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Abstract

The discrimination of patterns that are mirror-syatne counterparts of each other is difficult
and requires substantial training. We explored tremirror-image discrimination during ex-
pertise acquisition is based on associative legrstirategies or involves a representational shift
towards configural pattern descriptions that petowesolve symmetry relations. Subjects were
trained to discriminate between sets of unfamdiay level patterns in two conditions, which
either required the separation of mirror imageasadr Both groups were subsequently tested in a
4-class category-learning task employing the sahefstimuli. The results show that subjects
who successfully had learned to discriminate betwegror-symmetric counterparts were dis-
tinctly faster in the categorization task, indingta transfer of conceptual knowledge between the
two tasks. Additional computer simulations sugdfest the development of such symmetry con-
cepts involves the construction of configural, prablistic descriptions, in which positions of

pattern parts are encoded relative to a spatialdraf reference.



Visual patterns that are mirror-symmetric countepaf each other are notoriously difficult to
distinguish. As already noted by Ernst Mach (192B)ldren confuse characters and syllables
such as p-g and no-on during the acquisition oflirpand writing. Although this well-
documented difficulty in infancy (see Davidson 198&del & Teuber, 1963; Bornstein, Gross &
Wolf, 1978) is mostly overcome during cognitive dmpment, mirror images continue to be
perceived as particularly similar in adulthood.lassical tool to demonstrate and to exploit this
phenomenon has been Shepard & Metzler’'s (1971)ahenétion paradigm. Here the similarity
between mirror-image pairs is assumed to enforoertal alignment of the two target stimuli
prior to their mirror-image comparison, which re@si more time to complete with increasing
angular separation (Shepard & Cooper, 1982).

Mental rotation has also been repeatedly propasadjaneral explanatory concept for all
object recognition tasks including mirror-imageadisiination that involve plane and depth
transformations (e.g., Jolicoeur, 1985; Hinton &d@as, 1988; Tarr & Pinker, 1989; Murray,
1997). However, more recent findings cast some toulis relative importance. For example,
Lawson & Jolicoeur (1999) demonstrated a distinoh-monotonic effect of plane rotation on
the time required to identify objects, in contitasthe monotonic relation that is typical for tasks
involving mirror-image discrimination. This findingnd the fact that practice does reduce plane
rotation costs in object naming but not in lefiMigrientation judgements (Jolicoeur, 1989), in-
dicate that object identification does not necelysanply the ability to distinguish between mir-
ror images. In fact, neuropsychological eviden@athat mirror-image discrimination may be
selectively impaired, leaving object recognitioflisispared (Turnbull & McCarthy, 1996; Davi-

doff & Warrington, 2001, Priftis et al. 2003).



Adopting an evolutionary perspective, Gross & Bteirs(1976) argue that the tendency
to confuse mirror images may reflect an adaptivelenaf processing rather than a perceptual
limitation. As they point out virtually all mirramages in the natural world either arise from pro-
file views of objects that are bilaterally symmetior from silhouettes of arbitrary objects seen
from opposite sides. In either case, mirror imagdsr back to the same object in three-
dimensional space and should therefore evoke sineg@onse patterns. This notion is compati-
ble with the observation that perceptual primingraffected by left-right reflection (Biederman
& Cooper, 1991; Lawson & Humphreys, 1998; Fiseri&dgrman, 2001), and with neurophysi-
ological evidence for neurons in the inferotempoaatex of the monkey showing response gen-
eralisation over mirror reversal (Rollenhagen &ddls2000; Baylis & Driver, 2001). However,
the behavioural equivalence of mirror images maedd on the level of categorization involved
by a recognition task. Categorization at the basentry level, commonly regarded to be the de-
fault in neutral contexts (Rosch et al., 1976;chEur, Gluck & Kosslyn, 1984), may not require
a representation that allows the visual systemdstinguish a shape from its mirror image - for
example, in order to distinguish a shoe from o#itecles of dress. In contrast, categorization at
the subordinate level - for example, a left shaswga right shoe - may well do so. Our ability to
learn such distinctions to the point where theyobse almost trivial, i.e. where they attain the
status of quasi entry levels within the categoraahierarchy, renders mirror-image discrimina-
tion a characteristic feature of visual expertidehfison & Mervis, 1997; Tanaka & Taylor,
1991). Examples of expertise requiring mirror-imdgerimination skills range from everyday
problems in areas in which we are all “expertsj(ghe distinction between the letters p and q,

or b and d) to tasks in highly specialized domasash as the recall of board positions in chess



(Gobet & Simon, 1996) or the analysis of molecuoliedifferent chirality (handedness) in stereo-
chemistry (see e.g. Eliel, Wilen & Doyle, 2001; Y2602).

If mirror-image discrimination is part of visualgertise, the question arises of how such
expertise can be acquired, or more specificallyy horror-image relations become part of the
knowledge about object categories during learmfigor-image relations between patterns as-
signed to different categories may affect learmrtgro different ways: One possibility is that the
skill to discriminate between left and right coupgats of mirror-image pairs is acquired via as-
sociative learning. This notion can be related tosS and Bornstein’s (1978) aforementioned
hypothesis, according to which mirror images argdused because they are interpreted as two
views of one object in three-dimensional spacea Asnsequence, the similarity of mirror-image
pairs would arise because such images, albeit lukffegent stimuli, tend to be linked to the
same conceptual node in memory (see e.g. Krusdl®82). Learning to distinguish between
those pairs then would imply breaking up thesesliakd connect them to different nodes, thus
allowing a differential response behaviour.

Given the elementary nature of such learning ondavexpect it to be possible across a
wide range of organisms. In support of this predictesearch in animal learning shows that
many species, including rats (Kinsbourne, 1967;mdémo& Axelrod, 1991), cats (Sutherland,
1963), pigeons (Corballis & Beale, 1967; Hollard&lius, 1982; Lohmann et al., 1988), and
monkeys (Nissen & McCulloch, 1937; Brown & Ettling&983), although confusing mirror
stimuli initially, can be successfully trained isciminate between them to some extent. Despite
caveats such as the dependency of training sucnessnulus type and questions as to the limi-
tations of identity-matching in animals (D’Amat@I8on & Colombo, 1985), differences in the

representations at the conceptual level (Prem&83)land the problem of response consistency



(Corballis & Beale, 1976), this evidence pointa generic potential to acquire mirror-image dis-
crimination skills. Moreover, in human subjectsgaage might assist the conceptual separation
of mirror stimuli in memory. Neuropsychological cefs indicate that patients with impaired
mirror discrimination may still use a verbal codstgategy to discriminate e.g. a left shoe from a
right shoe by explicitly assigning them differe@sponse labels (Davidoff & Warrington, 1999).

As a second possibility, the tendency to confugeamimages could arise at the level of
stimulus representation as mirror images necegsdudlre the same local features and therefore
produce similar feature descriptions. Learningisbigiguish mirror-image pairs would imply a
representational shift, during which local featyassolated pattern parts, are linked to larger
entities within a configural description where gyenmetry relations between the two patterns
can be resolved. Representational shifts fromtedlparts to more holistic formats have been
proposed as one of the changes that may emergeydbe development of expertise in the rec-
ognition of faces and other objects (Farah et 2981 Gauthier & Tarr, 2002; Gauthier et al.,
2003; for a review, see Palmeri, Wong & Gauthi€Q4).

With regard to mirror-image discrimination, suppfat the representational-shift hy-
pothesis can be seen in the developmental trajectanis ability during the first decade of life
(Rudel & Teuber, 1963), which parallels that ofdaecognition. The well-established difficul-
ties of children under the age of 10 to recognime$ (e.g., Mooney, 1957; Carey & Diamond,
1977; Kolb, Wilson & Taylor, 1992; Campbell et d1999) have been attributed to a particular
encoding of face stimuli that relies on the prooesef isolated facial features rather than ofrthei
configuration (Carey & Diamond, 1994) although tti&am has not gone uncontested (Tanaka et

al. 1998). Nevertheless, such correspondences rmakégural object processing appear a plau-



sible way in which mirror-image relations may bedrporated into the representation of object
categories during expertise acquisition.

The two hypotheses outlined above differ in the imayhich they predict generalisation,
or transfer, of categorical knowledge involvingmirimage relations. If such relations are medi-
ated by associative learning mechanisms that timkusi with particular conceptual nodes, then
there should be little or no generalization if saene patterns are paired with new labels (nodes)
in a subsequent transfer task. In contrast, ihiegrof mirror-image relations is mediated by rep-
resentational shifts at the stimulus level, theshshifts, once acquired, should easily transfer to
novel tasks in which the same patterns are employadiifferent categorization context.

In the present study, we tested these predictiotiwée category-learning experiments
and by means of computer simulation. Our paradigwolived the classification of Compound
Gabor stimuli, grey-level patterns that result fribra superposition of two sinewave gratings, a
fundamental plus its third harmonic (cf. Figurdl1$ing this particular type of stimulus offers a
number of advantages: First, it permits to stuéyrtie of mirror-image relations in categoriza-
tion at a relatively early level. On the one ha@dbor patterns have been characterized as an
elementary stimulus in visual processing (e.g.,36M@tBarlow, & Robson, 1983; Rentschler &
Caelli, 1990; Westheimer, 1998) whereas they anethe other hand, perceptually complex
enough to stimulate category learning (Rentschlétner, & Caelli, 1994; Jittner & Rentschler,
1996, 2000; Juttner, Langguth & Rentschler, 208é4k.ond, compound Gabor patches circum-
vent the problem of prior knowledge, as such stisd unfamiliar to naive subjects; hence the
acquisition of categories composed of these patisrcompletely under experimental control.
Finally, and most important in the present contaxth patterns permit to control and manipulate

mirror-image relations between pattern categoriessystematic manner, as follows.



For the experiments, the patterns were specifi¢kinva two-dimensional, evenness-
oddness Fourier feature space representicgnanuum of visual shape where each point
uniquely specifies the appearance of a patternpattdrns with mirror-symmetric coordinates
relative to the evenness axis are mirror imagesot other (see Figure 1 and Method section for
details). Within this continuum, a set of 12 leahpatterns was defined (Fig. 1c) forming a
square-like configuration of four clusters (I-IV)ttvthree patterns each. In addition of being
identical in terms of their spatial frequency comifion the four pattern clusters were, owing to
the symmetry of the configuration in the generakogrier space, equivalent in terms of pattern
(Fourier) energy and relative spatial phase. Thefactor introducing a potential anisotropy at
the perceptual level was that the patterns of lilger pairs | - IV and Il - lll consisted of mimro
images of each other, whereas the cluster paiiisaind Ill - IV did not.

In Experiment 1, we investigated whether the eristeof such mirror relations would be
reflected in a learning task, where subjects waiiaed to assign the patterns of each of the four
clusters into different categories (Fig. 2a). Tésutting data also constituted the reference base-
line for the subsequent experiments, which adddetbeeexplicit learning of mirror-image rela-
tions and their generalisation to a different catemtion context. For Experiment 2, we com-
bined the four clusters in a pairwise manner in tlifterent ways that either grouped clusters
containing mirror images of each other into the saategory (Fig. 2b right) or into different
ones (Fig. 2b left). Two further groups of obsesweere trained in either of these two-class con-
ditions. The same subjects were then tested &etwansfer of their conceptual knowledge in
Experiment 3, employing the same 4-class categaizéask as in Experiment 1.

To corroborate our findings we also modelled thiedv@oural data in terms of an evi-

dence-based classification model (Juttner, CaeRigfatschler, 1997; Jlittner et al., 2004). Evi-



dence-based classifiers solve a given categorizgtimblem by constructing rules that carry evi-
dence weights for each class alternative. Thegs are based on non-relational and relational
attributes of object parts defined the image donilne set of attributes evaluated for rule gen-
eration therefore can be regarded as the ‘sigriaitiiee underlying conceptual representation.
We used the simulations to identify those attribukat were crucial for mirror-image discrimi-
nation, and to explore to what extent represemtatgstablished in Experiment 2 would be com-
patible with those acquired in Experiment 3, thigs/ling further support for our behavioural

results.

GENERAL METHOD

Apparatusand Materials
The experiments involved the classification of Couonpd Gabor patterns (Fig. 1a). Such grey-
level patterns result from the superposition of sn@wave gratings, a fundamental plus its third

harmonic, modulated by a Gaussian aperflineir intensity profile G(x,y) was defined by
G(x,y) =L, + exp{—iz(x2 + yz)} (acod277f,) + bcod2mB3f x + @) 1)
a

whereL determines the mean luminanaethe space constant of the Gaussian apemtibe
amplitude of the fundamentdd that of the third harmonic, amgithe phase angle of the latter.
The patterns were generated in a 128 x 128 8-kl gormat with a linear greylevel-to-

luminance function. The aperture parametevas set to 32 pixels.



Insert Figure 1 here

Pattern variation was restrictedxandq. This allowed the use of two-dimensional Fou-
rier feature space with the Cartesian coordingtedcos¢gandn = bsing . The §,n) feature

space provided continuum of visual shape with @aaht uniquely specifying the appearance of
a pattern. Within this feature space, patterngéataymmetrically to thé- (or ‘evenness’) axis
possess mirror-symmetric luminance profiles (Hxj.vthereas patterns located symmetrically to
then- (or ‘oddness’) axis possess inverted contragh@third harmonic (see Rentschler et al.,
1996). Reflecting a given feature vectés, fjo) successively at the andn-axis (cf. Fig. 1b)
leads to a “quadrupole” of patterns with the coeaties §o,- no), (-&o,- o) and (£o, no) that are
pairwise mirror images of each other but have idahimage energy (Fourier power) owing to
their equidistance from the origin.

Using this construction principle a learning set®patterns was generated, consisting of
four clusters I-1V of 3 patterns each (Fig. 1c)eThbur cluster means formed a square-like con-
figuration that was centred on the origin of theufrer feature space. Individual clusters (Ex-
periment 1 and 3) or cluster pairs (Experiment 8jemused to define pattern categories to be
learned by the subjects (Fig. 2).

The patterns were displayed on a raster monitaic(B&VM 3/3.2, P4 phosphor) linked
to a digital image processing system (Videograf 111/73). Space average luminance was kept
constant at 60 cd/mThe patterns subtended 1.6° at a viewing distah&6é5 cm. The spatial

frequency of the fundamental was 2.5 c/deg.



Subjects

In total, 12 paid observers (Experiment 1: 4 suljeExperiments 2 and 3: 8 subjects). Their
ages ranged between 20 and 30 years, 6 were fednae male. All had normal or corrected-
to-normal vision. None of the subjects had anyrpexperience with psychophysical experi-
ments. They gave their written informed consenh®study after the procedure had been ex-

plained to them.

Procedure

Subjects were trained to assign the patterns o phedefined categories using a supervised-
learning schedule (Rentschler et al., 1994). Tleguure consisted of a variable number of
learning units, each of them having two phasemitrgand recognition test. During the training
phase, each pattern was shown three times in raodden for 200 ms, followed by a number
specifying the class to which the pattern was agsigThe class label was displayed for 1000
ms, with an interstimulus interval of 500 ms relatio the offset of the learning pattern. The test
phase of each learning unit served to monitorehening status of the observer. Here, the pat-
terns were shown once in random order and claddifiehe subject by pressing the appropriate
button on the computer keyboard. No feedback ondhectness of the individual response was

provided. However, upon completion of the test phzeaticipants were presented with the over-
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all score of correct classifications obtained imtbcognition test, which concluded the learning
unit. The series of learning units continued uht observer reached the learning criterion of an

error-free classification (100% correct) in oneogpation test.

Data analysis

Observer performance was assessed in terms ofrfigadaration (i.e., the number of learning
units required to reach the learning criteriony] anterms of the mean confusion-error matrix,
i.e. the relative frequencies of a correct respanseaged across the learning procedure. To visu-
alize the internal class concepts acquired duaaming the confusion-error data was analysed in
terms of a probabilistic virtual prototype (PVP) deb (Rentschler et al., 1994; Jittner &
Rentschler, 1996, 2000). The model is based oodheept of pattern similarity and provides a
technique for reconstructing the internal represton of categories that observers develop dur-
ing learning. This analysis permits inferences abtructure and dimensionality of the underly-
ing conceptual space and has been shown to préderdasks involving the perceptual classifica-
tion of Gabor patterns, a more parsimonious desoenghan multidimensional scaling tech-
niques (Unzicker, Juttner & Rentschler, 1998). imik representations of pattern classes are
modelled as distributions of feature vectors arcaintean vector, the so-called virtual class pro-
totype. Human classification behaviour is formdigcribed in terms of a Bayesian classifier that
operates on such internal class representation®rdiag to the PVP concept the distance of two
virtual prototypes reflects the perceived similadt the corresponding classes. Error vectors,
which relate physical mean vectors of pattern elai$s virtual prototypes, are varied to allow a

least-square fit between observed and model-pesticdassification frequencies.
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RESULTS

Experiment 1

The aim of Experiment 1 was to establish to wh&gmxthe existence of mirror-image relations
between patterns assigned to different categoreddnraffect the acquisition of categorical
knowledge. For this purpose, four naive observidtE ( male; J.l., male; R.U., female; S.I.,
male) were trained, using the paradigm of supetMisarning, to assign the twelve patterns of
the learning set to four classes as defined byjatlnepatterns clusters in the generating Fourier

feature space (Figure 2A; configuration CO).

Figure 3A (left) shows for each subject the relatlassification frequencies for each
class, cumulated across the entire sequence afrigamnits. The individual learning time of the
observer is indicated by N, which specifies the banof learning units necessary to reach the
learning criterion of 100% correct. Individual laarg times ranged from 16 to 49 learning units
with a mean of 34.2 . Despite the fact that aljsctis successfully completed the task the slow
learning progress suggests a particular diffictligt can be related to the pattern of confusion
errors evident in the classification frequencidse Tatter reveals that confusions mainly occur

between categories containing mirror images. Fanmgte, subject H.E. confounds patterns of
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class 1 mainly with those of class 4 but rarelhwiitose of class 2 or class 3. An analogous error
pattern is observed, with some individual variatimm the other three observers, and also with
regard to the other category pairs involving mirmsages, i.e. class 2 vs. class 3, class 3 vs clas
2 and class 4 vs. class 1. To consolidate thisreasen statistically we performed for each class
pairwise comparisons of errors involving the mirctass and the non-mirror class alternative
with the same distance in physical feature spameekample, for class 1 the mirror-class alter-
native would be given by class 4 whereas the naremtlass alternative would be class 2. In
paired t-tests these comparisons proved highlyifsignt across all four classes (ts(11)>5.77;
ps<0.001). The dominance of mirror class over namemclass errors is also evident from the
group average data shown in Figure 3B (right).

The pronounced asymmetry induced by mirror imatgioms leads to a distinct distor-
tion of the conceptual space developed during ocaydgarning (individual data Fig. 3a right;
group average data Fig. 3b right). The symmetth@tEquare-like class configuration in the gen-
erating Fourier feature space (dashed lines) apjpeaken and distorted towards an elongated,
almost one-dimensional arrangement that predominextends in parallel to thiieaxis. Only

subject R.U. succeeds to partially separate theomimnages in classes 2 and 3.

Experiment 2

In Experiment 1 we had shown that the existenceiobr image relations between pattern cate-
gories had a strong distorting effect on the congdspace that is developed during category
learning. This effect had been established by airaythe confusion error matrices averaged
across the entire learning process. In Experimeve focussed on the dynamics of the learning

process by addressing the impact of mirror imatgioms on learning speed. For this purpose,
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we combined the four pattern clusters of the legyset in a pairwise manner such that clusters
containing mirror images of each other eitherifeth different categories (condition C1, Fig. 2b
right) or into the same one (condition C2, Figléih). Two further groups of observers (Group 1

and Group 2) were assigned to condition C1 and&pectively, and trained to criterion.

Fig. 4 shows the learning curves of the two groups$erms of the percent correct re-
sponse scores obtained during the test phase lofesaing unit, as a function of learning time
measured in learning units. Group 1 (observers,&male; A.Z., male; H.G., female; G.S.,
male; cf. Fig. 4 top), which was required to tglaet mirror images during learning, needed an
average of 26.2 (range: 14-45) learning units achehe learning criterion. In contrast, Group 2
(observers J.S. female; O.R., male; P.L., femalkt. Gemale; cf. Fig. 4 bottom), which was not
required to discriminate between mirror imagesraylearning succeeded at an average of 2.75
(range: 2-5) learning units. The difference betw#as two groups was highly significant
(t(6)=3.92, p<0.01). Despite the fact that in bathditions the two compound clusters defining
the target categories had the same distance witaigenerating Fourier feature space, the exis-
tence of mirror image relations in condition Cluods a dramatic reduction of learning speed by

about a factor of 10 relative to C2.
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Experiment 3

Experiment 2 had demonstrated that the existenceradr image relations between patterns of
different category membership severely impedesdogiisition of categorical knowledge. Be-
haviourally this became manifest in a sharp in@&aghe number of learning units necessary to
reach a perfect classification of all patternshi@ learning set. The question arises whether the
slow learning progress reflects a process by wblidervers gradually memorize individual pat-
terns by associating them with their appropriadésslabel, or whether it indicates a shift in the
way in which patterns are perceptually interpretednore specifically, a shift towards a repre-
sentational format where mirror-image relationsea®er to disambiguate. In the latter case, sub-
jects should be able to generalize their concetuaviedge in a transfer task employing the
same patterns in a different categorization conteiRereas they should show little or no such
benefit if the former hypothesis is correct. Weaddghis prediction by requesting the same ob-
servers as in Experiment 2 to do a further leartasg that was identical to that in Experiment 1.
Thus we used the data previously obtained in tkg¢ment as a baseline to compare transfer
effects of observers that had either learned tindigish mirror images in Experiment 2 (Group

1) or not (Group 2).

The results for the two groups are summarisedgares 5 and 6, using the same format

as in Figure 3 (cf. Experiment 1). For Group 1 bthcumulative classification frequencies and
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the reconstructed conceptual space representatiensarkedly different from those of the naive
subjects in Experiments I. At the level of the indual data (Figure 5A) there is no indication of
a systematic distiortion of the conceptual spa@tdumirror image confusions. Pairwise com-
parisons of confusion errors involving the mirréass and the non-mirror class alternative
proved non-significant for classes 1, 2 and 4 {fs{1.49; ps>0.16); only for class 3 there was a
significant difference (t(11)=2.65, p<0.05) betwélea two error types, which can be related to
the exceptional response pattern for class 3 stgvenbject H.G. Thus the data suggests a sub-
stantial transfer of mirror-image discriminationliskirom Experiment 2 to Experiment 3. Fur-
ther support comes from the group average datai&oB), which shows that the square-like
class configuration in Fourier feature space id wedserved in the conceptual space recon-

structed from the confusion error data.

In contrast, the pattern of results obtained faupr2, both at individual (Figure 6A) and
at group average level (Figure 6B), is strikingiyitar to that found for the naive subjects in Ex-
periment 1 (cf. Figure 3). Again, the individuakieans of confusion errors show a systematic
tendency to confuse mirror images assigned toréifiteclasses. Pairwise comparisons of errors
involving mirror versus non-mirror class alternasv proved significant for all classes
(ts(11)>2.7; ps<0.05). As a consequence, the conakegpace representation reconstructed from

the group average data shows a similar distortimatds the€-axis as observed in Experiment 1,
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although at individual level different configurat®may occasionally arise (subject J.S. ; cf. also
subject R.A. in Figure 3A).

The advantage of Group 1 relative to Group 2 besdongher evident in learning dura-
tion (Figure 7 right). While Group 2 on averagerteal the patterns after 30.2 (range: 19-48)
learning units, Group 1 required only 8.5 (rang&17 learning units to reach the learning crite-
rion, leading to a data pattern complementary &b dlbserved in Experiment 2 (Figure 7 left).

Again, the difference between the two groups isilyigignificant (t(6)=4.13, p<0.01).

Simulation Results

The results of Experiment 3 show that subjects duwbsuccessfully learned to discriminate be-
tween mirror-symmetric counterparts in Experimegéferalized this conceptual knowledge to a
different categorization context involving the sase¢ of stimuli. This supports the hypothesis
that learning to distinguish between mirror image®Ilves a representational shift towards a
format in which mirror-image relations are easeerdsolve, thus facilitating their integration
within categorical knowledge structures. To gaiter insight into the nature of the underlying
mental representations we modelled human perforenarierms of evidence-based pattern clas-
sification.

According to the evidence-based systems (EBS) apprio pattern recognition, complex

17



objects are encoded in terms of parts and theitiogls that carry evidence weights for each class
alternative. Originally developed in the area otthiae learning and computer vision (Jain &
Hoffman, 1988; Caelli & Dreier, 1994) we have poasly demonstrated that the EBS architec-
ture also provides the framework for a process moflleuman perceptual categorization and
generalization (Juttner et al., 1997, 2004).

An evidence-based classifier first segments a grattern into its component parts. Each
part is characterized by a set of part-specificjmary, attributes (e.g. size, luminance, area), an
each pair of parts is described by a set of refaticor binary, attributes (e.g., distance, angles,
contrast). Thus, each part may be formally reprteskas a vector in a feature space spanned by
the various unary attributes, and each pair osgdayta vector in a binary feature space. Within
each feature space regions are defined that actiaation regions for rules. An attribute vector
falling inside such a region will activate the @sponding rule otherwise the rule remains inac-
tive. This leads to an object representation imgeof a rule activation vector — a vector, the
components of which are assigned to the activatiates of the individual rules. The activation
of a given rule provides a certain amount of evidefor the class membership of the input ob-
ject. The evidence weights associated with theziddal rules and their combinations are implic-
itly represented within a neural network. Here a@aplit node corresponds to a rule, each output
node to a class, and there is one hidden layerr@lagve activity of an output node provides a
measure of the accumulated class-specific evidditee activity may be probabilistically inter-
preted and related to a classification frequency.

In order to ensure internal consistency of our &tmns, we constrained the system pa-
rameters according to a range that had proved aptmprevious work involving the same type

of stimulus material (see Jittner et al., 1997,4200he segmentation stage used a region-
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analysis technique that was based on partitiorirgrhage according to connected grey-level
regions yielding 3-5 parts per image. The rule-gaten stage employed K-means clustering
procedure producing a set of 10-14 rules. Furthegirtbe classifier was supplied with a reser-
voir of four unary attributes (position, luminanespect ration and size) and three binary attrib-
utes (distance, relative size, contrast). We thstetl which attribute combinations represented
potential solutions of the classification probldra, the neural network could be successfully
trained using the backpropagation algorithm toimligtish between the classes.

When used as a framework to describe categoryitegreach attribute combination rep-
resents a state within a search space of possarlanvg hypotheses defined by the set of all pos-
sible combinations of unary and binary attributesrning speed is determined by the time nec-
essary to find a solution within that search spaee,a set of attributes that allows to success-
fully discriminate between classes. Under the agsioms that the search is exhaustive and that
the time needed to evaluate each working hypotiesmistant, learning speed is proportional to
Neg/N, where Ns denotes the number of EBS solutions within thecdespace and N the total
numbers of states within that space. In the cordéxtte present experiments this implies the
prediction that the number of learning units neags® solve a classification problem (learning

duration) should be proportional to 14\

Figure 8A (left) shows the EBS-predicted learningations for the category learning
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tasks in Experiment 2. In agreement with the behaail data fast learning (corresponding to a
low number 1/Ns) is obtained for class configuration C2 (cf. Gr@ip Figure 7 left) that does
not require the separation of mirror-symmetric deyparts. In contrast, slow learning (corre-
sponding to a high number I/ is obtainedor the class configuration C1 (cf. Group 1 in Fig-
ure 7 left) that involves the separation of mirsgrametric counterparts.

Figure 8A, right, plotsgs, where gsdenotes the number of attribute states that ahew
solution of the classification problems with twassesswell asthat of the classification prob-
lem with four classes (CO, cf. Figure 2). The reagal of the so-defined cross-task compatibility
index islow for the classification problem implying a separyatof mirror images (C1) artigh
for that without such a separation (C2). The lagsults explain the complementary pattern ob-
served for the learning duration of Group 1 anduprd in Experiment 3 relative to that in Ex-
periment 2 (Figure 7 right): Most attribute comhtioas that were solutions in condition C1 (as-
signed to Group 1 in Experiment 2) but only fewlafse that were solutions in condition C2 (as-
signed to Group 2) were simultaneously solutiomstfe 4-class task in Experiment 3, thus con-
siderably facilitating transfer for Group 1 relaito Group 2.

The relative frequencies of unary and binary aiteb within the sets of solutions for con-
dition C1 and C2 are shown in Figure 8B. Thesagistns may be regarded as signatures of the
underlying categorical representations as theyatdithe relative importance of the various at-
tributes within the solutions of the classificatiasks associated with the two conditions. Ac-
cording to the plot, the signature of C1 diffexnfrthat of C2 mainly in that the unary attribute
position becomes predominant at the expense of the urtabudgsize for the discrimination of
mirror images. The value of the position attribisteneasured for each pattern relative to the

same reference system such as the fixed displaua@eT his attribute therefore attains the qual-
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ity of a relational attribute in that its values &opair of parts imply the distance of its members
However, it should be noted that positional valaressigned relative to the origin, whereas those
of the regular binary attributes are non-negativdddinition. In that sense the attribyasition
becomes crucial for mirror-image discriminationtasediates the spatial localisation of parts

and pairs of parts relative to an external (i.en abject-centred) frame of reference.

DISCUSSION

Previous work has considered mirror-image-discration mainly as aexisting skill, the pres-
ence (or absence) of which being indicative eitfi¢he status of cognitive development (Rudel
& Teuber, 1963; Bornstein, Gross & Wolf, 1978)pba particular perceptual deficit within neu-
rological patient populations (Turnbull & McCarttig96; Davidoff & Warrington, 2001, Priftis

et al. 2003). The present study transcends thgppetive by focussing on thearning of mirror-
image discrimination skills in normal adult obses/eand on the way in which such skills are
embedded into the process of pattern categorizatimcognitive backbone of visual perception
(Bruner, 1957; Rosch, 1978). We employed a paradignvhich categories of unfamiliar pat-
terns were defined within a low-dimensional Foufgature space that allowed to define for each
target class two equivalent (in terms of elemergtingulus properties such as spatial frequency,
relative spatial phase and Fourier energy) digtradasses that either consisted of mirror images
or of non-mirror images of the target class. Ouimmie@havioural findings were twofold: First,
the existence of mirror-image relations betweenepas assigned to different classes led to a

pronounced retardation of category learning (Expenit 2). Second, once observers had learned
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to distinguish between mirror images in one categtion task they could transfer this skill to a
different task where the same stimuli were useddifferent categorization context (Experiment
3), supporting the idea of a representational shitimulus level that facilitates the acquisition
of mirror-image relations during category learning.
Concerning the former of these results, the difficto learn the classification of patterns that ar
mirror-symmetric counterparts of each other stamdsarked contrast to the efficiency and speed
of detecting bilaterally symmetric shapes (see Waages, 1996). Owing to this efficiency bilat-
eral symmetry relations have been repeatedly assignthe class of stimulus properties that can
be detected pre-attentively (e.g., Barlow and Rgel®79; Wolfe and Friedman-Hill, 1992;
Locher and Wagemans, 1993). To explain the deteofisuch relations it has been assumed that
a potential axis of symmetry is selected withimraegét pattern that permits a more detailed
evaluation by way of a piecewise comparison ofcihreesponding pattern halves (Palmer and
Hemenway, 1978). Alternatively, a bootstrapping hasm has been proposed that allows the
propagation of local pairwise groupings along ajueidirection within a coherent global struc-
ture (Wagemans, Van Gool, Swinnen & Van Horebe®83). These concepts have in common
that establishing a perceptual frame of referevit@n the target pattern is essential for the de-
tection of bilateral symmetry. The fact that thitdatask can be accomplished very rapidly indi-
cates that such a frame of reference is obtaireethequasi parallel filtering and grouping op-
erations of early visual processing (e.g., Loclmal Wagemans, 1993).

In contrast, the computational analysis of ourlesy data indicates that mirror-image
discimination requires a structural representatifamenat where pattern components are encoded
relative to a spatial frame of reference thaxtsrnal to the target pattern. In principle, such a

reference frame can be specified either in obserestered (egocentric) or scene-based
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(allocentric) coordinates. Whereas our simulatidmaot permit us to distinguish between these
two possibilities, independent evidence favours ltier alternative. By analysing physical
rotation patterns during comparisions of shapdyting mirror images) at different orientations
Hinton & Parsons (1988) showed that observersanelse on a scene-based rather than a viewer-
centered representation. In neuropsychology, tbaroence of agnosias for mirror stimuli has
been related to a failure to assign a suitabledrafmeference to observed objects (Turnbull et al.
1997), and demonstrated for a case of specifiaimpent in spatial tasks relying on allocentric
coordinates (Priftis et al. 2003). In conjunctiofthvour results this suggests that category
representations involving the separation of mimagges involve positional relations relative to a
scene-based frame of reference.

Our EBS simulations also provide answers to thetjues ofwhy the learning of such
representations is so slow, amidy their transfer to a different categorization cahigrelatively
easy — our second major finding in the presentystithin the context of EBS, pattern category
learning can be described as a successive testivayking hypotheses that in case of the catego-
rization of compound Gabor stimuli has receivedosupthrough the psychometric analysis of
the confusion error data during the learning pre¢égttner & Rentschler, 1996; Unzicker et al.,
1999). Formally, each working hypothesis corresgandhe selection of a subset of attributes
that define a reference system for describing pafiarts and their relations. Once chosen, the
elaboration of such a working hypothesis will ird#uthe formation of rules and the tuning of
evidence weights. Eventually, the elaboration eeither results in a successful categorization,
or the current working hypothesis is rejected ampaced by a different one. The simulations
show that given a certain reservoir of non-relal@nd relational attributes, subsets of attributes

that allow the separation of mirror classes (coadiC1 in Experiment 2) are relatively sparse,
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whereas those allowing the discrimination of nomramiclasses (condition C2) are much more
numerous. As a consequence, the search for asolutihin the search space of all possible at-
tribute combinations will be much more time-consogrin the former case relative to the latter —
in agreement with the behavioural data. Furtherimiee simulations reveal that working hy-
potheses (subsets of attributes) that prove suct@ssondition C1, but not those that are suc-
cessful in C2, tend to constitute simultaneoust&wis of condition CO (Experiment 3) once they
have been “elaborated” (in terms of a re-adjustroéniles and evidence weights) accordingly.
Without further assumptions the model predictEperiment 3 a pattern of learning times that
is complementary to that of Experiment 2, and tmewides a parsimonious description of the
data sets of the two experiments.

Evidence-based classifiers provide an explicit ietween physical and internal repre-
sentation, as image segmentation, attribute extraeind rule generation are entirely defined
within the image domain. Furthermore, structurfdimation is preserved by describing patterns
in terms of component parts and their unary (paeesic) and binary (part-relational) attributes.
This representational format contrasts with thastéblished psychometric approaches to cate-
gorization such as the Generalized Context Modebk(@fsky, 1986, 1991) or General Recogni-
tion Theory (Ashby, 1989; Ashby & Maddox, 1993)e8k models generally represent objects or
patterns as single points within a multidimensigrgichological space, the metric of which is
determined by perceived similarity via multidimeorsal scaling (MDS). However, similarity-
based approaches necessarily fall short to praageexplanation of the difficulty of mirror-
image discrimination because they remain tacio atat makes mirror stimuli look so similar.
Despite recent successful attempts to apply psyetrantlassification techniques directly to

physical parameter space rather than similaritgsp@p de Beeck, Wagemans & Vogels, 2001,
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Peters, Gabbiani & Koch, 2003) the difficulties@tating perceived similarity to physical stimu-
lus properties have been abundant, and historiaedhe part of the motivation for the develop-
ment of MDS (Shepard, 1987). Specifically, for camuapd gratings as used in the present study
MDS dimensions only partly correlate with the dirsiems of the generating Fourier feature
space (Kahana & Bennett, 1994), and confusion®ai@ predicted neither by pixel-wise pattern
correlation (Juttner et al., 1997) nor by imagee@spntations based on Laplacian pyramids or 2D
curvature (Rentschler et al., 1996). The EBS agpraacumvents these problems by relating
classification behaviour to a representation basethe components that constitute perceptual
pattern structure (see also Juttner, 2005).

While in this respect evidence-based classificatidopts a more low-level perspective
than traditional psychometric categorization modeéssumes a more high-level stance than
physiologically inspired approaches, such as théMivhodel of Riesenhuber & Poggio (1999).
HMAX operates directly in image space and consit&dternating layers of linear (S) and non-
linear (C) units that perform a hierarchical decosifion of the input image into features defined
by the S units. Crucially, C units employ a nonrdinmaximum operation to pool over afferents
tuned to different positions and scales thus aamgemvariance to translation and size. Such a
decomposition could be conceived as a pre-proagfsint end to an evidence-based classifier
to detect the presence of pattern components. Hanthe spatial pooling performed by the C
units makes the modpér se less adequate to explain the discrimination ofonipatterns that
differ in the position of their local features.fact, HMAX simulations yield similar confusion
patterns for pseudo-mirror views of depth-rotatedgy clip objects as observed for neurons in

the inferotemporal cortex of the monkey (Riesenhi@&bPBoggio, 1999).
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The evidence-based classification approach unaerlgur computer simulations has
been validated in a number of previous studietagdication learning employing the same type
of stimulus material (see Juttner et al., 1997 420Bormally, this approach belongs to the class
of so-called part-based recognition systems orilyidaveloped in machine vision for the recog-
nition of complex objects in complex scenes (sekaBh& Brown, 1982; Caelli & Bischof,
1997). In general, evidence-based classifierspudtiuce only “attribute-indexed” representa-
tions, i.e., they ignore the explicit associatibesveen attributes and pattern parts. Such repre-
sentations would be sufficient for the distinctaditlasses involving patterns that are not mirror-
symmetric counterparts of each other but they secigfail to separate classes involving mirror
images, which are characterized by the same setsany and binary attributes. To achieve the
latter task, attributes need be associated witpanis to which they refer. In our simulations this
association is re-established by the use of thibéatéposition, which uniquely indexes parts by
their spatial coordinates. The resulting represiemsattain the additional quality of being “part-
indexed” and allow for more powerful but computaatly more expensive processing strategies
(such as graph-matching, see Bunke, 2000) capahldéstriminate objects that are mirror-
symmetric counterparts. The emerging prevalentieegdosition attribute in tasks involving mir-
ror-image discrimination therefore indicategialitative difference with regard to the underlying
representations of pattern categories.

From a phenomenological perspective, part-indegpdessentations can be regarded as
one possible realization of a “holistic” formatviich pattern parts become connected to each
other in a unique, non-interchangeable way — irtreshto attribute-indexed representations
where this uniqueness is not guaranteed. Learmjagbrepresentations that are capable of re-

solving mirror-image relations therefore suggestsith towards g@roto-holistic format in which
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individual parts form larger constituents, or fragts, within patterns. Such fragments have been
shown to be sufficient to support categorizatioaraintermediate level (Ullman et al., 2002) but
could be part of a hierarchy of representationsi@fasing complexity to support also judge-
ments at expert level (Palmeri et al., 2004). &t gense the learning of mirror-image discrimina-
tion skills might call upon mechanisms similarhose that have been proposed for the acquisi-
tion of perceptual expertise in the recognitiorfaafes (Farah et al., 1998) and other objects

(Gauthier et al., 2003).
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FIGURE CAPTIONS

Figure 1. Greylevel representatiqa) and corresponding luminance profilgs of iso-energy
compound Gabor patterns used for category leariiing patterns were composed of two grat-
ings, a fundamental spatial frequency componeffixetl amplitude and cosine phase with a
third harmonic of variable amplitudieand phase within a Gaussian aperture. A metric feature
space with the Cartesian evér, b cosyp, and oddy =b sing, co-ordinates was used for pattern
representation. Reflecting a given feature veéigrg) successively at the andn-axis leads to

a “quadrupole” of patterns that are pairwise mimeages of each other but have identical image
energy (Fourier power) owing to their equidistafroen the origin.(c) Using this construction
principle a learning set of 12 patterns was gendraionsisting of four clusters I-IV of 3 patterns
each (small symbols). The four cluster means (iaied in A, B but not part of the learning set)
formed a square-like configuration that was centmredhe origin of the Fourier feature space.

Scale: One unit corresponds to 20 cdamplitude relatively to D.C.

Figure2. (a) Individual clusters (Condition CO) @) cluster pairs (Condition C1 and C2) of the
learning set shown in Fig. 1¢ were used to defateepn categories to be learned by the subjects.
Note that in (B) clusters with mirror images otke@ther were either grouped into the different
classes (C1) or into the same class (C2). Symbelgsed to denote each cluster: cluster 1: black
circles; cluster 2: black squares; cluster 3: ogupnares; cluster 4: open circles. Same symbol
shape refers to clusters containing mirror pattefregch other. Large symbols and dotted lines

indicate the cluster means and are not part diedmaing set.
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Figure 3 Classification of the learning set into four clesgCondition C0) by four naive observ-
ers.(a, left) Relative classification frequencies for each c{agmbols as in Fig. 2) cumulatesd
over learning units. Initials of subjects and thentrerN of learning units to 100% classification
as insetg(a, right) Virtual prototype solution derived from the obsaahclassification probabili-
ties. For comparison the square-like configuratitthe four mean pattern vectors of the learning
set (cf. Fig. 2a) is indicated by the dotted squéhe variables denotes the root mean squared
(RMS) error between observed and predicted classifin probabilities(b) Same as (a) but

classification frequencies collapsed over observers

Figure4. Mean percent correct classification as a funatidhe number of learning units (learn-
ing curves) for the four subjects of Group 1 (Cdindi C1 in Fig. 2b) and of Group 2 (Condition

C2).

Figureb. Classification of the learning set into four cles$Condition CO0) by the four observers

of Group 1 who were pre-trained with two-class gbad C1. Data format as in Fig. 3.

Figure®6. Classification of the learning set into four cles$Condition CO0) by the four observers

of Group 2 who were pre-trained with two-class gbad C2. Data format as in Fig. 3.

Figure 7. Meanlearning duration (number of learning units toemitin) in Experiment 2 (two-

classes configurations) and in Experiment 3 (fdasses configuration) for Group 1 and Group

2.
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Figure 8. Simulation results(a) EBS-predicted relative learning durations for Expent 2
(two-class conditions C1 and C2, left) and for Expent 3 (four-class condition CO, right) with
observers being pre-trained in either C1 or G2de¥notes the number of attribute solution states
within the EBS search spacgs is the number of attribute solution states thatsamultaneous
solutions of the classification tasks involving talasses (conditions C1 or C2) as well as that
with four classes (C0). Note that the complementagning time patterns for Experiment 2 and
Experiment 3 closely match the behavioural datavshioa Fig. 7.(b) Relative frequencies of
unary (.P: position,u.S size,u.l: luminanceu.A: aspect ratio) and binari.D: distanceb.S
relative sizeb.C: contrast) attributes within the EBS solutionstfee classification tasks C1 and
C2. Note that the attribufmsition attains a predominant role for condition C1, whinlolves

the discrimination of mirror patterns.
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