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We devise a message passing algorithm for probabilistic inference in composite systems, consisting
of a large number of variables, that exhibit weak random interactions among all variables and
strong interactions with a small subset of randomly chosen variables; the relative strength of the
two interactions is controlled by a free parameter. We examine the performance of the algorithm
numerically on a number of systems of this type for varying mixing parameter values.

PACS numbers: 89.75.-k, 02.60.Pn, 75.10.Nr

I. INTRODUCTION

Complexity has been identified as a key research area of significant future demand in a variety of areas
from telecommunication and ad-hoc networks to biological systems, transport and social networks [1, 2].
Among the main characteristics of complex systems are their heterogeneous structure, nonlinearity and
large scale, which makes it difficult to investigate them using traditional methods. Current research
activities mostly focus on large scale simulations, for instance of interacting agents, or on numerical
solutions of coupled non-linear deterministic or stochastic differential equations.

The sensitivity of most numerical methods to model parameters and external observations, the sheer
scale of the systems studied and the range of interactions involved, pose significant difficulties when it
comes to reliable numerical modelling and analysis of such systems. Providing robust, principled and
reliable algorithms for obtaining solutions in specific instantiations of such systems is considered very
difficult due to their large scale, non-linearity and inherent multi-level interactions.

The general approach that we advocate for understanding such systems is based on probabilistic ap-
proximative and distributive methods that are local, scale well (linearly or at most quadratically) with
the system size, accommodate variable and measurement uncertainties and readily provide confidence
levels for the inferred variables. These take the form of message passing techniques such as Belief Prop-
agation (BP) that have been developed independently within the physics [3], computer science [4, 5] and
information theory [6] communities. The main advantage of these methods is their moderate growth in
computational cost, with respect to the systems size, due to the local nature of the calculation when
applied to problems that can be mapped onto sparse graphs. They have been proved to be exact on
polytrees and provide good approximations as long as the number of short loops in the corresponding
graph is small.

Different approaches, based on mean-field approximations, have been suggested for obtaining solutions
in the case of densely connected systems, where the number of connections is large and of the same order
as the number of variables (while the connection strength is relatively weak O(N−1/2) where N is the
system size) [3, 7, 8]. These highly successful methods heavily rely on the assumptions that the system is
very large, densely connected and the interactions weak, through a sequence of approximations.

Until recently, message passing techniques were deemed unsuitable for inference in densely connected
systems due to the inherently high number of short loops in the corresponding graphical representation,
and the large number of connections per node, which result in a high computational cost. Both proper-
ties are considered prohibitive to the use of conventional message passing techniques. However, various
methods have been recently suggested [9–12] for a message passing based algorithm in densely connected
systems; it relies on replacing individual messages by averages sampled from a Gaussian distribution of
some mean and variance that are modified iteratively.

The problem we focus on here is that of composite systems with large numbers of elements and multi-
level interactions, which represents a particular manifestation of a complex system. These are particularly
difficult and challenging systems to analyze since although principled approaches have been devised sepa-
rately for systems with very dense [9] or very sparse [4, 5] interacting elements, they typically fail for the
composite multilevel systems. In this paper we show how recent advances in the development of message
passing techniques can give rise to a new algorithm which accommodates messages from both sparse and
dense components of the same graph.

The motivation for studying the specific system considered here is that it is amongst the simplest
composite models involving a combination of dilute and dense couplings. In addition, such models are
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likely to feature in various engineering applications. For example, dense weak interactions are likely to
emerge, in addition to the designed sparse and strong interactions, in high-density integrated circuits.
Analyzing the effects of the emerging weak couplings may be highly useful for minimizing their impact.
Alternatively, such systems may be engineered deliberately with a combination of dilute (strong) and dense
(weak) interactions either to make them more robust or to exploit specific properties of the composite
system. In multi-user channel coding, for instance, this may make the communication process more robust
against different types of noise, de-synchronization or malicious attacks [13]. Only recently, a special case
of the system studied here was suggested as a model for studying the resilience of networks against
attacks [14]. A similar system to the one studied here was recently analyzed at a macroscopic level, using
the replica method [15], complementing the microscopic treatment of specific instances introduced here.

The remainder of the paper is organized as follows. In Sec. II we present the model to be studied,
while the message passing equations will be derived in Sec. III. Experiments aimed at examining the new
algorithm will be described in Sec. IV. We will conclude with a summary and future research directions
in Sec. V.

II. MODEL

While BP-based algorithms for inference in sparsely [4, 5] and densely [9–11] connected systems have
been introduced, no method has been devised for inference in composite systems that comprise both weak
(but densely connected) and strong (sparse) interactions.

The model we focus on here is based on N noisy measurements yµ, µ ∈ {1..N} of K interacting
variables (bits/spins) bk, k ∈ {1, 2, . . . , K}. The model comprises two components, the first represents
weak interactions between all variables while the second represents a few (J) strong interactions with a
few, randomly chosen, variables. The random binary interactions themselves sµi ∈ {−1, 1} are chosen
with equal probability of taking the values ±1. The measurements, corrupted by Gaussian noise of zero
mean and standard deviation σ0 take the form

yµ =
γ√
J

J∑

j=1

sµij bij +
1− γ√

K

K∑

k=1

sµkbk + σ0nµ , (1)

where {i1, i2, . . . , ij} are a set of randomly selected (fixed) indices for each evidential node (measurement)
µ for the given system, 0 ≤ γ ≤ 1 is a coefficient that regulates the ratio of dense/sparse components, and
the coefficients 1/

√
K and 1/

√
J normalize the strength of both components to O(1). Figure 1 provides a

graphical representation of the model investigated. Notice that the sum over nodes with weak couplings
includes all variables and does not separate those with strong interactions; as there are only O(1) such
variables, their contribution to the sum over nodes with weak couplings in negligible.

FIG. 1: Graphical representation of the composite inference problem, characterized by high number of weak links
between all variables and an evidential nodes, and only a few strong couplings to randomly selected variables.

This model represents a special case of a composite system where different levels of interaction co-exist.
In particular, the strength of the interactions are defined in such a way as to keep both contributions
of similar order even in large systems. We believe the same approach can be easily extended to more
complex connectivity and interaction profiles.
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The suggested composition of strong and weak couplings has been chosen as it is arguably the simplest
choice. Rescalings the couplings with respect to the choice of γ may also be sensible although both choices
have their pros and cons in terms of the scaling properties they provide.

III. ALGORITHM

We employ the Bayesian scheme to infer the values of the various variables given the composite inter-
actions. The aim is to find the local Maximum A Posteriori (MAP) variable values, also termed Marginal
Posterior Maximizer (MPM), P (bk| {yµ} , ∀µ), on the basis of the observation and prior belief in the values
of the variables.

A. Messages

Belief propagation algorithms are based on the derivation of messages, local conditional probabilities, to
be passed from variable to evidential nodes and vice versa, using a closed set of approximate equations. In
the case considered here there are two different types of messages from/to variable nodes that are strongly
or weakly interactions (or, correspondingly, sparsely and densely connected) to a particular nodes.

The messages from variable to factor, or evidential, nodes are defined separately from those passed from
factor to variable nodes:

P t+1 (yµ|bk, {yν 6=µ}) =
∑

bl6=k

P (yµ|b)
∏

l 6=k

P t(bl|{yν 6=µ}), (2)

P t (bk|{yν 6=µ}) = αt
µk

∏

ν 6=µ

P t (yν |bk, {yσ 6=ν}) , (3)

where t = 1, 2, . . . is an iteration (time) index. There is also a normalisation constant αt
µk due to the two

constraints
∑

yµ=±1 P t (yµ|bk, {yν 6=µ}) = 1 and
∑

bk=±1 P t (bk|{yν 6=µ}) = 1. The marginalised posterior

at t-th update is evaluated from P t (yµ|bk, {yν 6=µ}) as P t(bk|y) = αk

∏N
µ=1 P t (yµ|bk, {yν 6=µ}), where αk

is again a normalisation constant.
Since bk is a binary variable, one can with no loss of generality, parameterize the conditional probability

distributions as

P t (yµ|bk, {yν 6=µ}) ∝ (1 + m̂t
µkbk)/2,

P t (bk|{yν 6=µ}) = (1 + mt
µkbk)/2

and P t(bk|y) = (1 + mt
kbk)/2

using the parameters mt
µk (magnetization), mt

k and m̂t+1
µk . This simplifies the expressions by writing

recursive equations for the two sets of parameters

m̂t+1
µk =

∑
b bkP (yµ|b)

∏
l 6=k

(
1+mt

µlbl

2

)

∑
b P (yµ|b)

∏
l 6=k

(
1+mt

µlbl

2

) , (4)

mt
µk = tanh


∑

ν 6=µ

tanh−1 m̂t
νk


 . (5)

Employing these variables, the approximated posterior average of bk at the t-th update can be computed
as mt

k = tanh
(∑N

µ=1 tanh−1 m̂t
µk

)
. After convergence, the inferred value becomes

bk = sign(mt
k) . (6)

The two cases of strong and weak links will be considered separately when the messages mµk, from
variable k to evidential node µ, are calculated. If k is part of the strongly connected local neighborhood
of evidential node µ, the equations will be based on the sparse graph model [4, 5], whereas the approach
used for the densely connected case [9–11] will be used when variable node k is weakly connected to µ.
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B. Strongly interacting nodes

In calculating the messages m̂µk and mµk one should consider separately the contribution made by
nodes that interact strongly and weakly with the particular factor node examined. The summation over
variables is decomposed to two separate sums, over the strongly and weakly interacting variables.

m̂t+1
µk =

∑
bs

∑
bw

bkP (yµ|b)
∏

l 6=k

(
1+mt

µlbl

2

)

∑
bs

∑
bw

P (yµ|b)
∏

l 6=k

(
1+mt

µlbl

2

) ,

mt
µk = tanh


∑

ν 6=µ

tanh−1 m̂t
νk


 .

Considering ∆µ = 1−γ√
K

∑K
l=1 sµlbl + γ√

J

∑J
j=1 sµij bij , the first term represents a sum over a large

number of independent variables while the second can be summed exactly to provide a certain value at
each iteration t. To evaluate the value of ∆µ we employ the central limit theorem: ∆µ obeys a Gaussian

distribution N
(〈

∆t
µ

〉
µ

, (1−Qt
µ)γ

)
, where (1−Qt

µ)γ ≡ (1− γ)2(1−Qt
µ),

〈
∆t

µ

〉
µ

=
1− γ√

K

K∑

l=1

sµlm
t
µl +

γ√
J

J∑

j=1

sµij bij (7)

and

Qt
µ = (1/K)

K∑

l=1

(mt
µl)

2. (8)

which is well approximated by

Qt = (1/K)
K∑

l=1

(mt
l)

2. (9)

Using the Gaussian nature of the noise and the distribution of ∆µ one obtains at each iteration t

P (yµ|b) =
1√
2π

1√
σ2

0 + (1−Qt)γ

exp

[
−

(
yµ − 〈∆t

µ〉
)2

2 (σ2
0 + (1−Qt)γ)

]
(10)

and the corresponding messages

m̂t+1
µk =

∑
bs

bkP (yµ|b)
∏

l∈S(µ)/k

(
1+mt

µlbl

2

)

∑
bs

P (yµ|b)
∏

l∈S(µ)/k

(
1+mt

µlbl

2

) , (11)

where S(µ)/k represents all the variables connected through strong links to factor µ, except node k. note
that dependence on the variable bk also appears through the expression for P (yµ|b) as in equation (10).

C. Weakly interacting nodes

One of the main difference with the previous case, is that we exploit the dense character of the weak
interactions and expand the contribution around the mean by excluding the contribution of a single
variable as in [9].

We now consider ∆µk = 1−γ√
K

∑K
l=1,l 6=k sµlbl + γ√

J

∑J
j=1 sµij bij . Using the central limit theorem ∆µk

obeys a Gaussian distribution N
(〈

∆t
µk

〉
µ

, (1−Qt
µk)γ

)
, at each iteration t, where

〈
∆t

µk

〉
µ

=
1− γ√

K

∑

l,l 6=k

sµlm
t
µl +

γ√
J

J∑

j=1

sµij bij (12)
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and

Qt
µk = (1/K)

K∑

l=1

(mt
µl)

2. (13)

Following a similar derivation as in [9] The conditional probability can be written as

P (yµ|b)=


1+

[
yµ−〈∆t

µk〉
]
sµkbk(1−γ)

[σ2
0+(1−Qt)γ ]

√
K


 1√

2π(σ2
0 + (1−Qt)γ)

exp


−

(
yµ−〈∆t

µk〉
)2

2 (σ2
0+(1−Qt)γ)




Using the notation:

A=

[
yµ − 〈∆t

µk〉
]
sµk(1−γ)

[σ2
0+(1−Qt)γ ]

√
K

and B=
1√

2π(σ2
0+(1−Qt)γ)

exp


−

(
yµ − 〈∆t

µk〉
)2

2 (σ2
0+(1−Qt)γ)


 ,

one can rewrite the message as

m̂t+1
µk =

∑
bs

A B
∏

l∈S(µ)

(
1+mt

µlbl

2

)

∑
bs

B
∏

l∈S(µ)

(
1+mt

µlbl

2

) (14)

Notice that there is still a sum over bs, as in the sparse case, which has implications for the complexity
of the suggested inference algorithm. Contributions from the densely connected nodes dominate the
complexity of the algorithm and require O(K2) operations while the sparse components scale linearly in
N but are exponential in the (small) number of sparse connections J .

IV. EXPERIMENTS

To examine the efficacy of the algorithm for inference in composite systems and gain insight into the
behavior of such systems in particular cases, we carried out a number of experiments for a system of
size N = 1000 and varying K = NJ/C, as determined by the connectivity degree of strongly interacting
neighbors per variable (average C) and measurement (J). We kept the measurement node connectivity,
of degree J = 3, fixed and varied the value of K = 500, 600, 750 in correspondence with the variable
connectivities C(C) = 6, 5, 4. The systems vary in the type of sparse variable connectivity applied (fixed
or random), the strengths of the sparse (dense) interactions γ (1−γ) and the noise level σ0. Random con-
nectivity graphs, representing the sparse interactions, and random interaction values have been generated
in each of the experiments.

In each case we carried out 500 experiments by iterating equations (7),(11) and (14) from randomly
chosen initial conditions until convergence (more precisely, 25 graphs and 20 inputs/outputs tests for
each point); we then inferred the values of the various variables on the basis of the pseudoposterior (6).
The convergence/halting criterion was defined as an unchanged solution over 4 iterations, or reaching a
maximum of 20 iterations.

Two main sparse connectivity patterns have been used, fixed connectivity C and random connectivity,
resulting in a Poissonian distribution of mean C.

Results obtained for the various cases are shown in figure 2 for fixed connectivity sparse couplings
(denoted by solid lines) and randomly connected sparse graphs (dashed lines).

Figure 2(a) shows the average error-probability of the inference algorithm as a function of the number of
iterations for different γ values in the case of fixed connectivity C = 3. While the algorithm results in rapid
convergence to a very low error-probability for high γ values, corresponding to a strong sparse component,
it approaches a residual asymptotic error probability at low γ values, characteristic of densely connected
and weakly interacting systems. The quality of the solutions obtained is shown in figure 2(b), where the
asymptotic error-probability values P asy

e are plotted as a function of γ, for different fixed connectivity
values C and Poissonian distributions of mean C; error-bars have been removed for brevity. We see
that fixed connectivity systems typically show lower asymptotic values than the randomly connected



6

systems for low γ values, a difference that disappears for high γ, where the dense couplings dominate;
the asymptotic error probability typically decrease with the increase in γ. It is interesting to note that
asymptotic results typically improve with the increase in connectivity as the ratio of variable to evidential
nodes decreases.

To study the dependence of the rate of convergence on both γ and the degree of connectivity, we plotted
in figure 2(c) the median number of time steps required for the system to converge as a function of γ,
for both the fixed (solid lines) and random (dashed lines) connectivities; error-bars have been removed
for brevity. We see that the number of iterations required for convergence generally decreases as γ and
the connectivity increase with little difference between the fixed and random sparse connectivity values,
mainly in the low γ values. Also here, the dependence on the connectivity values may be explained by
the varying ratio of variable to evidential nodes.

In figure 2(d) we examine the dependence of the asymptotic error probability on the noise variance for
several fixed and random connectivity values γ = 0.25 and and 0.75 (solid and dashed lines, respectively).
We see that, unsurprisingly, the asymptotic error rate increases with the noise variance with systems of
higher γ values and higher connectivity values exhibiting higher robustness to noise as the ratio of variable
to evidential nodes decreases.
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FIG. 2: Performance of the BP-based algorithm for composite systems. (a) Error-probability as a function of the
number of iterations t for different mixing parameter values γ and fixed connectivity systems of C = 3. Rapid
convergence to low error-probability values is observed for high γ values while residual asymptotic error probability
remains for dense connectivity dominated systems of low γ values. (b) Asymptotic error-probability P asy

e as a
function of γ, for fixed (solid lines) and random connectivity (of mean C - dashed lines). (c) Median number of
time steps required for convergence tmed as a function of γ, both for the fixed (solid lines) and random (dashed
lines) connectivities. (d) Asymptotic error probability as a function of the noise variance for fixed connectivity C,
and mixing parameters γ = 0.25 (solid lines), and 0.75 (dashed lines).
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Finally, we studied the convergence rate of the algorithm for the various systems studied. While the
convergence criterion used in our simulations was sufficient for evaluating the asymptotic performance of
the suggested algorithm it cannot provide reliable information on the rate of convergence.

To quantify the convergence rate for various γ and connectivity values C, we plotted the evolution of
the convergence measure

D(t) = max
∀µ,k

[
P t+1(yµ|bk)− P t(yµ|bk)

]
.

Simulations for fixed connectivity graphs have been carried out using the same experimental setup as
before. The results of figure 3 show that inference in sparse-dominated systems converges rapidly while
dense-dominated systems tend to converge much slower. Naturally, the effect is more emphasized for low
sparse connectivity values C. It is interesting to note that the existence of stronger sparse inputs delays
the convergence for low γ values, presumably since stronger messages from the densely connected nodes
are required to contribute against the more volatile dense couplings (e.g., for γ = 0.1, 0.25).
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FIG. 3: The convergence measure D(t) for various γ and connectivity values. (a) Fixed connectivity C = 5; (b)
Fixed connectivity C = 6.

V. CONCLUSION

The study of complex systems poses significant new challenges as they are, by their very nature, large,
nonuniform and their components interact in a non-trivial manner.

While a significant effort is dedicated to numerical studies of specific complex systems we see the
main way forward through a principled distributive Bayesian approach; this enables one to carry out the
calculations in time scales that scale linearly or quadratically with the systems size and provides both the
approximate inferred values and the related confidence level.

In the current study we have combined message passing based algorithms that were developed for both
sparsely and densely connected systems to study exemplar composite systems. These comprise a densely
connected systems of weakly interacting components and an overlaid sparse but strong interactions.

We demonstrated the efficacy of the suggested algorithm by studying the error-rate obtained in the
composite system case for various mixtures of dense and sparse interactions, governed by the mixing
parameter γ, and different sparse connectivity characteristics (fixed and random of various mean values).

Unsurprisingly, the system examined exhibits a sparse system behavior as long as γ values are high,
and gradually exhibits a behavior characteristic of densely connected system for low γ values. It shows
fast convergence to low error rates for high γ values (systems dominated by the sparse couplings), but
performance improves as the connectivity value of the sparse couplings increase (but is still small) due to
the decreasing ratio of variable to evidential nodes. While sparse-dominated systems tend in general to
converge faster, low connectivity values tend to slow down convergence in the remainder of the system for
low γ values, presumably due to the higher volatility of dominating messages from the sparsely connected
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components. The current algorithm can be used to derive general properties of such systems by applying
density evolution, as well as inference in specific instances.

Future work in this area is practically unlimited. Firstly, one may consider extending the work to study
multistate composite systems where variables are not limited to the binary representation [3, 16], or to
other connectivity profiles that require the use of generalized BP [17] or cluster variation techniques [18–
20]. Secondly, one may seek a principled approximation for systems that have an intermediate range of
interactions that is not readily accommodated within the current two-level system. Finally, one may want
to apply the algorithm and its derivatives to real systems that exhibit a two (or-multi) level behavior,
such as recently introduced stochastic weather forecasting models that accommodate both nearest cell
and global long range interactions; or of densely connected sensor (or mechanical) arrays implemented
in integrated circuits that exhibit both strong interactions with neighboring sensors and a weak coupling
with all other sensors.

Acknowledgments

Support from EPSRC grant EP/E049516/1 is acknowledged.

References

[1] J. Reichardt and S. Bornholdt, Detecting fuzzy community structures in complex networks with a potts model,
Phys. Rev. Lett. 93, 218701 (2004).

[2] J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Phys. Rev. E 74, 016110
(pages 14) (2006).

[3] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond (World Scientific Publishing Co.,
Singapore, 1987).

[4] J. Pearl, Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann Publishers, Inc., San Francisco,
CA, 1988).

[5] F. Jensen, An Introduction to Bayesian Networks (UCL Press, London, 1996).
[6] R. Gallager, Low density parity check codes, IRE Trans. Info. Theory IT-8, 21 (1962).
[7] M. Opper and O. Winther, A mean field approach to bayes learning in feed-forward neural networks,

Phys. Rev. Lett. 76, 1964 (1996).
[8] M. Opper and D. Saad, Advanced Mean Field Methods: Theory and Practice (MIT Press, Cambridge, MA,

2001).
[9] Y. Kabashima, A cdma multiuser detection algorithm on the basis of belief propagation, J. Phys. A. 36, 11111

(2003).
[10] J. Neirotti and D. Saad, Improved message passing for inference in densely connected systems, Europhys. Lett.

71, 866 (2005).
[11] J. Neirotti and D. Saad, Inference by replication in densely connected systems, Phys. Rev. E 76, 046121 (2007).
[12] A. Braunstein and R. Zecchina, Learning by message passing in networks of discrete synapses, Phys. Rev.

Lett. 96, 030201 (pages 4) (2006).
[13] J. Raymond and D. Saad, Typical properties of cdma decodig with composite sparse and dense modulation

sequences (2008), in preparation.
[14] M. O. Hase and J. F. F. Mendes, Diluted antiferromagnet in a ferromagnetic environment (2007),

arXiv:0711.3016v1.
[15] J. Raymond and D. Saad, On composite systems of dilute and dense couplings, J. Phys. A 41 (2008), in press.
[16] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing (Oxford University Press, Oxford,

UK, 2001).
[17] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Constructing free energy approximations and generalised belief

propagation algorithms, IEEE Trans. on Info. Theory 51, 2282 (2005).
[18] R. Kikuchi, A theory of cooperative phenomena, Phys. Rev. 81, 988 (1951).
[19] T. Morita, Cluster variation mmethod of cooperative phenomena and its generalization i, J. of the Phys. Society

of Japan 12, 753 (1957).
[20] G. An, A note on the cluster variation method, Jour. of Stat. Phys. 52, 727 (1988).


