
300 

MODELLING OF NONSTATIONARY PROCESSES USING RADIAL BASIS 
FUNCTION NETWORKS' 

D Lowe and A M'Lachlan 

Aston University, UK 

ABSTRACT 

This paper reports preliminary progress on a princi- 
pled approach to  modelling nonstationary phenomena 
using neural networks. We are concerned with both 
parameter and model order complexity estimation. 
The basic methodology assumes a Bayesian founda- 
tion. However t o  allow the construction of pragmatic 
models, successive approximations have to  be made 
l o  permit computational tractibility. The lowest or- 
der corresponds t o  the (Extended) Kalman filter (1) 
approach 20 parameter estimation which has already 
been applied to neural networks (2). We illustrate 
some of the deficiencies of the existing approaches 
and discuss our preliminary generalisations, b y  con- 
sidering the application t o  nonstationary time se- 
ries. 

INTRODUCTION 

There have been several major advances in the devel- 
opment of the theoretical foundations of neural net- 
works over the last decade. These have been primar- 
ily motivated by statistical pattern recognition tech- 
niques, and from the complementary deterministic 
dynamical systems approaches. However one basic 
assumption has been that the underlying generator 
of the data is stationary, i.e. that the (unknown) pro- 
cess which produced the observations was itself time 
invariant. Note that this is true even for 'dynamic' 
time series problems (3). It is not the dynamic na- 
t,ure of the observed data we are interested in, but in 
the dynamic nature of the underlying process. 

The  assumption of stationarity is acceptable in many 
circumstances, particularly if the time evolution per- 
mits quasi-stationary 'windowing' of the data. In 
these circumstances the neural network may be re- 
optimised a t  regular intervals, when the network is 
no longer able to describe the structure of the chang- 
ing generator. However there are other real world 
circumstances when this approach does not give ad- 
equate approximation abilities. 

Consider the example of predicting averaged UK 
short term electricity load demand. Figure 1 illus- 
trates the effect of training a Radial Basis function 
network over a fixed window over the first 100 sam- 
ples, and using this static model of the generator to 
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Figure 1: Daily electricity load demand. Dashed line 
denotes the actual consumption, solid line denotes 
t h e  predicted demand. The network exhibits poor per- 
formance beyond the training set. 

perform short term forecasts. It is clear that because 
of the seasonal trend in this data, the ability of the 
static model to forecast is severely impaired once the 
assumptions inherent in the training data become in- 
valid. 

In this case the dominant cause of the error is due 
to the drift of the average target values. This is a 
slow time scale effect and hence the problem may 
be alleviated by using just the bias weight to track 
this slow time scale variation'. Figure 2 illustrates 
the effect of using a static network generator, apart 
from the bias weight on the output node, which is 
adapted on-line by feeding back the actual error to 
the bias node. This on-line adaptation of the bias 
allows the network to track the actual errors more 
accurately. Clearly this minor change to the network 
has a profound effect on performance. 

In this paper we are concerned with problem domains 
in which batch and recursive training processes ('re- 
cursive' implies we are allowed to cycle repeatedly 
through the training data) are not viable options. 

2The different weights in a network have different func- 
tional roles, and in the context of nonstationary problems this 
also means they have different characteristic time scales 
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Figure 2: Daily electricity load demand. Solid line 
denotes the actual consumption, dashed line denotes 
the new, predicted demand by on-line updating the 
bias vector. 

One reason is due to potentially very large da ta  sets, 
but the main reason is because the assumptions gov- 
erning different portions of data evolve in time (such 
as periodicity, seasonality or multiple trending be- 
haviours on different time scales). 

RELATED WORK 

Despite the obvious importance of designing princi- 
pled approaches to sequential nonlinear models for 
nonstationary environments, there has been surpris- 
ingly little activity in the neural network domain. 
However two notable exceptions are due to  Platt  
(4), and Kadirkamanathan and Niranjan (2). (There 
have been other network schemes, for example the 
Adaptively Trained Neural Network of Park e t  a1 
(5), which trains sequentially by linearising the er- 
ror function. However the developments of Platt  and 
Kadirkamanathan are closer to  the Bayesian exten- 
sions we consider.) Platt has previously developed 
the Resource Allocating Network which is intended 
to dynamically increase the number of (Gaussian) 
basis functions in a Radial Basis Function network 
by processing information sequentially. An improve- 
ment over the RAN network, the EKF-RAN net- 
work was developed by Kadirkamanathan and Ni- 
ranjan. This involved replacing the LMS update al- 
gorithm with the extended Kalman filter (1 ,  6) as 
well as providing a geometric description of the in- 
creasing model complexity criterion. The approach 
adopted in this paper is a natural extension of this 
work, based on a Bayesian philosophy. 

METHODOLOGY 

We are interested in the sequential estimation of non- 

linear stochastic systems, primarily by a probabilistic 
descniption. For example, the class of stochastic ap- 
proximation methods would be appropriate. One of 
us (7 )  has previously considered a stochastic approx- 
imation method for the unsupervised updating of the 
positions and smoothing factors of the first layer of 
an RBF using ef’ectively a sequential EM algorithm. 
However for nonstationary problems we have to  be 
prepa,red to trade off ‘plasticity’ for ‘convergence’. 
This is because one criterion for the stochastic ap- 
proximation methods to  converge asymptotically is 
that the effective ‘learning rate’ should decrease to 
zero. However this is in conflict with the requirement 
of tracking amd adapting to  novel data. We cannot 
have both asymptotic consistency and adaptability. 

For tlhis paper the general approach we wish to  fol- 
low is through the exploition of Bayes theorem. Our 
problem may be expressed as follows: Given an esti- 
mate of the nletwork parameters G t - 1  at instant t -1 ,  
which was based on all the information yi-1 up to 
this instant, we wish to obtain a new estimate &t 

based on the previous estimate and the new received 
information ..jt. I[n the general case we are concerned 
with the distribution of possible weight values, i.e. 
the posterior 

where p(wtjyt-l) represents the prior over the pa- 
rameters given the measurements x-1 and the like- 
lihood p ( y , l z u t )  is determined from the noise density. 
Once we have calculated this conditional density, any 
estimate of the ]parameter vector may be obtained, 
a t  least in principle. For example the conditional 
mean or the maximum a posteriori estimate, wt, of 
the weights may be calculated from p(w, lX) .  It is 
not generally possible to obtain analytic solutions 
for the Bayesian recursive relations, or even extract 
computationally tractable algorithms except in spe- 
cial circumst#ances. For instance, under assumptions 
of Gaussian processes and linear systems 

the Kalman filter is obtained as a point estimate of 
the distribution in equation 1, i.e. 

(3) 
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For nonlinear systems (such as neural networks), the 
likelihood function is no longer a Gaussian in the 
weights, so we cannot perform the analysis and there- 
fore have to make approximations. The  extended 
Kalman filter is an estimate of the parameter vector 
based upon a linearisation of the model around the 
current state estimate 

and this basically represents the state of the art  in 
sequential nonlinear modelling. 

Although the extended Kalman filter can be used in 
slowly varying nonstationary environments (though 
t,here is no guarantee of convergence), there are sev- 
eral deficiencies with the EKF-RAN approach:- 

e Model order adaptation relies upon user sup- 
plied threshholds with no a priori indication of 
suitable values, 

+ there i s  no mechanism for reducing model order 
even though excessive model order can have a 
detrimental effect on filter performance, 

0 the linearised approximation in the extended 
Kalman filter used in the calculation of the filter 
gain may not be appropriate for the high degrees 
of nonlinearity in neural networks, 

+ the filter relies upon an initial estimate of the 
covariance which, even if valid initially, may be- 
come inaccurate in nonstationary environments, 

e there is no principled way to  initialise the new 
covariance matrix entries when the model order 
is increased in a neural network, 

0 the weight initialisation presription is designed 
to  work with Gaussian basis functions and, as 
it fits noise in the data, is not robust against 
outliers. 

ITERATED EKF, HIGHER ORDER FIL- 
TERS AND QUASI-NEWTON OPTIMISA- 
TIQN 

The calculat,ion of the gain in the extended Kalman 
filter relies on a linearisation of the network function. 
While this ensures that  the likelihood is Gaussian in 
the network weights, it is a poor approximation given 
that  some quadratic terms in the log likelihood are 
being discarded, along with higher order terms. 

However we can obtain a better approximation to  the 
nonlinearity in several ways. By using the Hessian 
of the network, we can expand the network output 
(as a function of the weights) to  second order about 

the current value, thus giving the s e c o n d  o r d e r  ex- 
t e n d e d  h a l m a n  f i l t e r  ( 6 ) .  Alternatively, we can still 
linearise the model, but make use of the z tera ted  EKF 
(sometimes known as the recursively iterated EKF to 
distinguish it from a simplified version (6)). The  it- 
erated EKF re-linearises the model about each new 
weight vector prediction uszng t h e  s a m e  d a t a  p o d  
and t h e  s a m e  przor, iterating until convergence is 
achieved, i.e. 

where C; = V u f t ( w i )  and 6: = 2 0 t - l .  Only then 
is t,he covariance updated as in equation 3 and the 
next data  point a n a l y ~ e d . ~  

If the iteration converges, then this will give a more 
accurate approximation to the maximum of the pos- 
terior than the EKF, but it cannot circumvent the 
limitations in performance due to its failure to  cap- 
ture significant nonlinear effects. 

Ideally, the posterior should be maximised directly 
using some conventional optimisation scheme. Once 
an optimum has been found, the (Gaussian) prior for 
the next datum can be constructed by calculating the 
Hessian of t,he log posterior (8). This is generally far 
more computationally expensive, but this should not 
be a problem unless t,he data  are arriving at  too high 
a frequency. 

Irrespective of whether the prior at each timest,ep 
is estimated via the network Hessians or some fil- 
ter evolution equation, the fact that the entire data 
history is contributing can inhibit the network from 
responding to evolution of the data generator. One 
simple method of alleviating this problem involves 
adding a small multiple of the identity to the prior 
covariance matrix a t  each stage - this has the effect 
of widening the Gaussian centred on the old weights, 
and hence allows the likelihood a greater influence. 
I t  should be noted that  this is a bit of an ad hoc 
fix. and that  a more principled mechanism should be 
found for dynamically adjusting the contribution of 
the prior. 

The Quadratic Map 

In order to  examine the relative merits of these opti- 
misation schemes, a simple non-stationary problem 
was examined. The quadratic map is generated by 
the following simple iterative equation 

3An alternative formulation updates the covariance P on 
each iteration and uses a slightly different weight iteration 
procedure. This can be shown to be entirely equivalent to 
equation 5, but is more computationally expensive. 
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Figure 3: Quadratic map waveform with uniformly 
increasing coefficient. 

The nature of the series generated by equation 6 de- 
pends on the value of the parameter a. For a E [0, l] 
there is a single fixed point at  the origin, and the se- 
ries quickly collapses to zero. For a E (1 ,3 ) ,  there 
will be a fixed point a t  some non-zero value to which 
the series would converge. When CY > 3, the se- 
ries generates attractors of period 2', T -+ 00 as 
a + 3.5699.. ., beyond which the series is chaotic. 

For fixed alpha, all of the above are stationary se- 
ries, but by letting CY vary with time, we can gener- 
ate a simple non-stationary series. The series used 
here consisted of 500 points initialised with a random 
xo E ( 0 , l ) .  The initial value of a was 2.95, and was 
incremented in uniform steps to a final value of 3.25. 
The waveform thus generated is shown in Figure 3. 
For a < 3 the waveform is trying to converge to a. 
slowly growing fixed point, whereas there is a new 
attractor of period 2 beyond the critical value a = 3. 

Figure 4: Innovations sequence for a 4 unit network 
using Eh%. 

Fixed size networks 

Before investigating RAN networks, we shall illus- 
trate typical performances of the various algorithms 
when used to train a fixed size network. The network 
used in the following example consists of 4 Gaussian 
basis functions with fixed widths. The weights are 
initialised using the RAN procedure, whereby the 
units are adlded one at a time, each new unit being 
centred on the corresponding data point, with the 
second layer weights being adjusted to fit the signal 
exactly. While this is not optimal (as mentioned ear- 
lier) it is likely to lead to quicker convergence than a 
random initialisation. 

Several initialisations for the respective covariance 
matrices in the likelihood and prior in equation 2 
were tried - while the exact form of the innovations 
sequence varied with the initialisation as expected, 
the comparattive performances of the different algc- 
rithms were not affected significantly. 

Figures 4 and 5 show example innovations sequences 
for the networks with 4 basis functions. Unlike 
the stationary case, neither algorithm consistently 
outperforms the other. BFGS tended to outper- 
form EKF iin regions where the waveform is chang- 
ing slowly, whereas EKF generally gave the better 
performance when the waveform was undergoing its 
most significant changes.4 

RAN networks 

The RAN procedure has been claimed to yield net- 
works of optimal size (4, 2) for a given problem. The 
reality is that the model order increment procedure 
is highly dependent on user supplied parameters. 
Figures 6 (IEKF) and 7 (BFGS) show the innova- 
tions sequence obtained from RAN networks starting 

4Even though the coefficient in equation 6 is changing at 
a constant rate, the effects on the waveform can be more dra- 
matic at  some timesteps than at  others - see Figure 3. 
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Figure 5: Innovations sequence for a 4 unit network 
using BFGS. 
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Figure 6: Innovations sequence for RAN network us- 
ing Eh% - vertical lines indicate where new units are 
added. 
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Figure 8: Innovations sequence for RAN network us- 
ing EKF - vertical lines indicate where new units are 
a d d e d .  
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Figure 7: Innovations sequence for RAN network us- 
ing BFGS - vertical lines indicate where new units 
are added.  

with a single basis function and growing according 
to  the following prescription :- a new Gaussian basis 
function, centred on the corresponding data point, 
is added if the absolute value of the innovation is 
greater than 0.001 and the distance from the data  
point to the nearest existing centre is greater than a 
threshold which starts at 0.25 and decays to a min- 
imum value of 0.1. The vertical lines show where a 
new unit is added. The EKF produces a network of 
T basis functions, while the BFGS produces one with 
8. It can be seen in both cases that new units can be 
added in regions where there doesn't seem to be any 
major change in the structure of the data  - this comes 
from the decaying distance criteria, and is an unsat- 
isfactory feature of this approach. It should also be 
noted that the performance is actually poorer than 
the corresponding fixed-order networks with only 4 
units. 

Figures 8 (EKF) and 9 (BFGS) perform the RAN 
procedure again, this time with the maximum and 
minimum distance thresholds reduced to 0.1 and 0.01 

Figure 9: In norat ions sequence for R A N  network us- 
zng BFGS - vErtical lines indicate where new units 
are a d d e d .  

respectively. The EKF network now grows to 11 
units, with the BFGS growing to 14. While the in- 
novations are smaller in this case, we can again see 
units being added a t  inappropriate moments :- in 
Figure 9, we can see a series of units being added 
merely due to the fact that the network is not being 
given time to converge from a possible inappropriate 
initialisation of the new elements in the prior covari- 
ance. 

DISCUSSION OF RESULTS 

From a wide series of tests on quadratic map wave- 
forms, it was found that the BFGS algorithm could 
consistently outperform the EKF and the iterated 
EKF in stationary situations. In the non-stationary 
cases, the EKF occasionally seemed better able to 
cope in regions where the waveform was undergoing 
significant changes in structure. This is most proba- 
bly due to the loss of information in the EKF making 
it more adaptable to  a changing environment - the 
increased accuracy of BFGS can result in a more re- 
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strictive prior. Further investigations are necessary 
to determine whether this wll be the case in gen- 
eral, rather than just a peculiarity of this particular 
experiment. 

In the RAN tests, the inadequacies of the model or- 
der increment procedure were such that no definite 
statements can be made regarding the relative mer- 
its of the different training algorithms. I t  should be 
noted that the performance of RAN networks can fre- 
quently be worse than smaller sized fixed order net- 
works, and on occasion can be dramatically worse. 
This is due to the arbitrariness of the model order 
increase criteria - as illlustrated in Figures 6 to 9, 
units can be added at  inappropriate moments. 

As far as the iterated EKF is concerned, it had a 
tendency to  fail t o  converge, and would occasion- 
ally diverge. Initial results show that the EKF can 
perform almost as well as BFGS when the iteration 
succeeds, but in other cases, the failure to converge 
on a solution degrades performance significantly. 

The second order EKF, on the ot,her hand, tended 
to approximate the posterior maximum sufficiently 
innaccurately that  the Hessian could not in general 
be guaranteed to be positive definite. Consequently, 
this yielded highly inappropriate priors for the next 
timestep, thus degrading performance further. In 
cases where this did not occur, the performance was 
found to  be no better on average than the EKF, and 
thus there seems no point in devoting further time 
to  the investigation of second order filters when the 
model is so highly non-linear. 

WORK IN PROGRESS 

The fact that  the prior contains information about 
the entire sequence means that the network may be 
slow to  adjust t o  genuine novelty in the data. Work 
is in progress to  investigate whether the introduc- 
tion of hyperparameters in the likelihood and prior 
can help in this matter. Such hyperparameters could 
be optiniised at the nest level of Bayesian infer- 
ence, thus varying the weighting of the prior as the 
data sequence is processed. This is in a similar vein 
to  work already carried out in static environments 
(9), though modifications to the procedure are nec- 
essary when using sequential training. This may also 
help reduce sensitivity to the boundary conditions at  
1 = 0. 

As is discussed here, the results can be sensitive to 
the choice of boundary conditions and RAN param- 
eters. Not only can basis functions be introduced 
at inappropriate moments merely due to the arbi- 
trary distance criterion, but the error criterion can 
be biased by poor initialisation of a previous basis, 
function (and its corresponding covariance). New 
units can be added merely because the network has 
not been given a chance to converge since the last 

unit was added, resulting on occasion in sequences 
of units being added in short order irrespective of 
the nature of the data sequence. More sophisticated 
measures of non-stationarity are therefore required 
for model order increment. 

The initialisation scheme used here assumes Gaus- 
sian basis functions. and initialisation on an outlier 
will have an adverse effect on convergence. Alterna- 
tive initialisations are required which do not fit the 
noise and which may be used for non-Gaussian basis 
functions, such as r3 or r log r .  

Local basis functions, as used here, can drift out of 
the relevant region of the input space, thus beconi- 
ing redundant. In the RAN context, this can result 
in the creation of unnecessarily large networks. A 
model order decrement procedure is therefore desir- 
able in such cases. Note that this would not be a 
problem with non-local basis functions. 
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