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Abstract 

The discrimination of patterns that are mirror-symmetric counterparts of each other is difficult 

and requires substantial training. We explored whether mirror-image discrimination during ex-

pertise acquisition is based on associative learning strategies or involves a representational shift 

towards configural pattern descriptions that permit to resolve symmetry relations. Subjects were 

trained to discriminate between sets of unfamiliar grey level patterns in two conditions, which 

either required the separation of mirror images or not. Both groups were subsequently tested in a 

4-class category-learning task employing the same set of stimuli. The results show that subjects 

who successfully had learned to discriminate between mirror-symmetric counterparts were dis-

tinctly faster in the categorization task, indicating a transfer of conceptual knowledge between the 

two tasks. Additional computer simulations suggest that the development of such symmetry con-

cepts involves the construction of configural, proto-holistic descriptions, in which positions of 

pattern parts are encoded relative to a spatial frame of reference. 
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Visual patterns that are mirror-symmetric counterparts of each other are notoriously difficult to 

distinguish. As already noted by Ernst Mach (1922), children confuse characters and syllables 

such as p-q and no-on during the acquisition of reading and writing. Although this well-

documented difficulty in infancy (see Davidson 1935; Rudel & Teuber, 1963; Bornstein, Gross & 

Wolf, 1978) is mostly overcome during cognitive development, mirror images continue to be 

perceived as particularly similar in adulthood. A classical tool to demonstrate and to exploit this 

phenomenon has been Shepard & Metzler’s (1971) mental rotation paradigm. Here the similarity 

between mirror-image pairs is assumed to enforce a mental alignment of the two target stimuli 

prior to their mirror-image comparison, which requires more time to complete with increasing 

angular separation (Shepard & Cooper, 1982). 

Mental rotation has also been repeatedly proposed as a general explanatory concept for all 

object recognition tasks including mirror-image discrimination that involve plane and depth 

transformations (e.g., Jolicoeur, 1985; Hinton & Parsons, 1988; Tarr & Pinker, 1989; Murray, 

1997). However, more recent findings cast some doubt on its relative importance. For example, 

Lawson & Jolicoeur (1999) demonstrated a distinct, non-monotonic effect of plane rotation on 

the time required to identify objects, in contrast to the monotonic relation that is typical for tasks 

involving mirror-image discrimination. This finding, and the fact that practice does reduce plane 

rotation costs in object naming but not in left/right orientation judgements (Jolicoeur, 1989), in-

dicate that object identification does not necessarily imply the ability to distinguish between mir-

ror images. In fact, neuropsychological evidence shows that mirror-image discrimination may be 

selectively impaired, leaving object recognition skills spared (Turnbull & McCarthy, 1996; Davi-

doff & Warrington, 2001, Priftis et al. 2003). 
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Adopting an evolutionary perspective, Gross & Bornstein (1976) argue that the tendency 

to confuse mirror images may reflect an adaptive mode of processing rather than a perceptual 

limitation. As they point out virtually all mirror images in the natural world either arise from pro-

file views of objects that are bilaterally symmetric, or from silhouettes of arbitrary objects seen 

from opposite sides. In either case, mirror images refer back to the same object in three-

dimensional space and should therefore evoke similar response patterns. This notion is compati-

ble with the observation that perceptual priming is unaffected by left-right reflection (Biederman 

& Cooper, 1991; Lawson & Humphreys, 1998; Fiser & Biederman, 2001), and with neurophysi-

ological evidence for neurons in the inferotemporal cortex of the monkey showing response gen-

eralisation over mirror reversal (Rollenhagen & Olson, 2000; Baylis & Driver, 2001). However, 

the behavioural equivalence of mirror images may depend on the level of categorization involved 

by a recognition task. Categorization at the basic or entry level, commonly regarded to be the de-

fault in neutral contexts (Rosch et al., 1976; Jolicoeur, Gluck & Kosslyn, 1984), may not require 

a representation that allows the visual system to distinguish a shape from its mirror image - for 

example, in order to distinguish a shoe from other articles of dress. In contrast, categorization at 

the subordinate level - for example, a left shoe versus a right shoe - may well do so. Our ability to 

learn such distinctions to the point where they become almost trivial, i.e. where they attain the 

status of quasi entry levels within the categorization hierarchy, renders mirror-image discrimina-

tion a characteristic feature of visual expertise (Johnson & Mervis, 1997; Tanaka & Taylor, 

1991). Examples of expertise requiring mirror-image discrimination skills range from everyday 

problems in areas in which we are all “experts” (e.g., the distinction between the letters p and q, 

or b and d) to tasks in highly specialized domains, such as the recall of board positions in chess 
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(Gobet & Simon, 1996) or the analysis of molecules of different chirality (handedness) in stereo-

chemistry (see e.g. Eliel, Wilen & Doyle, 2001; Yee, 2002).  

If mirror-image discrimination is part of visual expertise, the question arises of how such 

expertise can be acquired, or more specifically, how mirror-image relations become part of the 

knowledge about object categories during learning. Mirror-image relations between patterns as-

signed to different categories may affect learning in two different ways: One possibility is that the 

skill to discriminate between left and right counterparts of mirror-image pairs is acquired via as-

sociative learning. This notion can be related to Gross and Bornstein’s (1978) aforementioned 

hypothesis, according to which mirror images are confused because they are interpreted as two 

views of one object in three-dimensional space. As a consequence, the similarity of mirror-image 

pairs would arise because such images, albeit being different stimuli, tend to be linked to the 

same conceptual node in memory (see e.g. Kruschke, 1992). Learning to distinguish between 

those pairs then would imply breaking up these links and connect them to different nodes, thus 

allowing a differential response behaviour. 

Given the elementary nature of such learning one would expect it to be possible across a 

wide range of organisms. In support of this prediction research in animal learning shows that 

many species, including rats (Kinsbourne, 1967; Noonan & Axelrod, 1991), cats (Sutherland, 

1963), pigeons (Corballis & Beale, 1967; Hollard & Delius, 1982; Lohmann et al., 1988), and 

monkeys (Nissen & McCulloch, 1937; Brown & Ettlinger, 1983), although confusing mirror 

stimuli initially, can be successfully trained to discriminate between them to some extent. Despite 

caveats such as the dependency of training success on stimulus type and questions as to the limi-

tations of identity-matching in animals (D’Amato, Salmon & Colombo, 1985), differences in the 

representations at the conceptual level (Premack, 1983) and the problem of response consistency 
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(Corballis & Beale, 1976), this evidence points at a generic potential to acquire mirror-image dis-

crimination skills. Moreover, in human subjects language might assist the conceptual separation 

of mirror stimuli in memory. Neuropsychological reports indicate that patients with impaired 

mirror discrimination may still use a verbal coding strategy to discriminate e.g. a left shoe from a 

right shoe by explicitly assigning them different response labels (Davidoff & Warrington, 1999).  

As a second possibility, the tendency to confuse mirror images could arise at the level of 

stimulus representation as mirror images necessarily share the same local features and therefore 

produce similar feature descriptions. Learning to distinguish mirror-image pairs would imply a 

representational shift, during which local features, or isolated pattern parts, are linked to larger 

entities within a configural description where the symmetry relations between the two patterns 

can be resolved. Representational shifts from isolated parts to more holistic formats have been 

proposed as one of the changes that may emerge during the development of expertise in the rec-

ognition of faces and other objects (Farah et al. 1998; Gauthier & Tarr, 2002; Gauthier et al., 

2003; for a review, see Palmeri, Wong & Gauthier, 2004). 

With regard to mirror-image discrimination, support for the representational-shift hy-

pothesis can be seen in the developmental trajectory of this ability during the first decade of life 

(Rudel & Teuber, 1963), which parallels that of face recognition. The well-established difficul-

ties of children under the age of 10 to recognize faces (e.g., Mooney, 1957; Carey & Diamond, 

1977; Kolb, Wilson & Taylor, 1992; Campbell et al., 1999) have been attributed to a particular 

encoding of face stimuli that relies on the processing of isolated facial features rather than of their 

configuration (Carey & Diamond, 1994) although this claim has not gone uncontested (Tanaka et 

al. 1998). Nevertheless, such correspondences makes configural object processing appear a plau-
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sible way in which mirror-image relations may be incorporated into the representation of object 

categories during expertise acquisition. 

The two hypotheses outlined above differ in the way in which they predict generalisation, 

or transfer, of categorical knowledge involving mirror-image relations. If such relations are medi-

ated by associative learning mechanisms that link stimuli with particular conceptual nodes, then 

there should be little or no generalization if the same patterns are paired with new labels (nodes) 

in a subsequent transfer task. In contrast, if learning of mirror-image relations is mediated by rep-

resentational shifts at the stimulus level, then such shifts, once acquired, should easily transfer to 

novel tasks in which the same patterns are employed in a different categorization context.  

In the present study, we tested these predictions in three category-learning experiments 

and by means of computer simulation. Our paradigm involved the classification of Compound 

Gabor stimuli, grey-level patterns that result from the superposition of two sinewave gratings, a 

fundamental plus its third harmonic (cf. Figure1). Using this particular type of stimulus offers a 

number of advantages: First, it permits to study the role of mirror-image relations in categoriza-

tion at a relatively early level. On the one hand, Gabor patterns have been characterized as an 

elementary stimulus in visual processing (e.g., Watson, Barlow, & Robson, 1983; Rentschler & 

Caelli, 1990; Westheimer, 1998) whereas they are, on the other hand, perceptually complex 

enough to stimulate category learning (Rentschler, Jüttner, & Caelli, 1994; Jüttner & Rentschler, 

1996, 2000; Jüttner, Langguth & Rentschler, 2004). Second, compound Gabor patches circum-

vent the problem of prior knowledge, as such stimuli are unfamiliar to naive subjects; hence the 

acquisition of categories composed of these patterns is completely under experimental control. 

Finally, and most important in the present context, such patterns permit to control and manipulate 

mirror-image relations between pattern categories in a systematic manner, as follows.  
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For the experiments, the patterns were specified within a two-dimensional, evenness-

oddness Fourier feature space representing a continuum of visual shape where each point 

uniquely specifies the appearance of a pattern, and patterns with mirror-symmetric coordinates 

relative to the evenness axis are mirror images of each other (see Figure 1 and Method section for 

details). Within this continuum, a set of 12 learning patterns was defined (Fig. 1c) forming a 

square-like configuration of four clusters (I-IV) with three patterns each. In addition of being 

identical in terms of their spatial frequency composition the four pattern clusters were, owing to 

the symmetry of the configuration in the generating Fourier space, equivalent in terms of pattern 

(Fourier) energy and relative spatial phase. The only factor introducing a potential anisotropy at 

the perceptual level was that the patterns of the cluster pairs I - IV and II - III consisted of mirror 

images of each other, whereas the cluster pairs I - II and III - IV did not.  

In Experiment 1, we investigated whether the existence of such mirror relations would be 

reflected in a learning task, where subjects were trained to assign the patterns of each of the four 

clusters into different categories (Fig. 2a). The resulting data also constituted the reference base-

line for the subsequent experiments, which addressed the explicit learning of mirror-image rela-

tions and their generalisation to a different categorization context. For Experiment 2, we com-

bined the four clusters in a pairwise manner in two different ways that either grouped clusters 

containing mirror images of each other into the same category (Fig. 2b right) or into different 

ones (Fig. 2b left). Two further groups of observers were trained in either of these two-class con-

ditions. The same subjects were then tested as to the transfer of their conceptual knowledge in 

Experiment 3, employing the same 4-class categorization task as in Experiment 1.  

To corroborate our findings we also modelled the behavioural data in terms of an evi-

dence-based classification model (Jüttner, Caelli & Rentschler, 1997; Jüttner et al., 2004). Evi-
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dence-based classifiers solve a given categorization problem by constructing rules that carry evi-

dence weights for each class alternative. These rules are based on non-relational and relational 

attributes of object parts defined the image domain. The set of attributes evaluated for rule gen-

eration therefore can be regarded as the ‘signature’ of the underlying conceptual representation. 

We used the simulations to identify those attributes that were crucial for mirror-image discrimi-

nation, and to explore to what extent representations established in Experiment 2 would be com-

patible with those acquired in Experiment 3, thus providing further support for our behavioural 

results. 

 

 

GENERAL METHOD 

 

Apparatus and Materials 

The experiments involved the classification of Compound Gabor patterns (Fig. 1a). Such grey-

level patterns result from the superposition of two sinewave gratings, a fundamental plus its third 

harmonic, modulated by a Gaussian aperture. Their intensity profile G(x,y) was defined by 
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where L0 determines the mean luminance, α the space constant of the Gaussian aperture, a the 

amplitude of the fundamental, b that of the third harmonic, and φ the phase angle of the latter. 

The patterns were generated in a 128 x 128 8-bit pixel format with a linear greylevel-to-

luminance function. The aperture parameter α was set to 32 pixels. 

 

--------------------------------------------- 
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Insert Figure 1 here 

--------------------------------------------- 

 

Pattern variation was restricted to b and φ. This allowed the use of two-dimensional Fou-

rier feature space with the Cartesian coordinates φξ cosb= and φη sinb= . The (ξ,η) feature 

space provided continuum of visual shape with each point uniquely specifying the appearance of 

a pattern. Within this feature space, patterns located symmetrically to the ξ - (or ‘evenness’) axis 

possess mirror-symmetric luminance profiles (Fig. 1b) whereas patterns located symmetrically to 

the η- (or ‘oddness’) axis possess inverted contrast of the third harmonic (see Rentschler et al., 

1996). Reflecting a given feature vector (ξ0, η0) successively at the ξ- and η-axis (cf. Fig. 1b) 

leads to a “quadrupole” of patterns with the coordinates (ξ0,- η0), (-ξ0,- η0) and (-ξ0, η0) that are 

pairwise mirror images of each other but have identical image energy (Fourier power) owing to 

their equidistance from the origin.  

Using this construction principle a learning set of 12 patterns was generated, consisting of 

four clusters I-IV of 3 patterns each (Fig. 1c). The four cluster means formed a square-like con-

figuration that was centred on the origin of the Fourier feature space. Individual clusters (Ex-

periment 1 and 3) or cluster pairs (Experiment 2) were used to define pattern categories to be 

learned by the subjects (Fig. 2).   

The patterns were displayed on a raster monitor (Barco TVM 3/3.2, P4 phosphor) linked 

to a digital image processing system (Videograph, LSI 11/73). Space average luminance was kept 

constant at 60 cd/m2. The patterns subtended 1.6° at a viewing distance of 165 cm. The spatial 

frequency of the fundamental was 2.5 c/deg. 
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--------------------------------------------- 

Insert Figure 2 here 

--------------------------------------------- 

 

Subjects 

In total, 12 paid observers (Experiment 1: 4 subjects; Experiments 2 and 3: 8 subjects). Their 

ages ranged between 20 and 30 years, 6 were female, 6 were male. All had normal or corrected-

to-normal vision. None of the subjects had any prior experience with psychophysical experi-

ments. They gave their written informed consent to the study after the procedure had been ex-

plained to them. 

 

 

Procedure 

Subjects were trained to assign the patterns to their predefined categories using a supervised-

learning schedule (Rentschler et al., 1994). The procedure consisted of a variable number of 

learning units, each of them having two phases, training and recognition test. During the training 

phase, each pattern was shown three times in random order for 200 ms, followed by a number 

specifying the class to which the pattern was assigned. The class label was displayed for 1000 

ms, with an interstimulus interval of 500 ms relative to the offset of the learning pattern. The test 

phase of each learning unit served to monitor the learning status of the observer. Here, the pat-

terns were shown once in random order and classified by the subject by pressing the appropriate 

button on the computer keyboard. No feedback on the correctness of the individual response was 

provided. However, upon completion of the test phase participants were presented with the over-
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all score of correct classifications obtained in the recognition test, which concluded the learning 

unit. The series of learning units continued until the observer reached the learning criterion of an 

error-free classification (100% correct) in one recognition test. 

 

Data analysis 

Observer performance was assessed in terms of learning duration (i.e., the number of learning 

units required to reach the learning criterion), and in terms of the mean confusion-error matrix, 

i.e. the relative frequencies of a correct response averaged across the learning procedure. To visu-

alize the internal class concepts acquired during learning the confusion-error data was analysed in 

terms of a probabilistic virtual prototype (PVP) model (Rentschler et al., 1994; Jüttner & 

Rentschler, 1996, 2000). The model is based on the concept of pattern similarity and provides a 

technique for reconstructing the internal representation of categories that observers develop dur-

ing learning. This analysis permits inferences about structure and dimensionality of the underly-

ing conceptual space and has been shown to provide, for tasks involving the perceptual classifica-

tion of Gabor patterns, a more parsimonious description than multidimensional scaling tech-

niques (Unzicker, Jüttner & Rentschler, 1998). Internal representations of pattern classes are 

modelled as distributions of feature vectors around a mean vector, the so-called virtual class pro-

totype. Human classification behaviour is formally described in terms of a Bayesian classifier that 

operates on such internal class representations. According to the PVP concept the distance of two 

virtual prototypes reflects the perceived similarity of the corresponding classes. Error vectors, 

which relate physical mean vectors of pattern classes to virtual prototypes, are varied to allow a 

least-square fit between observed and model-predicted classification frequencies. 
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RESULTS 

  

Experiment 1 

The aim of Experiment 1 was to establish to what extent the existence of mirror-image relations 

between patterns assigned to different categories would affect the acquisition of categorical 

knowledge. For this purpose, four naive observers (H.E., male; J.I., male; R.U., female; S.I., 

male) were trained, using the paradigm of supervised learning, to assign the twelve patterns of 

the learning set to four classes as defined by the four patterns clusters in the generating Fourier 

feature space (Figure 2A; configuration C0).  

 

--------------------------------------------- 

Insert Figure 3 here 

--------------------------------------------- 

 

Figure 3A (left) shows for each subject the relative classification frequencies for each 

class, cumulated across the entire sequence of learning units. The individual learning time of the 

observer is indicated by N, which specifies the number of learning units necessary to reach the 

learning criterion of 100% correct. Individual learning times ranged from 16 to 49 learning units 

with a mean of 34.2 . Despite the fact that all subjects successfully completed the task the slow 

learning progress suggests a particular difficulty that can be related to the pattern of confusion 

errors evident in the classification frequencies. The latter reveals that confusions mainly occur 

between categories containing mirror images. For example, subject H.E. confounds patterns of 
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class 1 mainly with those of class 4 but rarely with those of class 2 or class 3. An analogous error 

pattern is observed, with some individual variation, for the other three observers, and also with 

regard to the other category pairs involving mirror images, i.e. class 2 vs. class 3, class 3 vs. class 

2 and class 4 vs. class 1. To consolidate this observation statistically we performed for each class 

pairwise comparisons of errors involving the mirror class and the non-mirror class alternative 

with the same distance in physical feature space: For example, for class 1 the mirror-class alter-

native would be given by class 4 whereas the non-mirror class alternative would be class 2. In 

paired t-tests these comparisons proved highly significant across all four classes (ts(11)>5.77;  

ps<0.001). The dominance of mirror class over non-mirror class errors is also evident from the 

group average data shown in Figure 3B (right).  

The pronounced asymmetry induced by mirror image relations leads to a distinct distor-

tion of the conceptual space developed during category learning (individual data Fig. 3a right; 

group average data Fig. 3b right). The symmetry of the square-like class configuration in the gen-

erating Fourier feature space (dashed lines) appears broken and distorted towards an elongated, 

almost one-dimensional arrangement that predominantly extends in parallel to the ξ-axis. Only 

subject R.U. succeeds to partially separate the mirror images in classes 2 and 3.  

 

Experiment 2 

In Experiment 1 we had shown that the existence of mirror image relations between pattern cate-

gories had a strong distorting effect on the conceptual space that is developed during category 

learning. This effect had been established by analysing the confusion error matrices averaged 

across the entire learning process. In Experiment 2 we focussed on the dynamics of the learning 

process by addressing the impact of mirror image relations on learning speed. For this purpose, 
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we combined the four pattern clusters of the learning set in a pairwise manner such that clusters 

containing mirror images of each other either fell into different categories (condition C1, Fig. 2b 

right) or into the same one (condition C2, Fig. 2b left). Two further groups of observers (Group 1 

and Group 2) were assigned to condition C1 and C2, respectively, and trained to criterion. 

 

 

--------------------------------------------- 

Insert Figure 4 here 

--------------------------------------------- 

 

Fig. 4 shows the learning curves of the two groups, in terms of the percent correct re-

sponse scores obtained during the test phase of each learning unit, as a function of learning time 

measured in learning units. Group 1 (observers G.F., female; A.Z., male; H.G., female; G.S., 

male; cf. Fig. 4 top), which was required to tell apart mirror images during learning, needed an 

average of 26.2 (range: 14-45) learning units to reach the learning criterion. In contrast, Group 2 

(observers J.S. female; O.R., male; P.L., female; G.M., female; cf. Fig. 4 bottom), which was not 

required to discriminate between mirror images during learning succeeded at an average of 2.75 

(range: 2-5) learning units. The difference between the two groups was highly significant 

(t(6)=3.92, p<0.01). Despite the fact that in both conditions the two compound clusters defining 

the target categories had the same distance within the generating Fourier feature space, the exis-

tence of mirror image relations in condition C1 induces a dramatic reduction of learning speed by 

about a factor of 10 relative to C2.     
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Experiment 3 

Experiment 2 had demonstrated that the existence of mirror image relations between patterns of 

different category membership severely impedes the acquisition of categorical knowledge. Be-

haviourally this became manifest in a sharp increase in the number of learning units necessary to 

reach a perfect classification of all patterns in the learning set. The question arises whether the 

slow learning progress reflects a process by which observers gradually memorize individual pat-

terns by associating them with their appropriate class label, or whether it indicates a shift in the 

way in which patterns are perceptually interpreted, or more specifically, a shift towards a repre-

sentational format where mirror-image relations are easier to disambiguate. In the latter case, sub-

jects should be able to generalize their conceptual knowledge in a transfer task employing the 

same patterns in a different categorization context, whereas they should show little or no such 

benefit if the former hypothesis is correct. We tested this prediction by requesting the same ob-

servers as in Experiment 2 to do a further learning task that was identical to that in Experiment 1. 

Thus we used the data previously obtained in that experiment as a baseline to compare transfer 

effects of observers that had either learned to distinguish mirror images in Experiment 2 (Group 

1) or not (Group 2).  

 

--------------------------------------------- 

Insert Figure 5 here 

--------------------------------------------- 

 

The results for the two groups are summarised in Figures 5 and 6, using the same format 

as in Figure 3 (cf. Experiment 1). For Group 1 both the cumulative classification frequencies and 
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the reconstructed conceptual space representations are markedly different from those of the naïve 

subjects in Experiments I. At the level of the individual data (Figure 5A) there is no indication of 

a systematic distiortion of the conceptual space due to mirror image confusions. Pairwise com-

parisons of confusion errors involving the mirror class and the non-mirror class alternative 

proved non-significant for classes 1, 2 and 4 (ts(11)<1.49; ps>0.16); only for class 3 there was a 

significant difference (t(11)=2.65, p<0.05) between the two error types, which can be related to 

the exceptional response pattern for class 3 shown by subject H.G. Thus the data suggests a sub-

stantial transfer of mirror-image discrimination skills from Experiment 2 to Experiment 3. Fur-

ther support comes from the group average data (Figure 5B), which shows that the square-like 

class configuration in Fourier feature space is well preserved in the conceptual space recon-

structed from the confusion error data. 

 

--------------------------------------------- 

Insert Figure 6 here 

--------------------------------------------- 

 

In contrast, the pattern of results obtained for Group 2, both at individual (Figure 6A) and 

at group average level (Figure 6B), is strikingly similar to that found for the naïve subjects in Ex-

periment 1 (cf. Figure 3). Again, the individual patterns of confusion errors show a systematic 

tendency to confuse mirror images assigned to different classes. Pairwise comparisons of errors 

involving mirror versus non-mirror class alternatives proved significant for all classes 

(ts(11)>2.7; ps<0.05). As a consequence, the conceptual space representation reconstructed from 

the group average data shows a similar distortion towards the ξ-axis as observed in Experiment 1, 
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although at individual level different configurations may occasionally arise (subject J.S. ; cf. also 

subject R.A. in Figure 3A).  

The advantage of Group 1 relative to Group 2 becomes further evident in learning dura-

tion (Figure 7 right). While Group 2 on average learned the patterns after 30.2 (range: 19-48) 

learning units, Group 1 required only 8.5 (range: 7-11) learning units to reach the learning crite-

rion, leading to a data pattern complementary to that observed in Experiment 2 (Figure 7 left). 

Again, the difference between the two groups is highly significant  (t(6)=4.13, p<0.01). 

--------------------------------------------- 

Insert Figure 7 here 

--------------------------------------------- 

 

 

Simulation Results 

 

The results of Experiment 3 show that subjects who had successfully learned to discriminate be-

tween mirror-symmetric counterparts in Experiment 2 generalized this conceptual knowledge to a 

different categorization context involving the same set of stimuli. This supports the hypothesis 

that learning to distinguish between mirror images involves a representational shift towards a 

format in which mirror-image relations are easier to resolve, thus facilitating their integration 

within categorical knowledge structures. To gain further insight into the nature of the underlying 

mental representations we modelled human performance in terms of evidence-based pattern clas-

sification. 

According to the evidence-based systems (EBS) approach to pattern recognition, complex 
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objects are encoded in terms of parts and their relations that carry evidence weights for each class 

alternative. Originally developed in the area of machine learning and computer vision (Jain & 

Hoffman, 1988; Caelli & Dreier, 1994) we have previously demonstrated that the EBS architec-

ture also provides the framework for a process model of human perceptual categorization and 

generalization (Jüttner et al., 1997, 2004). 

An evidence-based classifier first segments a given pattern into its component parts. Each 

part is characterized by a set of part-specific, or unary, attributes (e.g. size, luminance, area), and 

each pair of parts is described by a set of relational, or binary, attributes (e.g., distance, angles, 

contrast). Thus, each part may be formally represented as a vector in a feature space spanned by 

the various unary attributes, and each pair of parts by a vector in a binary feature space. Within 

each feature space regions are defined that act as activation regions for rules. An attribute vector 

falling inside such a region will activate the corresponding rule otherwise the rule remains inac-

tive. This leads to an object representation in terms of a rule activation vector – a vector, the 

components of which are assigned to the activation states of the individual rules. The activation 

of a given rule provides a certain amount of evidence for the class membership of the input ob-

ject. The evidence weights associated with the individual rules and their combinations are implic-

itly represented within a neural network. Here each input node corresponds to a rule, each output 

node to a class, and there is one hidden layer. The relative activity of an output node provides a 

measure of the accumulated class-specific evidence. This activity may be probabilistically inter-

preted and related to a classification frequency. 

In order to ensure internal consistency of our simulations, we constrained the system pa-

rameters according to a range that had proved optimal in previous work involving the same type 

of stimulus material (see Jüttner et al., 1997, 2004): The segmentation stage used a region-
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analysis technique that was based on partitioning the image according to connected grey-level 

regions yielding 3-5 parts per image. The rule-generation stage employed K-means clustering 

procedure producing a set of 10-14 rules. Furthermore, the classifier was supplied with a reser-

voir of four unary attributes (position, luminance, aspect ration and size) and three binary attrib-

utes (distance, relative size, contrast). We then tested which attribute combinations represented 

potential solutions of the classification problem, i.e. the neural network could be successfully 

trained using the backpropagation algorithm to distinguish between the classes. 

When used as a framework to describe category learning, each attribute combination rep-

resents a state within a search space of possible working hypotheses defined by the set of all pos-

sible combinations of unary and binary attributes. Learning speed is determined by the time nec-

essary to find a solution within that search space, i.e., a set of attributes that allows to success-

fully discriminate between classes. Under the assumptions that the search is exhaustive and that 

the time needed to evaluate each working hypothesis is constant, learning speed is proportional to 

NFS/N, where NFS denotes the number of EBS solutions within the search space and N the total 

numbers of states within that space. In the context of the present experiments this implies the 

prediction that the number of learning units necessary to solve a classification problem (learning 

duration) should be proportional to 1/NFS.  

 

--------------------------------------------- 

Insert Figure 8 here 

--------------------------------------------- 

 

Figure 8A (left) shows the EBS-predicted learning durations for the category learning 
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tasks in Experiment 2. In agreement with the behavioural data fast learning (corresponding to a 

low number 1/NFS ) is obtained for class configuration C2 (cf. Group 2 in Figure 7 left) that does 

not require the separation of mirror-symmetric counterparts. In contrast, slow learning (corre-

sponding to a high number 1/NFS ) is obtained for the class configuration C1 (cf. Group 1 in Fig-

ure 7 left) that involves the separation of mirror-symmetric counterparts. 

Figure 8A, right, plots IFS, where IFS denotes the number of attribute states that allow the 

solution of the classification problems with two-classes as well as that of the classification prob-

lem with four classes (C0, cf. Figure 2). The reciprocal of the so-defined cross-task compatibility 

index is low for the classification problem implying a separation of mirror images (C1) and high 

for that without such a separation (C2). The latter results explain the complementary pattern ob-

served for the learning duration of Group 1 and Group 2 in Experiment 3 relative to that in Ex-

periment 2 (Figure 7 right): Most attribute combinations that were solutions in condition C1 (as-

signed to Group 1 in Experiment 2) but only few of those that were solutions in condition C2 (as-

signed to Group 2) were simultaneously solutions for the 4-class task in Experiment 3, thus con-

siderably facilitating transfer for Group 1 relative to Group 2.  

The relative frequencies of unary and binary attributes within the sets of solutions for con-

dition C1 and C2 are shown in Figure 8B. These histograms may be regarded as signatures of the 

underlying categorical representations as they indicate the relative importance of the various at-

tributes within the solutions of the classification tasks associated with the two conditions. Ac-

cording to the plot, the signature of C1 differs from that of C2 mainly in that the unary attribute 

position becomes predominant at the expense of the unary attribute size for the discrimination of 

mirror images. The value of the position attribute is measured for each pattern relative to the 

same reference system such as the fixed display aperture. This attribute therefore attains the qual-
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ity of a relational attribute in that its values for a pair of parts imply the distance of its members. 

However, it should be noted that positional values are signed relative to the origin, whereas those 

of the regular binary attributes are non-negative by definition. In that sense the attribute position 

becomes crucial for mirror-image discrimination as it mediates the spatial localisation of parts 

and pairs of parts relative to an external (i.e. non object-centred) frame of reference. 

 

 

 

DISCUSSION 

 

Previous work has considered mirror-image-discrimination mainly as an existing skill, the pres-

ence (or absence) of which being indicative either of the status of cognitive development (Rudel 

& Teuber, 1963; Bornstein, Gross & Wolf, 1978), or of a particular perceptual deficit within neu-

rological patient populations (Turnbull & McCarthy, 1996; Davidoff & Warrington, 2001, Priftis 

et al. 2003). The present study transcends this perspective by focussing on the learning of mirror-

image discrimination skills in normal adult observers, and on the way in which such skills are 

embedded into the process of pattern categorization - the cognitive backbone of visual perception 

(Bruner, 1957; Rosch, 1978). We employed a paradigm, in which categories of unfamiliar pat-

terns were defined within a low-dimensional Fourier feature space that allowed to define for each 

target class two equivalent (in terms of elementary stimulus properties such as spatial frequency, 

relative spatial phase and Fourier energy) distracter classes that either consisted of mirror images 

or of non-mirror images of the target class. Our main behavioural findings were twofold: First, 

the existence of mirror-image relations between patterns assigned to different classes led to a 

pronounced retardation of category learning (Experiment 2). Second, once observers had learned 
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to distinguish between mirror images in one categorization task they could transfer this skill to a 

different task where the same stimuli were used in a different categorization context (Experiment 

3), supporting the idea of a representational shift at stimulus level that facilitates the acquisition 

of mirror-image relations during category learning.  

Concerning the former of these results, the difficulty to learn the classification of patterns that are 

mirror-symmetric counterparts of each other stands in marked contrast to the efficiency and speed 

of detecting bilaterally symmetric shapes (see Wagemans, 1996). Owing to this efficiency bilat-

eral symmetry relations have been repeatedly assigned to the class of stimulus properties that can 

be detected pre-attentively (e.g., Barlow and Reeves, 1979; Wolfe and Friedman-Hill, 1992; 

Locher and Wagemans, 1993). To explain the detection of such relations it has been assumed that 

a potential axis of symmetry is selected within a target pattern that permits a more detailed 

evaluation by way of a piecewise comparison of the corresponding pattern halves (Palmer and 

Hemenway, 1978). Alternatively, a bootstrapping mechanism has been proposed that allows the 

propagation of local pairwise groupings along a unique direction within a coherent global struc-

ture (Wagemans, Van Gool, Swinnen & Van Horebeek, 1993). These concepts have in common 

that establishing a perceptual frame of reference within the target pattern is essential for the de-

tection of bilateral symmetry. The fact that the latter task can be accomplished very rapidly indi-

cates that such a frame of reference is obtained via the quasi parallel filtering and grouping op-

erations of early visual processing (e.g., Locher and Wagemans, 1993). 

In contrast, the computational analysis of our learning data indicates that mirror-image 

discimination requires a structural representational format where pattern components are encoded 

relative to a spatial frame of reference that is external to the target pattern. In principle, such a 

reference frame can be specified either in observer-centered (egocentric) or scene-based 
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(allocentric) coordinates. Whereas our simulations do not permit us to distinguish between these 

two possibilities, independent evidence favours the later alternative. By analysing physical 

rotation patterns during comparisions of shape (including mirror images) at different orientations 

Hinton & Parsons (1988) showed that observers rely more on a scene-based rather than a viewer-

centered representation. In neuropsychology, the occurrence of agnosias for mirror stimuli has 

been related to a failure to assign a suitable frame of reference to observed objects (Turnbull et al. 

1997), and demonstrated for a case of  specific impairment in spatial tasks relying on allocentric 

coordinates (Priftis et al. 2003). In conjunction with our results this suggests that category 

representations involving the separation of mirror-images involve positional relations relative to a 

scene-based frame of reference.  

Our EBS simulations also provide answers to the questions of why the learning of such 

representations is so slow, and why their transfer to a different categorization context is relatively 

easy – our second major finding in the present study. Within the context of EBS, pattern category 

learning can be described as a successive testing of working hypotheses that in case of the catego-

rization of compound Gabor stimuli has received support through the psychometric analysis of 

the confusion error data during the learning process (Jüttner & Rentschler, 1996; Unzicker et al., 

1999). Formally, each working hypothesis corresponds to the selection of a subset of attributes 

that define a reference system for describing pattern parts and their relations. Once chosen, the 

elaboration of such a working hypothesis will include the formation of rules and the tuning of 

evidence weights. Eventually, the elaboration process either results in a successful categorization, 

or the current working hypothesis is rejected and replaced by a different one. The simulations 

show that given a certain reservoir of non-relational and relational attributes, subsets of attributes 

that allow the separation of mirror classes (condition C1 in Experiment 2) are relatively sparse, 
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whereas those allowing the discrimination of non-mirror classes (condition C2) are much more 

numerous. As a consequence, the search for a solution within the search space of all possible at-

tribute combinations will be much more time-consuming in the former case relative to the latter – 

in agreement with the behavioural data. Furthermore, the simulations reveal that working hy-

potheses (subsets of attributes) that prove successful in condition C1, but not those that are suc-

cessful in C2, tend to constitute simultaneous solutions of condition C0 (Experiment 3) once they 

have been “elaborated” (in terms of a re-adjustment of rules and evidence weights) accordingly. 

Without further assumptions the model predicts for Experiment 3 a pattern of learning times that 

is complementary to that of Experiment 2, and thus provides a parsimonious description of the 

data sets of the two experiments.  

Evidence-based classifiers provide an explicit link between physical and internal repre-

sentation, as image segmentation, attribute extraction and rule generation are entirely defined 

within the image domain. Furthermore, structural information is preserved by describing patterns 

in terms of component parts and their unary (part-specific) and binary (part-relational) attributes. 

This representational format contrasts with that of established psychometric approaches to cate-

gorization such as the Generalized Context Model (Nosofsky, 1986, 1991) or General Recogni-

tion Theory (Ashby, 1989; Ashby & Maddox, 1993). These models generally represent objects or 

patterns as single points within a multidimensional psychological space, the metric of which is 

determined by perceived similarity via multidimensional scaling (MDS). However, similarity-

based approaches necessarily fall short to provide any explanation of the difficulty of mirror-

image discrimination because they remain tacit as to what makes mirror stimuli look so similar. 

Despite recent successful attempts to apply psychometric classification techniques directly to 

physical parameter space rather than similarity space (Op de Beeck, Wagemans & Vogels, 2001; 
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Peters, Gabbiani & Koch, 2003) the difficulties in relating perceived similarity to physical stimu-

lus properties have been abundant, and historically were part of the motivation for the develop-

ment of MDS (Shepard, 1987). Specifically, for compound gratings as used in the present study 

MDS dimensions only partly correlate with the dimensions of the generating Fourier feature 

space (Kahana & Bennett, 1994), and confusion errors are predicted neither by pixel-wise pattern 

correlation (Jüttner et al., 1997) nor by image representations based on Laplacian pyramids or 2D 

curvature (Rentschler et al., 1996). The EBS approach circumvents these problems by relating 

classification behaviour to a representation based on the components that constitute perceptual 

pattern structure (see also Jüttner, 2005). 

While in this respect evidence-based classification adopts a more low-level perspective 

than traditional psychometric categorization models it assumes a more high-level stance than 

physiologically inspired approaches, such as the HMAX model of Riesenhuber & Poggio (1999). 

HMAX operates directly in image space and consists of alternating layers of linear (S) and non-

linear (C) units that perform a hierarchical decomposition of the input image into features defined 

by the S units. Crucially, C units employ a nonlinear maximum operation to pool over afferents 

tuned to different positions and scales thus achieving invariance to translation and size. Such a 

decomposition could be conceived as a pre-processing front end to an evidence-based classifier 

to detect the presence of pattern components. However, the spatial pooling performed by the C 

units makes the model per se less adequate to explain the discrimination of mirror-patterns that 

differ in the position of their local features. In fact, HMAX simulations yield similar confusion 

patterns for pseudo-mirror views of depth-rotated paper clip objects as observed for neurons in 

the inferotemporal cortex of the monkey (Riesenhuber & Poggio, 1999).  
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The evidence-based classification approach underlying our computer simulations has 

been validated in a number of previous studies of classification learning employing the same type 

of stimulus material (see Jüttner et al., 1997, 2004). Formally, this approach belongs to the class 

of so-called part-based recognition systems originally developed in machine vision for the recog-

nition of complex objects in complex scenes (see Ballard & Brown, 1982; Caelli & Bischof, 

1997). In general, evidence-based classifiers will produce only “attribute-indexed” representa-

tions, i.e., they ignore the explicit associations between attributes and pattern parts. Such repre-

sentations would be sufficient for the distinction of classes involving patterns that are not mirror-

symmetric counterparts of each other but they necessarily fail to separate classes involving mirror 

images, which are characterized by the same sets of unary and binary attributes. To achieve the 

latter task, attributes need be associated with the parts to which they refer. In our simulations this 

association is re-established by the use of the attribute position, which uniquely indexes parts by 

their spatial coordinates. The resulting representations attain the additional quality of being “part-

indexed” and allow for more powerful but computationally more expensive processing strategies 

(such as graph-matching, see Bunke, 2000) capable to discriminate objects that are mirror-

symmetric counterparts. The emerging prevalence of the position attribute in tasks involving mir-

ror-image discrimination therefore indicates a qualitative difference with regard to the underlying 

representations of pattern categories. 

From a phenomenological perspective, part-indexed representations can be regarded as 

one possible realization of a “holistic” format, in which pattern parts become connected to each 

other in a unique, non-interchangeable way – in contrast to attribute-indexed representations 

where this uniqueness is not guaranteed. Learning object representations that are capable of re-

solving mirror-image relations therefore suggests a shift towards a proto-holistic format in which 



 
 
 

27 

individual parts form larger constituents, or fragments, within patterns. Such fragments have been 

shown to be sufficient to support categorization at an intermediate level (Ullman et al., 2002) but 

could be part of a hierarchy of representations of increasing complexity to support also judge-

ments at expert level (Palmeri et al., 2004). In that sense the learning of mirror-image discrimina-

tion skills might call upon mechanisms similar to those that have been proposed for the acquisi-

tion of perceptual expertise in the recognition of faces (Farah et al., 1998) and other objects 

(Gauthier et al., 2003). 
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FIGURE CAPTIONS 

 

Figure 1. Greylevel representation (a) and corresponding luminance profiles (b) of iso-energy 

compound Gabor patterns used for category learning. The patterns were composed of two grat-

ings, a fundamental spatial frequency component of fixed amplitude and cosine phase with a 

third harmonic of variable amplitude b and phase φ within a Gaussian aperture. A metric feature 

space with the Cartesian even, ξ = b cos φ, and odd, η = b sin φ, co-ordinates was used for pattern 

representation. Reflecting a given feature vector (ξ0, η0) successively at the ξ- and η-axis leads to 

a “quadrupole” of patterns that are pairwise mirror images of each other but have identical image 

energy (Fourier power) owing to their equidistance from the origin. (c) Using this construction 

principle a learning set of 12 patterns was generated, consisting of four clusters I-IV of 3 patterns 

each (small symbols). The four cluster means (illustrated in A, B but not part of the learning set) 

formed a square-like configuration that was centred on the origin of the Fourier feature space. 

Scale: One unit corresponds to 20 cd/m2 amplitude relatively to D.C. 

 

Figure 2. (a) Individual clusters (Condition C0) or (b) cluster pairs (Condition C1 and C2) of the 

learning set shown in Fig. 1c were used to define pattern categories to be learned by the subjects. 

 Note that in (B) clusters with mirror images of each other were either grouped into the different 

classes (C1) or into the same class (C2). Symbols are used to denote each cluster: cluster 1: black 

circles; cluster 2: black squares; cluster 3: open squares; cluster 4: open circles. Same symbol 

shape refers to clusters containing mirror patterns of each other. Large symbols and dotted lines 

indicate the cluster means and are not part of the learning set.  
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Figure 3 Classification of the learning set into four classes (Condition C0) by four naive observ-

ers. (a, left) Relative classification frequencies for each class (symbols as in Fig. 2) cumulatesd 

over learning units. Initials of subjects and the number N of learning units to 100% classification 

as insets. (a, right) Virtual prototype solution derived from the observed classification probabili-

ties. For comparison the square-like configuration of the four mean pattern vectors of the learning 

set (cf. Fig. 2a) is indicated by the dotted square. The variable e denotes the root mean squared 

(RMS) error between observed and predicted classification probabilities. (b) Same as (a) but 

classification frequencies collapsed over observers.  

 

Figure 4. Mean percent correct classification as a function of the number of learning units (learn-

ing curves) for the four subjects of Group 1 (Condition C1 in Fig. 2b) and of Group 2 (Condition 

C2).  

 

Figure 5. Classification of the learning set into four classes (Condition C0) by the four observers 

of Group 1 who were pre-trained with two-class condition C1. Data format as in Fig. 3. 

 

Figure 6. Classification of the learning set into four classes (Condition C0) by the four observers 

of Group 2 who were pre-trained with two-class condition C2. Data format as in Fig. 3. 

 

Figure 7. Mean learning duration (number of learning units to criterion) in Experiment 2 (two-

classes configurations) and in Experiment 3 (four-classes configuration) for Group 1 and Group 

2. 
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Figure 8. Simulation results. (a) EBS-predicted relative learning durations for Experiment 2 

(two-class conditions C1 and C2, left) and for Experiment 3 (four-class condition C0, right) with 

observers being pre-trained in either C1 or C2. NFS denotes the number of attribute solution states 

within the EBS search space. IFS is the number of attribute solution states that are simultaneous 

solutions of the classification tasks involving two classes (conditions C1 or C2) as well as that 

with four classes (C0). Note that the complementary learning time patterns for Experiment 2 and 

Experiment 3 closely match the behavioural data shown in Fig. 7. (b) Relative frequencies of 

unary (u.P: position, u.S: size, u.I: luminance, u.A: aspect ratio) and binary (b.D: distance, b.S: 

relative size, b.C: contrast) attributes within the EBS solutions for the classification tasks C1 and 

C2. Note that the attribute position attains a predominant role for condition C1, which involves 

the discrimination of mirror patterns. 
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