j=m}^{n} \sum_{i=o}^{p} a_{ji} (TMS)^j (I)^i k \]

where \(a_{ji} \), \(k \), \(m \), \(n \), \(o \), and \(p \) are constants determined by each relay type.
Radke [113] expressed the logarithm of relay operating time as a logarithmic polynomial of I.

$$\log(T) = a_0 + a_1 \frac{\log I}{\log I} + a_2 \frac{\log I}{(\log I)^2} + \ldots \quad \text{(2)}$$

where I is the multiple of pickup, T is the relay operating time. a_0 is a constant dependent upon the time multiplier setting, with $I = 1$. a_1, \ldots etc. are the curve characteristic coefficients.

Representation of a relay curve by (2) requires less storage than (1). The relay characteristics defined by these equations are not asymptotic to the minimum pickup current or to a minimum operating time when the fault current is high.

Sachdev, Singh and Fleming [104], examined the polynomial equations (3) to (7) for their suitability in representing characteristics of overcurrent relays.

$$\log(T) = a_0 + \frac{a_1}{\log I} + \frac{a_2}{(\log I)^2} + \frac{a_3}{(\log I)^3} + \ldots \quad \text{(3)}$$

$$T = a_0 + \frac{a_1}{I - 1} + \frac{a_2}{(I - 1)^2} + \frac{a_3}{(I - 1)^3} + \ldots \quad \text{(4)}$$

$$T = a_0 + \frac{a_1}{I - 1} + \frac{a_2 I}{(I - 1)^2} + \frac{a_3 I^2}{(I - 1)^3} + \ldots \quad \text{(5)}$$

$$T = a_0 + \frac{a_1}{I^2 - 1} + \frac{a_2 I}{I^3 - 1} + \frac{a_3 I^2}{I^3 - 1} + \ldots \quad \text{(6)}$$

$$T = a_0 + \frac{a_1}{I - 1} + \frac{a_2 I}{I^2 - 1} + \frac{a_3 I^2}{I^3 - 1} + \ldots \quad \text{(7)}$$

The relay characteristics described by these equations are asymptotic
to the pickup current and to a minimum operation time when the fault current is high.

The use of polynomial equations would require excessive complexity of computation, so the use of hyperbolic function is recommended whenever it is possible.

3.1.2 Hyperbolic equations
A.R. van C. Warrington [106] proposed a generalized hyperbolic equation for representing the relay contact closing time.

\[T = a_o + \frac{a_1 \text{ (TMS)}}{(I/I_o)^n - I_o^m} \]

where \(I_o \) is the multiple of tap current at which pickup occurs, \(a_1 \) is a design constant of the relay, \(a_o \) is the minimum operating time of the relay.

3.2 Coordination between different types of protective devices
If relays are followed by their same types, then the operating time difference decreases as the MVA increases. But because the operating characteristics for the extremely inverse relay and the standard inverse relay when plotted on a graph have different slopes, the minimum time difference will usually occur within the range from the pickup value of the standard inverse relay to the maximum fault level or the high set value of the extremely inverse relay. For protection coordination, it is necessary to find out this minimum time difference, and a routine has been developed to search the minimum
time difference. It is based on the Golden Section routine which converges quickly, so that the number of computation steps required to obtain a specified accuracy is small. It was shown that there may not be just one minimum, and that the minimum can also occur at the maximum fault level of the extremely inverse relay. Therefore the routine has to be written in such a way that it can find out all the local minima. If no minimum occurs within the MVA range, then the time difference at the maximum fault level will be the minimum. If there is a minimum within the range, then all the minima will be compared with each other and the smallest of them will be chosen. The whole range of MVA is normalized and represented by one to make the Golden Section routine easier to write.

3.2.1 Minimum time difference searching routine

Figure 3.1a shows two relay characteristics where X1 is the pickup value for relay A and X2 is the maximum fault level for relay N. The MVA range (X1 to X2) is represented by one. The minimum time difference between these two relay characteristics is determined by a searching routine based on the Golden Section method. The Golden Section number is well established [126] to be 0.618. Since the MVA range is represented by one, this number will be too large and lead to the possibility that some of the minima may be missed because the minima at the lower level may not be calculated. If the number is too small, a long computation time is required. To compromise, the number is chosen as 0.0618. The whole MVA range is divided into sections as shown in figure 3.1b. In this figure, 1 and 0 represent X2 and X1 for the relays as shown in figure 3.1a respectively. A0 to A1 is 0.1 of
Figure 3.1a Relay coordination procedure

Figure 3.1b Searching for the minimum time difference
Figure 3.2 A typical example for the calculation of T

Figure 3.3 An alternative example for the calculation of T
the total range and A1 to A2 is also 0.1 of the total range etc.. The smallest time difference within each section is compared. To simplify the algorithm, instead of finding the minimum time difference, the time difference is subtracted from a number, say 50, and called T. So that now the maximum of T will be found. Let us call the fault level MVA which produces the corresponding T, X. Figures 3.2 and 3.3 show typical examples for the calculations of the maximum value of T. Whenever there is a T which is smaller than the previous one, it implies there is a local maximum. T will be arranged in an ascending order and Xa which corresponds to the present maximum T will be calculated. Two more X values are required, one greater than Xa, which we can call Xb; and one less than Xa, which we can call Xc. Xd is the value of X used to find the new value of T, where Xd = Xb + Xc - Xa. If the new T is greater than the previous T values, then this T is used as the maximum T and the procedure repeated. If T is not the biggest, then the previous maximum T is still used. The procedure is repeated until the required accuracy has been achieved or the number of iterations becomes excessive. After the minimum time difference has been found, it is necessary to check whether it is equal to the grading margin or not. If it is greater than the grading margin, the TMS of the standard inverse relay will be decreased by 0.1. The TMS is checked and if it is within the range, the minimum time difference is found again. If the minimum time difference is less than the grading margin, the TMS is increased by 0.1. For the case where the minimum time difference changes from greater than, to less than the grading
margin or vice versa, the TMS will be increased or decreased by \(\frac{0.1}{2^n} \) respectively. \(n \) is increased by one whenever such a change occurs.

3.3 Coordination Program

3.3.1 Program description

The coordination program for the radial system determines relay settings based on fault current information, fuse rating, relay types and grading interval. The grading interval is calculated from circuit breaker opening times, relay errors including overshoot and current transformer errors. Current grading as well as time grading is required for coordination of protective devices. The relay settings are calculated sequentially from the lowest voltage level up to the highest voltage level. Since the characteristics of fuses, extremely and standard inverse relays have different slopes when they are plotted on log-log paper, the minimum time difference between them can occur at any level within the range from the pickup of the upstream relay to the maximum fault level or high set level of the downstream relay. So when different types of protective device are required to coordinate with each other, the fault level at which the minimum time difference occurs must be determined. There is a difference from the case where the protective devices are of the same type, because then the minimum time difference will always occur at the maximum fault level. The program can be applied to the following cases:

(1) A standard inverse relay followed by another standard inverse relay.
Figure 3.4 Effect of pickup on relay operating time
(2) An extremely inverse relay followed by another extremely inverse relay.

(3) An extremely inverse relay followed by a standard inverse relay.

The coordination program mainly consists of three subroutines. Two of them are used to find the TMS and pickup values for the relay nearer to the source when this relay is followed by a relay of the same type. One is for the standard inverse relay and the other for the extremely inverse relay. The third subroutine has the same purpose but is used for relays which are followed by a different type of relay.

If the calculated pickup value and TMS are outside the specified limit, a message will indicate whether there is difficulty in obtaining time grading or current grading, or both.

3.3.2 Program development

Consideration of figures 2.1 & 3.4 will assist in explaining how to obtain minimum relay operating time. For relay 3 to grade with relay 2, if relay 2 has the characteristic 2a, then relay 3 must have the characteristic 3a for proper grading; if relay 2 has the characteristic 2b, then relay 3 must have the characteristic 3b. It can be seen that relay 3 will operate faster (Ta > Tb) if it has the characteristic 3b, which means relay 2 should use a higher pickup value (2b). If a further relay is required to grade with relay 3 then it will also operate faster when relay 3 has characteristic 3b. This argument forms the basis for obtaining the shortest relay operating time.
The optimal operating time for the relays is obtained if all the pickup values for the relays are at their highest allowable values. If the coordination of relays cannot be achieved at these values, then they have to be changed by the operator for each stage. The process starts at the lowest voltage level. For example, the highest pickup value is assigned to the relay at the first stage. If coordination is obtained, then the highest pickup value for the relay at the second stage is assigned. If coordination is not achieved the relay tap position is decreased by one step, that is, if it is 200% in the previous case, then it will be reduced to 175%. This process is repeated until coordination is obtained. The relays at other stages are treated in the same way.

It is worth trying to coordinate the relays first before attempting the optimisation process. After the discrimination of relays is achieved, the optimum relay operating time can be obtained interactively as mentioned above.

The disadvantage of increasing the pickup value for each relay is that it may be difficult to obtain the correct current grading for other relays.

3.3.3 Algorithm

(a) If a fuse is in the first stage then its rating must be input to the program. If a relay is in the first stage then TMS, pickup value, maximum fault level and the device type are required.
Figure 3.5a Flow diagram for coordination program

- Calculate time difference, T, between relays of the max. fault level.
- Calculate grading interval, CI.
- Input data.
- Calculate pickup, max.
- If fuse involved, go to step 3.
- Calculate operating time of fuse.
- Calculate pickup, max. allowed pickup.
- Compare pickup with max. fault level.
- If within range, go to step 1.
- If not, go to step 2.
- If yes, go to step 3.
- Print results.
(b) Loading, maximum fault level, high set level, device type and maximum pickup level are then required for subsequent stages.

(c) The sum of the device types for the first two protective devices is calculated and used to select the appropriate subroutine for coordination.

(d) The pickup and TMS required for each relay is calculated, and if the time or current grading or both are outside the desired range, then a message is printed out.

(e) If changes are required then the program returns to (c), otherwise all the relay settings are printed.

3.3.4 Flow chart

A flow diagram of this program is shown in figures 3.5a & 3.5b and a listing of the program is shown in appendix J (** J1 **).

3.4 Curve plotting program

3.4.1 Program description

The plotting program produces a curve which represents the characteristic of the relay with the specified TMS and plug setting multiplier (PSM). The program consists of two parts; the first concerns the plotting of the log-log coordinates and the second consists of three subroutines, one for plotting the fuse characteristic, one for the standard inverse relay and one for the extremely inverse relay.

3.4.2 Program development

Only one curve for each relay type is required because the relay time-current curves, when plotted on a log-log scale are similar for all
Figure 3.5b Continuation of flow diagram for coordination program
time settings. An adjustment of the relay tap setting shifts the curve horizontally; a change in time setting shifts the curve vertically. Thus a curve is shifted to the appropriate position by

\[x = \log_{10}(PSM) + \log_{10}(pu) \]

\[y = \log_{10}(t) + \log_{10}(TMS) \]

where \(pu \) is the pickup value of the relay, \(t \) is the operating time of the relay with the indicated \(PSM \) for \(TMS \) equal to one.

For small \(PSM \), the relay characteristic has a large slope, but for large \(PSM \), the slope is small. Because of this feature, it is found that the increment and the range of \(PSM \) can be increased as the characteristic is plotted. Referring to figure 3.4, plotting is divided into stages. Each stage will be assigned with a different increment in \(PSM \). The number of stages and increments used in each stage will be obtained by trial and error. In practice, a set of increments has been found that enables satisfactory accuracy and speed of plotting. Plotting starts at \(A \) with a specified increment in \(PSM \). When point \(B \) is reached, a new increment of \(PSM \) is used for the stage from \(B \) to \(C \). This new increment will be bigger than the previous one. The process is repeated down to \(D \). At \(D \) if the same increment of \(PSM \) is used, the calculated \(PSM \) becomes greater than the maximum \(PSM \), specified by the maximum fault level or the high set value, and the curve \(DF \) will be plotted where \(F \) has a fault level higher than the maximum fault level. To overcome this problem 50% of the increment is subtracted from the \(PSM \). If the new value of \(PSM \) is less than the maximum \(PSM \) then the point is plotted, for example, \(DE \) is plotted. The increment is updated and 50% of it is added to the new \(PSM \). This
Figure 3.6 Flow diagram for plotting program
process is repeated until the specified difference between calculated and maximum PSM is reached, then GH is plotted.

The speed of plotting is determined by the increment of PSM and the range for which it applies; these are not fixed but vary with the values of TMS, pickup values and maximum fault level.

An additional program was developed to enable enlargement of a small area of the curve as required.

3.4.3 Algorithm

(a) The number of curves, device types, pickup, TMS, maximum fault level or high set level for each relay are input to the program.

(b) The log-log coordinates are plotted and the axes are labelled.

(c) The fuse characteristics represented by a polynomial function are plotted.

(d) The required subroutine is selected and the relay grading curve plotted for the relay type.

(e) If more grading curves are required, then the program returns to (d).

(f) If required, a hard copy of the grading curves can be obtained.

(g) Relay and fuse information can be printed out.

3.4.4 Flow chart

A flow diagram of this program is shown in figure 3.6 and a listing of the program is shown in appendix J (** J2 **).
3.5 Summary

Computer programs have been developed for calculating coordination settings and plotting of curves. The next chapter deals with the transient analysis and with the data required, such as the machine parameters, to assess the validity of relay settings under transient conditions.
Figure 4.1 Schematic layout of the windings of the synchronous machine
Chapter 4
Transient analysis

This chapter develops programs which introduce the switching, fault, and connection matrices for transient analysis when faults occur on the system (figure 1.1) as mentioned in chapter 1. Programs are also developed to calculate the relay operating time under transient conditions. The chapter is divided into three main parts: the first part (4.7) deals with the faults which occur on the LV and HV side of the transformer where inclusion of circuit breaker opening is involved. In the second part (4.10) faults which occur on an open circuited generator are studied. Finally, in the third part (4.12), programs for calculating the operating time for relays are developed.

4.1 System modelling
The schematic layout of the windings of the synchronous machine is shown in figure 4.1. The behaviour of the system is specified by a set of three-phase variables arranged into first order differential equations which can be solved by numerical analysis using a digital computer. The system so formulated calculates the effects of circuit breaker opening occurring on either side of the generator transformer under fault or steady state conditions.

The generator is represented as a lumped parameter system, in which the space m.m.f. and the flux wave are assumed to be spaced sinusoidally around the generator air gap. There is one rotor damper winding along the direct axis and one along the quadrature axis. In
addition to the field circuit on the direct axis, one fictitious field winding is added in the quadrature axis to simulate the system more accurately especially at the leading power factor operations. The transformer is approximated as an ideal delta star transformer in series with a reactance and a resistance for each phase winding. The transmission line is represented by a reactance and a resistance in each phase.

The following assumptions were made with respect to the generator, transformer and transmission system
(A) The generator and transformer
 (a) The armature windings of the generator are sinusoidally distributed.
 (b) The space m.m.f. and the flux density wave in the generator are assumed to be sinusoidal.
 (c) The effect of armature slots on the rotor inductances is neglected.
 (d) Hysteresis is both transformer and generator are negligible.
 (e) Saturation in the generator transformer is neglected.
(B) Transmission system
 It is assumed that the transmission system can be represented by a voltage source of constant frequency and amplitude. Impedance values are calculated from the fault MVA infeed to the HV busbar, and the estimated X/R ratio for the system.

4.2 Choice of approach
Due to the lack of sophisticated calculation methods in computer engineering in the past, the original untransformed equations of electrical machines expressed in phase variable form had to be solved by the (d,q) and (\(\alpha,\beta \)) methods with approximations and assumptions to account for the difficulty of obtaining an exact solution.

The (d,q) method yields differential equations with constant coefficients. They are linear provided that speed is assumed to be constant, and this method usually ignores the derivatives in the stator voltage equations [3,45] for ease of computation. If these are not ignored then nothing is to be gained by using the (d,q) method. In addition, study of unsymmetrical faults necessitates further transformation of (d,q) equations. The (\(\alpha,\beta \)) method results in differential equations with variable coefficients. The equations become nonlinear once the speed variation is taken into account and exact analysis is usually impossible. Moreover the (d,q) and (\(\alpha,\beta \)) quantities cannot be used to study open circuit conditions and fault clearance by circuit breaker opening without going back to phase quantities.

The original untransformed equations of electrical machines have the greatest generality and allow all varieties of transients to be investigated. The possibility in principle of using untransformed equations for mathematical simulation was noted long ago [84,85]. Solutions of individual particular problems by means of these equations are also well known [86].
The phase coordinate method preserves the physical identity of the machine under consideration and also provides valuable insights to the machine performance. If different methods are adopted, the need for eventual reconversion to phase quantities is required. In recent years, where a modern digital computer is available in conjunction with suitable numerical methods, the solution in phase coordinate quantities appears to be the most natural one.

4.3 Methodology

Solution of the system equations for HV faults is not straightforward due to the need to invert the inductance matrix which is singular. To avoid this difficulty the variables in terms of flux linkages need to be expressed in terms of current variables.

Consider the following equation to be typical of the machine equations to be solved: \[p\lambda = \omega_o (E + RI) \quad \text{(1).} \]

where \(E, I, \lambda \) are the voltage, current, and flux linkage vectors respectively as defined in the matrix definition.

One method of solving equation (1) is to integrate the \(p\lambda \) equations to obtain a new value for \(\lambda \). If \(\lambda = LI \) then \[p\lambda = \omega_o (E + R (L)^{-1}\lambda) \quad \text{(2),} \]

where \(L \) is the machine inductance matrix.

There are two practical difficulties which can make equation (2) difficult to solve. Firstly the input vector \(E \) must be known. Secondly the inverse of \((L)^{-1} \) is not always easy to obtain. For machine faults
\((L)^{-1}\) is readily available but for HV faults \(L\) must be modified using connection matrices \(C_T\) and \(C_T^t\) to enable the inclusion of the transformer.

The machine variables \((\bar{E}, \bar{I})\) are related to the transformer and transmission line variables \((\bar{E}_T, \bar{I}_T)\) by a connection matrix \(C_T\)

\[
\bar{E}_T = C_T \bar{E} \quad \text{and} \quad \bar{I} = C_T^t \bar{I}_T
\]

where \(\bar{E}_T, \bar{I}_T\) are voltage, current vectors respectively; \(C_T, C_T^t\) are the connection matrices and all are defined in the matrix definition.

Multiplying equation (1) by \(C_T\) and substituting for \(\bar{E}\) and \(\bar{I}\) gives

\[
C_T \bar{\lambda} = w_o (C_T R C_T^t \bar{I}_T + \bar{E}_T)
\]

Let \(\bar{\lambda}' = C_T \bar{\lambda} = C_T \bar{I} \bar{I} = C_T \bar{I} C_T^t \bar{I}_T = L' \bar{I}_T\)

and \(R' = C_T R C_T^t\) so

\[
p \bar{\lambda}' = w_o (\bar{E}_T + R' L'^{-1} \bar{\lambda}') \quad \text{-------(3)}
\]

For HV faults it is not possible to determine \(\bar{I}_T\) from equation (3)
since C_T and C_T^* are singular. Therefore equation (3) was rearranged in the following way using the substitution $p\lambda' = pL'\overline{I}_T + L'p\overline{I}_T$.

Therefore $pL'\overline{I}_T + L'p\overline{I}_T = w_o (E_o^* + R'\overline{I}_T)$,

So $L'p\overline{I}_T = w_o E_o^* + (w_o R' - pL')\overline{I}_T$.

This equation is used to solve for the armature and rotor currents for HV faults defined in the later sections. Although L' cannot be inverted, when E_T^* is related to the system voltage through the transmission system, the combination of L' and the transmission line inductance permits inversions of the inductance matrices.

4.4 Machine inductance matrix

$$L = \begin{bmatrix}
L_{aa} & L_{ab} & L_{ac} & L_{afd} & L_{akd} & L_{afq} & L_{akq} \\
L_{ba} & L_{bb} & L_{bc} & L_{bdf} & L_{bkd} & L_{bfq} & L_{bkq} \\
L_{ca} & L_{cb} & L_{cc} & L_{cfd} & L_{ckd} & L_{cfq} & L_{ckq} \\
L_{da} & L_{db} & L_{dc} & L_{ddf} & L_{dkd} & L_{dfq} & L_{dkq} \\
L_{fa} & L_{fb} & L_{fc} & L_{fdf} & L_{fkd} & L_{fqq} & L_{fqq} \\
L_{ka} & L_{kb} & L_{kc} & L_{kfd} & L_{kkd} & L_{kfq} & L_{kqq} \\
L_{qa} & L_{qb} & L_{qc} & L_{qfd} & L_{qkd} & L_{qfq} & L_{qkq} \\
L_{qa} & L_{qb} & L_{qc} & L_{qfd} & L_{qkd} & L_{qfq} & L_{qkq}
\end{bmatrix}$$

The armature self inductances L_{aa}, L_{bb}, L_{cc} of a generator vary periodically with period π between a maximum when the armature winding is on a pole axis and a minimum when it is on an interpolar axis. Thus
Laa = A_0 + A_2 \cos 2\theta + A_4 \cos 4\theta + \ldots.

Lbb & Lcc are given by the same expression with \(\theta \) replaced by \(\theta - \frac{2}{3} \pi \)

and \(\theta + \frac{2}{3} \pi \) respectively.

The armature mutual inductances Lbc, Lca, and Lab vary periodically with period \(\pi \). Lbc is at a maximum when phase a is on the quadrature axis, hence

Lbc = -B_0 + B_2 \cos 2\theta + B_4 \cos 4\theta + \ldots.

Lca & Lab are given by the same expression with \(\theta \) replaced by \(\theta - \frac{2}{3} \pi \)

and \(\theta + \frac{2}{3} \pi \) respectively.

The mutual inductances between an armature winding and a field or damper winding vary periodically with period \(2\pi \). Lfd is at a maximum when phase a is on the direct axis and zero when phase a is on the quadrature axis. Thus

Lfd = C_1 \cos \theta + C_3 \cos 3\theta + \ldots \quad \text{etc.}

Lkd = D_1 \cos \theta + D_3 \cos 3\theta + \ldots

Lfq = E_1 \sin \theta + E_3 \sin 3\theta + \ldots

Lkq = F_1 \sin \theta + F_3 \sin 3\theta + \ldots

The remaining inductances involving phases b and c are obtained by replacing \(\theta \) by \(\theta - \frac{2}{3} \pi \) and \(\theta + \frac{2}{3} \pi \) in the appropriate expressions.
The self inductances $L_{dfd}, L_{dkd}, L_{fqf}, L_{kqk}$ of the field and damper windings and the mutual inductances L_{dfk}, L_{fqk} are all constants.

The coefficient of coupling between the d and q axes is zero, and all pairs of windings with 90° displacement have zero mutual inductance. Thus $L_{dfq}, L_{dfk}, L_{dkq}, L_{dkf}$ are zero.

For many purposes the Fourier terms of order 3 and higher can be neglected, thus it was assumed that all the inductances vary sinusoidally, with an additional constant term in some cases.

4.5 Mathematical description of the model

It can be seen that the following sets of equations can be derived by referring to figure 1.1 and figure 4.1.

4.5.1 The generator voltage equations

4.5.1.1 Armature winding equations

The current, voltage and flux linkage for each phase on the armature will be related by the following equations.

$$e_a = \frac{1}{w_0} p \lambda_a - r_0 i_a - 3r e_0 - k_a$$

$$e_b = \frac{1}{w_0} p \lambda_b - r_0 i_b - 3r e_0 - k_b$$

$$e_c = \frac{1}{w_0} p \lambda_c - r_0 i_c - 3r e_0 - k_c$$
If no circuit breaker opening occurs, then \(k_a, k_b, k_c \) are zero.

and \(3i_o = i_a + i_b + i_c \)

4.5.1.2 Rotor equations

The current, voltage and flux linkage for each circuit on the rotor will be related by the following equations.

\[
e_{fd} = \frac{1}{\omega_o} p \lambda_{fd} + r_{fd} i_{fd}
\]

\[
\theta = \frac{1}{\omega_o} p \lambda_{kd} + r_{kd} i_{kd}
\]

\[
\theta = \frac{1}{\omega_o} p \lambda_{fq} + r_{fq} i_{fq}
\]

\[
\theta = \frac{1}{\omega_o} p \lambda_{kq} + r_{kq} i_{kq}
\]

4.5.2 The generator torque equation

The rotor swing can be obtained by considering the torque equations as follows:

The electrical air gap torque is expressed as

\[
T_e = \frac{2}{3\sqrt{3}} \{\lambda_a (i_b - i_c) + \lambda_b (i_c - i_a) + \lambda_c (i_a - i_b)\}
\]

The accelerating torque is equal to the mechanical torque minus the electrical air gap torque and the loss torque, so

\[
T_a = T_m - T_e - T_L
\]
The rotor angle will be related to the accelerating torque by

\[T_a = \frac{2H}{w_0} p^2 \theta = \frac{2H}{w_0} p^2 \varepsilon \]

\[p \theta = w_0 + p \varepsilon \]

\[\theta = w_0 t + \varepsilon - \frac{1}{6} \pi \]

4.5.3 The generator transformer voltage equations

\[e_{Ta} = \frac{e_{La}}{n} + (r_T + \frac{1}{w_0}) \frac{i_{Ta}}{n^2} + k_a \]

\[e_{Tb} = \frac{e_{Lb}}{n} + (r_T + \frac{1}{w_0}) \frac{i_{Tb}}{n^2} + k_b \]

\[e_{Tc} = \frac{e_{Lc}}{n} + (r_T + \frac{1}{w_0}) \frac{i_{Tc}}{n^2} + k_c \]

4.5.4 The transmission line voltage equations

\[e_{La} = (r_L + \frac{1}{w_0}) i_{La} + v_a \]

\[e_{Lb} = (r_L + \frac{1}{w_0}) i_{Lb} + v_b \]

\[e_{Lc} = (r_L + \frac{1}{w_0}) i_{Lc} + v_c \]

4.6 Normal steady state operating condition

Under normal steady state operating conditions, it can be seen that

\[i_{La} = \frac{i_{Ta}}{n}, \quad i_{Lb} = \frac{i_{Tb}}{n}, \quad i_{Lc} = \frac{i_{Tc}}{n}. \]

So if
\[R_{1} = r_{T} + r_{L} \text{ and } L_{1} = l_{L} + l_{T} \text{ then} \]

\[ne_{Ta} = (R_{tt} + \frac{L_{tt} l_{t}}{w_{o}}) \frac{i_{Ta}}{n} + v_{a} \]

\[ne_{Tb} = (R_{tt} + \frac{L_{tt} l_{t}}{w_{o}}) \frac{i_{Tb}}{n} + v_{b} \]

\[ne_{Tc} = (R_{tt} + \frac{L_{tt} l_{t}}{w_{o}}) \frac{i_{Tc}}{n} + v_{c} \]

The above equations can be written in matrix form as

\[\bar{e}_{T} = \bar{v} \frac{1}{n} + \frac{1}{n^2} (R_{tt} + \frac{L_{tt} l_{t}}{w_{o}}) \bar{I}_{T} \]

since \[\bar{I}_{s} = C^{t} \bar{I}_{T}, \] and \[\bar{e}_{T} = C \bar{e}_{S} \] so

\[M \bar{e}_{S} = C^{t} \frac{\bar{v}}{n} + \frac{1}{n^2} (R_{tt} + \frac{L_{tt} l_{t}}{w_{o}}) \bar{I}_{s} \]

where \(M = C^{t}C \) is defined as the connection matrix.

These are the equations for a normally operating system and when a fault occurs on the LV side of the transformer, the equation is changed to the following general form \(M \bar{e}_{l} = C^{t} \frac{\bar{v}}{n} + \frac{1}{n^2} (R_{tt} + \frac{L_{tt} l_{t}}{w_{o}}) \bar{I}_{l} \)

where \(\bar{e}_{l} \) and \(\bar{I}_{l} \) are defined in the matrix definition. To eliminate \(\bar{e}_{l} \) and express the equation in terms of \(\bar{e}_{S} \), the connection matrix \(M_{1s} \) is introduced such that
\[M_{ls} \bar{e}_s = c^T \bar{v} + \frac{1}{n^2} (r_{TL} + \frac{L_{tt} \bar{v}}{w_o}) \bar{l}_s \] where \(M_{ls} \) is a new connection matrix.

With the introduction of a fault matrix \(F_{ls} \) the equation can be expressed in terms of \(\bar{l}_s \) rather than \(\bar{l}_l \) such that

\[\bar{e}_s = F_{ls} M_{ls} \bar{l}_s - \frac{1}{n} \bar{v} + F_{ls} M_{ls} \frac{-1}{n^2} (r_{TL} + \frac{L_{tt} \bar{v}}{w_o}) \bar{l}_s \]

This equation when combined with the machine equation can now be used to form a set of state equations which can be solved. \(M_{ls} \) and \(F_{ls} \) are discussed in detail in the next section.

4.7 LV and HV fault simulation

4.7.1 Fault & Connection matrices

4.7.1.1 LV faults

A fault matrix is used to take into account the voltages which become zero or equal to each other when a fault occurs. For example, if on the LV side of the transformer, a ground fault occurs on phase a, then \(e_a = 0 \). So

\[\bar{e}_s = F_{ls} \bar{e}_s, \text{ or} \]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[\bar{e}_s = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \bar{e}_s \]

Or if a line to line fault occurs between phase b and phase c, then
\[F_{ls} \text{ becomes} \]
\[
\begin{bmatrix}
1 & 0 & 0 \\
-0.5 & 0 & 0 \\
-0.5 & 0 & 0
\end{bmatrix}
\]

To include the rotor currents, 7x7 matrices are used, so \(F_{ls} \) is changed to \(F_{l_{sr}} \) etc..

If faults occur the connection matrix has to be determined for different fault conditions to calculate the currents. The vector \(\bar{e}_s \) can be used to define \(M_{ls} \) which enables the combination of system and machine equations to be defined for all fault conditions. To determine \(M_{ls} \), an example is given below:

If phase a is earthed, then \(e_a = e_{al} = 0, e_b = e_{bl}, e_c = e_{cl}, i_a = i_{bl}, i_c = i_{cl} \). With the inclusion of
\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

therefore since the elements in the first row of \(F_{ls} M_{ls}^{-1} \) must be zero; the elements in the first row of \(M_{ls}^{-1} \) are arbitrary. Also since
\[M_{ls}^T s = M_{ls} \] then \[M_{ls} \] may be chosen such that it can be inverted i.e.

\[
\begin{bmatrix}
3 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{bmatrix}
\]

From [90], it was concluded that when the system equations and the machine equations are combined then, for LV faults and with the inclusion of rotor currents

\[
(L - A_{TL} \frac{1}{n} \frac{P_I}{W_o}) \frac{dI}{dt} = \frac{1}{n} A_{TC} T V + \frac{1}{n} A_{TL} \frac{1}{n^2} I \text{ and}
\]

\[
A = F_{lsr} M_{lsr}^{-1}
\]

where \(R_{TL} \) is the 7x7 resistance matrix for the transformer and the transmission line, with the first three diagonal elements equal to Rtt and the rest zero. \(L_{TL} \) is the 7x7 inductance matrix for the transformer and the transmission line, with the first three diagonal elements equal to Ltt and the rest are zero.

The rules used in calculating \(F_{ls} \) and \(M_{ls} \) can be stated as follows:

\(F_{ls} \) is a unit matrix where each column represents a phase subject to fault conditions, i.e., column 1 = phase a, column 2 = phase b, column 3 = phase c.

For earth faults replace corresponding column by \([0,0,0]^T\).
For phase to phase faults the corresponding columns are modified to
\([-0.5, -0.5, 1]^t\), \([1, -0.5, -0.5]^t\), \([-0.5, 1, -0.5]^t\) for faults "a to b", "b to c" or "c to a" respectively, and the rest of the elements in the matrix are zero.

\(M_{1s}\) will be the unit matrix for phase to phase faults(not involving an earth fault), three phase to earth and normal operation.

For other earth faults the rows and columns of \(M\) corresponding to faulted phase or phases are replaced by zero's in the non-diagonal elements and a 3 in the diagonal elements.

4.7.1.2 HV faults

For HV faults

\[(L' - L'T_{TL} \frac{1}{n^2}) \frac{p_{IT}}{w_o} = F_{2sr} \frac{V}{n} + (R' - \frac{p_{DL}'}{w_o} + R'_{TL} \frac{1}{n^2}) I_T\]

where

\[L' = C_{TIC_T}^t, R' = C_{TRC_T}^t\]

\(F_{2sr}\) is the fault matrix for faults occurring on the HV side of the transformer with the rotor currents included.

\(R'_{TL}\) and \(L'_{TL}\) are the resistance and inductance matrices for the transformer and the transmission line respectively. They are defined on page (x:i).

\(F_{2s}\) is the fault matrix used to define faults at the HV side of the transformer and it is calculated in exactly the same way as \(F_{1s}\). The matrix equations for HV and LV faults are similar, except that for
faults on the HV side of the transformer a knowledge of \mathbf{M}_s is not required. The difference is due to different fault locations.

4.7.2 Switching matrix
To determine the effect of phase opening, a switching matrix, \mathbf{S}, is introduced. It is a unit matrix when no opening of phases occurs, but changes according to the rule that when any phase is opened, the corresponding one in the matrix will be changed to a zero. For example, if phase a is opened, then the one in the first column will be changed to zero in order to set the current in phase a to zero.

4.8 Circuit breaker opening
In this thesis, the author has divided the circuit breaker opening cases into the general type and the particular type. In the general type, the matrices can be obtained by the rules as stated above, whereas in some cases the rules cannot be applied. For particular faults the vector matrix equations have to be redefined. The voltages which link with the system side and those which link with the machine side are equated to obtain the vector matrix equations. In some cases, difference in voltages have to be used to eliminate unknown variables which occur in the transmission system equations. Also when the summation of two of the phase currents are equal to zero, the fault, switching and connection matrices have to be redefined. For example, let a fault occurs between A and the LV circuit breaker. Assume a ground fault on phase b and that the circuit breaker in phase b is opened first, then in order to eliminate the voltage, e_{b1}, the difference of voltages in phase a and phase c has to be used. Also to
account for the summation of currents in phase a and phase c to be zero as soon as phase b is cleared, a new set of fault, connection and switching matrices have to be defined. It should be noted that an extra connection matrix is introduced to allow for the fact that i_{b1} is zero but i_b is not necessarily zero. There are no particular rules for defining the matrices for faults of the particular type.

4.8.1 General type

Consider a phase to ground fault to occur between the circuit breaker and the primary side of the generator transformer. Presume the circuit breaker in phase a is opened first, so this case can be represented as in figure 4.2. It will be represented as 'Fault @ B b-earth opening a'. It can be seen that the following conditions will be true.

Due to opening of phase a, $i_a = i_{a1} = 0$

Since no zero phase sequence current can flow in a delta connected transformer, $i_{b1} + i_{c1} = 0$

$i_c = i_{c1}$

$e_b = e_{b1} = 0$

$e_c = e_{c1}$

Before the fault, the system equations will be

$$\frac{1}{3} \left(2e_{a1} - e_{b1} - e_{c1} \right) = \frac{v_a - v_c}{n\sqrt{3}} + \left(R_{tt} + \frac{L_{tp}}{w_o} \right) \frac{i_{a1}}{n}$$

---------(4)
Figure 4.2 Fault at B, b to earth, phase a is opened
\[
\frac{1}{3} \begin{pmatrix} -e_a + 2e_b - e_c \end{pmatrix} = \frac{v_b - v_a}{n\sqrt{3}} + \left(R_{tt} + \frac{L_{tp}}{w_o} \right) i_{b1} \frac{i_{c1}}{n^2} \quad (5)
\]

\[
\frac{1}{3} \begin{pmatrix} -e_a - e_b + 2e_c \end{pmatrix} = \frac{v_c - v_b}{n\sqrt{3}} + \left(R_{tt} + \frac{L_{tp}}{w_o} \right) \frac{i_{c1}}{n^2} \quad (6)
\]

For phase b-earth

\[
F_{ls} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad M_{ls}^{-1} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} \quad \text{so}
\]

\[
e_a = \frac{2v_a - v_b + v_c}{n\sqrt{3}} + \left(R_{tt} + \frac{L_{tp}}{w_o} \right) \frac{2i_a + i_c}{n^2}
\]

\[e_b = 0\]

\[
e_c = \frac{v_a - 2v_b + v_c}{n\sqrt{3}} + \left(R_{tt} + \frac{L_{tp}}{w_o} \right) \frac{i_a + 2i_c}{n^2}
\]

To introduce the effect due to opening phase a, introduce the switching matrix, \(S_{ls} \), which is equal to

\[
S_{ls} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

So \(S_{ls} E = S_{ls} AC T \frac{v}{n} + S_{ls} A(\frac{L_{tp}}{w_o} + R_{TL}) S_{ls} \frac{1}{n^2} \) \(E \) \quad (7)

That is, \(e_b = 0 \)

\[
e_c = \frac{v_a - 2v_b + v_c}{n\sqrt{3}} + \left(R_{TL} + \frac{L_{tp}}{w_o} \right) \frac{2i_c}{n^2}
\]
The machine equations will be

$$E = (-R + \frac{pL}{w_o} + \frac{Lp}{w_o})\bar{I} - \bar{K}$$

where \bar{K} is the vector for arcing resistance simulation.

so

$$S_{1sr}\bar{E} = S_{1sr}(-R + \frac{pL}{w_o} + \frac{Lp}{w_o})S_{1sr}\bar{I} - \bar{K} \quad \text{(8)}$$

The elements for the \bar{K} vector may be modified.

Equating (7) to (8)

$$S_{1sr}(-R + \frac{pL}{w_o} + \frac{Lp}{w_o})S_{1sr}\bar{I} - \bar{K} = S_{1sr}AC_T\frac{\bar{V}}{n} + S_{1sr}A(R_T + \frac{L_{TL}}{w_o})\frac{1}{n^2}S_{1sr}\bar{I}$$

or

$$S_{1sr}(L - \frac{A_L}{nTL})S_{1sr}\frac{pL}{w_o} = S_{1sr}AC_T\frac{\bar{V}}{n} + S_{1sr}(R - \frac{pL}{w_o} + \frac{A_R}{n^2TL})S_{1sr}\bar{I} + \bar{K}$$

This equation can be solved by numerical methods to obtain the required currents.

For the HV side, the equation will be

$$S_{2sr}(L' - F_{2sr}L_{TL})S_{2sr}\frac{pL'}{w_o} = S_{2sr}F_{2sr}\frac{\bar{V}}{n} +$$

$$S_{2sr}(R' - \frac{pL'}{w_o} + F_{2sr}R_{TL}^n)S_{2sr}\bar{I} + \bar{K}$$

4.8.2 Particular type

For circuit breaker opening in cases where the general rules cannot be
applied. The procedure used to define the matrices can be summarized as follows:

(1) Determine the conditions of the currents and voltages depending on the locations and type of faults, or circuit breaker opening.

(2) Arrange the system equations to satisfy the conditions in (1) and noting that the equations cannot involve any unknown variables.

(3) Arrange the machine equations with defined switching, connection and fault matrices such that the phase voltages can be eliminated when combined with the system equation to obtain the vector matrix equations for calculating the currents.

For illustration, the following examples are chosen to demonstrate how to define the switching, fault and connection matrices:

(a) Fault @ A b-earth opening b

This case is shown in figure 4.3; it can be seen that the following conditions will be true:

Since there is no zero phase sequence current $i_{al} + i_{bl} + i_{cl} = 0$.

Because $i_{bl} = 0$, then $i_{al} + i_{cl} = 0$.

Also because $i_a = i_{al}$ and $i_c = i_{cl}$, therefore $i_a + i_c = 0$

$e_a = e_{al}$, $e_c = e_{cl}$, $e_b = 0$

Equations (4), (5), (6) become

$$\frac{1}{3}(2e_a - e_{bl} - e_c) = \frac{v - v}{n\sqrt{3}} + \left(R_{tt} + \frac{L_{tt}b}{w_o}\right)\frac{i_a}{n^2} \quad \text{(9)}$$
Figure 4.3 Fault at A, b to earth, phase b is opened
\[
\frac{1}{3} \left(-e_a + 2e_b \right) = \frac{v_b - v_a}{n\sqrt{3}} \tag{10}
\]

\[
\frac{1}{3} \left(-e_a - e_b + 2e_c \right) = \frac{v_c - v_b}{n\sqrt{3}} + \left(R_{tt} + \frac{L_{tt}}{w_o} \right) \frac{i_c}{n^2} \tag{11}
\]

\[(11) - (9)\]

\[-e_a + e_c = \frac{-v_a - v_b + 2v_c}{n\sqrt{3}} + \left(R_{tt} + \frac{L_{tt}}{w_o} \right) \frac{i_c - i_a}{n^2} \]

An introduction of Ce, an extra connection matrix, is used to obtain proper modelling; e.g. \(i_a = 0\) but \(i_b\) may not be zero. If

\[
M_{1sr}^{-1}E = F_{ls} M_{lsr}^{-1} (\sqrt{\frac{V}{T}} + F_{ls} M_{lsr}^{-1} (R_{tt} + \frac{L_{tt}}{w_o}) M_{lsr}^{-1}) Ce_T \tag{12}
\]

To satisfy the above conditions

\[
M_{11s}^{-1} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}, \quad F_{ls} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad Ce = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

On the machine side

\[
\bar{E} = (-R + \frac{dL}{w_o} + \frac{LP}{w_o}) \bar{I} \tag{13}
\]

So

\[
M_{1sr}^{-1} E = M_{1sr}^{-1} \left(-R + \frac{dL}{w_o} + \frac{LP}{w_o} \right) (M_{1sr}^{-1})^T \bar{I} \tag{13}
\]

Since the currents \(i_a, i_b, i_c\) are not necessarily zero, so
Figure 4.4 Fault at D, b to c, phase a is opened
\[
S_{ls} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Equating (12) & (13) and including the switching matrix

\[
S_{ls} (L - \frac{A_{TL}}{n^2 L_{TL}} (M_{ls}^{-1})^T C_{e_T}) S_{ls} \frac{\bar{I}}{w_o} =
\]

\[
S_{ls} \bar{X}_{CT}^T \frac{\bar{V}}{n} + S_{ls} (R - \frac{\bar{P}_{L}}{w_o} + \frac{A_{TL}}{n^2 L_{TL}} (M_{ls}^{-1})^T C_{e_T}) S_{ls} \bar{I} + \bar{R}
\]

where

\[
L = M_{ls} \quad \bar{L} = (M_{ls}^{-1})^T, \quad R = M_{ls} \quad \bar{R} = (M_{ls}^{-1})^T
\]

(b) Fault @ D, b phase to c phase, opening a

This case is shown in figure 4.4; it can be seen that the following conditions will be true:

\[
i_{Ta} = 0, \text{ since there is no zero phase sequence current } i_{Tb} + i_{Tc} = 0
\]

\[
e_{Lb} = e_{LC}, \text{ so }
\]

\[
e_{Tb} - e_{Tc} = \left(R_T + \frac{1 \cdot p}{w_o} \right) \frac{1}{n^2} \frac{T_T}{I} - \frac{1}{n^2} \frac{T_T}{I} + b \quad k_c - k_c
\]

\[
= \left(R_T + \frac{1 \cdot p}{w_o} \right) \frac{2}{n^2} \frac{T_T}{I} + b \quad k_c - k_c
\]

As far as the calculation of \(i_{Ta}, i_{Tb}, \) and \(i_{Tc} \) is concerned, the transmission line and infinite busbar are not involved, so \(L_{TL}', R_{TL}' \) and busbar voltages are eliminated from the equations. All these conditions can be satisfied by setting
Figure 4.6 Flow chart for program calculating fault currents for a generator on open circuit
\[
S_{2s} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
(M_{2s}^{-1})^t = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
F_{2s} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
C_{e} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
S_{2sr}(L' - M_{2sr}^{-1} \frac{L_{TL}}{n^2} (M_{2sr}^{-1})^t)S_{2sr} C_{e} \frac{P_{T}}{w_0} = S_{2sr} F_{2sr} M_{2sr}^{-1} \frac{V}{n} +
\]

\[
S_{2sr}(R' - \frac{PL'}{w_0} + M_{2sr}^{-1} \frac{R_{TL}}{n^2} (M_{2sr}^{-1})^t)S_{2sr} C_{e} \frac{T_T}{T_T + k} \] (14)

where \(L' = M_{2sr}^{-1}L' (M_{2sr}^{-1})^t \), \(R' = M_{2sr}^{-1}R' (M_{2sr}^{-1})^t \)

4.9 Software development

Programs have been developed which are used to analyse faults with circuit breaker opening. The flow chart for the program is shown in figure 4.5. A listing of the program is shown in appendix J(** J3 **).
4.10 Generator under open circuit conditions

It is possible to modify the computer programs to calculate generator fault currents for more elementary fault conditions i.e. when the generator is on open circuit before the application of a fault.

4.10.1 Line to line fault

For phase b connected to phase c, \(i_a = p_l_a = 0 \) so

\[
\begin{align*}
L_{bbpi_b} + L_{bcpi_c} + L_{bdfpi_{fd}} + L_{bdki_{kd}} + L_{bfqpi_{fq}} + L_{bkgpi_{kq}} &= \\
w_{o b} + w_{o a b} - pL_{bbi_b} - pL_{bci_c} - pL_{bdfi_{fd}} - pL_{bdki_{kd}} &= \\
- pL_{bfqf_{fq}} - pL_{bkgf_{kq}} \tag{15} &= \\
L_{cbpi_b} + L_{ccpi_c} + L_{cdfpi_{fd}} + L_{ckdpi_{kd}} + L_{cfqpi_{fq}} + L_{ckgpi_{kq}} &= \\
w_{o c} + w_{o a c} - pL_{cbi_b} - pL_{cci_c} - pL_{cdfi_{fd}} - pL_{ckdi_{kd}} &= \\
- pL_{cfqf_{fq}} - pL_{ckgf_{kq}} \tag{16} &= \\
L_{dbpi_b} + L_{dcpi_c} + L_{ddfpi_{fd}} + L_{dddpi_{kd}} + L_{dfqpi_{fq}} + L_{ddgpi_{kq}} &= \\
w_{o df} - w_{o df_{+}} - pL_{dbi_b} - pL_{dci_c} - pL_{ddfpi_{fd}} - pL_{ddpi_{kd}} &= \\
- pL_{dfqf_{fq}} - pL_{ddgf_{kq}} \tag{17} &= \\
L_{kdbpi_b} + L_{kdcpi_c} + L_{kdfpi_{fd}} + L_{kddpi_{kd}} + L_{kfqpi_{fq}} + L_{kdgpi_{kq}} &= \\
w_{o kd} - pL_{kdbi_b} - pL_{kdcf_{fd}} - pL_{kddf_{kd}} &= \\
- pL_{kfqf_{fq}} - pL_{kdgf_{kq}} \tag{18} &= \\
L_{fupi_b} + L_{fupi_c} + L_{fupfpi_{fd}} + L_{fupdpi_{kd}} + L_{fupqpi_{fq}} + L_{fupgpi_{kq}} &= \\
w_{o f} - pL_{fupi_b} - pL_{fupci_c} - pL_{fupfpi_{fd}} - pL_{fupdpi_{kd}} &= \\
- pL_{fupqf_{fq}} - pL_{fupgf_{kq}} \tag{19} &=
\end{align*}
\]
L_{gb} p_{bi} + L_{gq} c_i c_+ + L_{qf} d_i f_d + L_{kq} d_i k_d + L_{qd} q_i f_q + L_{kq} q_i k_q =
- w_r q_i k_q - pL_{kq} b_i b - pL_{kq} c_i c - pL_{qf} d_i f_d - pL_{kq} k_d k_d
- pL_{kq} f_q - pL_{kq} q_i k_q \quad \text{(20)}

and also i_b + i_c = 0, and e_b - e_c = 0 so (15)-(16), (17), (18), (19),

(20) when written in matrix form will be \(L_m \bar{p}_m = w_0 \bar{E}_m + (w_0 R_m - pL_m) \bar{I}_m \)

where

\[
L_m = \begin{bmatrix}
L_{bb} - L_{bc} - L_{cb} + L_{cc} & L_{bdf} - L_{cfd} & L_{bd} - L_{cd} & L_{bfq} - L_{cfq} & L_{bkg} - L_{ckq}
\end{bmatrix}
\]

\[
R_m = \begin{bmatrix}
2r_a & 0 & 0 & 0 & 0 \\
0 & -r_{fd} & 0 & 0 & 0 \\
0 & 0 & -r_{kd} & 0 & 0 \\
0 & 0 & 0 & -r_{fq} & 0 \\
0 & 0 & 0 & 0 & -r_{kq}
\end{bmatrix}
\]

\[
\bar{E}_m = [e_b - e_c, e_{fd}, 0, 0, 0]^t
\]

\[
\bar{E}_{mo}
\]

defines the initial voltages such that

\[
\bar{E}_{mo} = [0, e_{fdo}, 0, 0, 0]^t, e_{fdo} \text{ is the initial field voltage}
\]

-55-
\[\overline{I}_m = [i_b, i_{fd}, i_{kd}, i_{fq}, i_{kq}]^t \]

\[\overline{I}_m \] defines the initial currents such that

\[\overline{I}_m = [0, i_{fdo}, 0, 0, 0]^t, \quad i_{fdo} \] is the initial field current

Another way to simulate this case is to introduce fault and switching matrices. When under open circuit conditions, \(F_{os} \) and \(S_{os} \) are the fault and switching matrices respectively. To obtain the above conditions set

\[
S_{os} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \quad M_{os}^{-1} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
\end{bmatrix} \quad (M_{os}^{-1})^t = \begin{bmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & -1 & 0 \\
\end{bmatrix} \quad F_{os} = \begin{bmatrix}
1 & 0 & 0 \\
-0.5 & 0 & 0 \\
-0.5 & 0 & 0 \\
\end{bmatrix}
\]

where \(M_{os}^{-1} \) is used to account for the fact that \(i_c = -i_b \)

and \(S_{osr} M_{osr}^{-1} L (M_{osr}^{-1})^t \cdot \overline{I} = \)

\[
S_{osr} F_{osr} M_{osr}^{-1} E + S_{osr} M_{osr}^{-1} (R - pL) (M_{osr}^{-1})^t \overline{I}^{-1}
\]

4.10.2 Three phase to earth

When a three phase to earth fault occurs,

\[e_a = e_b = e_c = 0 \]. These conditions can be obtained by setting
\[
S_{os} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}, \quad F_{os} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

For \(S \frac{L_p I}{w_o} = S \frac{L}{w_o} \frac{F}{osr} \frac{E}{osr} + S \frac{L}{w_o} \frac{R}{osr} \frac{F}{osr} \frac{I}{w_o} \)

\[---------(21)\]

where the initial \(E \) and \(I \) are \(E_0 \) and \(I_0 \) respectively.

\[
E_0 = \begin{bmatrix}
0, 0, 0, e_{fdo}, 0, 0, 0 \\
\end{bmatrix}^t
\]

\[
I_0 = \begin{bmatrix}
0, 0, 0, i_{fdo}, 0, 0, 0 \\
\end{bmatrix}^t
\]

4.10.3 Single phase to earth

When an earth fault on phase \(a \) occurs,

\(e_a = 0, \quad i_b = i_c = 0 \), so

\[
S_{os} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}, \quad F_{os} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

for equation (21).

4.10.4 Two phase to earth

When a line to line fault occurs on phases \(b \) and \(c \),

\(e_b = e_c = 0, \quad \) and \(i_a = 0 \), so

\[
S_{os} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}, \quad F_{os} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

for equation (21).
4.11 Software development

A program was developed to analyze fault currents for a generator on open circuit. A flow chart of the program is shown in figure 4.5, and a listing of the program is shown in appendix 3 (**34**).

4.12 Determination of relay operating time and i^2t under transient conditions

The secondary current of the current transformer is used to operate the relay. The current consists of d.c. and a.c. components, but only the a.c. component is used to determine the operating time of the relay.

4.12.1 Program development

(a) The upper and lower envelopes of the fault current were expressed as polynomials.

(b) The peaks of the symmetrical a.c. waveform were computed as half the sum of the upper and lower envelopes.

(c) The varying r.m.s. value of the fault current was determined as a function of time.

(d) The r.m.s. current was divided by the relay pickup current to give the PSM. If this was greater than one, then the operating time was calculated from the standard time-current characteristic as provided by the manufacturers. This time was divided into the time step to give the per unit travel of the relay. The travel was then held in a cumulative store.

(e) If the PSM is greater than one, procedure (d) is repeated until the summation is equal to or greater than one. That is, the relay
operates. If the PSM is less than one, then the relay will not operate.

(f) The total relay operating time can be calculated and is equal to the time step multiplied by the number of steps needed to obtain unity in the cumulative store.

4.12.2 Program logic

The flow chart of the program is shown in figure 4.7 and a listing of the program is shown in appendix J (**J5**).

4.12.3 i²t calculation

A program has been developed to calculate the i²t due to the fault current under transient conditions. A listing of the program is shown in appendix J (**J6**).

4.13 Summary

Programs have been developed to analyse faults and circuit breaker opening. Since the secondary current of a current transformer is used to operate a relay, so the modelling of a current transformer is required. The next chapter deals with the current transformer modelling.
Chapter 5

Current transformer modelling

5.1 Introduction

Current transformers are four-terminal passive devices in which the output is a function of the input. In the simplest model of a current transformer, the relationship between the output current and the input current is a fixed number called the turns ratio. In an ideal transformer, the volt-ampere conservation applies, that is, input m.m.f. equals output m.m.f..

Coupling between the primary and secondary windings is determined by the flux patterns of the two windings. If the windings are suspended in air, the flux set up in the source winding extends to infinity in all directions with the result that only a small fraction of the available flux links the second winding. This arrangement is referred to as an air core transformer, and when applied to CT applications is sometimes called a 'linear coupler'. Because only a small fraction of the available flux in the air-core transformer actually links the winding, such an arrangement is relatively inefficient. The coupling between windings can be radically improved by putting them on an iron core which acts to confine and maximize the flux linking the two windings. It is the iron core that produces the nonlinearity in practical current transformer circuits.

With the assumption that the leakage flux can be ignored, the current transformer can be described in terms of relatively few variables.
They are the saturation flux, winding turns, resistance of the secondary winding, and residual flux.

5.2 Non-linear effects

There are three nonlinear effects introduced by iron cores:

(1) saturation

(2) eddy currents, and

(3) hysteresis.

Inaccurate reproduction of secondary current will result during unsymmetrical transients due to the large flux required to generate the voltage necessary to reproduce the transient in the burden of the transformer. The maximum value of transient flux is dependent on the magnitude of the current, the duration of the transient, the design of the transformer, and the secondary burden. Because of the increasing levels of short circuit currents and long time constants of present large power systems, the effect of CT saturation cannot be neglected.

5.2.1 Saturation

5.2.1.1 Reason for saturation

Inspection of figure 5.1 will show that the mutual impedance, \(M \), must be kept high with respect to the burden impedance, \(Z \), if good current transformer performance is to be expected. The d.c. component of the primary current will divide between the branches of the circuit (figure 5.1). Since for all practical purposes, there is very little impedance to direct current in the magnetizing branch, the flow of direct current in this branch is retarded only by the time rate of
change of the direct current, as it builds up in this circuit. The voltage which must be generated is determined by the d.c. component. If the d.c. time constant is long, this direct voltage must be maintained for a relatively long time, and it can only be achieved by a continuously increasing current through \(L_1 \) at a relatively high time rate of change. This will be in one direction only, without the advantage of positive and negative half-cycle characteristic of alternating current. This means that the knee of the saturation curve for the inductance \(L_1 \) may be reached within a few cycles, or within a fraction of a cycle in severe cases. When the iron core saturates, the effective value of the inductance, \(L_1' \), decreases to a fraction of the normal value. When this occurs, the ability of the mutual inductance to retard the flow of direct current through it collapses, so that practically all of the d.c. component goes through \(L_1 \). This condition will continue until the d.c. component approaches zero, after which the transformer can again perform with its normal a.c. characteristics.

5.2.1.2 Effect due to saturation

During the time that the magnetizing branch, \(L_1 \), remains severely saturated by direct current, it also offers much less impedance to the flow of alternating current, consequently, it is to be expected that the percentage of the a.c. component which is transmitted to the secondary will be materially less. That is, when a current transformer is failing to reproduce the d.c. component in the secondary, the apparent transformation ratio departs from its nominal value, even
through its performance may be quite accurate for the same value of symmetrical current.

As far as relay operations are concerned, CT saturation can lead to the following relay misoperations.
(1) Detection of a fault where non exists
(2) Failure to detect a fault.
(3) Failure to detect a fault in an adequate time.

5.2.1.3 Reduction of saturation
The obvious solution of the saturation problem is to increase the core cross-section of the transformer, in order to allow a larger flux amplitude, but this method is expensive. A technique using the characteristics of asymmetrical fault currents, has been developed [121] in order to achieve dynamic control of the core flux, thus allowing a significant reduction of the required cross-section.

5.2.2 Eddy currents
Eddy currents cause the flux distributions in individual laminations to be nonuniform. Swift [65] has shown that the degree of nonuniformity is very small in laminations of the usual thickness over the range of transient and steady state conditions likely to be encountered in power systems. That is, the frequencies of interest are low enough so that eddy current effects are not large enough to materially influence the flux density profile. So eddy currents are neglected in the simulation model.
5.2.3 Remanence

5.2.3.1 Reason for remanence

There are a number of conditions which may leave residual magnetism in the core of a current transformer connected to a power system. In general, the greatest residual fluxes imposed on a transformer will be under fault conditions. Such conditions can be summarised as follows:

(a) Clearing of a fault under steady-state conditions

It can be assumed that the flux in a current transformer core is operating around the hysteresis loops shown in figure 5.2. When interruption of a fault occurs, the operating conditions of the iron will tend to be at one of two fixed points on the hysteresis loop, their position depending on the burden power factor. For example, with a purely resistive burden the flux will be at a maximum, that is, at A or B. For the working point to remain at A a direct magnetising force \(H_a \) must be available, and can only be provided by a direct current in the secondary circuit. To support this, the core flux must decrease to induce the necessary e.m.f. The operating point on the magnetisation characteristic will thus progress along the hysteresis loop until equilibrium is reached at point C, this will occur such that the rate of flux change at every point is sufficient to supply the magnetising force maintaining the flux at that point. The time constant of this decay will clearly be dependent on the losses in the transformer core and secondary circuit.

The protective current transformers are often designed to operate at very small flux levels under normal load conditions, this is to ensure
that they function satisfactorily under fault conditions. Thus the steady state flux variations during a fault may not leave a significant level of residual magnetism.

(b) Clearing of faults during transient conditions
It is well known that the secondary and exciting currents consist of an exponentially decaying unidirectional component. In order to support a direct component of secondary current, it requires a continuous unidirectional flux change, and this leads to a high flux level during the transient period. The d.c. component of current will eventually decay to zero and the time constant will depend upon the losses in the transformer core and secondary circuit. This decay will be associated with a corresponding flux decay, however, owing to the nonlinear nature of the core material, magnetic equilibrium is obtained with the flux setting at different levels of residual magnetism.

5.2.3.2 Effect due to remanence
The presence of remanent flux in current transformer cores can significantly affect the performance of balanced forms of power system protective equipment. With balanced current relaying, Seeley [120] showed that with similar current transformers, equal burdens, equal primary current, and no residual flux, the relay would not operate. While with similar current transformers, equal burdens, and equal primary currents, but with residual flux in only one current transformer, the relay would operate. This false operation is due to the residual magnetism in the current transformer.
Due to remanence the core may be operating at a high peak flux density under normal system load conditions. Thus when a fault occurs, a current transformer with high residual flux may saturate in the first few cycles immediately following a system fault (with residual flux in the unfavourable direction).

5.2.3.3 Reduction of remanence

The most practical way to control residual flux is to put an air gap into the magnetic circuit, and it will be found that an extremely small gap causes a major reduction in possible residual flux [128]. The controlled residual flux current transformer can have an effective residual not greater than 10%. Very large air gaps in current transformers have the effect of increasing the reluctance to a high value such that saturation of the core is impossible even with fully offset fault currents. However this has the disadvantage that the transformer can only carry a very small burden.

The remanent flux in a core is reduced when an alternating current is passed through the windings of a transformer. The degree of reduction is dependent on the magnitude of the alternating flux produced. Large alternating flux variations are needed to effect complete removal of the residual flux in a core.

5.2.4 Hysteresis

One of the major consequences of hysteresis is that when a transformer is disconnected from the supply, residual core flux is usually established. In other words, the magnetic hysteresis determines the residual flux value in a current transformer. For transformers with
closed cores, the highest expected remanent flux can exceed $0.5 \phi_s$, where ϕ_s is the saturated core flux. The average flux in the core of a transformer in service may be at the level of $0.25 \phi_s$. A transformer with an anti-remanent air gap in the core will have a remanent flux level of less than $0.1 \phi_s$. In normal circumstances the hysteresis loop is symmetrical, under short circuit conditions however the magnetic material has to deal with asymmetrical magnetising currents. There is a need to take into account the possible different magnetising loop characteristics created by a short circuit. Many papers [12,13,15,16,17,63,67,68] have considered the hysteresis effect; in this work, it was considered that neglect of hysteresis could be justified by the fact that the fault currents under consideration are many times the rated current of the transformer. Even the normal magnetising current is only a few percent of rated current, so the hysteresis effect will only produce a minor error at normal full load current.

5.3 Representation of saturation curves

For current transformer modelling, it is necessary to include the excitation characteristic. Papers [10,11] have reported on how to represent this characteristic in different ways. A brief summary of methods is given below:

5.3.1 Polynomial

It is possible to use a polynomial of the form
\[\phi = A_1 i_m^1 + A_2 i_m^2 + A_3 i_m^3 + \ldots + A_n i_m^n \]

to represent the magnetisation curve, where \(\phi \) is the flux and \(i_m \) is the magnetising current. But the use of a polynomial leads to computational errors because of the change in the polarity of the slope.

5.3.2 Arc-tangent function

Y. Miki et al. [59] reported the use of the following function for magnetising current simulation.

\[\phi = b_1 i_m + b_2 \tan^{-1}(b_3 i_m) \]

The use of this function has similar disadvantages to the method described in 5.3.1.

5.3.3 Exponential/hyperbolic functions

The use of exponential and hyperbolic functions do not provide a satisfactory method of representation over a wide range.

Trutt, Erdelyi and Hopkins [122] came to this conclusion after failing to find suitable polynomial, exponential, hyperbolic or logarithmic functions, and found that the only satisfactory way was by linear interpolation between a set of coordinate points.

5.4 Current transformer modelling

In [100], the author calculated the magnetising and secondary currents analytically using the equivalent circuit shown in figure 5.1 by knowing the equation of the fault current. Since a general equation
for the fault current is usually difficult to obtain, the magnetising
and secondary current are calculated numerically. An equation for the
magnetising current is derived in appendix A for this purpose.

5.4.1 Determination of initial conditions
To determine the initial current distribution for the current
transformer, two methods can be used. They can be either analytical or
graphical.

5.4.1.1 Analytical method
An example is used to illustrate this method. If an input is applied
to a CT at \(t = 0 \) as shown in figure 5.3, with \(w = 1 \) assumed, then

\[
i_1(s) = \frac{1}{s^2 + 1} \left(\frac{\cos \theta}{s^2 + 1} + \frac{s \sin \theta}{s^2 + 1} \right)\]

\[
= \frac{(\cos \theta - \sin \theta)}{2(s^2 + 1)} + \frac{(\sin \theta - \cos \theta)s + (\sin \theta + \cos \theta)}{2(s^2 + 1)}
\]

from which,

\[
i_1(t) = \frac{(\cos \theta - \sin \theta)}{2} - \frac{(\sin \theta - \cos \theta)}{2} e^{-t} + \frac{(\sin \theta + \cos \theta)}{2} \sin t
\]

To find the steady state value, the transient term is neglected, so

\[
i_1(t) = \frac{(\sin \theta - \cos \theta)}{2} \cos t + \frac{(\sin \theta + \cos \theta)}{2} \sin t
\]

and this is the initial current for the magnetising branch of the CT
before a fault develops.

5.4.1.2 Graphical method
If \(\sin(wt + \theta) = 0.5 \), \(\theta = 0 \) then \(t = \frac{1}{2} \pi \)
\[X_m = R = 1 \]

Since the amplitude of the input is one, therefore \[|I_2| = |I_3| = \frac{1}{\sqrt{2}} \]

From figure 5.4, the current in the magnetising branch,
\[i_1 = -\frac{1}{\sqrt{2}} \cos \frac{\pi}{12} = -0.183 \]

The current in the secondary circuit, \[i_2 = \frac{1}{\sqrt{2}} \cos \frac{\pi}{12} = 0.683 \]

These values can be checked with the analytical solution. Since \[t = \frac{1}{6} \pi \text{ and } \theta = 0 \]
\[I_1(0) = -\frac{1}{2} \cos \frac{1}{6} \pi + \frac{1}{2} \sin \frac{1}{6} \pi = -0.183 \]

So the two methods give the same result.

5.4.2 Inclusion of saturation

Saturation of the current transformer can be considered using a magnetisation curve (figure 5.5) represented approximately by two straight lines. This makes it possible to consider the magnetising inductance to be constant in a given region. The inductance is changed when the magnetising current is above or below a certain value. Higher accuracy can be obtained if additional straight lines are used to represent the magnetising characteristic. Whether CT saturation needs to be included will depend on many factors, such as the types of CT used.

5.4.3 Program

The flow diagram of the program is shown in figure 5.6, and the following data is required, e.g. the magnetising characteristic,
Figure 5.6 Flow diagram for current transformer modelling
the initial magnetising and burden currents, the burden inductance, L_2 and burden resistance, R_2.

The main features of the algorithm are described below:

(a) At $t = 0$, for linear operation, then set $L_1 = L_a$, and calculate C from the transient equation for i_1 (see appendix A).

(b) Calculate i_1 at various values of time and check for $|i_1| > i_a$, then $L_1 = L_b$ and C is re-calculated.

(c) Calculate i_1 and check for $|i_1| < i_a$, then $L_1 = L_a$, C is calculated and program returns to (c).

(d) Calculation stops when the time limit specified is reached.

A listing of the program is shown in appendix J (** J7 **).

5.5 Summary

A program has been developed for current transformer modelling. This program was used to check whether the fault current would be high enough to saturate the current transformer. If saturation occurs then the relay operating time cannot be determined by the program developed in chapter 4. Distorted current will affect relay operation, and the experiments carried out to determine these effects are described in chapter 6.
Chapter 6
Experimental work and results

This chapter deals with the experiments which were carried out to study how d.c. and distorted a.c. currents affect relay operation. The experimental results are also presented.

6.1 Experimental conditions

By reference to figure 6.1, all the relay contacts are normally open when the relay coils are not energized.

When (1) is closed manually, the timer starts to count.

When (2) is closed, the timer stops.

Once the timer is started by closing (1), the DMT relay will commence operation. When the contact of the DMT relay is closed there will be a d.c. current through the d.c. trip coil of the circuit breaker and the VAA relay will also close and the timer stops counting. To provide an undistorted sine wave of current for the relay, it was necessary to ensure that the ratio of the circuit impedance to relay impedance be high and that the impedance of the circuit was not a function of current. That is, if the input to terminals AB is a sinusoidal voltage, and R is chosen to have a high value, compared with the impedance of the relay, then the current through the relay will be close to a sinusoid. As R is reduced then the impedance of the relay becomes increasingly significant. The inductance of the relay as in all iron cored magnetic circuits, is a function of current. The impedance to the flow of harmonic currents over the normal operating range of the relay is not directly proportional to the order of the
harmonic, due to saturation in the magnetic circuit. So if a sinusoidal voltage is input to the terminals AB, the current will be distorted; R was used to control the amount of harmonic distortion.

6.2 Relay operation with different current waveforms

6.2.1 With d.c. current

The pickup current of the relay was set at 1A. A d.c. source was applied to the terminals AB and R was varied so that the maximum current was limited to 5A. The relay did not operate.

6.2.2 Exponential current

A capacitor was charged and connected to the terminals AB. The pickup current setting was the same as described above. R was set such that the current started at about 5A and decayed to about 2A in approximately 10 seconds. This test was conducted to ensure that the relay did not operate with a varying d.c. current.

6.2.3 50 Hz sinusoidal current

R was set such that there was only a small harmonic component in the current waveform. The harmonic component was measured by using a wave analyser. The pickup current of the relay was set to 1A. The voltage level was varied such that a current up to 3A could be obtained. The operating time required to close the relay contacts was plotted against multiples of pickup, which is equal to the relay current divided by the pickup current. The result is shown in figure 6.2.
6.2.4 Distorted current

The same procedure as described in 6.2.3 was used, except that R was set to a small value. The oscilloscope shows that the current waveform is distorted, and a trace was reproduced in figure 6.3. Using the wave analyser, the third harmonic component was estimated to be about 25% of the fundamental. The relay operating time was plotted against multiples of pickup current, and the result is shown in figure 6.2. The figure shows that distorted current delays relay operation. The delay is equal to the time difference between the two curves (• and ¥) as shown in figure 6.2. It was reported in [98] that different levels of distortion will produce different delays in relay operation.

6.2.5 Relays tests with 3^{rd} and 5^{th} harmonic currents

The same procedure used in 6.2.4 was adopted, except that R was set to a high value to prevent current distortion. The relay current was supplied from a generator with a normal rating of 5A. The frequency of the relay current was set to 150 Hz and checked with an oscilloscope. With the relay current set at 250 Hz, the same experiment was repeated again. The relay operating time was plotted against multiples of pickup and the results are shown in figure 6.2. The figure shows that a sinusoidal 150 Hz current will produce faster relay operation, and if the frequency is increased to 250 Hz, there will be a reduction in relay pickup sensitivity. At the higher frequency, relay operation is erratic for a PBM below 2.3.

6.3 Discussion
If the r.m.s. current is used to determine the relay operating time, the result will produce an erroneously high estimate of operating torque because the waveform distortion and its effect on torque will not be correctly accounted for. From [96,97], it was shown that the torque acting on the relay disc due to a distorted current is equal to the resultant torque produced by the fundamental and individual harmonics of the distorted current.

Torque in the relay is produced by the reaction of the flux from one pole and the current induced in the disc by the flux from the other pole. Experiment has shown that a distorted current will delay relay operation. One reason may be that the phase angle between pole flux and disc current is significantly different when compared with a sinusoidal current. The magnitude of the fundamentals of the two variables may be nearly the same, but the torque produced by the distorted wave will be much less. Another reason may be because the distorted current has a pronounced third harmonic peak. It will produce a greater m.m.f. and so produces a flat-topped flux waveform because of magnetic saturation, with a consequent reduction in torque. The torque curve in [96,97] shows that the reverse torque is much larger with a distorted current.

For a distorted current, usually the third harmonic is more important than the other harmonics. From test it was shown that pure third harmonic will produce faster relay operation. So it is not difficult to see that if harmonic distortion is increased the operating time will continue to fall [98].

-76-
6.4 Summary

In this chapter, the effect due to d.c. and a.c. distorted current on relay operations were studied. It is concluded that distorted current will affect relay operation. If no correction factor or modification to the relay characteristic is introduced, then the relay characteristic as provided by manufactures should not be used to calculate the relay operating time when the relay is operated with a distorted current. The next chapter deals with results from computer simulation. Part of the chapter deals with coordination protection, and it is assumed that the relay current is not distorted. Results on fault studies and circuit breaker opening are presented.
Chapter 7

Results on protection and fault analysis

Results obtained by simulation are presented here, and are divided into the following sections. Section 1 covering protection simulation and section 2 covering the simulation of faults and circuit breaker opening.

7.1 Results on protection coordination

7.1.1 Relay pickup and operating time

The relays (2,3,4,5) shown in figure 2.1 were graded by using the coordination program. The relay characteristics, plotted by the curve plotting program, are shown in figure 7.1. By increasing the pickup value of relay 3, other relay settings are obtained, and results are replotted in figure 7.2. It shows that the higher the pickup value, the faster the relays will operate at high fault levels.

7.1.2 Position of minimum time difference

For different types of relay to grade with each other, the minimum difference in operating time does not necessarily occur at the maximum fault level. Consider a standard inverse relay which is required to grade with an extremely inverse relay. If the TMS and pickup for the extremely inverse relay are 0.25 and 15 MVA respectively and the maximum fault level is 80 MVA, then one setting for the standard inverse relay will be 27 MVA and 0.1322 for the pickup and TMS respectively to achieve the grading margin of 0.4 second at the 80 MVA level. The current grading is also satisfied. If the time difference
Figure 7.1 Relay curves with the data as shown below

<table>
<thead>
<tr>
<th>Relay</th>
<th>Type</th>
<th>TMS</th>
<th>Pickup</th>
<th>Maximum fault level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IDMT(3/10)</td>
<td>0.15</td>
<td>14.28</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>IDMT(3/10)</td>
<td>0.24</td>
<td>18.57</td>
<td>195</td>
</tr>
<tr>
<td>4</td>
<td>IDMT(3/10)</td>
<td>0.225</td>
<td>47.57</td>
<td>230</td>
</tr>
<tr>
<td>5</td>
<td>IDMT(3/10)</td>
<td>0.138</td>
<td>137</td>
<td>550</td>
</tr>
</tbody>
</table>
Figure 7.2 Relay curves with the data as shown below

<table>
<thead>
<tr>
<th>Relay</th>
<th>Type</th>
<th>TMS</th>
<th>Pickup</th>
<th>Maximum fault level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IDMT(3/10)</td>
<td>0.15</td>
<td>14.28</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>IDMT(3/10)</td>
<td>0.174</td>
<td>30</td>
<td>195</td>
</tr>
<tr>
<td>4</td>
<td>IDMT(3/10)</td>
<td>0.214</td>
<td>47.57</td>
<td>280</td>
</tr>
<tr>
<td>5</td>
<td>IDMT(3/10)</td>
<td>0.133</td>
<td>137</td>
<td>550</td>
</tr>
</tbody>
</table>
Base MVA = 776 MVA

Machine parameters

\[H = 3.16 \quad r_d = 0.0021 \quad x_{d'} = 0.32 \quad x_d = 0.27 \]
\[x_{d''} = 0.26 \quad x_q = 2.15 \quad x_{q'} = 0.3 \quad x_q'' = 3.26 \]
\[x_a = 0.17 \quad x_0 = 0.1933 \quad T_{d'} = 0.95 \quad T_{d''} = 1.82 \]
\[T_{q'} = 0.82 \quad T_{q''} = 0.82 \quad T_L = 0.0 \quad r_e = 0.0019 \]

If no fictitious field winding is included, then \(x_q' = 2.15 \)

Saturation characteristics

Flux linkage: \(0.6 \ 0.7 \ 0.8 \ 0.9 \ 1.0 \ 1.1 \ 1.2\)

Excitation: \(0.6 \ 0.7 \ 0.832 \ 0.963 \ 1.16 \ 1.419 \ 1.824\)

Generator transformer impedance (if transformer tap ratio = 1)

\[r_T = 0.0039 \quad x_T = 0.1551 \]

Transmission line impedances

\[r_L = 0.0089 \quad x_L = 0.031 \]

Initial currents

\[i_{Ta} = 0.378 \quad i_{TB} = 0.613 \quad i_{TC} = -0.991 \quad i_{td} = 0.88 \]

\[i_{kd} = i_{cd} = i_{cq} = 0.3 \]

Infinite busbar voltage = 3.988, mechanical torque = 0.852

\(\theta = 0.3514 \), transformer tap ratio = 1.083

Table 1: Machine parameters and the initial conditions

between the two characteristics are studied, it can be established that the minimum time difference will occur at about 42.75 MVA, and the difference is only about 0.28 second.

7.1.3 Practical solution

In practice, usually a lower pickup value is chosen for relay coordination rather than a higher value as shown from the computer results. There are two reasons for this. The first is that it will be easier for current grading to be achieved; and the second reason is that if a higher pickup value is chosen then the relay operating time will be larger at the low fault level, so the relay cannot act as an effective backup device for other relays. As far as the grading of different types of relays is concerned, usually the difference between the pickup values are large. So the minimum time difference occurs at the maximum fault level and the problem as shown from the computed result will not happen.

7.1.4 Transient effect on relay operating time and \(i_T^3 \)

Let us refer to figure 1.1 to compare the relay operating time with and without transient conditions. Let a three-phase to earth fault occur on the HV side of the transformer. The initial conditions and data for the parameters are shown in table 1, except that the armature currents are replaced by the generator transformer secondary currents such that \(i_{Ta} = 0.378 \), \(i_{TB} = 0.613 \), and \(i_{TC} = -0.991 \). Assuming no CT saturation, after knowing the primary fault current the relay operating time due to the CT secondary current can be obtained by the programs developed in chapter 4. The a.c. amplitude of this current...
was obtained and the operating time for the relay under the transient conditions computed. The envelope of the a.c. peak is divided into small steps for the calculation of relay operating time if the pickup current is at a peak value. The i^2t can be calculated with the programs developed in chapter 4 if the transient effect is considered. In practice, if no transient effect is taken into account then the relay operating time is calculated as follows:

Usually the transient state of the machine is used for calculating the relay operating time. If the reactance is much bigger than the resistance then the relay operating current $I_{op} = \frac{E_{op}}{X}$ where E_{op} is the internal machine voltage and X is the total reactance from the machine to the fault location such that $X = x_d' + x_T$ when the tap ratio is one.

For this particular machine $E_{op} = 1.08$ p.u. and $X = 0.1552 + 0.32 = 0.4752$, so $I_{op} = 2.27$ p.u.. The relay operating time $\frac{0.14 \times 0.1}{0.02 - 1} = 0.847$ sec. if TMS = 0.1 and pickup = 1.0 p.u.

If no transient effect is considered then the $i^2t = (2.27)^2 \times 0.847 = 4.365$.

The comparison is summarized as below:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Relay Operating Time (Second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With transient effect taken into account</td>
<td>0.925</td>
</tr>
<tr>
<td>No transient effect is considered</td>
<td>0.847</td>
</tr>
<tr>
<td>(i2t)</td>
<td></td>
</tr>
<tr>
<td>With transient effect taken into account</td>
<td>2.544</td>
</tr>
</tbody>
</table>
No transient effect is considered

7.2 Results on fault analysis
Many computer results were produced, but only the more important are shown in this chapter.

7.2.1 Open circuit condition
Figure 7.3 shows the field current when a double line to ground fault occurs on phases b and c. The generator is on open circuit. The second harmonic component is evident. When negative sequence currents appear in the armature of a machine running at synchronous speed, the armature m.m.f. due to these currents produces a flux which rotates at synchronous speed in a direction opposite to the field produced by positive sequence currents. The negative sequence flux field is thus travelling at twice synchronous speed with respect to the rotor, and as it sweeps past the field poles, a second harmonic current is induced in the field winding.

7.2.2 Loading conditions
Figure 7.4 shows the accelerating torque for a generator when a three-phase to earth fault occurs on its terminals. The generator is on full load when the fault occurs. The initial conditions are given in table 1. The generator output becomes zero in the pure reactance circuits. As the electrical power is decreased by the short circuit and the mechanical power remains constant, there is an accelerating torque on the generator and consequently the generator speeds up. Figure 7.5 & 7.6 show the effect of varying the inertia constant on
Figure 7.5 Effect of variation in inertia constant on rotor angular velocity

Data are given in table 1 except H is varied as shown above.

Figure 7.6 Effect of variation in inertia constant on rotor angle

-84-
the rotor speed and rotor swing. The smaller the inertia constant, the higher the variation in rotor speed and the greater the back swing.

7.2.2.1 Effect due to saturation

During most fault and short circuit conditions, the rotor winding is highly inductive and the rotor flux linkages before the short circuit are produced by $\phi + \phi_1$ where ϕ is the air gap flux and ϕ_1 is the leakage flux which traverses paths outside the active transfer or conversion regions (for example, the core of a transformer or the air gap of a rotating machine). Immediately following the application of the short circuit it may be assumed that the flux linking the rotor remains constant, this being brought about by an induced current in the rotor which balances the heavy demagnetizing effect set up by the short circuited armature. So $\phi + \phi_1$ remains constant, but owing to the increased m.m.f involved, the leakage flux will increase considerably. Therefore there is a transfer of flux from the main air gap to the leakage paths. Much of the leakage occurs in the iron paths of the machine and hence must be affected by saturation. To calculate the saturation effect on leakage reactance rigorously is very time consuming. One must recognize that the calculation of leakage reactance of a machine is a three dimensional electromagnetic field problem complicated by the nonlinearity of iron and the fact that the flux density is different in different sections of the magnetic path and varies with operating conditions. In practice [1100] a simple engineering solution is possible by introduction of a correction factor of approximately 0.9 to account for the reduction in reactance.
As the short circuit current continues, the main flux is reduced for the following reasons.

1. The effects, which try to maintain constant flux linkages, due to damper windings and field circuits die away.

2. Demagnetising action of the armature short circuit current.

A fall in the generated voltage results, such that the main air gap flux will fall below a saturation level.

The amplitude of the transient currents are mainly determined by leakage and not by mutual reactance. Figure 7.7 shows that saturation of mutual reactance does not affect the armature winding transient fault current. Figure 7.8 shows that by varying the leakage reactance, the armature winding current is varied. A variation of 30% in the armature winding leakage reactance only produces a variation of 4% in the armature winding current.

7.2.2.2 Effect due to the iron rotor

(a) Lagging power factor operation

Figure 7.9 shows the current in phase a when a three phase to earth short circuit occurs at the generator terminals (with a fictitious field winding on the quadrature axis). The fault current passes through a current zero within the first cycle.

With the same fault conditions as just described above but without a fictitious field winding on the quadrature axis, figure 7.18 shows that the current zero is delayed by about 80 msec. This result shows the importance of including a fictitious winding.
Figure 7.9 Current in phase a when a three-phase to earth fault occurs at the generator terminals

Lagging power factor operation
With a fictitious field winding included
Initial conditions are given in table 1 except
\[i_a = 0.5 \quad i_b = 0.5 \quad i_c = -1.0 \quad \theta = 0.739 \]

Figure 7.10 Same description as in Figure 7.9
Except no fictitious field winding is included
(b) Leading power factor operation

Figures 7.11, 7.12, 7.13 show that when the generator is operated at leading power factor before a three-phase to earth fault occurs at its terminals, the armature currents will be delayed in some phases before passing through a current zero. Current in phase a is delayed by about 100 msec.

With the same fault conditions as just described above but without a fictitious winding in the quadrature axis, figures 7.14, 7.15, 7.16 show that the currents in phase a and phase b are delayed by about 500 msec. and 400 msec. respectively before a current zero is reached.

From the results obtained for (a) and (b), it shows that an unrealistic decay in the a.c. component of the fault current occurs if a fictitious field winding is not included in the quadrature axis. Comparison of figure 7.9 and figure 7.10 will show a delay of 4 cycles. The time taken for some phases to pass through a current zero is much longer when the generator is operated at a leading power factor. In practice, the a.c. component of the fault current does not decay as rapidly as when no fictitious field winding is included. So the quadrature axis presents subtransient and transient effects to the fault currents, and therefore the value of ξ' is an important factor in obtaining correct fault current prediction. For modelling a round rotor machine, a fictitious field winding should be included in the quadrature axis to simulate the solid iron section. This solid iron acts as an equivalent winding during both transient and subtransient periods, thus providing multiple paths for circulating eddy currents. The changing reactance can be represented as the sum of two
Figure 7.13 Current in phase c when a three phase to earth fault occurs at the generator terminals

Leading power factor operation
With a fictitious field winding included
Initial conditions are given in table 1 except
\[i_a = -0.075 \quad i_b = 0.853 \quad i_c = -0.778 \]
\[\theta = 1.135 \text{ busbar voltage} = 1.016 \quad i_{fd} = 1.379 \]
Transformer tap ratio = 0.935

Figure 7.14 Same description as in Figure 7.13

Except no fictitious field winding is included and current in phase a is shown here

-89-
Figure 7.15 Current in phase b when a three phase to earth fault occurs at the generator terminals

Leading power factor operation
No fictitious field winding is included
Initial conditions are given in Table 1 except
\(i_a = -0.075 \) \(i_b = 0.053 \) \(i_c = -0.778 \)
\(\theta = 1.135 \) busbar voltage = 1.016 \(i_{fd} = 1.379 \)
Transformer tap ratio = 0.935

Figure 7.16 Same description as in Figure 7.15
except current in phase c is shown here

-90-
exponentials, one of which decays rapidly and the other slowly. The slower transient is defined by \(x_q' \) and the faster transient by \(x_q'' \).

7.2.2.3 Effect due to circuit breaker opening

Consider a three-phase short circuit to occur at the generator terminals when the machine is running on no load, the a.c. component and the d.c. component are equal at \(t=0 \). The a.c. component decays initially with the time constant \(T_d'' \) and the d.c. component decays exponentially in accordance with the time constant \(T_{dc} \)

\[
T_{dc} = \frac{x_d'' + x_t}{(R_a + R_t)\omega}
\]

where

- \(x_d'' \) = Subtransient reactance of the generator
- \(R_a \) = Resistance of the generator armature winding
- \(x_t \) = Leakage reactance of the transformer
- \(R_t \) = Winding resistance of the transformer
- \(\omega \) = Angular frequency

The a.c. subtransient time constant is smaller than the d.c. time constant so that after initiation of a fault the subtransient a.c. component decays more rapidly than the d.c. component. A current cannot pass through zero if its d.c. component is larger than the amplitude of the a.c. component. The result is that the lower envelope of the current curve rises above zero, and hence the time taken for the current to pass through a current zero is increased. After a given time has elapsed the first zero occurs, and the a.c. current decays
with the time constant T_d', where $T_d' > T_d$, and so the a.c. current is greater than the d.c. current.

Operation with a wide load angle or underexcitation causes the first zero transition to be delayed. The increase in time to reach a current zero is a result of the large quadrature axis component with subtransient decay for wide load angle and underexcitation produces a diminished initial value of the alternating current.

(a) Lagging power factor operation

Figures 7.17 & 7.18 show that under the same fault conditions as described in Figure 7.10 but with the circuit breaker in phase c opened, then the time taken for currents in phases a and b to pass through a current zero is shortened. Currents in phase a and phase b reach their first current zero in 11.5 and 5.5 msec, respectively.

Figures 7.19 & 7.20 show that the time to reach current zeros for phases a and b is the same if the earthing resistance is very large.

(b) Leading power factor operation

Figures 7.21 and 7.22 show that under the same fault conditions as described in Figure 7.14, but with the circuit breaker in phase c opened, then the currents in phases a and b reach a current zero faster by about 150 and 50 msec, respectively.

As far as circuit breaker opening is concerned, opening one phase has the effect of decreasing the d.c. component in the other phases, thus
Figure 7.19 Current in phase a when a three phase to earth fault occurs at the generator terminals

Lagging power factor operation
No fictitious field winding is included
Initial conditions are given in Table 1 except $i_a = 0.5$, $i_b = 0.5$, $i_c = -1.0$, $\theta = 0.739$
Only shows the current after phase c is opened
Earthing resistance = 19 p.u.

Figure 7.20 Same description as in Figure 7.19

Except this figure shows the current in phase b
Figure 7.21 Current in phase a when a three phase to earth fault occurs at the generator terminals

Leading power factor operation
No fictitious field winding is included
Initial conditions are given in Table 1 except $i_a = -0.075 \, i_b = 0.853 \, i_c = -0.778$
$\theta = 1.135$ busbar voltage $= 1.016 \, i_{fd} = 1.379$
Transformer tap ratio $= 0.935$
Only shows the current after phase c is opened

Figure 7.22 Same description as in Figure 7.21
Except current in phase b is shown here

-94-
reducing the time for the fault current to pass through a current zero.

7.2.2.4 Effect due to arcing resistance
The arcing resistance has the effect of accelerating the decay of d.c. component.

(a) Lagging power factor operation
Figure 7.23 shows that the inclusion of arcing resistance does not have any noticeable effect on the time taken to reach a current zero when compared with Figure 7.18. It shows that the arcing resistance is not important when the generator is operated at a lagging power factor.

(b) Leading power factor operation
Figures 7.24 and 7.25 show that under the same fault condition as described in Figure 7.21, but with the inclusion of arcing resistance, both the currents in phase a and phase b reach a current zero much faster.

Arcing resistance has the effect of accelerating the fault current through a current zero. The inclusion of arcing resistance is considered to be important when the generator is operating at leading power factor because the time taken to reach a current zero is usually much greater when no arcing resistance is included.
Figure 7.25 Current in phase a when a three phase to earth fault occurs at the generator terminals

Leading power factor operation
No Pictitious Field winding is included
Initial conditions are given in table 1 except
\[i_d = -0.075, \quad i_b = 0.853, \quad i_c = -0.778 \]
\[\theta = 1.135 \text{ busbar voltage} = 1.018, \quad i_{fd} = 1.379 \]
Transformer tap ratio = 0.935
Only shows the current after phase c is opened
Arcing resistance is included
Arcing voltage = 0.0085 p.u.
7.3 Summary

The effect due to circuit breaker opening, arcing and earthing resistance for both lagging and leading power factor operation are studied when faults occur. The results obtained in this chapter enable more detailed and accurate protection studies to be undertaken. With the required data, such as the machine parameters, it is possible to use the developed programs to assess the validity of the relay settings with the transient effect taken into account. The next chapter summarises conclusions and proposes areas of further work.
Chapter 8
Conclusions

8.1 Achievements of the project

The following original contributions to the subject of power system fault analysis and protection have been described in this thesis.

(1) Protection coordination and plotting programs for a radial system have been developed. These programs can provide immediate feedback by producing a graphical display of all the protective devices together with the boundaries on the coordination ranges for the devices being considered. Various protection devices, ratings, coordination margins, and coordination philosophies can be easily investigated. The optimal settings for relays can be determined interactively.

(2) Excessive computation time is required for a detailed analysis of a complete power station. Only part of a power station system (figure 1.1) was selected for analysis in detail using the phase coordinate method. The study included faults occurring on both the high voltage and low voltage sides of the generator transformer. Circuit breaker opening on both sides of the transformer were also involved to enable study of delays in current zeros. The effect of circuit breaker opening on protection operation was satisfactorily investigated, and found to produce faster relay operation. To unify the approach, switching, fault and connection matrices were introduced. Generalized matrix equations were developed which incorporated the required
switching and fault matrices, and enabled the computer algorithm to be written in a flexible manner.

(3) As far as auxiliary power supply systems in power stations and industrial power systems are concerned, the transient d.c. and a.c. decrement components may be significant and their effect on relay performance should be considered. In addition the heat generated at junctions and the thermal ratings of cabling is dependent on the (transient current component)² and should be included in design considerations. Programs have been developed for these purposes.

8.2 Suggestions for further work

The following areas can be expanded and improved.

8.2.1 Modelling review

The armature winding, excitation winding and damper winding of a synchronous machine are magnetically coupled not only in the main field but also, owing to the geometric relationships, in the leakage field as well. According to mathematical analysis these three circuits must be magnetically coupled not through the main reactance \(x_d - x_l \), but through the reactance \(x_d - x_c \), where \(x_c \) is generally not equal to the leakage reactance \(x_l \). With the assumption \(x_c = x_l \) therefore the traditional circuit cannot represent the exciter and damper circuits correctly. The assumption used in the equivalent circuit that the magnetic coupling exists only in the main field in accordance with the
main reactance $x_{ad} = x_d - x_i$ is not correct [38], and the model should be modified to enable rotor currents to be simulated accurately.

8.2.2 Generator saturation

An accurate transient and steady state model must allow for saturation in both the d-axis and q-axis. One approach is to determine the complete magnetic field distribution inside the machine with a step by step solution. This method will be time consuming. The other approach which is much simpler and faster, but less accurate, is to assume that only certain inductances in the equivalent circuits saturate. Following this latter approach, it is usual to assume that the armature and rotor winding leakage inductances have constant values. This implies that only mutual flux paths are subject to saturation.

To allow for saturation during a transient in which the machine flux is falling, a reasonably good result is obtained by using an appropriately selected constant value of the magnetising impedance. The value can be based on the slope of the saturation curve. The variation of mutual reactance can be expressed by using the open circuit saturation curve to define a saturation factor, sf, as a function of the total m.m.f.. The generator open-circuit saturation curve is presented such that terminal voltage in p.u. is plotted against field current in p.u., where 1 p.u. field current corresponds to 1 p.u. terminal voltage on the air gap line.

To calculate the mutual reactance at any operating condition, the procedure will be as follows:
\[\lambda = \sqrt{x_{afd}^2 (i_{fd} + i_{kd} - 1.5i_d)^2 + x_{afq}^2 (i_{fq} + i_{kq} - 1.5i_q)^2} \]

Then the open circuit saturation curve could be used to calculate the corresponding value of field current \(i_{fd} \), such that

\[sf = \frac{i_{fd}}{\lambda}, \quad \text{and} \quad x_{afd} = \frac{x_{afdo}}{sf}, \quad x_{afq} = \frac{x_{afgo}}{sf} \]

8.2.3 Governor and voltage regulator

If a transient is initiated by a fault, the armature reaction tends to decrease the flux linkage. This is particularly true for the generators electrically close to the location of the fault. The voltage regulator tends to force the excitation system to boost the flux level. Thus while the fault is on, the effect of the armature reaction and the action of the voltage regulator tend to counteract each other. Due to the relatively long effective time constant of the main field winding, these effects result in almost constant flux linkage during the first swing of 1 sec. or less. When the period of analysis extends beyond one second it is important to include the effects of the exciter and governor system. The exciter control system provides the proper field voltage to maintain a desired system voltage. An important characteristic of an exciter control system is its ability to respond rapidly to voltage deviations during both normal and emergency system operation. For sustained faults the speed and field control system should be incorporated in the model for simulation.
8.2.4 Resetting of relays

To include the resetting of relays in the program is straightforward. When the fault current in the protected circuit is interrupted or falls below the pickup value, the relays need to be reset. The induction relays reset gradually under the effect of a restraining spring. That is, the counter which stores the travel will be reduced gradually. The resetting rate can be determined by a subroutine.

8.2.5 Inclusion of induction motors

In isolated power systems, it is possible that many induction motors are supplied by one large generator. It is desirable to study the behaviour of these machines when a disturbance occurs. Initially the study can be simplified as in figure 1.1, except that the infinite busbar is replaced by induction motors. The behaviour of this system can be analysed when faults or circuit breaker opening occurs within the system.

8.2.6 Relay operating time calculation

The method used to calculate the relay operating time requires that the relay current in not distorted, i.e. the magnitude of harmonics should be small. To include the effect of harmonic distortion, the relay operating curves provided by the manufacturers need to be modified such that the same approach can be applied. One way is to obtain relay characteristics for relay currents with appropriate harmonic distortion, or alternatively to introduce correction factors.
8.2.7 Assessing the validity of relay settings

From chapter 7, the result shows that the operating time of a relay is different if the transient effect is taken into account. In other words, the relay settings as calculated by the coordination program may require recalculation in order to obtain proper coordination between relays during operation under both transient and steady state (without transient) conditions. In chapter 4, the transient fault currents can be calculated by the transient analysis program if the required data, such as the machine parameters, are available. Also in the same chapter, programs have been developed to calculate the relay operating time with transient conditions taken into consideration. It is therefore possible to use these programs to assess the validity of relay settings.
Appendix A

Current distribution in a current transformer

From the equivalent circuit shown in figure 5.1. The following relationships between the variables can be defined.

\[L_1 i_1 = R_2 i_2 + L_2 p_2, \quad i_2 = i - i_1 \]

so \[p_1 + \frac{R_2}{L_1 + L_2} \cdot i_1 = \frac{1}{L_1 + L_2} (L_2 p_1 + R_2 i) \quad \text{(A.1)} \]

That is,

\[i_1 = \frac{1}{R_2 T_1} e^{-t/T_1} \int_{t}^{T_1} (R_2 i + L_2 \frac{di}{d\tau}) e^{\frac{\nu}{T_1} \tau} d\tau + Ce^{-t/T_1} \quad \text{(A.2)} \]

where \(1/T_1 = \frac{R_2}{L_1 + L_2} \). Since \(i \) is represented by discrete points, and if \(p_i \) is calculated then a cumulative error may result. To avoid this problem equation (A.2) will be expressed only in terms of \(i \). That is,

\[i_1(t) = \frac{1}{R_2 T_1} e^{-t/T_1} \int_{ts}^{t} (R_2 i e^{\frac{\nu}{T_1} \tau} + \frac{L_2}{R_2 T_1} e^{-t/T_1} \int_{ts}^{t} e^{\frac{\nu}{T_1} \tau} d\tau + Ce^{\frac{\nu}{T_1} t}) d\tau \]

\[\int_{ts}^{t} \frac{i}{T_1} e^{\frac{\nu}{T_1} \tau} d\tau + Ce^{-t/T_1} \]
Appendix B

Per-unit system

A reciprocal per-unit system \([124,125]\) was used. Base armature winding voltage and current, were taken as the peak values per phase. The base current of a d-axis rotor circuit is that required to produce the same fundamental spacial component of air-gap flux as 1.0 p.u. direct axis current in the armature winding. The fundamental component of air-gap flux produced by 1.0 p.u. direct axis current is 1.5 times that produced by that current in a single phase.

Therefore \[I_{fdo} = \frac{3}{2} \frac{N_s}{N_{fd}} I_{so}, \]

where \(I_{so} \) is the base armature winding current, and \(I_{fdo} \) is the base field current.

\(N_s \) is the effective number of turns on the field winding.

\(N_{fd} \) is the effective number of turns on one phase of the armature winding.

The term "effective" refers to the ability of the windings to produce the fundamental spacial component of air-gap flux. Similarly, for any other direct axis rotor circuit, \(I_{xdo} = \frac{3}{2} \frac{N_s}{N_{xd}} I_{so} \) and for the quadrature axis, \(I_{xgo} = \frac{3}{2} \frac{N_s}{N_{xq}} I_{so} \), where \(x \) can be \(f \) or \(k \).
Relationship between \((a,b,c)\) and \((d,q)\) parameters

Since the base value of current in the two-axis coils is one and a half times that in the phase coils, the p.u. rotor currents expressed in phase variables is 1.5 times the p.u. rotor currents expressed in \((d,q)\) variables, so

\[
\begin{align*}
x_{sd} &= \frac{2}{3} x_{d}, \\
x_{sq} &= \frac{2}{3} x_{q}
\end{align*}
\]

\[
\begin{align*}
x_{sd}' &= \frac{2}{3} x_{d}', \\
x_{sq}' &= \frac{2}{3} x_{q}'
\end{align*}
\]

\[
\begin{align*}
x_{sd}'' &= \frac{2}{3} x_{d}'', \\
x_{sq}'' &= \frac{2}{3} x_{q}''
\end{align*}
\]

\[
\begin{align*}
x_{sa} &= \frac{2}{3} x_a
\end{align*}
\]

\(x_a\) and \(x_a\) is the armature leakage reactance defined in the \((a,b,c)\) and \((d,q)\) reference frames respectively. Other parameters are defined similarly. The \((a,b,c)\) parameters can be obtained by considering the equivalent circuits of the turbo-generator. The equivalent circuit for the \(q\)-axis is the same as that of the \(d\)-axis except that \(d\) is replaced by \(q\).

Figure C1 shows the equivalent circuit for the synchronous turbogenerator in the direct axis under subtransient conditions.

When the subtransient components have decayed, the equivalent transient circuit is shown in figure C2.

When the transient component has decayed, the equivalent circuit is shown in figure C3.

-106-
If the resistances of the windings are neglected

\[x_{sa} = x_{sd} - x_{afdo} \]

\[x_{fdl} = x_{fdo} - x_{afdo} \]

\[x_{sd}' = x_{sa} + \frac{x_{afdo} x_{fdl}}{x_{afdo} + x_{fdl}} \]

\[= \frac{(x_{sd} - x_{afdo})(x_{afdo} + x_{fdo} - x_{afdo}) + x_{afdo}(x_{fdo} - x_{afdo})}{x_{afdo} + x_{fdo} - x_{afdo}} \]

\[x_{sd}' x_{fdo} = x_{sd} x_{fdo} - x_{afdo} \]

\[x_{sd}' = \frac{x_{sd} x_{fdo} - x_{afdo}^2}{x_{fdo}} \]

\[x_{fdo} x_{sd}' = x_{sd} x_{fdo} - x_{afdo}^2 \]

\[x_{fdo}(x_{sd}' - x_{sd}) = -x_{afdo} \]

\[x_{fdo} = \frac{x_{afdo}^2}{x_{sd} - x_{sd}^2} \]

so \(x_{fdl} = \frac{x_{afdo}^2}{x_{sd} - x_{sd}^2} - x_{afdo} \)

\[x_{sd}'' = x_{sa} + \frac{x_{afdo} x_{fdl} x_{kdl}}{x_{afdo} x_{fdl} + x_{afdo} x_{kdl} + x_{fdl} x_{kdl}} \]

\[= x_{sa} + \frac{x_{afdo}(x_{fdo} - x_{afdo}) x_{kdl}}{x_{afdo}(x_{fdo} - x_{afdo}) + x_{afdo} x_{kdl} + (x_{fdo} - x_{afdo}) x_{kdl}} \]

That is \(x_{sd}''[x_{afdo} x_{fdo} - x_{afdo}^2 + x_{fdo} x_{kdl}] = \)

-107-
Figure C4: Equivalent circuit used to determine the transient short circuit time constant.

\[x_{sa} \left[x_{afdo}^2 x_{fd} - x_{afdo}^2 + x_{afdo} x_{fd} x_{kl} - x_{afdo} x_{kl} \right] + x_{afdo} x_{fd} x_{kl} - x_{afdo} x_{kl} \]

So \[x_{sd}^2 \left[\frac{x_{afdo} x_{fd} x_{kl}}{x_{sd} - x_{sd}^2} - x_{afdo} + x_{afdo} x_{kl} \right] = \frac{x_{afdo} x_{fd} x_{kl}}{x_{sd} - x_{sd}^2} \]

That is

\[x_{kd}^2 \left[x_{sd} - x_{sd}^2 \left[x_{afdo} - x_{afdo} x_{sd} \right] \right] \]

So \[x_{kd}^2 \left[-x_{afdo} + x_{afdo} x_{sd} \right] = x_{afdo} x_{sd} \left[x_{sd} - x_{sd}^2 \right] \]

That is \(x_{afdo} x_{sd} \cdot \)

So \(x_{kf} = \frac{(x_{sd}^2 - x_{sd})^2}{x_{sd} - x_{sd}^2} \]

Therefore \(x_{kf} = \frac{(x_{sd}^2 - x_{sd})^2}{x_{sd} - x_{sd}^2} \)

Because \((x_{sd}^2 - x_{sd})^2 + (x_{sd} - x_{sd}) \left(x_{sd}^2 - x_{sd} \right) - x_{afdo} \left(x_{sd}^2 - x_{sd} \right) \)

\[= x_{sd}^2 - 2x_{sd} x_{sa} + x_{sa}^2 + x_{sd} x_{sa} - x_{sd} x_{sa} x_{fd}^2 - x_{sd} x_{sa} - x_{sa}^2 + x_{afdo} x_{sa} \]

The subtransient and transient short circuit time constants can be found by the following equivalent circuits (figure C4 & C5) with the armature input terminals open-circuited.
\[T_{do}' = \frac{x_{afdo} + x_{fd1}}{w \cdot r_{fd}} = \frac{x_{fdo}}{w \cdot r_{fd}} \]

Because \(T_d' = \frac{x_{sd}'}{x_{sd}} T_{do}' \), therefore

\[\frac{x_{sd}'}{x_{sd}} = \frac{x_{fdo}'}{w \cdot r_{fd}} \]

so

\[r_{fd} = \frac{x_{fdo}'}{w \cdot T_{d}'} \]

\[T_{do}'' = \frac{1}{w \cdot r_{kd}} [x_{kd} + \frac{x_{afdo} x_{fd1}}{x_{afdo} + x_{fd1}}] = \frac{1}{w \cdot r_{kd}} [x_{kd} + \frac{x_{afdo} x_{fd1}}{x_{fdo}}] \]

\[T_d'' = \frac{x_{sd}''}{x_{sd}} T_{do}'' \]

so

\[\frac{x_{sd}''}{x_{sd}} = \frac{1}{w \cdot r_{kd}} [x_{kd} + \frac{x_{afdo} x_{fd1}}{x_{fdo}}] \]

i.e.

\[r_{kd} = \frac{1}{w \cdot T_{d}''} [x_{kd} + \frac{x_{afdo} x_{fd1}}{x_{fdo}}] \frac{x_{sd}''}{x_{sd}} \]
Appendix D

Runge Kutta and Predictor Corrector methods

Given the first order differential equation

\[
\frac{dy}{dx} = f(x, y)
\]

where \(x\) is the independent variable and \(y\) is the dependent variable.

Runge Kutta Method

\[
p = h f(x_i, y_i)
\]

\[
q = h f(x_i + \frac{h}{2}, y_i + \frac{p}{2})
\]

\[
r = h f(x_i + \frac{h}{2}, y_i + \frac{q}{2})
\]

\[
s = h f(x_i + h, y_i + r)
\]

\(h\) is the step length.

\[
y_{i+1} = y_i + \frac{1}{6}(p + 2q + 2r + s)
\]

The numerical method which is used to solve a set of differential equations by using Runge Kutta method is

\[
p_k = h f_k(x_i, y_{1,i}, y_{2,i}, ..., y_{n,i}) --- (D.1)
\]

\[
q_k = h f_k(x_i + \frac{h}{2}, y_{1,i} + \frac{p_1}{2}, y_{2,i} + \frac{p_2}{2}, ..., y_{n,i} + \frac{p_n}{2}) --- (D.2)
\]

\[
r_k = h f_k(x_i + \frac{h}{2}, y_{1,i} + \frac{q_1}{2}, y_{2,i} + \frac{q_2}{2}, ..., y_{n,i} + \frac{q_n}{2}) --- (D.3)
\]

\[
s_k = h f_k(x_i + h, y_{1,i} + r_1, y_{2,i} + r_2, ..., y_{n,i} + r_n) --- (D.4)
\]

\[
y_{k,i+1} = y_{k,i} + \frac{1}{6}(p_k + 2q_k + 2r_k + s_k)
\]

-110-
where } k = 1, 2, \ldots, n \text{ }

The set of equations above will give the values for each } y_k \text{ at } x_{i+1} \text{ when the solution at } x_i \text{ is known.}

The first step is to find } p_k \text{ for } k = 1, 2, \ldots, n \text{. These are then used in the computation of } q_k, k = 1, 2, \ldots, n \text{. Each } q_k \text{ is used to compute } r_k, \text{ and then all values for } r_k \text{ must be known to find } s_k.

Equations (D.1) to (D.4) must be solved in the order listed for each } k \text{ before moving on to the next step.}

Predictor Corrector method

Predictor formula

\[
p = \frac{-h}{24} \left[55 f(x_i, y_i) - 59 f(x_i - h, y_i - h) + 37 f(x_i - 2h, y_i - 2h) \\
- 9 f(x_i - 3h, y_i - 3h) \right] + y_i
\]

\[x_i - h = x_i - h \text{ etc.}\]

Corrector formula

\[
y_i + h = y_i + \frac{h}{24} \left[9 f(x_i + h, p) + 19 f(x_i, y_i) - 5 f(x_i - h, y_i - h) + f(x_i - 2h, y_i - 2h) \right]
\]

When a predictor corrector method is used to solve a set of differential equations:

For the predictor formula

\[
p_k = y_{k,i} + \frac{h}{24} \left[55 f_{k,i} - 59 f_{k,i-h} + 37 f_{k,i-2h} - 9 f_{k,i-3h} \right] \quad \text{----(D.5)}
\]

For the corrector formula

-III-
\[y_{k,i+h} = y_{k,i} + \frac{h}{24} \left[9 f_{k,i+h} + 19 f_{k,i} + 5 f_{k,i-h} + f_{k,i-2h} \right] \quad \text{(D.6)} \]

The solutions for \(y_k \) at \(x = x_i + h \) can be found if the solutions for \(y_k \) at \(x_i, x_i - h, x_i - 2h \) and \(x_i - 3h \) are known.

The first step is to find \(p_k \), the predicted value for \(y_k \) at \(x = x_i + h \) for \(k = 1, 2, \ldots, n \) from equation (D.5). The values for \(p_k \) are then used to find the values of \(f_{k,i+h} \), \(k = 1, 2, \ldots, n \) at \(x = x_i + h \).

\[f_{k,i+h} = f_k(x_i + h, p_1, p_2, \ldots, p_n) \]

The values of \(f_{k,i+h} \) are used by equation (D.6) for computing the values of \(y_{k,i+h} \).

The theory for the above derivations can be found in [127].

-112-
Appendix E

Determination of initial conditions for the generator

From figure E1

\[P = I_p E, \quad Q = I_q E \]

\[P_0 = E_0 I \cos \theta, \quad Q_0 = E_0 I \sin \theta \]

\[P = P_0 + I^2 R, \quad Q = Q_0 + I^2 X \]

\[I^2 = I_p^2 + I_q^2 = \frac{P^2 + Q^2}{E_0^2} \]

therefore \[P_0 = P - \frac{P^2 + Q^2}{E_0^2} R \]

\[Q_0 = Q - \frac{P^2 + Q^2}{E_0^2} X \]

\[E_0 = \sqrt{\left(I_p R + I_q X \right)^2 + \left(I_p X - I_q R \right)^2} \]

\[= \sqrt{\left(\frac{P^2}{E} - R + \frac{Q^2}{E} - X \right)^2 + \left(\frac{P}{E} X - \frac{Q}{E} R \right)^2} \]

\[= \left(E - A \right)^2 + B^2 \]

where \[A = \frac{PR}{E} + \frac{QX}{E}, \quad B = \frac{QR}{E} - \frac{PX}{E}, \quad C = E - A \]

\[\frac{Bt}{E_0} = \frac{n}{t} \]

therefore \[n = \frac{Bt}{\sqrt{C^2 + B^2}} \]

From appendix E
\[v_d = -r_a i_d - w \lambda_q + p \lambda_d \]
\[v_q = -r_a i_q + w \lambda_d + p \lambda_q \]

During steady state \(p \lambda_d = p \lambda_q = 0 \)

\[\lambda_q = -L_q i_q \]
\[\lambda_d = -L_d i_d + L_{df} i_f \]

where \(L_d \) is the self inductance of the d-axis coil, \(L_q \) is the self inductance of the q-axis coil, \(L_{df} \) is the mutual inductance on the direct axis. By Park's transformation

\[e_a = v_d \cos \theta - v_q \sin \theta \]

where \(\theta = w_o t + s - \frac{1}{6} \pi \)

A 30° phase shift exists between the primary side and secondary side of the transformer, so the angle between the d-axis and D-axis is \(s - 30° \). The angle between the a-axis and the D-axis is \(w_o t \). At \(t = 0 \), the angle is zero, therefore \(\theta = s - 30° = 0° \). That is, the D-axis coincides with the a-axis of the 3-phase system. \(r = r_a \),

\[e_a = (-r_d + wL_q i_q) \cos \theta - (-r_q - wL_d i_d + wL_{df} i_f) \sin \theta \]

\[= (-r_d + wL_q i_q) \cos \theta - (-r_q - wL_d i_d + wL_{df} i_f) \cos(\theta - \frac{1}{3} \pi) \]

At steady state the angular speed is constant, \(w = w_o \), and \(wL \) may be denoted as reactances, or \(wL_q = x_q \), \(wL_d = x_d \), \(wL_{df} i_f = E_q \). The following phasor notation is used:

\[\bar{A} = A e^{j\alpha}, A \text{ is the peak value. The superior bar indicates a total phasor quantity in magnitude and angle (a complex number). This} \]

-114-
complex number is related to the corresponding time domain quantity

\[a(t) = \text{Re}(\alpha e^{j\omega t}) = A \cos(\omega t + \phi) \], so the peak

phasor voltage \(\bar{E}_a = -r(I_d/\omega_0 - I_q/\omega_0 - 3.5\pi) + \alpha_{1,q}/\omega_0 \)

\[+ \alpha_{2,q}/\omega_0 - 3.5\pi - E_q/\omega_0 - 3.5\pi. \]

By using the relation \(j = \text{tan} 3.5\pi, -j = \text{tan} 3.5\pi \)

\[\bar{E}_a = -r(I_d/\omega_0 + jI_q/\omega_0) - jx_q I_q/\omega_0 = jx_d I_d/\omega_0 + jE_q/\omega_0. \]

Let \(\bar{I}_a = \bar{I}_d + j\bar{I}_q = I_d/\omega_0 + jI_q/\omega_0 \), therefore \(\bar{E}_a/\omega_0 = \bar{I}_d + j\bar{I}_q \). So

\[I_d/\omega_0 = \bar{I}_d, jI_q/\omega_0 = \bar{I}_q, \bar{E}_q = jE_q/\omega_0 \]

\[\bar{E}_a = -r(\bar{I}_d + j\bar{I}_q) - jx_q I_q - jx_d I_d + jE_q/\omega_0 \]

\[= -r\bar{I}_d - jx_q I_q + j\bar{I}_q - jx_d I_d + \bar{E}_q \]

\[= -r\bar{I}_d - jx_q \bar{I}_q + \alpha (x_d - x_q) I_d/\omega_0 + jE_q/\omega_0. \]

\[= r(\bar{E}_q - (x_d - x_q) I_d) - jE_q/\omega_0 = E_q/\theta, \text{ where} \]

\[\theta = 0.5\pi + \phi_0, \text{ so } \bar{E}_{qa} = \bar{E}_a + (r + jx_q)\bar{I}_a \]

\[j[E_q - (x_d - x_q)I_d]/\omega_0 = \bar{E}_q - j(x_d - x_q)\bar{I}_d = \bar{E}_{qa} \]

The phasor diagram representing equation (E.1) is given in figure E2.
The generator transformer has a nominal tap ratio \(n \) which can be adjusted to obtain the specified voltage at the infinite busbar from known values of generated power at the machine terminals. The equations are:

\[
A = \frac{P(r_p + r_s) + Q(x_p + x_s)}{E}
\]

\[
B = \frac{Q(r_p + r_s) - P(x_p + x_s)}{E}
\]

\[
C = E - A
\]

\[
n = \frac{Et}{\sqrt{C^2 + B^2}}
\]

\[
P_T = P - \frac{(P^2 + Q^2)(r_p + r_s)}{E^2}
\]

\[
Q_T = Q - \frac{(P^2 + Q^2)(x_p + x_s)}{E^2}
\]

\[
P_i = P_T - \frac{(P_T^2 + Q_T^2)r_L}{Et^2}
\]

\[
Q_i = Q_T - \frac{(P_T^2 + Q_T^2)x_L}{Et^2}
\]

\[
\Theta_i = \tan^{-1}\left(\frac{Q_i}{P_i}\right)
\]

Calculation of \(E_1 \) (infinite machine voltage)

\[
E_1 = \sqrt{\frac{[Et^2 - (P_T r_L + Q_T x_L)]^2 + (Q_T r_L - P_T x_L)^2}{Et^2}}
\]
$$I_{T1} = \frac{\sqrt{P_i^2 + Q_i^2}}{E_i}$$

$$V_a = E_i \exp \left[j(t + \frac{1}{2}\pi) \right]$$

$$V_b = E_i \exp \left[j(t + \frac{1}{2}\pi - \frac{2}{3}\pi) \right]$$

$$V_c = E_i \exp \left[j(t + \frac{1}{2}\pi + \frac{2}{3}\pi) \right]$$

$$I_{La} = I_{T1} \exp \left[j(t + \frac{1}{2}\pi - \theta_1) \right]$$

$$I_{Lb} = I_{T1} \exp \left[j(t + \frac{1}{2}\pi - \frac{2}{3}\pi - \theta_1) \right]$$

$$I_{Lc} = I_{T1} \exp \left[j(t + \frac{1}{2}\pi + \frac{2}{3}\pi - \theta_1) \right]$$

$$I_T = [\frac{I_{La}}{n}, \frac{I_{Lb}}{n}, \frac{I_{Lc}}{n}]^t$$

$$I_T = [I_{Ta}, I_{Tb}, I_{Tc}]^t$$

$$I_S = C^t I_T$$

where $$I_S = [I_a, I_b, I_c]^t$$

$$E = C^t \frac{1}{n} V + \frac{1}{n^2} \left((r_L + r_T) + j(x_L + x_T) \right) I_S$$

where $$V = [V_a, V_b, V_c]^t$$, $$r_L = (r_p + r_s)n^2$$

$$E = [E_a, E_b, E_c]^t$$, $$x_L = (x_p + x_s)n^2$$

$$e_a = \text{Real part of } E_a$$

The time taken to reach a voltage zero ($e_a = 0$) can be calculated from

the following,
\[
t = \frac{1}{2} \pi - \cos^{-1}\left(\frac{\text{real } E_a}{1E_a} \right),
\]

Similarly to calculate the time taken to reach a current zero.

\[
t = \frac{1}{2} \pi - \cos^{-1}\left(\frac{\text{real } I_a}{1I_a} \right)
\]

Calculation of \(\theta \).

From equation (E.1)

\[
E_{qa} = E_a + [r_a + j(x_a + \frac{x_{ago}}{s_t})] I_a \quad \text{-----(E.2)}
\]

Arbitrary values of \(s_t \) and \(I_{fd} \) were set to start the iterative procedure.

\[
E_{qd} = \frac{1}{2} E_{qa} \quad \theta' = \arg (E_{qa})
\]

\[
\theta' = \theta + \frac{1}{2} \pi = \theta - \frac{1}{6} \pi + \frac{1}{2} \pi
\]

\[
E_q = E_{qd} + \frac{I_d (x_{ado} - x_{ago})}{s_t}
\]

where \(I_a \exp(-j\theta) = I_d + jI_q \)

If the previous value of \(I_{fd} \) was \(I_{fdold} \) then the new value is calculated as

\[
I_{fd} = \frac{3 E_{sf}}{2 x_{ado}}
\]

\[
\lambda = \frac{1}{s_t} \sqrt{x_{ado} \left(\frac{2}{3} I_{fd} - I_d \right)^2 + x_{ago} I_q^2}
\]

A value of \(I_{fd} \) is calculated from the saturation characteristics of the machine to correspond to this value of \(\lambda \), such that
\[s_{\text{new}} = \frac{I_{fd}}{A} \quad (E.3) \]

If \(I_{fd} \neq I_{fd0} \), then \(I_{fd0} \) is replaced by the new \(I_{fd} \) and \(E_{qa} \) is recalculated from equation (E.2) using \(s_{\text{new}} \). Calculation was repeated down to equation (E.3). This calculation was repeated until two successive values of \(I_{fd} \) were equal. The last values of \(I_{fd} \) and \(s_{f} \) are taken as the initial values for \(I_{fd} \) and \(s_{f} \).

The generator parameters that depend on saturation are shown below.

\[
\begin{align*}
X_{ad} &= \frac{X_{ado}}{s_f} , \quad X_{aq} &= \frac{X_{aqq}}{s_f} \\
X_{afd} &= \frac{2}{3} X_{ad} , \quad X_{afq} &= \frac{2}{3} X_{aq}
\end{align*}
\]

The initial values of the quadrature field and damper currents are

\[I_{kq} = I_{kq} = I_{fq} = 0 \]

The \(L \) matrix was calculated and the initial flux linkages \(\lambda_a, \lambda_b, \lambda_c \), determined from the relationship \(\lambda = LI \).

The electrical air gap torque obtained from the torque equation is,

\[T_e = \frac{2}{3}\sqrt{3} \left(\lambda_a (i_b - i_c) + \lambda_b (i_c - i_a) + \lambda_c (i_a - i_b) \right) \]

Since \(T_a = 0 \), therefore \(T_m = T_e + T_b \).

Lastly the field voltage \(E_{fd} \) was calculated from \(E_{fd} = \sqrt{3} \cdot I_{fd} \).

A program has been developed for calculating the initial conditions and is described in the flow chart in figure E3. A listing is shown in appendix J (** J8 **).
Appendix F

Derivation of electrical torque, T_e

Notation used:

v, i positive for motoring

P power entering terminals electrically

T_e positive when torque is being removed from the shaft electrically

T_m mechanical driving torque is positive when the generator is driven

w, v_m positive speed means generating action

i_a', i_b', i_c' were normalised to a base i_{ao}, the peak current per phase in the armature. i_d', i_q', i_o' were normalised to a base $\frac{3}{2} i_{ao}$.

For the (a,b,c) reference frame, the base product is $v_{ao} i_{ao}$. For the (d,q) reference frame, the base product is $\frac{3}{2} v_{ao} i_{ao}$. The fundamental base of power is defined as the total rated apparent power, which is also the 2-axis voltage current base product so that $P_o = \frac{3}{2} v_{ao} i_{ao}$.

Consider now the expression for instantaneous ordinary 3-phase output power of a synchronous generator. $P = v_a i_a + v_b i_b + v_c i_c$. Rewriting this equation, prior to normalising to bases P_o, v_{ao}, and i_{ao} yields

-120-
\[
\frac{p}{v_{a0}} = \frac{2}{3} \left(\frac{v_{a}}{v_{ao}} + \frac{v_{b}}{v_{ao}} + \frac{v_{c}}{v_{ao}} \right) \text{ hence the equation for instantaneous per unit 3 phase power is}
\]

\[
\bar{p} = \frac{2}{3} \left(\bar{v}_{a} \bar{v}_{a} + \bar{v}_{b} \bar{v}_{b} + \bar{v}_{c} \bar{v}_{c} \right) \text{ the bar signifies p.u. values. With Park's transformation:}
\]

\[
\begin{bmatrix}
\bar{v}_a \\
\bar{v}_b \\
\bar{v}_c
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & -\sin \theta & 1 \\
\cos(\theta - \frac{2}{3} \pi) & -\sin(\theta - \frac{2}{3} \pi) & 1 \\
\cos(\theta + \frac{2}{3} \pi) & -\sin(\theta + \frac{2}{3} \pi) & 1
\end{bmatrix}
\begin{bmatrix}
\bar{v}_d \\
\bar{v}_q \\
\bar{v}_o
\end{bmatrix}
\]

\[
\bar{p} = \bar{v}_d \bar{v}_d + \bar{v}_q \bar{v}_q + 2\bar{v}_o \bar{v}_o
\]

so the instantaneous ordinary 2-axis power is \(p = v_d i_d + v_q i_q + 2v_o i_o \).

For simplicity, assume balanced but not necessarily steady state conditions, thus \(v_o = i_o = 0 \). \(p = v_d i_d + v_q i_q \) \(\text{-(P.1).} \)

Expressing the axis voltage in terms of axis currents and flux linkages: \(v_a = -r_a i_a + pla_a \)

\[
= -r_a (i_d \cos \theta - i_q \sin \theta + i_o) + p\lambda_d \cos \theta - \lambda_q \sin \theta + \lambda_o
\]

\[
= -r_a (i_d \cos \theta - i_q \sin \theta + i_o) + \cos \theta p\lambda_d - \sin \theta p\lambda_q + p\lambda_o - \omega \lambda_d \sin \theta
\]

\[
- \omega \lambda_q \cos \theta
\]

\[
= (-r_a i_d + p\lambda_d - \omega \lambda_d) \cos \theta - (-r_a i_q + p\lambda_q + \omega \lambda_q) \sin \theta + (-r_a i_o + p\lambda_o)
\]

\[
v_d \cos \theta - v_q \sin \theta + v_o \text{, so}
\]

\[
v_d = -r_a i_d + p\lambda_d - \omega \lambda_d
\]

-121-
\[v_q = -r_a q + B q + \omega d \]

\[v_o = -r_a i_o + B \phi_o \]

substituting into (F.1)

\[p = -r_a (i_d^2 + i_q^2) + (i_d \lambda_d + i_q \lambda_q) + (\lambda_d i_q - \lambda_q i_d) \omega \]

The last term is identifiable as the power transferred across the air gaps accounting for the electrical torque. With the notation used, the ordinary 2-axis electrical power associated with the motional terms may be written as

\[T_e v_m = (\lambda_d i_q - \lambda_q i_d) \omega \quad (E.2) \]

where \(w = \frac{d\phi}{dt} \), \(\theta \) is the electrical angle in radians, \(v_m \) is the mechanical angular velocity. Define \(w_o \) as base of \(w \), \(\frac{1}{w_o} \) as base of time. The per unit differential operator \(\overline{p} = \frac{\partial}{\partial t} = \frac{1}{w_o} \frac{\partial}{\partial \omega} \]

\(\lambda_o \) is the peak flux linkage which, varying at rated frequency, induces rated voltage; in other words, it is the peak flux linkage occurring in a coil which has rated voltage induced in it on open circuit. Defining the base mechanical angular velocity \(v_{mo} \) as that corresponding to base electrical velocity \(w_o \). Thus \(v_{mo} = \frac{w_o}{m} \)

where \(m \) is the pole pairs. So \(\overline{v} = \frac{v_m}{v_{mo}} = \frac{m}{w_o} \overline{p} \phi_m = \frac{p\theta}{w_o} = \overline{p} \theta \), \(\theta_m \) is the mechanical angle. The base torque corresponds to base power at base mechanical speed, that is,
\[T_o = \frac{3 v_{ao} i_{ao}}{2 v_{mo}} \]. Normalising equation (F.2)

\[\frac{3 v_{mo} \dot{T}_e}{2 v_{ao} i_{ao}} = \frac{v_m}{v_{mo}} = \frac{\lambda_d w_o}{v_{ao}} - \frac{2 i_q}{3 i_{ao}} \frac{p\theta}{w_o} - \frac{\lambda_q w_o}{v_{ao}} - \frac{2 i_d}{3 i_{ao}} \frac{p\theta}{w_o} \]

since \(\frac{v_m}{v_{mo}} = \frac{p\theta}{w_o} \), therefore \(\ddot{T}_e = \lambda_d \ddot{i}_q - \lambda_q \ddot{i}_d \) -----(F.3)

On using the Park's transformation, such as

\[
\begin{bmatrix}
\ddot{i}_d \\
\ddot{i}_q \\
\ddot{i}_o
\end{bmatrix} = \frac{2}{3} \begin{bmatrix}
\cos \theta & \cos(\theta - \frac{2}{3} \pi) & \cos(\theta + \frac{2}{3} \pi) \\
\sin \theta & \sin(\theta - \frac{2}{3} \pi) & \sin(\theta + \frac{2}{3} \pi) \\
0.5 & 0.5 & 0.5
\end{bmatrix} \begin{bmatrix}
\ddot{i}_a \\
\ddot{i}_b \\
\ddot{i}_c
\end{bmatrix}
\]

\[\ddot{T}_e = \frac{2}{3 \sqrt{3}} \left[\dddot{\lambda}_a (\ddot{i}_b - \ddot{i}_c) + \dddot{\lambda}_b (\ddot{i}_c - \ddot{i}_a) + \dddot{\lambda}_c (\ddot{i}_a - \ddot{i}_b) \right] \]
Appendix G

Voltages and currents in a delta/star transformer

To prove that
\[
\begin{bmatrix}
\bar{v}_a \\
\bar{v}_b \\
\bar{v}_c
\end{bmatrix} = \frac{1}{\sqrt{3}}
\begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\bar{e}_a \\
\bar{e}_b \\
\bar{e}_c
\end{bmatrix}
\]

--- (G.1)

Consider figure G1 and assume a transformer turns ratio of unity. If the same base of voltage is used for the system, then when the input line voltage is 1 p.u., the output line voltage at the star connected side will be \(\sqrt{3}\) p.u. In order to make sure that when the input line voltage is 1 p.u., the output line voltage will also be 1 p.u., the base voltage at the left hand side of XX has to be \(\sqrt{3}\) times smaller than that at the right hand side of XX. In this case, when the input line voltage is 1 p.u., \(v_a\) will be \(\frac{1}{\sqrt{3}}\) p.u., so the line voltage at the output will be 1 p.u. Mathematically, \(e_a = v_a = \frac{1}{\sqrt{3}} \cdot v_a\) for the same base. But if different base values are used (as above), then

\[
\frac{e_a - e_b}{\sqrt{3}} = v_a
\]

Similarly for the other phases, so the result as stated in (G.1) follows.

To prove that
\[
\begin{bmatrix}
i_A \\
i_B \\
i_C
\end{bmatrix} = \frac{1}{\sqrt{3}}
\begin{bmatrix}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
i_A \\
i_B \\
i_C
\end{bmatrix}
\]

--- (G.2)

Consider the same figure again. Using the same current base value for the system, then when the input line current is 1 p.u., \(i_a = \frac{1}{\sqrt{3}} i_a\). In order to make sure that when the input line current is 1 p.u., the output line current will also be 1 p.u., the base current for the
transformer currents has to be $\frac{1}{\sqrt{3}}$ times the base current for the
input currents. Mathematically, for the same base value, $i_1 = i_A - i_C$,
but if different base values are used (as explained), the value in
p.u. for i_A, i_B, i_C will be $\sqrt{3}$ times larger, so there is a requirement
to divide by $\sqrt{3}$ in order to maintain the current relationship,
therefore $i_1 = \frac{i_A - i_C}{\sqrt{3}}$, $i_2 = \frac{i_B - i_A}{\sqrt{3}}$,
\[i_3 = \frac{i_B - i_A}{\sqrt{3}} \], so (G.2) follows.
Appendix H

Voltage equation and swing equation

The voltage equation in p.u. form is

\[v = -ri + \bar{p}\lambda \] where \(\bar{p} \) is the differential operator

so \[v = -ri + \frac{1}{\omega_0^2} \bar{p}\lambda \]

The swing equation governs the motion of the machine rotor, relating the inertia torque to the resultant of the mechanical and electrical torques; i.e. \(Jp^2\Theta_m = T_a \), where \(J \) is the moment of inertia of all rotating masses attached to the shaft. \(\Theta_m \) is the mechanical angle of the shaft with respect to a fixed reference. \(T_a \) is the accelerating torque acting on the shaft.

For a generator, the driving torque \(T_m \) is mechanical and the retarding or load torque \(T_e \) is electrical. Thus \(T_a = T_m - T_e \) Nm. The subscript \(R \) is used to mean 'rated' for all quantities.

\(t \) time, second.

\(n_R \) rated shaft speed, rev./min.

\(\omega_0 \) rated angular frequency of the revolving magnetic field, ele.rad./sec.

\(f_R \) base frequency, cycles/sec.

\(S_{B3} \) rated three phase VA rating
The electrical angle \(\Theta_e \) is equal to the product of the mechanical angle \(\Theta_m \) and the number of pairs of poles \(\frac{n}{2} \), that is,

\[
\Theta_e = \frac{m}{2} \Theta_m \quad \text{and} \quad f_R = \frac{m n_R}{2 \times 60}, \quad \text{so} \quad \Theta_e = \frac{60}{n_R} f_R \Theta_m \quad \text{——— (H.1)}
\]

The electrical angular position \(e \), in radians, of the rotor with respect to a synchronously rotating reference axis is (as shown in figure H1)

\[
e = \Theta_e - \omega t
\]

Then the angular velocity with respect to the reference axis is

\[
p_e = \dot{\Theta}_e - \omega \quad \text{and the angular acceleration is}
\]

\[
p_e = \ddot{\Theta}_e
\]

Taking the second derivative of equation (H.1) and substituting

\[
p_e = \frac{60}{n_R} f_R \dot{\Theta}_m, \quad \text{therefore}
\]

\[
J n_R \frac{60}{n_R} f_R \dot{\Theta}_m = T_a, \quad \text{with}
\]

\[
w = \dot{\Theta}_e, \quad p \dot{w} = \ddot{\Theta}_e = p^2 \Theta_e, \quad \text{so}
\]

\[
J n_R \frac{60}{n_R} \dot{\Theta}_m = T_a \quad \text{——— (H.2)}
\]

If this equation is normalised by dividing both sides by a rated torque,

\[
T_B = \frac{60 S_{33}}{2 \pi n_R},
\]
also with the relation $w_o = 2\pi f_R$ (H.2) becomes

$$\frac{J \pi^2 n_R^2}{900 w_o S_{B3}} p w = \frac{T_a}{T_B}$$ \hspace{1cm} (H.3)

Define $H = \frac{J \pi^2 n_R^2}{1800}$, then

Equation (H.3) becomes

$$\frac{2H}{w_o} p w = \bar{T}$$ \hspace{1cm} (H.4)

where H is in second, w and w_o are in electrical radians/second, and the bar signifies p.u. values.

To normalise equation (H.4) completely, it is written as

$$2H w_o \bar{p} \bar{w} = \bar{T}_a$$
Definition of fault, switching and connection matrices for faults of the particular type

Although the matrices have to be determined for each case, the generalised vector matrix equations can still be written as follows:

For LV circuit breaker opening, the equation will be

\[
S_{lsr} \left(L - \frac{A}{n^2} L_{TL} C_e T \right) S_{lsr} \frac{dI}{dt} =
\]

\[
S_{lsr} A C_T \frac{V}{n} + S_{lsr} \left(R - \frac{dL}{wo} - \frac{A}{n^2} R_{TL} C_e T \right) S_{lsr} \bar{I} + \bar{K}
\]

And for HV circuit breaker opening, equation (14) as defined in chapter 4 will be used.

Except where specified, otherwise, \(F_{2sr} \), \(C_e T \) and \(M_{2sr}^{-1} \) will be unit matrices. The matrices for each case are listed below.

\(i_a = i_b = i_c = 0 \) for

1. Fault @ B b-earth opening a & b & c
2. Fault @ B b-c opening a & b & c
3. Fault @ B b-earth opening a & c

\[
S = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
F = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
M = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
4 Fault @ B b-c-earth opening a & b

\[
P_{ls} = M = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

5 Fault @ B b-c opening a

\[
M_{ls} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad F = \begin{bmatrix} -1 & 0 & 0 \\ -0.5 & 0 & 0 \end{bmatrix} \quad S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

\[
L = M_{ls}^{-1}L_{ls}^{-1}T, \quad R = M_{ls}^{-1}R(M_{ls}^{-1})^T
\]

6 Fault @ B b-c opening b

\[
S_{ls}M_{ls}^{-1}E = S_{ls}M_{ls}^{-1}(-R + \frac{PL}{w_o} + \frac{LP}{w_o})C_{e_T} - \bar{K}
\]

\[
= S_{ls} \left[C_T \frac{1}{n} V + \frac{L_T P}{w_o} C_{e_T} \bar{T} \right] \quad \text{where}
\]

\[
S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad C_{e_T} = \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{bmatrix} \quad M = \begin{bmatrix} -1 & 2 & 0 \ 0 & 0 & 0 \end{bmatrix} \quad \text{ls} = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}
\]

7 Fault @ A b-earth opening a & b & c

\[
F = M_{ls} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \quad C_{e_T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}
\]

\[
L = L, \quad R = R
\]

8 Fault @ A b-c-earth opening b

\[
F = M_{ls} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad C_{e_T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

\[
L = L, \quad R = R
\]

9 Fault @ A b-c-earth opening c
10 Fault @ A b-c-earth opening a & b & c

\[
F = M -1 S = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad Ce = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

L = L, R = R

11 Fault @ A a-b-c-earth opening a or b or c or a & b & c

The switching matrix is a unit matrix and the fault and connection matrices are the same as those when no circuit breaker opening occurs.

12 Fault @ A b-c opening a

Same as case 5

13 Fault @ A b-c opening b

\[
F = M -1 S = \begin{bmatrix} -1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad Ce = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}
\]

L = L, R = R

14 Fault @ A b-c opening c

\[
F = M -1 S = \begin{bmatrix} -1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad Ce = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

L = L, R = R

15 Fault @ A b-c opening a & b & c

Same as case 5

16 Fault @ C a-earth opening a
\[
S = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad F = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

17 Fault @ C a-earth opening a & b & c

\[
S = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad F = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

18 Fault @ C b-c-earth opening b

\[
S = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad F = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

19 Fault @ C b-c-earth opening a & b

\[
S = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad F = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

20 Fault @ C b-c-earth opening c

\[
S = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad F = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

21 Fault @ C b-c-earth opening b & c

\[
S = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad F = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

22 Fault @ C b-c-earth opening a & c

\[
S = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad F = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

23 Fault @ C b-c-earth opening a & b & c

\[
S = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \quad F = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
24 Fault @ C 3 phase to earth opening any phase

The switching matrix is a unit matrix and the fault and connection matrices are the same as those when no circuit breaker opening occurs.

\[i_{Ta} = i_{Tb} = i_{Tc} = 0 \] for

25 Fault @ D b–c opening a & b & c

26 Fault @ D b–c opening c

\[
S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{Ce} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

\[
2s \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad 2s \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

and \(S_{2sr} \text{Ce}_r \) is replaced by \(\text{Ce}_r \) in equation (14) of chapter 4.

27 Fault @ D b–c opening b

\[
S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{Ce} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

\[
2s \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad 2s \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

and \(S_{2sr} \text{Ce}_r \) is replaced by \(\text{Ce}_r \) in equation (14) of chapter 4.

28 Fault @ C b–c opening a

Same as fault @ D b–c opening a (page 52)

29 Fault @ C b–c opening a & b & c

Same as fault @ D b–c opening a (page 52)
30 Phase a is opened as LV side at steady state

\[
M = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}
\]

\[
L = M_{ls}^{-1}L(M_{ls}^{-1})^T, \quad R = M_{ls}^{-1}R(M_{ls}^{-1})^T
\]

31 Phase a is opened at HV side at steady state

\[
S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad M = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}
\]

\[
L' = M_{2sr}^{-1}L'(M_{2sr}^{-1})^T, \quad R' = M_{2sr}^{-1}R'(M_{2sr}^{-1})^T
\]
Appendix J

Computer programs

Except where specified, all the programs were developed on a Harris 800 computer system in Fortran 66.

The following program listings are typical of the software development required for simulation.
** J1 **

Purpose

This program is used to find the pickup value and time setting multiplier for relays.
It requires the system under investigation to be a radial one.

Main parameters:
- \(A, B, C, D, E \): Coefficients for polynomial of fuse
- \(X \): Set to be 0.01 sec. and the MVA/A corresponds to it is found and compared with \(Y_2 \) which is the maximum fault level up to which the next stage required discrimination with the fuse
- \(G_10, G_{11} \): The initial guess in time (log value) which used to find the time corresponds to the MVA/A \(Y_2 \)
- \(CULOAD \): Current/MVA loading
- \(CUTGRD \): The factor required for the current grading
- \(FTCMAX \): Maximum fault level
- \(FUSERT \): Fuse rating
- \(MRMAR \): Grading margin
- \(HGSET \): High-set
- \(KEYNO \): Key number
 - 1 for fuse
 - 2 for extremely inverse relay
 - 3 for standard inverse relay (3/10)
 - 4 for standard inverse relay (1.3/10)
 - 9 for stop
- \(PICKUP \): Pickup value
- \(PRIREC \): Primary relay current setting
- \(PSMAX \): Maximum allowable plug setting
- \(TMS \): Time multiplier setting

DIMENSION CULOAD(10), CUTGRD(10), FTCMAX(10), FUSERT(10), 1GRDAR(10), HGSET(10), KEYNO(10), PICKUP(10), PLUGST(10), 2PRIREC(10), PSMAX(10), TM(2), TMS(10)

Input data

1
READ(10,1)A,B,C,D,E,J2
FORMAT(5F11.7,I2)
READ(10,5)X,G10,G11,Y2
FORMAT(4F12.5)
X10=G10
X11=G11
DO 10 J3=1,J2
10 READ(10,15)CULOAD(J3), CUTGRD(J3), FTCMAX(J3), FUSERT(J3), 1GRDAR(J3), HGSET(J3), KEYNO(J3), PICKUP(J3), PRIREC(J3), 2PSMAX(J3), TMS(J3)
WRITE(11,20)A,B,C,D,E,J2

-136-
20 FORMAT(1X,5F11.7,I2)
 WRITE (11,25) X,G10,G11,Y2
25 FORMAT(1X,4F12.5)
 DO 30 J3=1,J2
30 WRITE (11,35) CULOAD(J3),CUTGRD(J3),FTRMAX(J3),FUSERT(J3),
 1GRDMAR(J3),HGSST(J3),KEYNO(J3),PICKUP(J3),PRIREC(J3),
 2PSMAX(J3),TMS(J3)
 MM=1
40 NN=MM+1
 L=KEYNO(MM)+KEYNO(NN)
 L55=KEYNO(NN)-KEYNO(MM)
C L equal 3 means an extremely inverse followed by a fuse
C L equal 4 may mean (3/10) followed by a fuse
C L equal 5 may mean (1.3/10) followed by a fuse
C L greater than 9 means the end
C
 IF ((L.EQ.3).OR.(L.EQ.4).OR.((L.EQ.5).AND.(L55.NE.1))) GOTO 45
 GOTO 50
45 CALL ROOT(A,B,C,D,E,X,X10,X11,X21,Y2)
50 IF (L.GT.9) GOTO 275

N=0
 N1=1
 N2=1
 N3=1
 N4=0
 N5=0
 N6=1
 N7=0
 Y8=1.0
55 K=1
 L1=1
 L2=999
 M4=1
 M7=1
 M15=1
 M16=0

C
C To calculate the pickup value for the stage nearer to the source
C
 IF ((L.EQ.3).OR.((L.EQ.4).AND.(L55.NE.0))) GOTO 60
 IF ((L.EQ.5).AND.(L55.NE.1)) GOTO 60
 F=CUTGRD(NN)*PICKUP(MM)
 GOTO 65
60 F=CUTGRD(NN)*FUSERT(MM)
 GOTO 65
C A relay followed by a fuse
 F=CUTGRD(NN)*FUSERT(MM)
 GOTO 65
C Relay followed by relay
65 IF (F.GE.CULOAD(NN)) GOTO 70
 F=CULOAD(NN)
70 F1=F/(PRIREC(NN)*0.25)
 M=F1
 F2=M
IF (F1.LE.F2) GOTO 75
M=M+1

75 F2=M
PICKUP(NN)=F2*0.25*PRIREC(NN)

C
C L equal 4 or 6 may mean relays followed by their same type
C
IF ((L.EQ.4).AND.((L55.NE.0))) GOTO 175
IF ((L.EQ.6).AND.((L55.NE.0))) GOTO 80
IF ((L.EQ.4).OR.((L.EQ.6).OR.((L.EQ.8)))) GOTO 290
IF ((L.EQ.3).OR.((L.EQ.5).AND.((L55.NE.1)))) GOTO 175

80 IF (HGSET(MM).GT.0.0) GOTO 85
XI=PTCMAX(MM)/PICKUP(MM)
GOTO 90

85 XI=HGSET(MM)/PICKUP(MM)
C (3/10) followed by an extremely inverse relay
90 IF (L.EQ.5) GOTO 150
IF (L.EQ.6) GOTO 110
IF ((L.EQ.7).AND.((L.EQ.5))) GOTO 130

C (3/10) followed by (1.3/10)
X1=ALOG10(XI)
X2=1.167367+XI*(-2.66868+XI*(2.91788+XI*(-1.6677+0.36193*XI)))
X2=EXP(X2*ALOG(10.0))*TMS(MM)
PUMAX=PSMAX(NN)*PRIREC(NN)
IF (PICKUP(NN).LE.PUMAX) GOTO 95
GOTO 152

95 IF (HGSET(MM).GT.0.0) GOTO 100
XI=PTCMAX(MM)/PICKUP(NN)
GOTO 105

100 XI=HGSET(MM)/PICKUP(NN)
105 Y=0.02*ALOG10(XI)
O=EXP(Y*ALOG(10.0))
XI=0.14/(O-1)*TMS(NN)
Z=XI-X2
GOTO 200

C (1.3/10) followed by an extremely inverse relay
110 XI=XI-1
Y=1.7*ALOG10(XI)
O=EXP(Y*ALOG(10.0))
D1=19.0/0
X2=(0.2+D1)*TMS(MM)
PUMAX=PSMAX(NN)*PRIREC(NN)
IF (PICKUP(NN).LE.PUMAX) GOTO 115
GOTO 152

115 IF (HGSET(MM).GT.0.0) GOTO 120
XI=PTCMAX(MM)/PICKUP(NN)
GOTO 125

120 XI=HGSET(MM)/PICKUP(NN)
125 XI=ALOG10(XI)
XI=1.167367+XI*(-2.66868+XI*(2.91788+XI*(-1.6677+0.36193*XI)))
XI=EXP(XI*ALOG(10.0))*TMS(NN)
Z=XI-X2
GOTO 200

-138-
C (1.3/10) followed by (3/10)
130 Y=0.02*ALOG10(XI)
 O=EXP(Y*ALOG(10.0))
 X2=0.14/(O-1)*TMS(MM)
 PUMAX=PSMAX(NN)*PRIREC(NN)
 IF (PICKUP(NN).LE.PUMAX) GOTO 135
 GOTO 152
135 IF (HGSET(MM).GT.0.0) GOTO 140
 XI=PTCMAX(MM)/PICKUP(NN)
 GOTO 145
140 XI=HGSET(MM)/PICKUP(NN)
145 XI=ALOG10(XI)
 X1=1.167367+XI*(-2.66868+XI*(2.91788+XI*(-1.6677+0.36193*XI)))
 XI=EXP(X1*ALOG(10.0))*TMS(NN)
 Z=X1-X2
 GOTO 200
C (3/10) followed by an extremely inverse relay
150 XI1=XI-1
 Y=1.7*ALOG10(XI1)
 O=EXP(Y*ALOG(10.0))
 D1=19/0
 X2=(0.2+D1)*TMS(MM)
 PUMAX=PSMAX(NN)*PRIREC(NN)
 IF (PICKUP(NN).LE.PUMAX) GOTO 160
152 WRITE(11,155)
155 FORMAT(1X,'CURRENT GRADING IS NOT OK')
 GOTO 447
160 IF (HGSET(MM).GT.0.0) GOTO 165
 XI=PTCMAX(MM)/PICKUP(NN)
 GOTO 170
165 XI=HGSET(MM)/PICKUP(NN)
170 Y=0.02*ALOG10(XI)
 O=EXP(Y*ALOG(10.0))
 X1=0.14/(O-1)*TMS(NN)
 Z=X1-X2
 GOTO 200
175 IF (HGSET(MM).NE.0.0) GOTO 180
 XI=PTCMAX(MM)/PICKUP(NN)
 GOTO 185
180 XI=HGSET(MM)/PICKUP(NN)
185 IF (L.EQ.3) GOTO 195
 IF (L.EQ.4) GOTO 190
C (1.3/10) followed by a fuse
180 XI=ALOG10(XI)
 X2=1.167367+XI*(-2.66868+XI*(2.91788+XI*(-1.6677+0.36193*XI)))
 X2=EXP(X2*ALOG(10.0))*TMS(NN)
 Y2=PICKUP(NN)*2.0
 IF (Y8.EQ.1.0) CALL ROOT(A,B,C,D,E,X,Gl0,Glt,X1,Y2)
 Y8=2.0
 Z=X2-X21
 GOTO 200
C (3/10) followed by a fuse
190 Y=0.02*ALOG10(XI)
O=EXP(Y*ALOG(10.0))
X2=0.14/(O-1)*TMS(NN)
Y2=PICKUP(NN)*2.0
IF (Y8.EQ.1.0) CALL ROOT(A,B,C,D,E,X,G10,G11,X31,X2)
Y8=2.0
Z=X2-X21
GOTO 200
C An extremely relay followed by a fuse
195 X11=X1-1
 Y=1.7*ALOG10(X11)
 O=EXP(Y*ALOG(10.))
 D1=19.0/O
 X2=(0.2+D1)*TMS(NN)
 Y2=PICKUP(NN)*2.0
 IF (Y8.EQ.1.0) CALL ROOT(A,B,C,D,E,X,G10,G11,X31,Y2)
 Y8=2.0
 Z=X2-X21
C X2 and X21 are the time at the maximum fault level
C Z is the minimum time difference at the maximum fault level
200 IF ((L.EQ.3).OR.(L.EQ.4).OR.(((L.EQ.5).AND.(L55.NE.1)))) GOTO 205
 ACC=X2*0.25+0.25
 GRDMAR(NN)=ACC
 GOTO 210
205 ACC=X21*0.4+0.15
 GRDMAR(NN)=ACC
 GOTO 210
210 CALL GOLDEN(A,B,C,D,PTCMA,HESET,K,L,L1,L2,M4,M7,M15,M16,
 MM,NN,PICKUP,TMS,X3,X21,X31,KEYNO)
C Find the minimum time difference
 IF (X3.GT.2) GOTO 220
 GOTO 225
220 X3=Z
C
C To check whether the minimum time difference is within the
C specified limit. If not they vary the time setting multiplier
C according to the logical and arithmetical statements
C
225 IF (ABS(X3-ACC)/ACC.LT.0.0005) GOTO 265
 IF (X3.GT.ACC.AND.N6.EQ.1) GOTO 235
 IF (X3.LT.ACC.AND.N1.EQ.1.AND.N2.EQ.1.AND.N3.EQ.1) GOTO 240
 IF (X3.GT.ACC.AND.N1.EQ.1.AND.N2.EQ.1.AND.N3.EQ.1) GOTO 245
 IF (X3.LT.ACC.AND.N1.EQ.1.AND.N2.EQ.2.AND.N3.EQ.1) GOTO 250
 IF (X3.GT.ACC.AND.N1.EQ.1.AND.N2.EQ.2.AND.N3.EQ.1) GOTO 255
 IF (X3.LT.ACC.AND.N1.EQ.1.AND.N2.EQ.2.AND.N3.EQ.2) GOTO 260
 IF (X3.GT.ACC.AND.N1.EQ.1.AND.N2.EQ.2.AND.N3.EQ.2) GOTO 265
235 N1=2
 N5=1
 IF (X3.GT.ACC.AND.N2.EQ.1.AND.N3.EQ.1) GOTO 240
 IF (X3.LT.ACC.AND.N2.EQ.1.AND.N3.EQ.1) GOTO 245
 IF (X3.GT.ACC.AND.N2.EQ.2.AND.N3.EQ.1) GOTO 250
 IF (X3.LT.ACC.AND.N2.EQ.2.AND.N3.EQ.1) GOTO 255
 IF (X3.GT.ACC.AND.N2.EQ.2.AND.N3.EQ.2) GOTO 260
 IF (X3.LT.ACC.AND.N2.EQ.2.AND.N3.EQ.2) GOTO 265
240 N6=2
TMS(NN) = TMS(NN) + (-1)**N5*0.1
GOTO 55

245 N2 = 2
 X20 = (2.0)**N
 TMS(NN) = TMS(NN) - (-1)**N5*0.05/X20
 N = N + 1
 N7 = N7 + 1

C C Test the number of iterations
C
 IF (N7.GT.50) GOTO 255
 GOTO 55

250 N3 = 2
 X20 = (2.0)**N
 TMS(NN) = TMS(NN) + (-1)**N5*0.05/X20
 N = N + 1
 N4 = N4 + 1

C C Test the number of iterations
C
 IF (N4.GT.50) GOTO 255
 GOTO 55

255 WRITE(11,260)
260 FORMAT(10X,'NUMBER OF ITERATIONS EXCEEDED')/)
 GOTO 285

265 WRITE(11,270)
270 FORMAT(10X,'NORMAL COMPLETION'/)
 MM = MM + 1
 GOTO 40

275 WRITE(11,280)
280 FORMAT(1X,'EXECUTION COMPLETED NORMALLY')/)

285 GOTO 435

290 PUMAX = PSMAX(NN)*PRIREC(NN)
 CALL OPTIME(FTCMAX,HGSET,L,MM,NN,PICKUP,TM,TMS)
 TMDEC = TM(2) - TM(1)
 GRDMAR(NN) = TM(1)*0.25 + 0.25
 IF (TMDEC.GE.GRDMAR(NN)) GOTO 295
 GOTO 305

295 WRITE(11,300)PICKUP(NN)
300 FORMAT(1X,'OPTIME TOO LONG, MIN.T.M.S. AND PICKUP USED',F17.7/)
 GOTO 430

305 IF (PICKUP(NN).GT.PUMAX) GOTO 375
 CALL TSM1(FTCMAX,GRDMAR,HGSET,L,MM,NN,PICKUP,TM,TMS)
 IF (TMS(NN).GE.0.1.AND.TMS(NN).LE.1.0) GOTO 310
 GOTO 320

310 WRITE(11,315)PICKUP(NN),TMS(NN)
315 FORMAT(1X,2F17.7/)
 GOTO 430

320 WRITE(11,325)
325 FORMAT(1X,'TIME GRADING IS NOT OK')
 GOTO 447

375 WRITE(11,380)
380 FORMAT(1X,'CURRENT GRADING IS NOT OK')
GOTO 447
430 MM=MM+1
 GOTO 40
435 DO 440 J3=1,J2
440 WRITE(11,445)CULOAD(J3),CUTGRD(J3),FTCMAX(J3),FUSERT(J3),
 1GRIDMAR(J3),HGSET(J3),KEYNO(J3),PICKUP(J3),PRIREC(J3),
 2PSMAX(J3),TMS(J3)
 1F7.1,F5.2,F6.4/)
 END

C PURPOSE
C --------
C Due to the difference in slope in fuse, extremely and standard
C inverse relays characteristics. The minimum time difference occurs
C within the range from the pickup of the relay (nearer to the
C source) to the maximum fault level or high-set level of the
C relay (further from the source) up to which discrimination
C is required. In case of fuse, maximum fault level is used,
C since no high-set level is defined for fuse.
C This routine is used to find the minimum time difference
C and the level at which it occurred by using the Golden-section
C method.

C SUBROUTINE GOLDEN(A,B,C,D,FTCMAX,HGSET,K,L,L1,L2,M4,M7,
LM15,LM16,MM,NN,PICKUP,TMS,X3,X21,X31,KEYNO)
 DIMENSION FTCMAX(10),HGSET(10),PICKUP(10),T1(40),T2(4),T3(2),
 1TMS(10),X6(40),KEYNO(10)

C Test whether an extremely inverse relay followed by a fuse or a
C standard inverse relay followed by an extremely inverse relay.

C L55=KEYNO(NN)-KEYNO(MM)
 IF ((L.EQ.3).OR.(L.EQ.4).OR.((L.EQ.5).AND.(L55.NE.1))) GOTO 450
 GOTO 455
450 P=X21
 T1(1)=1.0
 H1=X31-X21
 GOTO 465
455 P=2.00*PICKUP(NN)
 T1(1)=0.0
 IF (HGSET(MM).GT.0.0) GOTO 460
 H1=FTCMAX(MM)-P
 GOTO 465
460 H1=HGSET(MM)-P
465 DO 2600 K=1,39
 IF ((L.EQ.3).OR.(L.EQ.4).OR.((L.EQ.5).AND.(L55.NE.1))) GOTO 490
 IF (T1(K).GT.1.0) GOTO 2670
 IF (M16.GT.39) GOTO 2650
 M16=M16+1
 H2=P+H1*T1(K)
 XI=H2/PICKUP(NN)
 2600 CONTINUE
 2650 CONTINUE
 2670 CONTINUE

-142-
IF ((L.EQ.7).AND.(L55.EQ.1)) GOTO 475
IF (L.EQ.7) GOTO 480
IF (L.EQ.6) GOTO 485

470
Y=0.02*ALOG10(XI)
O=EXP(Y*ALOG(10.0))
X4=0.14/(O-1.0)
X1=X4*TMS(NN)
XI=H2/PICKUP(MM)
XI1=XI-1
Y=1.7*ALOG10(XI1)
O=EXP(Y*ALOG(10.0))
D1=19.0/O
X5=0.2+D1
X2=X5*TMS(MM)
X3=XL-X2
GOTO 1300

C (1.3/10) followed by (3/10)

475
XI=ALOG10(XI)
V=1.67367+XI*(-2.66868+XI*(2.917875+XI*(-1.6677+0.36193*XI)))
X1=EXP(V*ALOG(10.0))*TMS(NN)
XI=H2/PICKUP(MM)
Y=0.02*ALOG10(XI)
O=EXP(Y*ALOG(10.0))
X4=0.14/(O-1.0)
X2=X4*TMS(MM)
X3=XL-X2
GOTO 1300

C (3/10) followed by (1.3/10)

480
Y=0.02*ALOG10(XI)
O=EXP(Y*ALOG(10.0))
X4=0.14/(O-1.0)
X1=X4*TMS(NN)
XI=H2/PICKUP(MM)
XI=ALOG10(XI)
X2=1.67367+XI*(-2.66868+XI*(2.91788+XI*(-1.6677+0.36193*XI)))
X2=EXP(X2*ALOG(10.0))*TMS(MM)
X3=XL-X2
GOTO 1300

C (1.3/10) followed by an extremely inverse relay

485
XI=ALOG10(XI)
X1=1.67367+XI*(-2.66868+XI*(2.91788+XI*(-1.6677+0.36193*XI)))
X1=EXP(X1*ALOG(10.0))*TMS(NN)
XI=H2/PICKUP(MM)
XI1=XI-1
Y=1.7*ALOG10(XI1)
O=EXP(Y*ALOG(10.0))
D1=19.0/O
X5=0.2+D1
X2=X5*TMS(MM)
X3=XL-X2
GOTO 1300

C

C Relay followed by a fuse
C
490 IF (T1(K).LT.0.0) GOTO 2670
 IF (M16.GT.39) GOTO 2650
 M16=M16+1
 X1=P+H1*T1(K)
 XX=A+XX*(B+XX*(C+D*XX))
 H2=EXP(YY*ALOG(10.0))
 XI=H2/PICKUP(NN)
 IF (L.EQ.3) GOTO 500
 IF (L.EQ.4) GOTO 495
C (1.3/10) followed by a fuse
 XI=ALOG10(XI)
 X2=1.167367+XI*(-2.66868+XI*(2.91788+XI*(-1.6677+0.36193)))
 X2=EXP(X2*ALOG(10.0))*TMS(NN)
 X3=X2-X1
 GOTO 1300
C (3/10) followed by a fuse
495 Y=0.02*ALOG10(XI)
 O=EXP(Y*ALOG(10.0))
 X4=0.14/(O-1.0)
 X2=X4*TMS(NN)
 X3=X2-X1
 GOTO 1300
C An extremely inverse relay followed by a fuse
500 XI1=XI-1
 Y=1.7*ALOG10(XI1)
 O=EXP(Y*ALOG(10.0))
 D1=19/O
 X5=0.2+D1
 X2=X5*TMS(NN)
 X3=X2-X1
C
C To find the minimum time difference by comparing the previous
C value with the present value.
C
1300 X6(K)=50-X3
 M=K/2
 IF (K.EQ.1) GOTO 1440
 IF(K.GT.L1.AND.2*M.LT.K.AND.X6(K).GT.X6(K-1).AND.K.LT.L2)GOTO1460
 IF(K.GT.L1.AND.2*M.EQ.K.AND.X6(K).GT.X6(K-1).AND.K.LT.L2)GOTO1490
 IF((K.LT.L1.OR.X6(K).LE.X6(K-1)).AND.K.LT.L2.AND.M4.EQ.1)GOTO1520
 GOTO 1920
C
C Form the Golden section number
C
1440 T1(K+1)=1-0.0618
 IF ((L.EQ.3).OR.((L.EQ.4).AND.(L55.NE.0))) GOTO 1450
 IF ((L.EQ.5).AND.(L55.NE.1)) GOTO 1450
 T1(K+1)=1-T1(K+1)
1450 GOTO 2600
1460 X7=K+1
 X8=K-1

-144-
T1(K+1)=1-(X7/2.0*0.0618+X8/2.0*0.0382)
IF ((L.EQ.3).OR.((L.EQ.4).AND.(L55.NE.0))) GOTO 1450
IF ((L.EQ.5).AND.(L55.NE.1)) GOTO 1450
T1(K+1)=1-T1(K+1)
1480 GOTO 2600
1490 X9=K
T1(K+1)=1-(X9/2.0*(0.0382+0.0618))
IF ((L.EQ.3).OR.((L.EQ.4).AND.(L55.NE.0))) GOTO 1450
IF ((L.EQ.5).AND.(L55.NE.1)) GOTO 1450
T1(K+1)=1-T1(K+1)
1510 GOTO 2600
1520 L1=999
L2=K
M4=2
IF (M15.EQ.2) GOTO 1700
IF (K.EQ.2) GOTO 2700
T1(K+1)=T1(K)-T1(K-1)+T1(K-2)
GOTO 1760
1700 T1(K+1)=T2(1)-T2(2)+T2(3)
T2(4)=T1(K+1)
1760 IF (M15.EQ.2) GOTO 1830
C
C Test the range of uncertainty and accuracy
C
T4=T1(K+1)-T1(K-1)
T5=(T1(K)-T1(K-1))/T1(K)
IF (ABS(T4).LT.0.00001.AND.T5.LT.0.03) GOTO 2670
IF (ABS(T4).LT.0.00001) GOTO 2670
GOTO 2600
1830 T4=T2(4)-T2(2)
T5=(T2(1)-T2(2))/T2(2)
IF (ABS(T4).LT.0.00001.AND.T5.LT.0.03) GOTO 2670
IF (ABS(T4).LT.0.00001) GOTO 2670
GOTO 2600
1920 IF (M7.EQ.1) GOTO 1940
GOTO 2320
1940 A2=X6 (1)
DO 2000 M9=2,K
IF (A2.LE.X6(M9)) GOTO 1980
GOTO 2000
1980 A2=X6 (M9)
M11=M9
2000 CONTINUE
B2=T1(M11)
M6=K-1
M5=2
DO 2150 M8=1,M6
DO 2130 M9=M5,K
IF (T1(M9).LT.T1(M8)) GOTO 2100
GOTO 2130
2100 U1=T1(M8)
T1(M8)=T1(M9)
T1(M9)=U1
2130 CONTINUE
 M5=M5+1
2150 CONTINUE
 DO 2230 M9=1,K
 IF (T1(M9).GT.B2) GOTO 2240
2230 CONTINUE
2240 M15=2
C
C Arrange T2 in ascending order
C
 T2(1)=T1(M9)
 T2(2)=T1(M9-1)
 T2(3)=T1(M9-2)
 M7=2
 GOTO 1520
2320 IF (X6(K).GT.A2) GOTO 2340
 GOTO 2370
2340 B2=T1(K)
 A2=X6(K)
 GOTO 2380
2370 B2=T2(2)
2380 M5=2
 DO 2480 I=1,3
 DO 2460 J=M5,4
 IF (T2(J).LT.T2(I)) GOTO 2430
 GOTO 2460
2430 U1=T2(I)
 T2(I)=T2(J)
 T2(J)=U1
2460 CONTINUE
 M5=M5+1
2480 CONTINUE
C
C Chose the required T2 which produces minimum time difference
C
 DO 2550 I=3,4
 IF (T2(I).GT.B2) GOTO 2560
2550 CONTINUE
C
C Form the T2 array
C
2560 E1=T2(I)
 E2=T2(I-1)
 E3=T2(I-2)
 T2(1)=E1
 T2(2)=E2
 T2(3)=E3
 GOTO 1520
2650 WRITE(11,2651)
2651 FORMAT(10X,'NUMBER OF ITERATIONS EXCEEDED ****/')
2670 GOTO 3000
2700 WRITE(11,2750)
2750 FORMAT(10X,'K=2'/'
3000 RETURN
END

C Purpose
C
C This routine is used to find the operating time of the fuse
C at the fault level Y2. If the operating time is less than
C 0.01 sec. Then the nominal operating time for the fuse is
C assumed to be 0.01 sec.
C
SUBROUTINE ROOT(A,B,C,D,E,X,X10,X11,X41,Y2)
 IF (X.GT.0.0) GOTO 1
 Y=A*X*(B+X*(C+X*(D+E*X)))
 Y1=EXP(Y*Aalog(10.0))
 IF (Y2.GT.Y1) GOTO 3600
C Calculate the function values at the initial guesses
C 1 FL10=A ALOG10(Y2)+A+X10*(B+X10*(C+X10*(D+E*X10)))
3100 FL11=A ALOG10(Y2)+A+X11*(B+X11*(C+X11*(D+E*X11)))
C Increase X11 by 1 if FL10 and FL11 are of same sign
C IF (FL10. NE. SIGN(FL10,FL11)) GOTO 3200
 X11=X11+1.00
 GOTO 3100
C Calculate and print the new estimate
3200 X12=X10-FL10*(X10-X11)/(FL10-FL11)
 FL12=A ALOG10(Y2)+A+X12*(B+X12*(C+X12*(D+E*X12)))
C X12 replaces X10 or X11 depending on the sign of FL12
C IF (FL10. NE. SIGN(FL10,FL12)) GOTO 3300
 BETA=ABS(X12-X10)
 X10=X12
 FL10=FL12
 GOTO 3400
3300 BETA=ABS(X12-X11)
 X11=X12
C Normalize the change if ABS(X12) > 1.0
3400 IF (ABS(X12).GT.1.0) BETA=BETA/ABS(X12)
C Repeat calculation until beta is small enough
C IF (BETA.GT.1.0E-05) GOTO 3200
 X41=X12
 X41=EXP(X41*ALOG(10.0))
 RETURN
3600 X41=0.01
 RETURN
END

C Purpose
C
C This routine is used to calculate the operating time for relays
C
SUBROUTINE OPTIME(PTCMax, HGSET, L, MM, NN, PICKUP, TM, TMS)
DIMENSION PTCMax(10), HGSET(10), PICKUP(10), TM(2), TMS(10)
I=1
DO 3720 J=MN,NN
IF (HGSET(MM).GT.0.0) GOTO 3610
XI=FTCMAX(MM)/PICKUP(J)
GOTO 3612
3610 XI=HGSET(MM)/PICKUP(J)
3612 IF (L.EQ.4) GOTO 3700
IF (L.EQ.8) GOTO 3701
C (3/10) followed by (3/10)
Y=0.02*ALOG10(XI)
O=EXP(Y*ALOG(10.0))
T=0.14/(O-1.0)
GOTO 3710
C Extremely inverse relay followed by its own type
C
3700 X1=XI-1.0
Y=1.7*ALOG10(X1)
O=EXP(Y*ALOG(10.0))
D1=19.0/0
T=0.2+D1
GOTO 3710
C (1.3/10) followed by (1.3/10)
3701 XI=ALOG10(XI)
T=1.167367+XI*(-2.66868+XI*(2.91788+XI*(-1.6677+0.36193*XI))
T=EXP(T*ALOG(10.0))
3710 TM(1)=T*TMS(J)
I=I+1
3720 CONTINUE
RETURN
END
C Purpose
C -------
C This routine is used to find the time setting multiplier
C
SUBROUTINE TSL(M,FTCMAX,GRDMAR,HGSET,L,MN,NN,PICKUP,TM,TMS)
DIMENSION FTCMAX(L),GRDMAR(10),HGSET(L),PICKUP(L),TM(2),TMS(10)
C
C Test whether high-set exists or not
C
IF (HGSET(MM).GT.0.0) GOTO 3800
XI=FTCMAX(MM)/PICKUP(NN)
GOTO 3802
3800 XI=HGSET(MM)/PICKUP(NN)
3802 IF (L.EQ.4) GOTO 3900
IF (L.EQ.8) GOTO 3902
C
C Standard inverse relay followed by its own type
C
Y=0.02*ALOG10(XI)
O=EXP(Y*ALOG(10.0))
T=0.14/(O-1.0)
GOTO 4000

C Extremely inverse relay followed by its own type
C

3900 XI=XI-1.0
 Y=1.7*ALOG10(XI)
 O=EXP(Y*ALOG(10.0))
 D1=19.0/O
 T=0.2+D1
 GOTO 4000

3902 XI=ALOG10(XI)
 T=1.167367+XI*(-2.66868+XI*(2.91788+XI*(-1.6677+0.36193*XI)))
 T=EXP(T*ALOG(10.0))

4000 TM(2)=TM(1)+GRDMAR(NN)
 TMS(NN)=TM(2)/T
 RETURN
 END

EVX
100 INIT
105 REM This program is developed in Tektronix 4051.
107 REM This program is for plotting the log-log graph. After the
108 REM graph is plotted, another program is loaded into the memory
109 REM for plotting the relay and fuse characteristics.
110 DIM T5(10), S5(10), P5(10), L5(10), O1(10), V2(10), U2(10)
112 PRINT "INPUT THE TITLE"
113 INPUT F
114 PRINT "NUMBER OF RELAYS ?";
115 INPUT N
116 PRINT
117 PRINT "1------(3/10)"
118 PRINT
119 PRINT "2------EXTREMELY INVERSE"
120 PRINT
121 PRINT "3------(1.3/10)"
122 PRINT
123 PRINT "RELAY TYPE","SETTING","PICKUP","LEVEL"
124 FOR I=1 TO N
125 INPUT T5(I), S5(I), P5(I), L5(I)
126 NEXT I
127 PRINT "NUMBER OF FUSES ?";
128 INPUT O2
129 PRINT " MVA=A+BT+CT^2"
130 PRINT "A","B","C"
131 FOR I=1 TO O2
132 INPUT O1(I), U2(I), V2(I)
133 NEXT I
134 PRINT "FILE NUMBER USED TO STORE THE DATA"
135 INPUT K
136 PRINT "NUMBER OF LOCATION IN THE H ARRAY"
137 INPUT M
138 PRINT "FIND K"
139 FOR I=1 TO M
140 INPUT H(I)
141 NEXT I
142 PRINT "DELETE 100,300"
143 DIM H(100)
144 FOR H1=1 TO M
145 INPUT H1 IH H1
146 NEXT H1
147 PRINT "PAGE"
148 VIEWPORT 10,120,10,90
149 WINDOW H(1)+LGT(H(2)), H(2)+LGT(H(3)), H(3)+LGT(H(7)), H(4)+LGT(H(7))
150 AXIS H(5), H(6), H(1)+LGT(H(8)), H(3)+LGT(H(7))
151 IF LGT(H(8)) => 0 THEN 420
152 R=H(2)
153 GOTO 430
154 R=H(2)+LGT(H(8))
155 FOR V=H(8) TO 10*H(8) STEP 9*V
156 W=V*10
157 FOR U=V TO W STEP V
158 A=LGT(U)
159 MOVE A,H(3)+LGT(H(7))
480 REMOVE 0,R
490 RDRAW 0,-2*R
500 REMOVE 0,R
510 NEXT U
520 NEXT V
530 FOR U=100*H(8) TO 1000*H(8) STEP 100*H(8)
540 A=LGT(U)
550 MOVE A,H(3)+LGT(H(7))
560 REMOVE 0,R
570 RDRAW 0,-2*R
580 REMOVE 0,R
590 NEXT U
600 FOR A=H(1)+LGT(H(8)) TO H(2)+LGT(H(8))
610 MOVE A+H(9),H(10)+H(3)+LGT(H(7))
620 U=EXP(A*LOG(10))
630 PRINT U
640 NEXT A
650 FOR V=0.1*H(7) TO H(7) STEP 9*V
660 W=V*10
670 FOR U=V TO W STEP V
680 A=LGT(U)
690 MOVE H(1)+LGT(H(8)),A
700 REMOVE R,0
710 RDRAW -2*R,0
720 REMOVE R,0
730 NEXT U
740 NEXT V
750 FOR A=H(3)+LGT(H(7)) TO H(4)+LGT(H(7))
760 MOVE H(1)+H(11)+LGT(H(8)),A+H(12)
770 U=EXP(A*LOG(10))
780 PRINT U
790 NEXT A
800 MOVE (H(1)+H(2))/2+LGT(H(8)),H(3)+H(13)+LGT(H(7))
810 PRINT "MVA"
820 MOVE H(1)+LGT(H(8)),H(14)+H(4)+LGT(H(7))+0.1
830 PRINT "TIME(SECS)"
840 MOVE (H(1)+H(2))/2+LGT(H(8))-0.5,H(14)+H(4)+LGT(H(7))+0.1
850 PRINT F
860 HOME
900 FOR I=1 TO 02
920 FOR T1=-1 TO 1 STEP 0.1
930 T=T1
940 R=OL(I)+T*(U2(I)+V2(I)*T)
950 DRAW R,T
960 NEXT T1
970 MOVE H(1),H(4)
980 NEXT I
990 HOME
995 DELETE 100,995
1000 REM
1010 INPUT O3
1020 FIND O3
1030 APPEND 1000,10-151-
This program is for plotting the relay and fuse characteristics. After finishing plotting, another program is loaded into the memory for outputting the information for the relays and fuses plotted.

W5=0
FOR I5=1 TO N
Z=1
S=S5(I5)
S1=P5(I5)
T3=L5(I5)
REM start the plotting from the maximum time
MOVE LGT(S1),H(4)
REM CHECK THE TYPE OF RELAYS
IF T5(I5)=1 THEN 2340
IF T5(I5)=3 THEN 7350
X4=LG(T(19/((H(15)-S-0.2))/1.7)
REM calculate the PSM which corresponds to the maximum time H(15)
X5=EXP(X4*LOG(10))+1
GO TO 2640
X4=LG(T(0.14*S/H(15)+1)/0.02
X5=EXP(X4*LOG(10))
REM compute the range of PSM and increment
N3=H(16)
N6=H(17)
X6=X5+H(18)
N7=1
X7=T3/S1
N9=1
FOR I=X5 TO X6 STEP N3
REM test accuracy
IF ABS(X7-I)<H(19) THEN 5940
REM is present PSM too large
IF X7-I<0 THEN 5240
GOSUB 8240
NEXT I
REM calculate new range of PSM and new increment
X5=X6+N3
X6=X6+N6
N6=N6+H(20)
REM is the increment too large
IF N6>H(21) THEN 4940
REM increase previous increment by a specified number of times
N3=N3*H(22)
GO TO 3240
REM use fixed value for the increment
N3=H(23)
GO TO 3240
REM decrease PSM with 50% of the present increment
I=I-N3/(2*N7)
N7=N7+1
5440 REM N9=2 if PSM is within the limit
5540 IF N9=2 THEN 6940
5640 IF ABS(X7-I)<H(19) THEN 5940
5740 IF X7-I<0 THEN 6240
5840 IF X7-I>0 THEN 6540
5940 N9=2
6140 GO TO 6540
6240 I=I-N3/(2*N7)
6340 N7=N7+1
6440 GO TO 5540
6540 GOSUB 8240
6640 I=I+N3/(2*N7)
6740 N7=N7+1
6840 GO TO 5540
6940 N7=N7-1
7040 I=I-N3/(2*N7)
7140 C=LGT(I)+LGT(S1)
7240 D=-1
7340 DRAW C,D
7350 I=0.301
7355 A=1.167367
7356 B=-2.66868
7357 C=2.917875
7358 D=-1.6677
7359 E=0.36193
7360 T=A+I*(B+I*(C+I*(D+E*I)))
7362 MOVE I+LGT(S1),T+LGT(S)
7365 I=I+0.05
7370 IF I>LGT(T3/S1) THEN 7385
7372 T=A+I*(B+I*(C+I*(D+E*I)))
7375 DRAW I+LGT(S1),T+LGT(S)
7380 GO TO 7365
7385 I=LGT(T3/S1)
7390 DRAW I+LGT(S1),-1
7440 NEXT I5
7540 HOME
7640 DELETE 100,7640
7840 INPUT R
7940 FIND R
8040 APPEND 7740,10
8140 END
8240 IF T5(I5)=1 THEN 8540
8340 T=19/EXP(1.7*LGT(I-1)*LOG(10))+0.2
8440 GO TO 8640
8540 T=0.14/(EXP(0.02*LGT(I)*LOG(10))-1)
8640 C=LGT(I)+LGT(S1)
8740 D=LGT(T)+LGT(S)
8840 IF Z=2 THEN 9440
8940 MOVE C-0.05,D
9040 W5=W5+1
9140 PRINT W5
9240 Z=2
9340 MOVE C,D

-153-
7740 REM This program is for outputting the information
7742 REM for the relays and fuses plotting.
7745 PRINT "RELAY","SETTING","PICKUP","LEVEL"
9594 FOR I=1 TO N
13594 IF T5(I)=1 THEN 25594
13596 IF T5(I)=3 THEN 25598
17594 PRINT I;" EXTREMELY";S5(I);P5(I);L5(I)
21594 GO TO 29594
25594 PRINT I;" STANDARD";S5(I);P5(I);L5(I)
25596 GO TO 29594
25598 PRINT I;"(1.3/1.0)";S5(I);P5(I);L5(I)
29594 NEXT I
30000 PRINT
30002 PRINT
30004 PRINT
30006 PRINT
30008 PRINT " MVA=A+BT+CT^2 "
30010 PRINT
30020 PRINT
30030 PRINT "A","B","C"
30035 FOR I=1 TO 02
30040 PRINT O1(I),U2(I),V2(I)
30050 NEXT I
33594 END
This program is for finding the fault currents for the following cases
(1) A fault occurring at the terminal of the generator
(2) a-b-c-e @ B opening c including the arcing resistance
(3) a-b-c-e @ B opening b & c including the arcing resistance
If NUM = 1 then b & c are opened.
If NUM = 2 then fault on the terminal of the generator
MATINV is a subroutine for matrix inversion
MATM1, MATM2, MATM3, MATM4, MATM5 are the subroutines for matrix
c = multiplication
Array CU is used to store the initial currents
E is the infinite machine voltage
Xα is the armature leakage reactance
Xδ is the earthing reactance
Xδ is the direct axis synchronous reactance
XQ is the quadrature axis synchronous reactance
XD1 is the direct axis transient reactance
XQ1 is the quadrature axis transient reactance
XD11 is the direct axis subtransient reactance
XQ11 is the quadrature axis subtransient reactance
TD1 is the direct axis transient short circuit time constant (sec.)
TQ1 is the quadrature axis transient short circuit time constant
TD11 is the direct axis subtransient short circuit time constant.
TQ11 is the quadrature axis subtransient short circuit time constant.
H is the step width
ANI is the angle between the direct axis and phase a
W is the system angular frequency
V4 is the field voltage
R is the armature resistance
Rδ is the earthing reactance
C = the initial time
N is the number of steps required for studying
NUM is a parameter used to select different types of study
RS1 is the saturation factor
SIC is the initial speed variation
SIC1 is the initial speed
CI is the inertia constant
TM = the mechanical torque
TL is the loss torque due to friction and winding.
TA is the accelerating torque.
ARV is the voltage used to simulate the arc resistance
DOUBLE PRECISION CU(7), CUN(7), TN, T, H, PI(7), ANI,
1E, T1000, CL(7, 7), W, RC(3, 3), XC(3, 3), X, SIC1, SIC
2, ZN(3, 3), RA(7, 7), PI(3, 3), A(3, 3), XA, X0, XD, XQ, XD1, XQ1,
3XD1, XQ11, TD1, TQ1, TD11, TQ11, B, XAA0, XAB0, ZM(3, 3), TM
4, XAA2, XAD0, XAQ0, XAF0, XFDL, XKDL, XAFQ, XFQL, XKQL, XKDL11, RS1,
5XQ11, RFD, REP, RRD, RQK, CT4(3, 3), ZN2(3, 3), RC2(3, 3), XC2(3, 3), TA
6, AI(3, 3), PI1(7), PI2(7), PI3(7), PI4(7), V4, R, R0, CT1(3, 3)
7, XADN0, XAQN0, AIC, TIME, S1(7, 7), TL, TE, F(7), TEL, ARV, ZM(3, 3)
Input data
READ (13, 1) CU(1), CU(2), CU(3), CU(4), CU(5), CU(6)
1 FORMAT (6F10.5)

-155-
READ(13,1)CU(7),E,XA,X0,XD,XQ
READ(13,1)XD1,XQ1,XD11,XQ11,TD1,TQ1
READ(13,1)TD11,TQ11,B,T,H,ANI
READ(13,2)W,V4,R,R0,TIME,N,NJM
FORMAT(5F10.5,2I4)
READ(13,1)RS1,TA,TL,AIC,SIC,SIC1
READ(13,51)CI,TM,ARV
51 FORMAT(3F10.5)
C Fl is the fault matrix
C Sl is the switching matrix and CT1, ZM, ZMI are the connection
C matrices
C RC and XC are the resistance and reactance matrices for both
C transformer
C and transmission line
READ(13,5)((Fl(I,J),J=1,3),I=1,3)
READ(13,5)((ZM(I,J),J=1,3),I=1,3)
READ(13,5)((ZMI(I,J),J=1,3),I=1,3)
DO 17 I=1,7
DO 17 J=1,7
17
S1(I,J)=0.0
READ(13,5)((S1(I,J),J=1,3),I=1,3)
S1(4,4)=1.0
S1(5,5)=1.0
S1(6,6)=1.0
S1(7,7)=1.0
READ(13,5)((CT1(I,J),J=1,3),I=1,3)
READ(13,5)((RC(I,J),J=1,3),I=1,3)
READ(13,5)((XC(I,J),J=1,3),I=1,3)
C ZN is matrix for 1/tap
READ(13,5)((ZN(I,J),J=1,3),I=1,3)
5 FORMAT(3F10.5)
M=0
C Transform from d-q to a-b-c
XAA0=((XD+XQ-2*XA)/RS1+2*XA+X0)/3.0
XAB0=((XD+XQ-2*XA)/RS1+2*XA-2.0*X0)/6.0
XAA2=(XD-XQ)/(3.0*RS1)
XADN0=B*(XD-XA)
XAD0=XADN0/RS1
XAQN0=B*(XQ-XA)
XAQ0=XAQN0/RS1
XAFD=XADN0*XADN0/((XD-XD1)*B)
XFDL=XAFD-XADN0
XFDL1=1.0*XFDL
XKDL=B*((XD1-XA)*(XD1-XA))/(XD1-XD11)+XD-XD1-XADN0
XKDL1=1.0*XKDL
XAFQ=XAQN0*XAQN0/((XQ-XQ1)*B)
XFQL=XAFQ-XAQN0
XFQL1=1.0*XFQL
XKQL=B*((XQ1-XA)*(XQ1-XA))/(XQ1-XQ11)+XQ-XQ1-XAQN0
XKQL1=1.0*XKQL
XKDL1=XKDL*XADN0*XFDL/XAFD
XKQ11=XKQL+XAQN0*XFQL/XAFQ
RFD=XAFD*XD1/(W*TD1*XD)
RFQ = XAFQ*XQ1/(W*TQ1*XQ)
RDK = XKD11*XD11/(W*TD11*XD1)
RQK = XQ11*XQ11/(W*TQ11*XQ1)
WRITE (20, 71) XAA0, XAB0, XAA2, XADQ0, XADQ, XAQN0
WRITE (20, 71) XAO0, XAFD, XFDL, XKDQ1, XAFQ, XFDL
WRITE (20, 71) XKDQ1, XKD11, XQ11, RDF, RFQ, RDK
WRITE (20, 72) RKQ

71 FORMAT (1X, 6F10.5)
72 FORMAT (1X, 6F10.5)

C Form R matrix
DO 114 I=1, 7
 DO 114 J=1, 7
114 RA(I,J)=0.0
 RA(1,1)=R+R0
 RA(1,2)=R0
 RA(1,3)=R0
 RA(2,1)=R0
 RA(2,2)=R+R0
 RA(2,3)=R0
 RA(3,1)=R0
 RA(3,2)=R0
 RA(3,3)=R+R0
 RA(4,4)=-RFD
 RA(5,5)=-RKD
 RA(6,6)=-RFQ
 RA(7,7)=-RKQ
 IF (NUM.EQ.2) GOTO 665
GOTO 666

665 CALL MATINV (ZM, ZM, 3)
666 CALL MATM2 (Pl, ZMI, A)

C Form F7C7tN
 CALL MATM2 (CT1, ZN, CT4)
 CALL MATM2 (A, CT4, CT1)

C Form F7N2RC
 ZN2(1,1)=ZM(1,1)*ZN(1,1)
 ZN2(2,2)=ZM(2,2)*ZN(2,2)
 ZN2(3,3)=ZM(3,3)*ZN(3,3)
 DO 112 I=1, 3
 DO 112 J=1, 3
112 RC2(I,J)=0.0
 RC2(1,1)=RC(1,1)*ZN2(1,1)
 RC2(2,2)=RC(2,2)*ZN2(2,2)
 RC2(3,3)=RC(3,3)*ZN2(3,3)
 CALL MATM2 (A, RC2, RC)

C Form F7N2XC
 DO 113 I=1, 3
 DO 113 J=1, 3
113 XC2(I,J)=0.0
 XC2(1,1)=XC(1,1)*ZN2(1,1)
 XC2(2,2)=XC(2,2)*ZN2(2,2)
 XC2(3,3)=XC(3,3)*ZN2(3,3)
 CALL MATM2 (A, XC2, Al)
T1000=T/W
TN=T
I9=1
DO 15 K=1,7
 CUN(K)=CU(K)
 TN=T
 X=ANI+T+TIME
 WRITE(14,10)T,CU(1),CUN(2),CU(3),ANI
 CALL PDI(W,ANI,CUN,PI,TN,CL,CTL,RC,AL,RA,E,X,SICL,
 1V4,XAA0,XAB0,XAA2,XAD0,XAQ0,XAFD,XFDL,XKDL,XAPQ,XFQL,
 2XQL,XKDL1,XQK11,REF,RQ,RKD,RKQ,TIME,ZMI,S1,NUM,ARV)
 DO 30 K=1,7
 P1(K)=PI(K)*H
 30 CUN(K)=CU(K)+P1(K)*0.5
 TN=T+H*0.5
 CALL PDI(W,ANI,CUN,PI,TN,CL,CTL,RC,AL,RA,E,X,SICL,
 1V4,XAA0,XAB0,XAA2,XAD0,XAQ0,XAFD,XFDL,XKDL,XAPQ,XFQL,
 2XQL,XKDL1,XQK11,REF,RQ,RKD,RKQ,TIME,ZMI,S1,NUM,ARV)
 DO 50 K=1,7
 P2(K)=PI(K)*H
 50 CUN(K)=CU(K)+P2(K)*0.5
 CALL PDI(W,ANI,CUN,PI,TN,CL,CTL,RC,AL,RA,E,X,SICL,
 1V4,XAA0,XAB0,XAA2,XAD0,XAQ0,XAFD,XFDL,XKDL,XAPQ,XFQL,
 2XQL,XKDL1,XQK11,REF,RQ,RKD,RKQ,TIME,ZMI,S1,NUM,ARV)
 DO 70 K=1,7
 P3(K)=PI(K)*H
 70 CUN(K)=CU(K)+P3(K)
 TN=T+H
 CALL PDI(W,ANI,CUN,PI,TN,CL,CTL,RC,AL,RA,E,X,SICL,
 1V4,XAA0,XAB0,XAA2,XAD0,XAQ0,XAFD,XFDL,XKDL,XAPQ,XFQL,
 2XQL,XKDL1,XQK11,REF,RQ,RKD,RKQ,TIME,ZMI,S1,NUM,ARV)
 DO 90 K=1,7
 P4(K)=H*PI(K)
 CU(K)=CU(K)+(PI1(K)+2.*PI2(K)+2.*PI3(K)+PI4(K))/6.
 90 CUN(K)=CU(K)
 T=T+H
 TN=T
 T10000=T/W
 X=ANI+T+TIME
 C Speed variation
 CALL MATM1(CL,CUN,F)
 TE1=F(1)*(CUN(2)-CUN(3))+F(2)*(CUN(3)-CUN(1))+F(3)*(CUN(1)-CUN(2))
 TE=TE1*0.3849
 TA=TM-TE-TL
 SICL=TAS*H/(314.16*4.0*CI)+SIC
 AIC=TA*H*H/(314.16*4.0*CI)+SIC*H+AIC
 SIC=SICL
 ANI=AIC-0.5326
 SICL=SICL+1.0
 WRITE(14,10)T1000,CU(1),CU(2),CU(3),ANI
 10 FORMAT(1X,F12.7,1X,F12.7,1X,F12.7,1X,F12.7,1X,F12.7,1X,F12.7)
 IF (I9.EQ.N) GOTO 100
 M=M+1
 I9=I9+1

-158-
SUBROUTINE PDI (W, ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
DOUBLE PRECISION ANI, CUN, PI, TN, CL, CT1, RC, A1, RA, E, X, SICL,
1V4, XAA0, XAB0, XAA2, XAD0, XAQP0, XAFD, XFDL, XKDL, XAQP, XFPQ,
2XKQL, XKQ11, RKD, RFQ, RKQ, TIME, ZMI, S1, NUM, ARV)
CL(6,1)=XAO0*DSIN(X)
CL(6,2)=XAO0*DSIN(X-2.0944)
CL(6,3)=XAO0*DSIN(X+2.0944)
CL(6,4)=0.0
CL(6,5)=0.0
CL(6,6)=XFIQ+XAO0
CL(6,7)=XAO0
CL(7,1)=XAO0*DSIN(X)
CL(7,2)=XAO0*DSIN(X-2.0944)
CL(7,3)=XAO0*DSIN(X+2.0944)
CL(7,4)=0.0
CL(7,5)=0.0
CL(7,6)=XAO0
CL(7,7)=XKQL+XAO0
DO 10 I=1,7
DO 10 J=1,7
10 CL2(I,J)=CL(I,J)
C Form PL matrix
PL(1,1)=SIC1*2.0*XAA2*DSIN(2.0*X)
PL(1,2)=SIC1*2.0*XAA2*DSIN(2.0*X-2.0944)
PL(1,3)=SIC1*2.0*XAA2*DSIN(2.0*X+2.0944)
PL(1,4)=-XAD0*SIC1*DSIN(X)
PL(1,5)=PL(1,4)
PL(1,6)=-XAO0*SIC1*XDCOS(X)
PL(1,7)=PL(1,6)
PL(2,1)=PL(1,2)
PL(2,2)=PL(1,3)
PL(2,3)=PL(1,1)
PL(2,4)=-XAD0*SIC1*DSIN(X-2.0944)
PL(2,5)=PL(2,4)
PL(2,6)=-XAO0*SIC1*XDCOS(X-2.0944)
PL(2,7)=PL(2,6)
PL(3,1)=PL(1,3)
PL(3,2)=PL(2,3)
PL(3,3)=PL(1,2)
PL(3,4)=-XAD0*SIC1*DSIN(X+2.0944)
PL(3,5)=PL(3,4)
PL(3,6)=-XAO0*SIC1*XDCOS(X+2.0944)
PL(3,7)=PL(3,6)
PL(4,1)=XAD0*DSIN(X)*SIC1
PL(4,2)=XAD0*DSIN(X-2.0944)*SIC1
PL(4,3)=XAD0*DSIN(X+2.0944)*SIC1
PL(5,1)=PL(4,1)
PL(5,2)=PL(4,2)
PL(5,3)=PL(4,3)
PL(6,1)=XAO0*XDCOS(X)*SIC1
PL(6,2)=XAO0*XDCOS(X-2.0944)*SIC1
PL(6,3)=XAO0*XDCOS(X+2.0944)*SIC1
PL(7,1)=PL(6,1)
PL(7,2)=PL(6,2)
PL(7,3)=PL(6,3)
PL(4,4)=0.0
PL(5,5)=0.0
-160-
PL(6,6)=0.0
PL(7,7)=0.0
PL(4,5)=0.0
PL(4,6)=0.0
PL(4,7)=0.0
PL(5,4)=0.0
PL(5,6)=0.0
PL(5,7)=0.0
PL(6,4)=0.0
PL(6,5)=0.0
PL(6,7)=0.0
PL(7,4)=0.0
PL(7,5)=0.0
PL(7,6)=0.0

C Form infinite busbar voltage
V(1)=E*DCOS(TN+1.5708+TIME)
V(2)=E*DCOS(TN+1.5708-2.0944+TIME)
V(3)=E*DCOS(TN+1.5708+2.0944+TIME)
V(4)=V4
V(5)=0.0
V(6)=0.0
V(7)=0.0

C Form R-PL
DO 1 I=1,7
DO 1 J=1,7
1 PL(I,J)=-PL(I,J)+RA(I,J)

C Form F7N2RC+R-PL
DO 2 I=1,3
DO 2 J=1,3
2 PL(I,J)=PL(I,J)+RC(I,J)
IF (NUM.EQ.2) GOTO 89

C Form S1(F7N2Rc + R - PL)S1
CALL MATM3(S1,PL,RA1)
CALL MATM3(RA1,S1,PL)

C Form S1(F7N2Rc + R - PL)S1I
CALL MATM1(PL,CUN,C12)

C Form F7C7tNV
DO 5 I=1,3
V1(I)=0.0
DO 5 K=1,3
5 V1(I)=V1(I)+CT1(I,K)*V(K)
V1(4)=V4
V1(5)=0.0
V1(6)=0.0
V1(7)=0.0

C Form S1F7C7tNV
CALL MATM1(S1,V1,V2)

C Form S1F2C7tNV + S1(F7N2Rc + R - PL)S1I
DO 3 I=1,7
3 CI3(I)=C12(I)+V2(I)
IF (NUM.EQ.1) GOTO 88
IF (CUN(1).GE.0.AND.CUN(2).GT.0) GOTO 303
IF (CUN(1).GE.0.AND.CUN(2).LT.0) GOTO 302
IF (CUN(1) .LT. 0 .AND. CUN(2) .LT. 0) GOTO 301
C14(1) = C13(1) - ARV
C14(2) = C13(2) + ARV
GOTO 304

301 C14(1) = C13(1) - ARV
C14(2) = C13(2) - ARV
GOTO 304

302 C14(1) = C13(1) + ARV
C14(2) = C13(2) + ARV
GOTO 304

303 C14(1) = C13(1) + ARV
C14(2) = C13(2) + ARV

304 C14(3) = C13(4)
C14(4) = C13(5)
C14(5) = C13(6)
C14(6) = C13(7)

C Form L=F7N2XC
DO 4 I=1,3
DO 4 J=1,3
4 CL2(I,J) = CL2(I,J) - AL(I,J)

C Form S1(L - F7N2XCLR) S1
CALL MATM3(S1,CL2,RA1)
CALL MATM3(RA1,S1,CL2)
DO 78 I=3,6
DO 78 J=3,6

78 CL66(1,J) = CL2(1+1,J+1)
CL66(1,1) = CL2(1,1)
CL66(1,2) = CL2(1,2)
CL66(1,3) = CL2(1,4)
CL66(1,4) = CL2(1,5)
CL66(1,5) = CL2(1,6)
CL66(1,6) = CL2(1,7)
CL66(2,1) = CL2(2,1)
CL66(3,1) = CL2(4,1)
CL66(4,1) = CL2(5,1)
CL66(5,1) = CL2(6,1)
CL66(6,1) = CL2(7,1)
CL66(2,2) = CL2(2,2)
CL66(2,3) = CL2(2,4)
CL66(2,4) = CL2(2,5)
CL66(2,5) = CL2(2,6)
CL66(2,6) = CL2(2,7)
CL66(3,2) = CL2(4,2)
CL66(4,2) = CL2(5,2)
CL66(5,2) = CL2(6,2)
CL66(6,2) = CL2(7,2)
CALL MATINV(CL66,CL66I,6)

C Form PI
CALL MATM4(CL66I,CI4,PI6)
PI(1) = PI6(1)
PI(2) = PI6(2)
PI(3) = 0.0
PI(4) = PI6(3)
PI(5)=PI6(4)
PI(6)=PI6(5)
PI(7)=PI6(6)
GOTO 99

88 IF (CUN(1) .GT. 0) GOTO 305
 CI5(1)=CI3(1)-ARV
 GOTO 306

305 CI5(1)=CI3(1)+ARV
306 CI5(2)=CI3(4)
 CI5(3)=CI3(5)
 CI5(4)=CI3(6)
 CI5(5)=CI3(7)
 DO 41 I=1,3
 DO 41 J=1,3
41 CL2(I,J)=CL2(I,J)-AI(I,J)
 CALL MATM3(SL,CL2,RA1)
 CALL MATM3(RA1,S1,CL2)
 DO 77 I=2,5
 DO 77 J=2,5
77 CL55(I,J)=CL2(I+2,J+2)
 CL55(1,1)=CL2(1,1)
 CL55(1,2)=CL2(1,4)
 CL55(1,3)=CL2(1,5)
 CL55(1,4)=CL2(1,6)
 CL55(1,5)=CL2(1,7)
 CL55(2,1)=CL2(4,1)
 CL55(3,1)=CL2(5,1)
 CL55(4,1)=CL2(6,1)
 CL55(5,1)=CL2(7,1)
 CALL MATINV(CL55,CL55I,5)
 CALL MATM5(CL55I,CI5,PI5)
 PI(1)=PI5(1)
 PI(2)=0.0
 PI(3)=0.0
 PI(4)=PI5(2)
 PI(5)=PI5(3)
 PI(6)=PI5(4)
 PI(7)=PI5(5)
 GOTO 99

89 DO 90 I=1,3
 V1(I)=0.0
 DO 90 K=1,3
90 V1(I)=V1(I)+CT1(I,K)*V(K)
 V1(4)=V4
 CALL MATM1(PL,CUN,CI2)
 V1(5)=0.0
 V1(6)=0.0
 V1(7)=0.0
 DO 91 I=1,7
91 CI3(I)=CI2(I)+V1(I)
 DO 92 I=1,7
 DO 92 J=1,7
92 CL2(I,J)=CL(I,J)
DO 93 I=1,3
DO 93 J=1,3
93 CL2(I,J)=CL(I,J)-A1(I,J)
CALL MATINV(CL2,CLI,7)
CALL MATM1(CLI,CI3,PI)
99 RETURN
END
** J4 **

C This program is used to compute the transient currents for a
C three-phase synchronous generator on open circuit by the phase
C coordinate method.
C Started by knowing the initial currents and voltages, the
C derivative of currents is found and then the currents
C at an time increment H can be found by the RUNGE-KUTTA method.
C If NUM = 1 then three phase to earth
C If NUM = 2 then phase a to earth
C If NUM = 3 then phase b to phase c fault
C otherwise phase a and phase b to earth
C J5 is the number of steps studied

DOUBLE PRECISION CU(7),CUN(7),TN,T,H,PI(7),ANI,
T1000,CL(7,7),W,W1,P11(7),PI2(7),PI3(7),PI4(7),
2V4,XA,X0,XD1,XQ1,ZM0(7,7),ZM0T(7,7),
3XD11,XQ11,TD1,TQ1,TD11,TQ11,B,RE,R2,XAA0,XAB0,
4XAA2,XAD0,XAQ0,XAFD,XPDL,XXDL,XPQ,FXL,XXQL,XXDL,
5XQ011,RFQ,RFQ,RFQ,RFQ,F0(7,7),SO(7,7),
READ(13,1)CU(1),CU(2),CU(3),CU(4),CU(5),CU(6)
1 FORMAT(6F10.7)
READ(13,1)CU(7),XA,X0,XD,XQ,XD1
READ(13,1)XQ1,XXD1,XXQ11,TD11,TQ11,TD11
READ(13,1)TQ11,B,V4,RE,R2,T
READ(13,20)H,ANI,W,J5,NUM
20 FORMAT(3F10.5,2I4)
C F0 and SO are the fault and switching matrices respectively
DO 16 I=1,7
DO 16 J=1,7
16 F0(I,J)=0.0
READ(13,5)((F0(I,J),J=1,3),I=1,3)
5 FORMAT(3F10.5)
F0(4,4)=1.0
F0(5,5)=1.0
F0(6,6)=1.0
F0(7,7)=1.0
DO 15 I=1,7
DO 15 J=1,7
15 SO(I,J)=0.0
READ(13,5)((SO(I,J),J=1,3),I=1,3)
SO(4,4)=1.0
SO(5,5)=1.0
SO(6,6)=1.0
SO(7,7)=1.0
DO 17 I=1,7
DO 17 J=1,7
C ZMO and ZMOT are the connection matrices
17 ZMO(I,J)=0.
READ(13,5)((ZMO(I,J),J=1,3),I=1,3)
ZMO(4,4)=1.0
ZMO(5,5)=1.0
ZMO(6,6)=1.0
ZMO(7,7)=1.0

-165-
DO 18 I=1,7
DO 18 J=1,7
18 ZMØT(I,J)=0.0
READ(13,5)((ZMØT(I,J),J=1,3),I=1,3)
ZMØT(4,4)=1.0
ZMØT(5,5)=1.0
ZMØT(6,6)=1.0
ZMØT(7,7)=1.0
WRITE(15,3)CU(1),CU(2),CU(3),CU(4),CU(5),CU(6)
WRITE(15,3)CU(7),XA,XØ,XD,XQ,XD1
WRITE(15,3)XQ1,XD11,XQ11,TD1,TDQ1,TD11
WRITE(15,3)TDQ1,B,V4,RE,R2,T
WRITE(15,30)H,ANI,W,J5,NUM
30 FORMAT(1X,3F12.7,2I4)
3 FORMAT(1X,6F12.7)
XAA0=(XD+XQ+XØ)/3.0
XAB0=(XD+XQ-2.0*XØ)/6.0
XAA2=(XD-XQ)/3.0
XAD0=B*(XD-XA)
XAQ0=B*(XQ-XA)
XAFD=XAD0*XAQ0/((XD-XD1)*B)
XFDL=XAFD-XAD0
XKDL=B*((XD1-XA)*(XDL-XA)/(XD1-XD11)+XD-XD1)-XAD0
XAFQ=XAQ0*XAQ0/((XQ-XQ1)*B)
XFQL=XAFQ-XAQ0
XXQL=B*((XQ1-XA)*(XQ1-XA)/(XQ1-XQ11)+XQ-XQ1)-XAQ0
XKD11=XKDL+XAD0*XFDL/XAFQ
XXQ11=XXQ1+XAQ0*XFQL/XAFQ
RFQ=XAFD*XD1/(W*TD1*XD)
RFQ=XAFQ*XQ1/(W*TD1*XQ)
RKD=XKD11*XD11/(W*TD11*XD1)
RKQ=XXQ11*XQ11/(W*TD11*XQ1)

8 FORMAT(1X,6F10.5)
10000=T/W
WRITE(16,10)T10000,CU(1),CU(2),CU(3)
WRITE(17,11)T10000,CU(4),CU(5),CU(6),CU(7)
11 FORMAT(1X,F13.8,2X,F13.8,2X,F13.8,2X,F13.8,2X,F13.8)
DO 80 K=1,7
80 CUN(K)=CU(K)
TN=T
T9=1
2 CALL PDI(W,ANI,CUN,PI,TN,CL,ZMØ,2MØ,T,V4,
 1XAA0,XAB0,XAA2,XAD0,XAQ0,XAFD,XFDL,XKDL,XAFQ,XFQL,
 2XXQ1,XXD11,XXQ11,RFQ,RKD,RKQ,R2,RE,FØ,SØ,NUM)
DO 83 K=1,7
P11(K)=PI(K)*H
83 CUN(K)=CU(K)+P11(K)*0.5
TN=T+H*0.5
IF (NUM.EQ.3) GOTO 90
GOTO 91
CUN(3) = -CUN(2)

CALL PDI(w, ANI, CUN, PI, TN, CL, ZM0, ZM0T, V4,
1XAA0, XAB0, XA2, XAD0, XAQ0, XAFD, XFDL, XKDL, XAFQ, XFQL,
2XKQL, XKDL1, XKQ11, RFQ, RFQ, RKD, RKQ, R2, RE, F0, S0, NUM)
DO 85 K = 1, 7
PI2(K) = PI(K)*H
85 CUN(K) = CU(K) + PI2(K)*0.5
IF (NUM.EQ.3) GOTO 92
GOTO 93
CUN(3) = -CUN(2)

CALL PDI(w, ANI, CUN, PI, TN, CL, ZM0, ZM0T, V4,
1XAA0, XAB0, XA2, XAD0, XAQ0, XAFD, XFDL, XKDL, XAFQ, XFQL,
2XKQL, XKDL1, XKQ11, RFQ, RFQ, RKD, RKQ, R2, RE, F0, S0, NUM)
DO 7 K = 1, 7
PI3(K) = PI(K)*H
7 CUN(K) = CU(K) + PI3(K)
TN = T + H
IF (NUM.EQ.3) GOTO 94
GOTO 95
CUN(3) = -CUN(2)

CALL PDI(w, ANI, CUN, PI, TN, CL, ZM0, ZM0T, V4,
1XAA0, XAB0, XA2, XAD0, XAQ0, XAFD, XFDL, XKDL, XAFQ, XFQL,
2XKQL, XKDL1, XKQ11, RFQ, RFQ, RKD, RKQ, R2, RE, F0, S0, NUM)
DO 9 K = 1, 7
PI4(K) = H*PI(K)
CU(K) = CU(K) + (PI1(K) + 2*PI2(K) + 2*PI3(K) + PI4(K))/6.
9 CUN(K) = CU(K)
IF (NUM.EQ.3) GOTO 96
GOTO 97
CUN(3) = -CUN(2)
CU(3) = -CU(2)

T = T + H
TN = T
WRITE(16, 10) T1000, CU(1), CU(2), CU(3)
FORMAT(1X, F13.8, 2X, F13.8, 2X, F13.8, 2X, F13.8)
WRITE(17, 11) T1000, CU(4), CU(5), CU(6), CU(7)
IF (I8.EQ.35) GOTO 200
I8 = 18 + 1
GOTO 2
200 STOP
END

SUBROUTINE PDI(w, ANI, CUN, PI, TN, CL, ZM0, ZM0T, V4,
1XAA0, XAB0, XA2, XAD0, XAQ0, XAFD, XFDL, XKDL, XAFQ, XFQL,
2XKQL, XKDL1, XKQ11, RFQ, RFQ, RKD, RKQ, R2, RE, F0, S0, NUM)
DOUBLE PRECISION ANI, CUN(7), PI(7), TN, CL(7, 7), PL(7, 7)
1, V(7), R(7, 7), CLINV(7, 7), X, RD(7), W, V4,
2XAA0, XAB0, XA2, XAD0, XAQ0, XAFD, XFDL, XKDL, XAFQ, XFQL,
3XKQL, XKDL1, XKQ11, RFQ, RFQ, RKD, RKQ, R2, RE, CL2(7, 7),
4 CI3(7), R3(7), PI6(6), PI5(5), CI4(6), F8(7, 7), S8(7, 7),
SC15(5), CL55(5, 5), CL66(6, 6), CL55I(5, 5), CL66I(6, 6)
6, 2M8(7, 7), 2M88(7, 7)
X = T + ANI
CL(1, 1) = -1*(XAA0 + XAA2*DCOS(2.0*X))
CL(1, 2) = -1*(-XAB0 + XAA2*DCOS(2.0*X - 2.0944))
CL(1, 3) = -1*(-XAB0 + XAA2*DCOS(2.0*X + 2.0944))
CL(1, 4) = XAD0*DCOS(X)
CL(1, 5) = CL(1, 4)
CL(1, 6) = -1*XAOQ8*DSIN(X)
CL(1, 7) = CL(1, 6)
CL(2, 1) = CL(1, 2)
CL(2, 2) = -1*(XAA0 + XAA2*DCOS(2.0*X + 2.0944))
CL(2, 3) = -1*(-XAB0 + XAA2*DCOS(2.0*X))
CL(2, 4) = XAD0*DCOS(X - 2.0944)
CL(2, 5) = CL(2, 4)
CL(2, 6) = -1*XAOQ8*DSIN(X - 2.0944)
CL(2, 7) = CL(2, 6)
CL(3, 1) = CL(1, 3)
CL(3, 2) = CL(2, 3)
CL(3, 3) = -1*(XAA0 + XAA2*DCOS(2.0*X - 2.0944))
CL(3, 4) = XAD0*DCOS(X + 2.0944)
CL(3, 5) = CL(3, 4)
CL(3, 6) = -1*XAOQ8*DSIN(X + 2.0944)
CL(3, 7) = CL(3, 6)
CL(4, 1) = -1*XAD0*DCOS(X)
CL(4, 2) = -1*XAD0*DCOS(X - 2.0944)
CL(4, 3) = -1*XAD0*DCOS(X + 2.0944)
CL(4, 4) = XFDL + XAD0
CL(4, 5) = XAD0
CL(4, 6) = 0.0
CL(4, 7) = 0.0
CL(5, 1) = -1*XAD0*DCOS(X)
CL(5, 2) = -1*XAD0*DCOS(X - 2.0944)
CL(5, 3) = -1*XAD0*DCOS(X + 2.0944)
CL(5, 4) = XAD0
CL(5, 5) = XFDL + XAD0
CL(5, 6) = 0.0
CL(5, 7) = 0.0
CL(6, 1) = XAOQ8*DSIN(X)
CL(6, 2) = XAOQ8*DSIN(X - 2.0944)
CL(6, 3) = XAOQ8*DSIN(X + 2.0944)
CL(6, 4) = 0.0
CL(6, 5) = 0.0
CL(6, 6) = XFQL + XAOQ8
CL(6, 7) = XAOQ8
CL(7, 1) = XAOQ8*DSIN(X)
CL(7, 2) = XAOQ8*DSIN(X - 2.0944)
CL(7, 3) = XAOQ8*DSIN(X + 2.0944)
CL(7, 4) = 0.0
CL(7, 5) = 0.0
CL(7, 6) = XAOQ8
CL(7, 7) = XQKL + XAOQ8
PL(1,1)=2.0*XAA2*DSIN(2.0*X)
PL(1,2)=2.0*XAA2*DSIN(2.0*X-2.0944)
PL(1,3)=2.0*XAA2*DSIN(2.0*X+2.0944)
PL(1,4)=-XAD0*DSIN(X)
PL(1,5)=PL(1,4)
PL(1,6)=-1*XAQQ*DCOS(X)
PL(1,7)=PL(1,6)
PL(2,1)=PL(1,2)
PL(2,2)=PL(1,3)
PL(2,3)=PL(1,1)
PL(2,4)=-XAD0*DSIN(X-2.0944)
PL(2,5)=PL(2,4)
PL(2,6)=-1*XAQQ*DCOS(X-2.0944)
PL(2,7)=PL(2,6)
PL(3,1)=PL(1,3)
PL(3,2)=PL(2,3)
PL(3,3)=PL(1,2)
PL(3,4)=-XAD0*DSIN(X+2.0944)
PL(3,5)=PL(3,4)
PL(3,6)=-1*XAQQ*DCOS(X+2.0944)
PL(3,7)=PL(3,6)
PL(4,1)=XAD0*DSIN(X)
PL(4,2)=XAD0*DSIN(X-2.0944)
PL(4,3)=XAD0*DSIN(X+2.0944)
PL(4,5)=0.
PL(4,6)=0.0
PL(4,7)=0.0
PL(5,1)=PL(4,1)
PL(5,2)=PL(4,2)
PL(5,3)=PL(4,3)
PL(5,4)=0.0
PL(5,5)=0.0
PL(5,6)=0.0
PL(5,7)=0.0
PL(6,1)=X AQG*DCOS(X)
PL(6,2)=X AQQ*DCOS(X-2.0944)
PL(6,3)=X AQG*DCOS(X+2.0944)
PL(6,4)=0.0
PL(6,5)=0.0
PL(6,6)=0.0
PL(6,7)=0.0
PL(7,1)=PL(6,1)
PL(7,2)=PL(6,2)
PL(7,3)=PL(6,3)
PL(7,4)=0.0
PL(7,5)=0.0
PL(7,6)=0.0
PL(4,4)=0.0
PL(5,5)=0.0
PL(6,6)=0.0
PL(7,7)=0.0
R(1,1)=R2+RE
R(1,2)=0.0
R(1,3)=0.0
R(1,4)=0.0
R(1,5) = 0.0
R(1,6) = 0.0
R(1,7) = 0.0
R(2,1) = 0.0
R(2,2) = R2 + RE
R(2,3) = 0.0
R(2,4) = 0.0
R(2,5) = 0.0
R(2,6) = 0.0
R(2,7) = 0.0
R(3,1) = 0.0
R(3,2) = 0.0
R(3,3) = R2 + RE
R(3,4) = 0.0
R(3,5) = 0.0
R(3,6) = 0.0
R(3,7) = 0.0
R(4,1) = 0.0
R(4,2) = 0.0
R(4,3) = 0.0
R(4,4) = -RD
R(4,5) = 0.0
R(4,6) = 0.0
R(4,7) = 0.0
R(5,1) = 0.0
R(5,2) = 0.0
R(5,3) = 0.0
R(5,4) = 0.0
R(5,5) = -RD
R(5,6) = 0.0
R(5,7) = 0.0
R(6,1) = 0.0
R(6,2) = 0.0
R(6,3) = 0.0
R(6,4) = 0.0
R(6,5) = 0.0
R(6,6) = -RF
R(6,7) = 0.0
R(7,1) = 0.0
R(7,2) = 0.0
R(7,3) = 0.0
R(7,4) = 0.0
R(7,5) = 0.0
R(7,6) = 0.0
R(7,7) = -RF
V(1) = 0.0
V(2) = 0.0
V(3) = 0.0
V(4) = V4
V(5) = 0.0
V(6) = 0.0
V(7) = 0.0
DO 12 I = 1, 7
DO 12 J=1,7
12 R(I,J)=R(I,J)-PL(I,J)
IF (NUM.EQ.3) GOTO 89
CALL MATM1(R,CUN,R1)
CALL MATM1(F0,V,R3)
DO 900 I=1,7
900 R3(I)=R1(I)+R3(I)
CALL MATM1(S0,R3,C13)
CALL MATM3(S0,CL,CL2)
IF (NUM.EQ.1) GOTO 88
IF (NUM.EQ.2) GOTO 87
C14(1)=C13(1)
C14(2)=C13(2)
C14(3)=C13(4)
C14(4)=C13(5)
C14(5)=C13(6)
C14(6)=C13(7)
DO 78 I=3,6
DO 78 J=3,6
78 CL66(I,J)=CL2(I+1,J+1)
CL66(1,1)=CL2(1,1)
CL66(1,2)=CL2(1,2)
CL66(1,3)=CL2(1,4)
CL66(1,4)=CL2(1,5)
CL66(1,5)=CL2(1,6)
CL66(1,6)=CL2(1,7)
CL66(2,1)=CL2(2,1)
CL66(3,1)=CL2(4,1)
CL66(4,1)=CL2(5,1)
CL66(5,1)=CL2(6,1)
CL66(6,1)=CL2(7,1)
CL66(2,2)=CL2(2,2)
CL66(2,3)=CL2(2,4)
CL66(2,4)=CL2(2,5)
CL66(2,5)=CL2(2,6)
CL66(2,6)=CL2(2,7)
CL66(3,2)=CL2(4,2)
CL66(4,2)=CL2(5,2)
CL66(5,2)=CL2(6,2)
CL66(6,2)=CL2(7,2)
CALL MATINV(CL66,CL66I,6)
CALL MATM4(CL66I,C14,PI6)
PI(1)=PI6(1)
PI(2)=PI6(2)
PI(3)=0,0
PI(4)=PI6(3)
PI(5)=PI6(4)
PI(6)=PI6(5)
PI(7)=PI6(6)
GOTO 99
87 C15(1)=C13(1)
C15(2)=C13(4)
C15(3)=C13(5)
CI5(4)=CI3(6)
CI5(5)=CI3(7)
DO 77 I=2,5
DO 77 J=2,5
77 CL55(I,J)=CL2(I+2,J+2)
 CL55(1,1)=CL2(1,1)
 CL55(1,2)=CL2(1,4)
 CL55(1,3)=CL2(1,5)
 CL55(1,4)=CL2(1,6)
 CL55(1,5)=CL2(1,7)
 CL55(2,1)=CL2(4,1)
 CL55(3,1)=CL2(5,1)
 CL55(4,1)=CL2(6,1)
 CL55(5,1)=CL2(7,1)
 CALL MATINV(CL55,CL55I,5)
 CALL MATM5(CL55I,C15,PI5)
 PI(1)=PI5(1)
 PI(2)=0,0
 PI(3)=0,0
 PI(4)=PI5(2)
 PI(5)=PI5(3)
 PI(6)=PI5(4)
 PI(7)=PI5(5)
 GOTO 99
88 CALL MATINV(CL2,CLINV,7)
 DO 952 I=1,7
 PI(I)=0,0
 DO 952 K=1,7
952 PI(I)=PI(I)+CLINV(I,K)*CI3(K)
 GOTO 99
89 CALL MATML(ZM0T,CUN,R1)
 CALL MATML(R,R1,R3)
 CALL MATML(ZM0,R3,R1)
 CALL MATML(S0,R1,R3)
 CALL MATML(ZM0,V,R1)
 CALL MATML(F0,R1,V)
 CALL MATML(S0,V,R1)
 DO 90 I=1,7
90 CI3(I)=RI(I)+R3(I)
 CALL MATML3(CL,ZM0T,CL2)
 CALL MATML3(ZM0,CL2,CLINV)
 CALL MATML3(S0,CLINV,CL2)
 CI5(1)=CI3(2)
 CI5(2)=CI3(4)
 CI5(3)=CI3(5)
 CI5(4)=CI3(6)
 CI5(5)=CI3(7)
 DO 91 I=4,7
71 CL55(I-2,J-2)=CL2(I,J)
 CL55(1,1)=CL2(2,2)
 CL55(1,2)=CL2(2,4)
 CL55(1,3)=CL2(2,5)
 GOTO 99
91 CL55(I-2,J-2)=CL2(I,J)
 CL55(1,1)=CL2(2,2)
 CL55(1,2)=CL2(2,4)
 CL55(1,3)=CL2(2,5)
CL55(1,4)=CL2(2,6)
CL55(1,5)=CL2(2,7)
CL55(2,1)=CL2(4,2)
CL55(3,1)=CL2(5,2)
CL55(4,1)=CL2(6,2)
CL55(5,1)=CL2(7,2)
CALL MATINV(CL55,CL55I,5)
CALL MATM5(CL55I,CI5,P15)
PI(1)=0.0
PI(2)=P15(1)
PI(3)=0.0
PI(4)=P15(2)
PI(5)=P15(3)
PI(6)=P15(4)
PI(7)=P15(5)
99 RETURN
END
** J5 **

C This program is used to find all the maxima and minima for a
current waveform.
C Array A is used to store the time.
C Array B is used to store the corresponding current.
C These maxima and minima are used as data for finding the upper and
clower envelopes.
 DO 10 I=1,2000
 READ(13,1)A(I),B(I)
 1 FORMAT(4X,2F12.7)
10 CONTINUE
C To find all the max.
 IF (B(1).GT.B(2)) GOTO 300
 GOTO 200
300 WRITE(14,30)A(1),B(1)
200 DO 100 I=2,1999
 IF ((B(I+1).LT.B(I)).AND.(B(I-1).LT.B(I))) GOTO 20
 GOTO 100
20 WRITE(14,30)A(I),B(I)
30 FORMAT(1X,2F12.7)
100 CONTINUE
C To find all the min.
 IF (B(1).LT.B(2)) GOTO 400
 GOTO 500
400 WRITE(14,30)A(1),B(1)
500 DO 700 I=2,1999
 IF ((B(I+1).GT.B(I)).AND.(B(I-1).GT.B(I))) GOTO 600
 GOTO 700
600 WRITE(14,30)A(I),B(I)
700 CONTINUE
STOP
END

EVX

C This program is used to calculate relay operating time
C under transient conditions.
C H is the step width, TMS is the time multiplier setting, PU is the
C pickup
 READ(13,1)H,TMS,PU
1 FORMAT(3F10.5)
 I=1
 SUM=0.0
 X=H
C Polynomial for the upper envelope
10 A0=0.41174379+7.8587433*X-15.686015*X*X
 A2=13.769419*X*X*X-4.6226993*X*X*X*X
 Y1=A1+A2
C Polynomial for the lower envelope
 A1=-4.8949375+12.201269*X-23.084667*X*X
 A2=22.255607*X*X*X-8.3056757*X*X*X*X
Y2=A1+A2

C Calculate the fault current in p.u.
FAULT=(Y1-Y2)/2.0
PSM=FAULT/PU
Y=0.02*ALOG10(PSM)
O=EXP(Y*ALOG(10.0))

C Calculate the operating time
T=0.14/(O-1)*TMS

C Calculate the disc travel during step width
TRAVEL=H/T

C SUM is the accumulative store
SUM=SUM+TRAVEL

C Test whether the relay operates
IF (SUM.GE.1.0) GOTO 20
I=I+1
X=I*H
GOTO 10

20 OPTIME=I*H
WRITE(14,2) SUM,OPTIME,TMS,H,I

END
C This program is used to find the i^2t.
C Array A is used to store the current waveform.
C
DIMENSION A(1850)
DO 10 I=1,1850
 READ(13,I)B,A(I),C,D
10 CONTINUE
 FORMAT(4X,4F12.7)
DO 20 I=1,1849
 X=(A(I)*A(I))*0.0005
 SUM=SUM+X
20 CONTINUE
 WRITE(14,2)SUM
2 FORMAT(1X,F12.7)
STOP
END
** J7 **

10 REM This program is used for calculating the currents in the
11 REM magnetising and secondary branches of a current transformer when a
14 REM fault occurs.
20 REM There is no inductance in the secondary circuit.
22 REM T1 is the time constant for the secondary circuit.
24 REM R is used to account for the slope change in the saturation
25 REM curve
26 REM I4 is the magnetising current
28 REM C is the constant of integration and S is the step width.
30 REM Array D9 is used for storing a current waveform
32 DIM D9(1000)
40 INPUT T1,S,R,C
41 AS 14="DATA1"
42 FOR M=1 TO 1000
44 INPUT #14,D9(M)
46 NEXT M
50 AS 15="DATA10"
60 I5=C
70 I2=0
80 N=1
92 M=2
90 NL=N-1
92 ML=M-1
100 I3=D9(M)*S*EXP(S*N/T1)
110 I1=D9(ML)*S*EXP(S*NL/T1)
120 I2=I2+(I1+I3)/2
130 I4=EXP(-N*S/T1)*(I2/T1+C)
140 PRINT #15, I4,S*N,D9(M)-I4
145 REM check whether the step width is too large
150 X=ABS(I5)
160 Y=ABS(I4)
170 IF (I5*I4)<0 THEN 190
180 GOTO 210
190 IF (X>1 AND Y>0) THEN 720
200 IF (X>0 AND Y>1) THEN 720
210 I5=I4
218 REM check whether saturation or not
220 IF I4<1 OR I4>1 THEN 250
230 N=N+1
232 M=M+1
235 IF N>999 THEN 730
240 GO TO 90
250 T1=T1*R
255 REM saturation region
260 PRINT #15, "SATURATION"
262 REM calculate new constant C
270 C=I4/EXP(-S*N/T1)
280 PRINT #15, C
290 N=N+1
292 M=M+1
300 I2=0

-177-
310 N1=N-1
312 M1=M-1
320 I3=D9(M1)*S*EXP(S*N/T1)
330 I1=D9(M1)*S*EXP(S*N1/T1)
340 I2=(I1+I3)/2+I2
350 I4=EXP(-S*N/T1)/T1*I2+C*EXP(-N*S/T1)
360 PRINT #15,I4,S*N,D9(M)-I4
370 X=ABS(I5)
380 Y=ABS(I4)
390 IF (I4*I5)<0 THEN 410
400 GOTO 430
410 IF (X>1 AND Y>0) THEN 720
420 IF (X>0 AND Y>1) THEN 720
430 I5=I4
440 IF I4<1 AND I4<1 THEN 470
450 N=N+1
452 M=M+1
455 IF N>999 THEN 730
460 GO TO 310
465 REM unsaturated region
470 PRINT #15, "NO SATURATION"
480 T1=T1/R
490 C=I4/EXP(-S*N/T1)
500 PRINT #15, T1,C,I4,N*S
510 N=N+1
512 M=M+1
520 I2=0
530 N1=N-1
532 M1=M-1
540 I3=D9(M1)*S*EXP(S*N/T1)
550 I1=D9(M1)*S*EXP(S*N1/T1)
560 I2=I2+(I1+I3)/2
570 I4=EXP(-S*N/T1)/T1*I2+C*EXP(-N*S/T1)
580 PRINT #15, I4,S*N,D9(M)-I4
590 X=ABS(I5)
600 Y=ABS(I4)
610 IF (I5*I4)<0 THEN 630
620 GOTO 650
630 IF (X>1 AND Y>0) THEN 720
640 IF (X>0 AND Y>1) THEN 720
650 I5=I4
660 IF I4<1 OR I4>1 THEN 680
670 GOTO 690
680 GOTO 250
690 N=N+1
692 M=M+1
700 IF N>999 THEN 730
710 GOTO 530
720 PRINT #15, "DECREASE THE STEP WIDTH"
730 END

10 REM This program is used to calculate the currents in the secondary
REM and magnetising branches for a current transformer when a fault occurs.
REM There is no resistance in the secondary circuit.
REM L1 and L2 are the inductance for the magnetising and secondary branches respectively.
REM I4 is the magnetising current.
DIM D9(1000)
INPUT L1, L2, S, R, C
AS I0 = "DATA1"
FOR M = 1 TO 1000
INPUT #10, D9(M)
NEXT M
AS I5 = "DATA10"
I5 = C
N = 0
M = 1
I4 = L2 * D9(M) / (L1 + L2) + C
PRINT #15, I4, S*R, D9(M) - I4
REM check whether step width is too long
X = ABS(I5)
Y = ABS(I4)
IF (I5 * I4) < 0 THEN 190
GOTO 210
IF (X > 1 AND Y > 0) THEN 720
IF (X > 0 AND Y > 1) THEN 720
I5 = I4
REM check saturation or not
IF I4 < -1 OR I4 > 1 THEN 250
N = N + 1
M = M + 1
IF N > 999 THEN 730
GO TO 100
REM saturated region
L1 = L1 * R
PRINT #15, "SATURATION"
REM find the constant C at the instant of changing condition
C = I4
PRINT #15, C
N = N + 1
M = M + 1
N1 = N - 1
M1 = M - 1
I3 = D9(M1)
I1 = D9(M)
I4 = (I1 - I3) * L2 / (L2 + L1) + C
PRINT #15, I4, S*R, D9(M) - I4
X = ABS(I5)
Y = ABS(I4)
IF (I4 * I5) < 0 THEN 410
GOTO 430
IF (X > 1 AND Y > 0) THEN 720
IF (X > 0 AND Y > 1) THEN 720
I5 = I4
-179-
440 IF I4<1 AND I4<1 THEN 470
450 N=N+1
452 M=M+1
455 IF N>999 THEN 730
460 GO TO 320
465 REM unsaturated region
470 PRINT #15, "NO SATURATION"
480 LL=LL/R
490 C=I4
500 PRINT #15, T1,C,I4,N*S
510 N=N+1
520 M=M+1
530 N1=N-1
532 M1=M-1
535 I3=D9(M1)
540 I1=D9(M)
546 I4=(I1-I3)*L2/(LL+L2)+C
580 PRINT #15, I4,S*N,D9(M)-I4
590 X=ABS(I5)
600 Y=ABS(I4)
610 IF (I5*I4)<0 THEN 630
620 GO TO 650
630 IF (X>1 AND Y>0) THEN 720
640 IF (X>0 AND Y>1) THEN 720
650 I5=I4
660 IF I4<1 OR I4>1 THEN 680
670 GO TO 690
680 GO TO 250
690 N=N+1
692 M=M+1
700 IF N>999 THEN 730
710 GO TO 540
720 PRINT #15, "DECREASE THE STEP WIDTH"
730 END
** J8 **

C This program is used to calculate the initial conditions for a
C synchronous generator connected to a busbar through a transformer
C and a transmission line
C All parameters are in pu
C P is the generated real power at the machine terminals
C Q is the generated reactive power at the machine terminals
C RT is the sum of the resistances of the generator
C transformer delta and star connected windings.
C XT is the sum of the reactivities of the generator
C transformer delta and star connected windings.
C SRE is the equivalent resistance of the transmission system
C SXE is the equivalent reactance of the transmission system
C SE is the absolute value of the machine terminal voltage
C ET is the absolute value of the HV voltage
C RA is the armature resistance and XA is the armature leakage
C reactance
C RK is the saturation factor
C XADO is the mutual reactance in the direct axis
C CT connection matrix
C W is the system angular frequency (radians/sec.)
C XO is the zero phase sequence reactance

```
DIMENSION CT(3,3),ZNI(3,3),ZN(3,3)
COMPLEX V(3),ZIT(3),ZSIT(3),ZICT(3),B(3),BQA,AI
1,PUT1,PUT2,PUT3,ANGN,UL,U2,XE(3)
READ(13,1)P,RT,Q,XT,SE
1 FORMAT(5F8.4)
READ(13,2)ET,SRE,SXE,RA,XA,RK,XAQ0,XAD0
2 FORMAT(8F8.4)
READ(13,41)XD,QX,XD1,TDL,TL,W,X0
41 FORMAT(7F8.4)
WRITE(14,42)XD,QX,XD1,TDL,TL,W,X0
42 FORMAT(1X,7F8.4)
READ(13,3)((CT(I,J),J=1,3),I=1,3)
3 FORMAT(3F9.5)
WRITE(14,100)P,RT,Q,XT,SE
100 FORMAT(1X,5F8.4)
WRITE(14,101)ET,SRE,SXE,RA,XA,RK,XAQ0,XAD0
101 FORMAT(1X,9F8.4)
WRITE(14,102)((CT(I,J),J=1,3),I=1,3)
102 FORMAT(1X,3F9.5)
A=(P*(RST+RT)+Q*(XST+XT))/SE
B=(Q*(RST+RT)-P*(XST+XT))/SE
C=SE-A
C Calculate the generator transformer tap position.
TN=ET/SQRT(C*C+B*B)
PT=P-((P*P+Q*Q)*(RST+RT))/(SE*SE)
QT=Q-((P*P+Q*Q)*(XST+XT))/(SE*SE)
PT-=((PT*PT+QT*QT)*SRE)/(ET*ET)
WRITE(14,108)A,B,C,TN,PT,QT,PI
108 FORMAT(1X,7F10.5)
QI=QT-((PT*PT+QT*QT)*SXE)/(ET*ET)
```

-181-
AN=ATAN(QI/PI)
ET1=((ET*ET)-(PT*SRE+QT*SXE))/EI2=ET1*EI1
ET3=(QT*SRE-PT*SXE)*(QT*SRE-PT*SXE)
C Calculate the AEI (infinite machine voltage)
AEI=SQR(ET1*ET3)/(ET*ET))
WRITE(14,109)QI,AN,EI1,ET2,ET3,AEI
109 FORMAT(1X,6F10.5)
PUT1=1.5708*(0.0,1.0)
PUT2=(1.5708-2.0944)*0.0,1.0
PUT3=(1.5708+2.0944)*0.0,1.0
WRITE(14,109)PUT1,PUT2,PUT3
C Calculate infinite machine voltage for each phase
V(1)=AEI*CEXP(PUT1)
V(2)=AEI*CEXP(PUT2)
V(3)=AEI*CEXP(PUT3)
WRITE(14,109)V(V(1),V(V(2),V(V(3)
TIE=(SQR(PI*PI+QI*QI))/AEI
PUT1=(1.5708-AN)*(0.0,1.0)
PUT2=(1.5708-2.0944-AN)*(0.0,1.0)
PUT3=(1.5708+2.0944-AN)*(0.0,1.0)
WRITE(14,108)TIE,PUT1,PUT2,PUT3
ZIT(1)=TIE*CEXP(PUT1)
ZIT(2)=TIE*CEXP(PUT2)
ZIT(3)=TIE*CEXP(PUT3)
WRITE(14,109)ZIT(1),ZIT(2),ZIT(3)
C Calculate the currents in the star winding of the generator
C transformer
ZSIT(1)=ZIT(1)*TN
ZSIT(2)=ZIT(2)*TN
ZSIT(3)=ZIT(3)*TN
C Calculate armature currents
CALL MATM1(CT,ZSIT,ZICT)
DO 200 I=1,3
DO 200 J=1,3
200 ZNI(I,J)=0.0
ZNI(1,1)=1.0/TN
ZNI(2,2)=1.0/TN
ZNI(3,3)=1.0/TN
CALL MATM2(CT,ZNI,ZN)
CALL MATM1(ZN,V,E)
U=(SRE+TN*TN*(RST+RT))/(TN*TN)
UL=(SXE+TN*TN*(XST+XT))*(0.0,1.0)/(TN*TN)
U2=U+UL
XE(1)=U2*ZICT(1)
XE(2)=U2*ZICT(2)
XE(3)=U2*ZICT(3)
WRITE(14,108)U,UL,XE(1),U2
C Calculate armature voltages
E(1)=E(1)+XE(1)
E(2)=E(2)+XE(2)
E(3)=E(3)+XE(3)
WRITE(14,111)E(1),E(2),E(3)
11 FORMAT(1X,6P10.5)
 WRITE(14,11)ZICT(1),ZICT(2),ZICT(3)
 EH=REAL(E(1))
 EV=AIMAG(E(1))
C Calculate time to voltage zero
 TIME=(1.5708-ATAN(EV/EH))
 E(1)=E(1)*(COS(TIME),SIN(TIME))
 ZICT(1)=ZICT(1)*COS(TIME),SIN(TIME)
 ZICT(2)=ZICT(2)*COS(TIME),SIN(TIME)
 ZICT(3)=ZICT(3)*COS(TIME),SIN(TIME)
 WRITE(14,150)E(1),ZICT(1),TIME
150 FORMAT(1X,5P10.5)
C Calculate the angle between the d axis and the axis of phase a
 EQA=E(1)+(RA+(0.0,1.0)*(XA+QA0/RK))*ZICT(1)
 EQA=REAL(EQA)
 EQA=AIMAG(EQA)
 EQD=SQRT(EQA*EQA+EQAV*EQAV)
 IF ((EQAV.GT.0).AND.(EQA.GT.0)) GOTO 10
 IF ((EQAV.GT.0).AND.(EQA.LT.0)) GOTO 22
 IF ((EQAV.LT.0).AND.(EQA.GT.0)) GOTO 30
 IF ((EQAV.LT.0).AND.(EQA.LT.0)) GOTO 40
10 ANG=ATAN(EQAV/EQA)
 GOTO 50
22 ANG=ATAN(EQAV/EQA)+3.1416
 GOTO 50
30 ANG=ATAN(EQAV/EQA)+6.2832
 GOTO 50
40 ANG=ATAN(EQAV/EQA)+3.1416
50 ANG=(ANG-1.5708)*(0.0,1.0)
 AI=ZICT(1)*CEXP(-ANG)
 DI=REAL(AI)
 QI=AIMAG(AI)
 EQ=EQD+DI*(XAD0-XAQ0)/RK
 FDI=EQ*RK*1.5/XAD0
C Calculate the initial flux linkages
 FS1=(0.666667*FDI-DI)*(0.666667*FDI-DI)*XAD0*XAD0/(RK*RK)
 FS2=QI*QI*XA0*XAQ0/(RK*RK)
 WRITE(14,107)FS1,FS2
107 FORMAT(1X,2F10.5)
 FS=SQRT(FS1+FS2)*100.0
 FDI=FS
 RKN=FDI/FS
 FDI=FDI/100.0
 WRITE(14,12)FDI,FS,RK,RKN,ANG
12 FORMAT(1X,7F10.5)
 WRITE(14,106)EQA,EQAH,ANG,DI,DI,EQ
106 FORMAT(1X,8F9.5)
C Calculate EFD, and the initial mechanical torque
 XAA0=((XD+XQ-2.0*XA)/RKN+2.0*XA+X0)/3.0
 XAB0=((XD+XQ-2.0*XA)/RKN+2.0*XA-2.0*X0)/6.0
 XAA2=(XD-XQ)/(3.0*RKN)
 XAD0=0.666667*XAD0
 XAQ0=0.666667*XA0
XAFD=XAD0*XAD0/((XD-XD1)*0.666667)
RFD=XAFD*XD1/(W*TDL*XD)
X=ANG-1.5708
AAI=REAL(ZICT(1))
BI=REAL(ZICT(2))
CI=REAL(ZICT(3))
CL11=XA0-XAA2*COS(2.0*X)
CL12=XAB0-XAA2*COS(2.0*X-2.0944)
CL13=XAB0-XAA2*COS(2.0*X+2.0944)
CL14=XAD0*COS(X)/RKN
CL22=XA0-XAA2*COS(2.0*X+2.0944)
CL23=XAB0-XAA2*COS(2.0*X)
CL24=XAD0*COS(X-2.0944)/RKN
CL33=XA0-XAA2*COS(2.0*X-2.0944)
CL34=XAD0*COS(X+2.0944)/RKN
FA=CL11*AAI+CL12*BI+CL13*CI+CL14*FDI
FB=CL12*AAI+CL22*BI+CL23*CI+CL24*FDI
FC=CL13*AAI+CL23*BI+CL33*CI+CL34*FDI
EFD=RFD*FDI
TE=0.3849*(FA*(BI-CI)+FB*(CI-AAI)+FC*(AAI-BI))
TM=TE+TL
WRITE(14,116)AAI,BI,CI,FA,FB,FC,TM,EFD,RFD
116
FORMAT(1X,9F9.5)
STOP
END
References

(3) ADKINS, B. : 'The general theory of electrical machines', Chapman & Hall, 1975

(15) TEAPE, J.W., SIMPSON, R.R.S., SLATER, R.D., and WOOD, W.S. : 'Representation of magnetic characteristic, including

(22) ALGER, P.L. :'The calculation of the armature reactance of synchronous machines', Transactions American Institute of electrical engineers, VOL.47, 1928, pp.493-512.

(23) PARK, R.H., and ROBERTSON, B.L. :'The reactance of synchronous machines', Transactions American Institute of electrical engineers, VOL.47, 1928, pp.514-535.

-186-

(41) SALVATORE, L., and SAVINO, M.: 'Experimental determination of

(43) SIGSTON, G. :"PROMOI-Protection model", Central Electricity Generating Board, 1976.

(55) KILGORE, L.A. :"Calculations of synchronous machine constants - reactance and time constants affecting transient
characteristics', Transactions American Institute of electrical engineers, 50, 1931, pp.201-214.

-189-

(69) JAGSICH, K., MORVA, T., and WYSS, H.: 'Transient conditions in current transformer and their repercussion on the reduction of operating time of protective devices', CIGRE, 1968, Paper No.31-07.

(71) RANKIN, A.W.: 'Per unit impedances of synchronous machines', Transactions American Institute of electrical engineers, 1945, 64, pp.569-573, and 839-841.

(94) KUNDUR, P. and DANDENO, P.L. : 'Implementation of advanced generator models into power system stability programs', IEEE

(95) ALEXANDROVITZ, A. and SHAPIRO, A. : 'Analysis of 3-phase synchronous generator by digital simulation in direct phase quantities', The ninth convention of electrical and electronics engineers in Israel, April 1975

(104) SINGH, J., SACHDEV, M.S., FLEMING, R.J., and KRAUSE, A.E. : 'Digital IDMT directional overcurrent relays', Developments in power system protection, IEE conference publication No.185, June 1980, pp.84-87.

(107) WAGNER, J.K., and TRUTT, F.C. : 'Interactive mine power system

(114) GALLOP, J.W., and BOUSFIELD, R.H. : 'Applications and limitations of the inverse time overload relay to protection of an 11 kV network', Journal IEE, 1940, 87, pp.113-134.

-193-

References specifically referred to in the text are underlined e.g. (3). The remaining references form a Bibliography of useful reading.