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Abstract 

The myopic eye is generally considered to be a vulnerable eye and at levels greater than 

6D, one that is especially susceptible to a range of ocular pathologies. There is concern 

therefore that the prevalence of myopia in young adolescent eyes has increased 

substantially over recent decades and is now approaching 10-25% and 60-80% 

respectively in industrialized societies of the West and East. Whereas it is clear that the 

major structural correlate of myopia is longitudinal elongation of the posterior vitreous 

chamber, other potential correlates include profiles of lenticular and corneal power, the 

relationship between longitudinal and transverse vitreous chamber dimensions and 

ocular volume. The most potent predictors for juvenile-onset myopia continue to be a 

refractive error ≤ +0.50D at 5 years-of-age and family history. Significant and 

continuing progress is being made on the genetic characteristics of high myopia with at 

least four chromosomes currently identified. Twin studies and genetic modeling have 

computed a heritability index of at least 80% across the whole ametropic continuum. 

The high index does not, however, preclude an environmental precursor, sustained near 

work with high cognitive demand being the most likely. The significance of 

associations between accommodation, oculomotor dysfunction and human myopia is 

equivocal despite animal models which have demonstrated that sustained hyperopic 

defocus can induce vitreous chamber growth. Recent optical and pharmaceutical 

approaches to the reduction of myopia progression in children are likely precedents for 

future research: for example progressive addition spectacle lens trials and the use of the 

topical M1 muscarinic antagonist pirenzepine.  

Key Words: Myopia; epidemiology; biometry; heredity; accommodation,ocular.  
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INTRODUCTION 

Myopia: the clinical and academic challenge 

The indications are that the prevalence of myopia in young adolescent eyes has 

increased substantially over recent decades and is now approaching 10-25% and 60-

80% respectively in industrialized societies of the West and East 
1
; worldwide, the 

condition is considered to be the leading cause of visual impairment. 
2
  In clinical terms 

it is widely acknowledged that the myopic eye is a vulnerable eye, especially at levels 

greater than 6D, and one that is especially susceptible to a range of ocular pathologies. 

3-6  
These features have promoted research into the biological, neurophysiological and 

environmental bases for myopia onset and development and myopia laboratories 

throughout the world are mapping pathways to therapy. Pharmaceutical, optical and 

microsurgical treatment modalities for myopia thought improbable just a decade ago 

are now seen as likely options for future clinical management. The clinical challenge of 

myopia is therefore both appealing and demanding: patients are increasingly well 

aware, often via the Internet, of its epidemiology, hereditary characteristics and 

pathological ramifications. The academic challenge has been facilitated by the 

convergence of disciplines such as ophthalmology, optometry, orthoptics, molecular 

biology, biomaterials, genetics, wave front optical analysis and information technology. 

 

A new era for myopia research 

The final quarter of the 20
th

 Century witnessed a renaissance in how the scientific and 

clinical communities viewed the influential biometric, heredity and epidemiological 

studies of Sorsby 
7,8

, Goldschmidt 
9 

, Larsen 
10

, and their colleagues. The consensus was 

that co-ordinated growth of refractive components towards emmetropia was an active 

rather than passive process and importantly one that was altered by visual experience. 
11
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That the concept could also be extended to the onset and development of myopia was 

evident from the seminal work of Wiesel and Raviola 
12

 in 1977 which demonstrated 

that manipulation of the visual environment by lid fusion could induce substantial 

myopia in monkey. The nature versus nurture debate, at least for moderate non-

pathological levels of myopia, was thus rekindled and continues unabated. 
13

 

 Much has followed since 
14-20

 and the purpose of this review is to provide a synopsis 

of prospects for myopia research in the 21
st
 Century. Precedents set by current and 

previous literature have generated compelling research questions. For example: many 

Asian societies have prevalence levels far in excess of their Caucasian counterparts; 

could this be attributed to inherent ocular structural differences (possibly heredity-

based) exacerbated by the visual environment? Is an increase in posterior chamber 

depth the sole structural correlate of myopia or, given advances in ocular imaging and 

optical wave front analysis, could others be equally prescriptive? Does the potent 

influence of heredity preclude serious consideration of environmental factors such as 

sustained near work that involves high levels of cognitive demand? Can animal models 

genuinely lay the foundations for long-term optical or pharmaceutical methods of 

treating myopia onset and progression in children? The review will address these and 

other topical questions within the framework of current perspectives on myopia 

concerning its prevalence, biometric parameters, putative precursors and prevention.  

 

PREVALENCE 

Comparative studies on myopia  prevalence 

As noted in Weale’s 
21

 recent comprehensive review, assimilation of data on the 

epidemiology of refractive errors is confounded by limitations and inconsistencies in 

technical and statistical procedures. Saw 
1
 also highlights the difficulties specific to 
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myopia particularly with regard to comparisons across nations, offset in part by 

international initiatives to standardise sampling and measurement protocols. 
22,23

    

For example Negrel et al. 22 proposed obtaining population-based cross-sectional 

samples of children aged 5 to 15 years of age through cluster sampling with main 

outcome measures to include uncorrected and best-corrected visual acuity and 

cycloplegic autorefraction. The results of six studies 24-29 adopting the Refractive Error 

Study in Children (RESC) 22 protocol are summarised in Table 1. Comparison of 

prevalence data at 5 years and 15 years reveal substantial geographical and socio-

economic differences between populations. The standardised methodology used in these 

studies will assist greatly identification of the aetiological bases for these differences 

such as, for example, changes in diet and educational provision. 30 In addition 

uncorrected refractive error as a cause of visual impairment ranged from 56.3% (of 

1285 children) in Chile to 89.5% (of 1236 children) in China which was considered by 

McCarty and Taylor 30 to be support for the selection of refractive error as a priority for 

Vision 2020.   

 

Table 2 provides examples of studies on myopia prevalence reported over the last 

three years and illustrates the difficulty in effectively comparing data for studies having 

substantially different methodologies.  Nevertheless it can be seen that prevalence 

levels across all age ranges of  ~ 60% to 80%  have been reported for  urban areas of 

Asia such as Taiwan, Hong Kong and Singapore and indications are that similar trends, 

albeit at more modest levels (~ 10% to 25%), are apparent for Australia, Europe and the 

USA.
 31-41

 The data summarised in Table 2 
33,34-37,40,41

 demonstrate that whereas the 

evidence for high prevalence is unequivocal for East Asia it is less clear for USA and 

European societies with Denmark, for example, presenting a prevalence level 

approaching that seen in East Asia. It would be of value to extend the RESC approach 
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to prevalence levels and progression rates across different categories of myopia (see 

below), across nations of the West and East, (including within-nation ethnic groups) 

and, where appropriate, across different occupational and educational demands. 

 

A central research question is whether myopia prevalence in Australia, Europe and the 

USA will increase to levels currently seen in East Asia. 
39

  It has been proposed that  the 

declining prevalence of myopia in USA adults is due to age-related hypermetropization, 

rather than to an increasing prevalence in more recent age cohorts 
42

, although Rose et 

al. 
39 

have presented evidence to the contrary but for prevalence levels much less 

spectacular than for East Asian societies. Of special interest is whether inherent 

structural differences (possibly heredity-based) between East Asian and Caucasian eyes 

might be exacerbated by environmental differences, notably the educational pressures 

and high urbanisation evident in East Asian society. 

 

Longitudinal data on rate of myopia progression in children are characterised by 

significant inter-subject variability owing to a variety of factors such as age-of-onset, 

ethnicity, gender and visual environment. 43 Taking account of this variability is clearly 

important in terms of optimising the design and data analysis of clinical trials for myopia 

control. 44 For example whereas it is expedient, and common, to match treatment and 

control groups for mean spherical equivalent myopic error, the procedure does not take 

account of either inherent differences in rate of myopia progression or their interaction 

with age-of-onset. Further there is evidence that response profiles differ between stable 

and progressing adult myopes for both accommodation stimulus-response curves and 

near work induced transient myopia. 45,46 
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Future clinical designs are therefore likely to take account of reports on the dynamics of 

myopia progression using exponential growth functions to fit individual longitudinal 

refractive data.47,48 Despite significant individual variation, it has been shown that a 

Gompertz double exponential growth function closely fits the time course of the 

refractive data of individuals developing myopia 48. It has been shown that in most 

subjects the onset of myopia is abrupt but not instantaneous. In addition, it appears that 

myopia slows more rapidly than is predicted by a simple ballistic asymptote which 

implies that a dampening factor is needed to explain the rapidity of myopia cessation that 

was seen in most subjects. 48 

 

A recent report of cross-sectional data on myopia progression in 7376 UK children of 

mixed gender and ethnicity aged between 5 and 15 years of age has shown significant 

linear and inverse quadratic effects (linear P = 0.007; quadratic P = 0.002) across the 

whole age range sampled. 49 The trends indicated by the data suggest that optimum entry 

age for clinical trials aiming to control juvenile myopia progression is 9 years which 

would preclude the potential compliance and ethical constraints associated with younger 

children. 

 

Classification of myopia 

Most workers generally use Grosvenor’s 
50,51

 classification system which is based on 

the age at which the myopia was first identified or corrected, albeit not necessarily the 

same as the true age-of-onset. Although age ranges differ somewhat between workers, 

the approach has operational value and indicates that, for the USA population, around 

60% of myopia can be classified as early - onset (or school/juvenile) myopia; that is 

onset typically between 9 and 11 years of age with progression throughout the early 

teenage years which reduces in the late teens or early twenties to stabilise at a relatively 
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modest level of 3 to 4D. Myopia is generally classified as high myopia when it exceeds 

6D 
3 

and has prevalence
 
levels in young adolescents estimated at 1% and 15% 

respectively in Caucasian and East Asian populations. 

 

Late-onset myopia 

Although it seems clear that co-ordinated biological growth of the eye ceases around 

15 years of age 
8,40 

a substantial proportion
  of  myopes, estimated at between 8 and 

15%, can be classified as late-onset (or early-adult onset); that is, onset typically 

between 15 and 18 years-of-age (and occasionally in the early twenties) with slow 

progression to levels rarely in excess of 2D. Late-onset myopia is therefore often 

attributed, especially by patients, to sustained near work, or to a change in the nature of 

near work (e.g. to electronic visual displays) especially when the work has high levels 

of cognitive demand although the research data are equivocal. 
52,53 

 Late-onset myopia 

can be considered a proper sub-set of early onset myopia in that its principle structural 

correlate is an increase in length of the posterior vitreous chamber. 
54,55

 The rate of 

progression per annum in late-onset myopia is however relatively modest, around one 

third 
56

 ( ~ 0.16D) that of early-onset myopia. 
57

 

 

Other categories of myopia 

Congenital myopia, myopia associated with systemic disease 
58,59

 and myopia 

associated with lenticular changes in the sixth decade of life 
60

 constitute the remainder 

of the myopic categories. We have observed myopic shifts of between 0.50D and 0.75D 

in the incipient phase of presbyopia (unpublished data), that is the 4 to 5 year period 

before an actual near reading addition is prescribed. The shift occurs in around 15% of 

individuals and appears to be more marked in existing myopes. Using high resolution 

measures of axial length (Zeiss IOLMaster, see later) our laboratory is investigating  
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whether the shift can be correlated with axial length elongation which would imply an 

aetiology linked to retinal defocus rather lenticular change. 

 

 

BIOMETRIC PARAMETERS 

Emmetropisation 

The initial 
 
work of Sorsby et al. on ocular growth and refractive error was based 

mainly on cross-sectional studies on 1500 individuals aged between 3 and 22 years of 

age 
7
 but it was the subsequent longitudinal study on 440, 3 to 15-year old children 

which was of special interest. 
8
  In summary, eye growth was shown to consist of a rapid 

infantile phase whereby, in the first three years of life, the cornea and the lens had to 

compensate 20D or so for an increase in axial length of 5mm, adult dimensions almost 

being reached by two years of age. There follows a slow juvenile phase between 3 and 

13 years or so whereby the compensation of lens and cornea has only to be 

approximately 3D for around a 1mm increase in axial length. The longitudinal data 

demonstrated an inter-relationship between refractive components indicating that eye 

growth is a co-ordinated process rather than a haphazard collection of individually-

varying components; a process now generally described as emmetropisation. 

Importantly the data also indicate that ocular growth ceases by around 14 to 15 years of 

age. 

 

Axial length: the principle structural correlate of myopia 

Sorsby et al.
 7,8

 considered that changes in axial length were crucial in determining the 

architecture of the globe and that myopia resulted from a failure of the cornea and lens 

to compensate for axial length elongation. Compensatory changes in cornea power are 

approximately 1/3 those of the crystalline lens and both trail changes in axial length. 
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Although it was acknowledged that the emmetropization process could break down and 

produce errors in the 'normal' range of +/- 4D, it was, in the main, considered to be a 

successful process in that the distribution of refractive error showed  leptokurtosis, that 

is, a marked bias to emmetropia in the population. Errors in this range were considered 

low and due simply to a mismatch between a number of structural components (viz 

correlation ametropia) rather than attributable to a single component such as axial length 

(viz component ametropia) which lay outside of the normal range observed in 

emmetropic individuals and comprised less than 3% of the total population examined. 

 

 The key role of axial length in emmetropisation is evident from the significant 

correlation between axial length and refractive error reported in many studies. Cross 

sectional data from our own centre at Aston University is illustrated in Figure 1: a 

coefficient of determination of 0.52 and 2.5D per mm of axial length is typical for this 

type of sample. Axial length data were the mean of three measurements using partial 

coherent interferometry with the commercially available Zeiss IOLMaster (see later 

comments). Mean sphere refraction was plotted from sph/cyl data recorded using the 

Shin-Nippon infra-red open view autorefractor (mean of 5 readings). Data were for 

right eye only of 169 University entrants, age range 17 – 35 (mean 19.5 +/- 4.8; 97 

males, 72 females). Mean sphere for the group was -0.76D +/- 1.95; range +3.62 to -

9.12D. Mean axial length was 23.88mm +/- 1.08; range 21.05 to 28.04mm. The 

preponderance of myopes is a consequence of the sample being drawn from a 

University population but there is evidence that hyperopia is also chiefly axial in nature 

with a weakly significant increase in corneal radius as hyperopia increases. 
61
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The CLEERE study on ocular components in juvenile myopia 

The USA CLEERE study (Collaborative Longitudinal Evaluation of Ethnicity & 

Refractive Error) extends significantly our database on ocular components in the 

developing eye. 
40

 The study is a multi-centre, 6-year study (commencing 1997) on 

normal ocular growth in 2583 children aged 6 to 14 years and is an extension of its 

predecessor, the Orinda Longitudinal Study of Myopia (which commenced in 1989).
 62

 

The CLEERE cross sectional ocular component data is illustrated in Figure 2 and 

demonstrates how a mean refractive shift towards myopia of 1.13D between 6 and 14 

years can be accounted for in large part by the difference between the mean reduction in 

lens power (due to lens thinning) of 1.85D and mean increase in vitreous chamber depth 

of 0.94mm (equivalent to 2.35D assuming 1mm = 2.5D). Generally most of the change 

in ocular components was shown to occur between 6 and 9 years-of-age. Corneal power 

and anterior chamber depth did not differ significantly over the 8 year period. A 

subsequent analysis of the CLEERE data in relation to the prevalence of refractive error 

and ethnicity is included in Table 2. 
41

 

 

In an attempt to quantify the expandability of the eye in childhood myopia,  Schmid et 

al. 
63 

have combined standard  ocular biometry with measures of intraocular pressure, 

equatorial scleral rigidity and outer wall thickness on the right eyes of 20 myopic 

(spherical equivalent -3.08 +/- 1.03D) and 20 non-myopic children (spherical equivalent 

+0.35 +/-0.29D) aged between 8 and 12 years. Although no significant differences could 

be demonstrated between the two groups, more precise data may be forthcoming with 

refinement of the approximations made for outer wall stress.  
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Biometric interactions and asymmetry of ocular stretch 

Despite the longevity 
64

 and predominance of axial length as the principle structural 

correlate of myopia, its role has to be placed in the context of the eye as a composite 

refracting structure.  Wildsoet 
65 

considers the issue in her comprehensive review of the 

structural correlates of myopia and separately examines the role of axial length in the 

developing human eye, myopia onset in the adult eye, and myopia induced in animal 

eyes. For example, the work of Scott and Grosvenor 
66 

is cited which used a multiple 

sample analysis technique on data from 42 emmetropic and 42 myopic eyes (aged 

between 17 and 26 years) and demonstrated that all refractive components except 

anterior chamber depth contributed to myopia with corneal radius and vitreous chamber 

depth being the main determinants. In addition, Wildsoet examined whether there was 

an axial bias to vitreous chamber enlargement such that axial dimensions exceeded 

transverse dimensions as myopia progresses. Early studies suggest this not to be the 

case for moderate degrees of myopia (i.e. 5 to 6.5D on average)
 67 

 but that differences 

of 2mm could occur in high myopia (~12D). 
68 

 Using a CT scanner Wang et al.
 69  

showed a mean difference (mm) between antero-posterior and lateral transverse 

dimensions of +1.56 for myopia, -0.29 for emmetropia and -0.98 for hyperopia. Thus in 

contrast to the emmetropic or  hyperopic eye the myopic eye is a longer than it is wider, 

that is prolate in shape (see later comment).  

 

Weale 
21

 indicates that an increase in transverse diameter is likely to lead to an 

increase in zonular tension with consequent decrease in thickness (and power) of the 

crystalline lens, an effect that will offset in part the increase in antero-posterior length, 

the implication being that myopia will ensue should equatorial stretch fail to match 

antero-posterior stretch. The observation is relevant to the report by Mutti et al. 
70 

that 

advances a lenticular-based hypothesis to account for the significantly higher response 
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AC/A (accommodative convergence/accommodation) ratio that occurs prior to myopia 

onset in children (see later).
 
The authors cite previous work 

71,72
 on crystalline lens 

thinning in children to support their proposal that the disparity between growth in 

equatorial and longitudinal dimensions induces a pseudocycloplegia during the 

incipient phase of myopia development. To maintain constancy in 

accommodation:convergence synergy, the pseudocycloplegia prompts additional 

accommodative effort and hence an increase in AC/A ratio.
 

 

Biometry of anisomyopia 

Models of human myopia need to resolve the issue of anisomyopia whereby 

substantial disparities in ocular growth can occur between eyes that have been exposed 

to the same genetic and environmental influences.  Logan et al. 
73,74

 have used 

Caucasian and Taiwanese-Chinese eyes exhibiting early-onset iso- and anisomyopia to 

examine the relationship between axial and equatorial dimensions in myopia. The use of 

significant levels of anisomyopia (taken as ≥ 2D) is a valuable experimental paradigm as 

the least myopic eye can be used as a control.  In summary, a special computing 

technique was used in iso- and anisomyopes (N=56) to generate estimates of posterior 

retinal shape for nasal and temporal sectors 35/40 degrees either side of the fovea. 

Estimates were based on measurements of corneal curvature, A-scan ultrasound and 

central/peripheral open-view automated infra-red refraction. 
75

 The presence and size of 

optic disc crescents were also assessed as indicators of retinal stretch in myopia.  

 

In all cases there was a significant positive correlation between the degree of 

anisomyopia and differences in axial length between the two eyes. Anterior chamber 

dimensions remained the same between anisomyopic eyes. When comparing more 

myopic versus less myopic eyes, the former were elongated and distorted into a more 
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prolate shape for both the Caucasian and Taiwanese-Chinese subjects. In addition, 

Taiwanese-Chinese eyes displayed greater stretch in relative terms, and in these eyes, 

higher myopia was associated with larger optic disc crescents. A nasal-temporal axial 

asymmetry was also evident in the Caucasian eyes, reflecting a greater enlargement of 

the nasal sector. We have extended the calculations used to determine retinal shape in 

anisomyopia to estimate ocular volume 
 
and pulsatile ocular blood flow 

76
. The 

correlation between choroidal volume and ocular volume, the interposition of the 

choroid between retina and sclera, and its very major role in mediating intraocular blood 

flow in humans (~ 80%) 
77

 place choroidal function at the centre of our understanding of 

myopia. 
78-81

  

There is scope for investigating the interactions between asymmetries of receptor 

orientation and retinal shape in the myopic eye. A recent study 
82

 used Stiles-Crawford 

functions to show nasal tilting of receptors in the more myopic eye of a 3D 

anisomyopic subject. Further, a recent study of form deprivation myopia
 
on infant 

monkeys (Macaca mulatta) suggests that peripheral image quality could contribute to 

anomalous, vision-dependent refractive errors in children 
83

.  

 

High resolution ocular biometry 

Although advances in opto-electronics and digital signal processing will continue to 

extend greatly the range and scope of ocular biometry of the anterior segment 
84,85 

and 

wave front aberration in the myopic eye 
86,87

, longitudinal measurement of axial length 

remains the principal structural index of myopic change. In this regard the advent of a 

commercially available device for measuring axial length, the Zeiss IOLMaster, has 

attracted great interest in the myopia research community. The device, principally 

designed to calculate accurately intra-ocular lens power following refractive surgery, 

uses partial coherent interferometry rather than traditional ultrasound to provide high 
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resolution measures of axial length, anterior chamber depth and corneal radius. 

Although at the present time it is not possible to measure crystalline lens thickness (and 

hence vitreous chamber depth), with a dioptric resolution of approximately 0.03D (an 

order of magnitude better than 10Hz ultrasound) and, as non-contact, elimination of the 

need for corneal anaesthesia, the  IOLMaster is likely to become a permanent resident in 

most myopia laboratories. 
88

  

 

Continued developments in whole-eye depiction of the myopic eye using high-

resolution ocular magnetic resonance imaging (MRI) will, when combined with the new 

instrumentation described above, prove to be a valuable biometric adjunct to prospective 

clinical trials for myopia treatment. Simple measures of peripheral refraction
89,90 

and 

associated computations 
73-75

 provide limited estimates of peripheral ocular shape but 

recent MRI studies 
91,92

 extend earlier work on 7 myopic eyes (MRI, T1) 
93

, and the 

newly established Aston Academy of Life Sciences is shortly to develop an optimised 

ocular surface-coil for use with the Siemens Trio 3-Tesla MRI.  The application of high-

resolution ocular MRI in anisomyopic subjects will provide a special opportunity for 

inter-eye biometric and accommodative comparisons. 
94 

 

PRECURSORS 

 

Axial length:corneal radius ratio 

The ability to predict the onset of myopia before it is clinically measurable by 

conventional refractive methods enhances greatly the efficacy of clinical trials that aim 

to treat myopia. Although a variety of biometric and oculomotor indexes have been 

examined, the ratio between axial length and corneal radius (AL:CR) and the 

accommodative convergence: accommodation ratio (AC/A) have probably received 
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most attention although data are equivocal.  Grosvenor 
95 

compared AL:CR data on 

emmetropic Melanesian children from a remote South Pacific island island, Vanuatu 
96

, 

with those taken on emmetropic British children by Sorsby et al. 
8
 and observed that the 

ratio was consistently higher in the British children than in the Melanesian children. 

Given the marked difference in prevalence of myopia between the two groups – ~3% for 

the Melanesian group, ~12% for the British group – it was proposed that a high AL:CR 

ratio in emmetropes (that is a ratio greater than 3) may qualify as a risk factor in the 

development of myopia. The proposal was subsequently tested in a three year 

longitudinal study on 87 emmetropic USA children between 9 and 14 years of age. 
97

 

Cycloplegic refraction and ultrasound measures of axial length were taken every 6 

months. Over the three year period, 29 of the 87 children became myopic up to a mean 

of 1 D. It was found that 88% of the myopic eyes had vertical axial length:corneal radius 

ratios that initially exceeded 3.0 whereas 90% of the eyes that remained emmetropic 

over the period had ratios less than 3.0. The result could not however be confirmed in a 

later USA study 
98 

on 554 emmetropic children (mean age 8.6 years) enrolled on the 

Orinda Longitudinal Study of Myopia. The authors proposed that the discrepancy was 

attributable to the earlier study 
97

 predicting myopia onset too close (i.e. 6 months prior) 

to the actual onset of myopia.   

 

Accommodative convergence: accommodation ratio 

It has been reported that Caucasian children with myopia have significantly elevated 

age-adjusted response AC/A ratios, with least squares mean values being recorded 

respectively for hypermetropes, emmetropes and myopes as 3.40, 3.94 and 6.39 ∆/D. 
70

 

The authors used 828 children aged 6 to 14 years drawn from the Orinda Longitudinal 

Study of Myopia and accommodation was measured objectively by video phakometry. 

Non-myopic children having an AC/A ratio of 5.54 ∆/D or more, or a unit increase in 



  17 

the AC/A ratio, elevated the risk of myopia development within 1 year by 22.5 times 

(95% CI: 7.12-71.1); behaviour of the AC/A ratio after the onset of myopia was less 

clear. 
70

  The higher ratios may be associated with reduced accommodative response at 

near or enhanced accommodative convergence. 
99 

  It has also been proposed that AC/A 

ratios in myopes might reduce once the myopia stabilises owing to an enhanced 

accommodative response or an exophoric shift in the near ‘phoria. 
100

 The biometric 

correlates of high AC/A ratios prior to myopia onset referred to earlier 
77

 appear well 

founded although high ratios have not been found in Hong Kong children despite the 

high prevalence of myopia in this group. 
101

 

 

Refraction at 5 years: a potent predictor 

Improved and extended methods of measurement of both ocular components and 

oculomotor function will in future refine data sufficiently to examine further the 

predictive utility or otherwise of AL:CR and AC/A ratios 
84-88,102

, especially when 

incorporated into longitudinal experimental designs. Although Mutti and colleagues 

have recently shown differences in rates of change of axial and lenticular components to 

have value as longitudinal predictors of myopia onset 
103

, they have previously 

demonstrated clearly that the best single predictor of future myopia onset is initial 

cycloplegic autorefraction.
 98

 Hyperopia of 0.75D or less at a mean age of 8.6 years was 

shown to have a sensitivity of 86.7% and specificity of 73.3%. 
98

  This finding supports 

the early study of Hirsch 
104

 on USA children (The Ojai Longitudinal Study of 

Refraction) which showed that children with a spherical equivalent error of less than 

+0.5D at 5/6 years of age are likely to present with at least 0.5D of myopia at 13/14 

years of age (see Figure 3).  

 

Heritability: low to moderate myopia 



  18 

The longitudinal study of Pacella et al. 
105

 highlights the potent influence of parental 

myopia on the development of myopia in offspring. Data for 277 children are illustrated 

in Figure 4 and are derived from a 24-year longitudinal study [at Massachusetts Institute 

of Technology (MIT)] which commenced in infancy (age 6 to 12 months) in a cohort of 

609 largely Caucasian children. The mean age of the group was 13.3 years and data 

were taken from a mean of 15 non-cycloplegic refractions between 5 and 24 years from 

commencement. The odds ratio for two myopic parents versus no myopic parents 

demonstrates clearly the impact of parental myopia on moderate levels of child myopia 

(5.09; 95% CI: 1.69-15.49; p=<0.007; mean spherical equivalent on last refraction for 

the children was -2.46D, range -0.51 to -9.00).  Interesting ocular biometric features 

may also accompany familial predisposition. For example, a study of non myopic 

children found increased eye size for those with myopic parents compared to those 

whose parents were not myopic. 
106

 A group of 662 children again drawn from the 

Orinda Longitudinal Study of Myopia, showed that when school grade and amount of 

near work was controlled, children with two myopic parents had significantly longer 

eyes and less hyperopic error than children with only one myopic parent or no myopic 

parents. 
106

 

 

Genetics of high myopia 

The inexorable advance in information on the human genome will inevitably extend 

our knowledge of the genetics of myopia. Presently several loci have been identified for 

high myopia (i.e. < -6D) on a series of chromosomes (e.g. 18p; 12q; 7q36; TGIF) 
107-109

 

although two of these, chromosomes 12 and 18, do not appear to be linked to juvenile 

myopia.
110

 Two comprehensive twin studies have suggested that additive genetic factors 

are responsible for over 80% of the variation in refractive error in European populations. 

104,105
 The UK-based study by Hammond et al. 

111
 used genetic modelling to analyse 
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data for 226 monozyotic twins and 280 dizygotic twins (all female aged between 49 and 

79 years) across a wide ametropic range (including emmetropia). The authors proposed 

that, despite the high heritability index, heredity could still be susceptible to 

environmental influences and identified near work as a major influence in producing 

what they termed adaptive myopia.   

 

Heritability and  environmental influences 

Rose et al. 
113

 have examined further the issue of whether high heritability of myopia 

precludes rapid changes in prevalence induced by environmental influences. Using as a 

principle reference source an earlier analysis by Guggenheim et al.
 114

, data on 

heritability estimates are reanalysed and illustrated for twin studies and for myopia 

grouped by within-family correlations (i.e. parent-offspring or inter-sibling) for different 

ethnicities. The data analysis highlights the impact of the environment on myopia 

prevalence in communities of East Asian origin where rapid increases in prevalence 

have been evident. For example, heritability derived from inter-sibling correlations 

(where shared environment normally predominates) was found to be uniformly high 

(0.50-0.98; maximum heritability = 1.0) compared to that derived from parent-offspring 

correlations (0.04-0.49). The environmental risk factors for myopia most often cited 

include education, urbanization and near work but the nature of their interaction with 

genetic factors remains obscure.
 1

    

 

Myopia and near work: association or  causation? 

The strong association between near work and myopia has been evident for many 

years 
115,116

 being first recognized by Kepler in the 16
th

 Century. Sustained near vision is 

a subtle and complex integration of psychophysiological responses and presents special 

difficulties in terms of experimental design and control. Further, the composite near 
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response is greatly influenced by the cognitive demand of the task and its medium. 

Specialised electronic displays pervade practically all modern day activities in 

education, communication, commerce and technical/health services. Our understanding 

of the characteristics of accommodative and oculomotor responses to these displays 

needs to be consolidated, especially as a new generation of virtual reality and three-

dimensional displays is imminent. Given its intricate nature, it is comprehensible that 

the significance of near work as a genuine causative factor in myopia onset and 

development is ill-defined even in ethnic groups especially susceptible to myopia. 
1
 

Recent studies have, however, shown Hong Kong children to be particularly susceptible 

to near-work induced transient myopia 
117

 a phenomenon which is itself enhanced by 

increasing levels of cognitive demand (see below).
 118

 The perplexing issue of assessing 

the influence of cognitive load on near work and myopia development has also been 

demonstrated in work on adolescent rhesus monkey eyes. 
119

 Substantial near work 

induced myopic shifts (with correlated change in axial length) were evident when 

monkeys participated in complex computer-based visual tasks but the shifts appeared to 

be independent of accommodation as they occurred when accommodation was 

neutralised with positive lenses during the tasks.  

 

In terms of the structural changes that might be induced by accommodation, partial 

coherent interferometry techniques have shown that substantial accommodative effort 

does elongate the eye but that the elongation is more pronounced in emmetropes than in 

myopes. 
120

 Furthermore, sustained accommodative effort of has been shown to reduce 

intra-ocular pressure: using a Goldmann applanation tonometer 3.5 minutes of sustained 

accommodation induce reductions in IOP of 2.15 mmHg and 2.38 mmHg for, 

respectively, accommodation stimulus levels of 1.5D and 4D. 
121

 There is recent 

evidence of a relationship between IOP and myopia in a Japanese population 
122

 (after 
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adjusting for age and central corneal thickness) but no evidence of a link with 

developing myopia  in Hong Kong
123

 or Chinese 
124

 children.  

 

Saw et al. 
125 

 reported that the number of books read per week was associated with 

higher levels of myopia in 1005 Singaporean children (aged 7 to 9 years) independent 

of other related factors such as socioeconomic class and history of light exposure (see 

later). Quantitative measures of near work (e.g. reading in hours per day) were related to 

myopia >3D but the associations did not remain after multivariate adjustment. The 

authors considered that whereas they had provided evidence for a somewhat stronger 

correlation between near work and myopia than previously reported, their data did not 

unambiguously resolve whether near work is a genuine risk factor or a surrogate for 

other environmental or genetic factors. A more recent study has examined the 

prevalence of refractive error using non-cycloplegic refraction in 946 Singapore 

children aged 15 to 19 years. 
126

 The prevalence level reported was high at 73.9% (CI: 

71.0-76.7). The amount of reading and writing done currently, as a measure of near 

work, was shown to be positively associated with myopia in addition to being of 

Chinese ethnicity, reading and writing at a close distance, a better educational stream 

and better housing type.  The prevalence of hyperopia (spherical error of  ≥ +0.50D) 

was found to be only 1.5%; that of anisometropia to be 11.2% (CI: 9.3-13.4) for a 

spherical error difference of at least 1D and 2.7% (CI: 1.8 -4.0) for a spherical error 

difference of at least 2D. Interestingly anisometropia of at least 2D was found to be 

greater in females (4.0%, CI: 2.1-5.9) than in males (1.7%, CI: 0.6-2.8). In contrast 

anisometropia ≥ 2D in Caucasian populations has a prevalence of around 1.5%. 
74  

Table 

3 compares risk factors for myopia in terms of odds ratios after adjusting for age and 

gender. Of particular interest is that for this East Asian population ≥ 20.5 hours of 
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reading and writing per week and reading at close distances (i.e. < 30cms) was 

positively linked to myopia.  

 

Parental myopia, near work and school achievement 

Using cross-sectional data, Mutti et al. 
127 

have quantified the degree of association 

between juvenile myopia, parental myopia, near work [based on a task- and distance-

weighted metric of dioptre-hours per week (D/hrs/wk) spent studying], reading for 

pleasure, watching television, playing video games or computer work, and hours per 

week playing sports. School achievement scores [based on the Iowa Tests of Basic 

Skills (ITBS)] were assessed in 366 Caucasian children drawn from the Orinda 

Longitudinal Study of Myopia (mean age 13.7 +/- 0.5 years; mean spherical equivalent 

refraction -0.17 +/- 1.56D). Table 4 summarises the odds ratio data for univariate and 

multivariate analyses of parental myopia, near work, sports and ITBS data. The 

univariate analysis supports the marked effect of parental myopia referred to earlier. 
105   

An odds ratio of 1.02 for near work indicates that the chance of developing myopia 

increases by a modest 2% for every D/hour of near work during the week; sports and 

basic skills both have a low level effect. Odds ratios for a sub-sample of children 

carrying out  near work for greater than a median level of 50D/hrs/wk shows an increase 

in susceptibility to myopia but, in contrast to the report of Saw et al. 
125

 susceptibility is 

not affected by parental myopia. Of special interest is that odds ratios were not 

significantly modified following analysis using a multivariate logistic regression model, 

thus indicating that the four characteristics examined were essentially acting 

independently in terms of susceptibility to myopia. Although the authors emphasised 

the need to carry out longitudinal follow-up analyses, their data indicate that heredity is 

the single most important factor associated with juvenile myopia and further that there 
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was no evidence that children inherit a myopigenic environment or a susceptibility to 

the effects of near work from their parents. 

 

Near work induced transient myopia 

The delay in the relaxation of accommodation back to a baseline level following a 

sustained near vision task (i.e. a short-term myopic shift in the far point of 

accommodation) has been termed near-work induced transient myopia (NITM).
 128 

It 

has been proposed that the retinal defocus and degradation in retinal image contrast 

induced by NITM may be sufficient to trigger compensatory blur-driven growth of the 

posterior vitreous chamber in susceptible individuals.
 128

  On average, the magnitude of 

NITM is 0.40D with a range from 0.12 to 1.30D and a time course ranging from several 

seconds for a relatively short task, to as long as a few hours for longer task durations. 

128
 It has been shown that myopes specifically have a propensity to NITM when 

compared to emmetropes and hypermetropes.
129,130 

Ciuffreda and Wallis 
129

 found a 

mean NITM of ~0.35 D for both their early-onset (N=13) and late-onset (N=11) young 

adult myopic groups. Neither the emmetropic group (N= 11) nor the hyperopic group 

(N = 9) exhibited significant NITM.  The myopic groups were distinguished, however, 

by differences in the time taken subsequently to reach a stable baseline optimum level 

of accommodation for distance vision. Late-onset myopes were found to take almost 

twice as long to reach these distance accommodation levels than early-onset myopes 

(i.e. 63 seconds versus 35 seconds).  

 

It has been shown that NITM  is significantly greater in myopic than in emmetropic 

Hong Kong Chinese children (aged 6 to 12 years) with a mean level of  ~ 0.52 +/-0.44D 

(compared to ~ 0.10 +/-0.45D) still evident after 3 minutes following sustained fixation 
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of a 5.00 D near task for 5 minutes.
 117

 In a recent report 
118

 young Caucasian adult 

myopes were again shown to be more susceptible to NITM than emmetropes but the 

susceptibility was especially pronounced in early-onset myopes when a near task of 

relatively high cognitive demand was followed by a passive distance task.  

 

Putative precursors: night-time lighting and nutrition? 

Two further putative precursors to myopia development have attracted attention. Quinn 

and co-workers 
131

 reported an association between myopia development and night-

time light exposure during the first two years of childhood. There were found to be five 

times more children with myopia among those who slept with room lights on than in 

those who slept in the dark, and an intermediate number among those sleeping with a 

dim night light.  The findings could not however be replicated in either USA children 

(e.g the CLEERE and MIT studies cited earlier), 
132

 UK children 
133

 nor in studies on 

rhesus monkey. 
134,135

    A  recent study 
136

 has identified the number of hours exposure 

to daily darkness to be a risk factor for myopia progression in adults attending a USA 

law school: myopic progression was significantly increased when the number of hours 

of daily darkness was < 5.6 per 24 hour day.  

 

Cordain et al. 
137

 have presented an interesting evolutionary analysis of the aetiology 

and pathogenesis of juvenile-onset myopia and argue that the nation-wide transition in 

modern times to a diet rich in refined sugar and processed cereals may account for the 

respective increases in myopia prevalence. It is shown that high consumption of 

carbohydrates instigates a sequence of events: disruption of glycaemic control; 

promotion of insulin resistance; a compensatory hyperinsulinaemia; an increase in free 

IGF-1 (insulin growth factor); a possible decrease in retinoid receptor signalling; and 
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finally, unregulated and enhanced tissue growth manifested as an increase in axial 

length. 

 

PREVENTION 

 

Near work, accommodative error and retinal defocus  

Despite the fact that myopia was identified by Aristotle (384-322) more than 2300 

years ago 
9
, an effective treatment still eludes the clinician. Early attempts at myopia 

control in humans were equivocal and often involved ocular pharmaceutical agents such 

as atropine or additional positive lens power for near work using bifocal lenses, 
138,139  

the implication being that the accommodation system was somehow deficient, not an 

unreasonable assumption given the clear association between myopia and near work.
 115

 

Thus it has been proposed that myopia can be induced by hyperopic and myopic retinal 

blur due to inaccurate accommodation, 
140,141,45 

lag of accommodation at near, 
142

, 

transient myopia following sustained near vision,
117,130 

and deficits in 

integrative/adaptive oculomotor responses which incorporate accommodation as a 

response component.
115,143,144

  An important and perplexing issue is whether 

accommodative dysfunction in myopia is a cause or a consequence of the condition. It 

has been demonstrated that excess accommodative lag accompanies but does not 

precede the onset of myopia and therefore has limited use as a precictor. 
145,146

  Using 

monocular accommodative responses for letter targets at 0D and 4D for 903 children 

drawn from the Orinda Longitudinal Study of Myopia, odds ratios (adjusted for 

refractive error) associated with a 0.5D unit increase in accommodative lag did not 

indicate a significantly increased chance of developing myopia for each of the three 

years preceding actual myopia onset.
 145 

The mean adjusted odds ratio just one year 

prior to onset was also  found to be insignificant at 1.02 (95% CI: 0.69 to 1.51). Of note 
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was the finding that adjusted least-square mean values for lag were significantly greater 

(~0.24D) for children who became myopic compared to those who remained 

emmetropic 
145 

a finding contrary to that found in a previous study which found no 

difference in accommodative lag between the two refractive groups.
 147

  

 

Retinal defocus and blur detection in humans
 

Recent advances in theoretical modelling of refractive error development 
148-151 

include the incremental retinal defocus theory proposed by Hung and Ciuffreda 
150

 

which considers the myopigenic nature of retinal defocus. The critical element of the 

theory as it relates to near work is that the detection mechanism triggering ocular 

growth does not depend on the sign of the retinal blur, but rather on the change in blur 

magnitude during genetically programmed ocular growth - rate of ocular growth is 

dependent on the change in magnitude of retinal-defocus regardless of how it is 

generated.  The notion was recently examined in the context of whether refractive 

under correction, compared to full correction, was able to reduce myopia progression in 

a two-year prospective study on 94 myopic children of Malay and Chinese origin (aged 

9 to 14 years). 
152 

 The treatment group comprised 47 myopic children who were under 

corrected by approximately +0.75D. Contrary to the animal data (see below), under 

correction (i.e. myopic defocus) enhanced rather than inhibited myopia development, 

the increases in refractive correction being correlated with change in axial length. 

 

The ability to detect blur may however be altered in both adult and child 

myopia.
153,154

 Schmid et al. 
154 

investigated blur detection thresholds in childhood 

myopia for two different black and white targets (text and scenes) and illumination 

conditions for a cohort of 20 myopic and non-myopic Hong Kong children aged 8 to 12 
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years. There was no correlation between blur thresholds and refractive error magnitude, 

refractive error progression (over the previous year) or contrast sensitivity. It was noted 

that blur detection ability showed significantly greater individual variability in myopic 

children which led the authors to suggest that sub-groups may differ in their ability to 

detect blur. 

Animal models of retinal defocus 

Whereas in qualitative terms the association between accommodation and myopia 

development in humans is well established,  experimental paradigms for the control of 

eye growth in animals has provided valuable quantitative data. 
155 

Hyperopic defocus 

produced by negative lenses results in increased rates of eye growth in monkey, 
156,157  

blocked it appears by limited periods of interposed normal vision.
158

 The significance of 

brief intervening periods of normal unrestricted vision is especially interesting as in 

form deprivation experiments on infant rhesus monkey it has been shown that as little as 

1 hour per day of unrestricted viewing can reduce by over 50% the myopia induced by a 

17-week period of deprivation.
 159

  In contrast to hyperopic defocus, myopic defocus 

produced by positive lenses decreases eye growth 
160  

even for relatively short exposure 

conditions. 
161,162  

Whether the spatiotopic and retinotopic operating characteristics of 

the human accommodation response system in terms of contrast, pupil size, depth-of-

focus, temporal response and binocularity are sufficient to detect the sign of defocus, 

and hence modulate eye growth, is a challenging research question, 
163

 but one that has 

to take account of observations that complete elimination of accommodative signals 

fails to prevent induced eye growth in animals. 
164,165

 Additionally, it appears that 

regulation of eye growth in animals can occur independently of central processes 
148

 

which further lessens the likelihood of a contribution from centrally-driven 

accommodation. Recent evidence in selective lesions on chick eye suggests however 
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that whereas an intact retina-brain link is not a requirement to compensate for hyperopic 

lens defocus, the emmetropisation set-point might be re-calibrated after optic nerve 

section and further the ciliary nerve itself may mediate inhibition of eye growth.
 167

  

 

In his comprehensive and absorbing review Crewther 
168 

proposes three control 

mechanisms for experimentally induced refractive error.  One of these utilises the 

Stiles-Crawford effect to detect retinal defocus through analysis of spatio-temporal 

contrast within the sub-retinal space, a process which subsequently results in changes in 

ionic and fluid balance.  Crewther demonstrates that the mechanism could conceivably 

modulate eye growth when incorporated with saccade-induced outer segment 

movement. 

 

Interventions to retard myopia progression in children 

Saw et al. 
169 

have recently reviewed ten published clinical trials of different 

interventions to retard myopia progression in children. The trials examined the efficacy 

of a variety of eye drops, bifocal and progressive addition spectacle lenses and soft 

contact lenses. The authors concluded that, at best, the available evidence for myopia 

intervention in children was inconclusive owing to the magnitude of the intervention 

effect being small compared with the control together with the likelihood of high 

dropout rates and low compliance. It was recommended that all future trials should 

incorporate double-masked randomized designs with optimum optical refraction data 

and sufficient follow-up time. The review did acknowledge the reported efficacy of 

atropine eye drops in retarding myopia progression. Figure 5 illustrates the results of a 

longitudinal study (over 1.5 years) by Shih 
170

 and his colleagues on myopia progression 

in 188 Taiwanese children aged 6 to 13 years. The treatments were single vision lenses 

alone (N=61), progressive addition lenses alone (N=61), and progressive addition lenses 
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combined with topical instillation of 0.5% atropine (N=66). Cycloplegic autorefraction 

was carried out and initial mean refraction for the group was - 3.28 +/- 0.13D. The mean 

myopia progression found over 18 months was: single vision lenses - 1.40 +/-0.09D; 

progressive addition lenses - 1.19 +/-0.07D; progressive addition lenses combined with 

atropine - 0.42 +/- 0.07D.  

 

Muscarinic receptor antagonists and myopia control 

Although the data in the Shih et al. 
170 

study support earlier human 
171-173

 and animal 

174,175
 investigations, it appears that the myopia reduction may occur via a non 

accommodative mechanism. 
176

  Further, the actual site(s) of action of atropine, a non-

selective muscarinic cholinergic antagonist, is still unresolved as atropine can prevent 

form deprivation myopia in animals even when cholinergic cells and receptors are 

absent from the retina. 
177

 The apparent efficacy of atropine in myopia control is 

therefore countered by uncertainty over its mechanism of action. Saw et al. 
169 

strongly 

advocate follow-up studies to determine the possible long-term adverse reactions to 

atropine (e.g. cataract and retinal toxicity) and acquisition of data on myopia 

progression after cessation of atropine therapy.  

 

Other muscarinic receptor antagonists that effectively prevent form deprivation 

myopia in animals, again with uncertainty regarding respective sites of action, are 

pirenzepine (M1 selective)
178

, himbacine (M4 selective)
 179

 and oxyphenonium (non-

selective).
 177

 The effect of 2% pirenzepine ophthalmic gel on myopia reduction in 

children has recently been tested on groups in the USA 
180

 (2 year duration) and Asia. 

181
  (one year duration). Both studies were multi-centre, randomized, double masked and 

placebo-controlled. Table 5 summarises the data and demonstrates a significant and 

proportionally equal maximum reduction (~ 50%)  in myopia progression for both 
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groups. The placebo data also highlight the significant difference in myopia progression 

between East Asian and USA groups which may account for why a positive correlation 

between axial length and reduction in myopia progression could only be shown for the 

Asian group. Although less effective than atropine in reducing myopia progression, both 

pirenzepine trials reported relatively innocuous adverse reactions compared to atropine. 

These interesting findings will no doubt instigate further clinical trials on the efficacy of 

pirenzepine and other muscarinic receptor antagonists in inhibiting myopia progression 

in children. 

 

Adrenergic control of accommodation 

Whereas ocular accommodation is mediated principally by muscarinic receptors 

following parasympathetic innervation of ciliary smooth muscle, Gilmartin and 

colleagues have used non-selective and selective topical beta adrenoceptor drugs to 

demonstrate that the ciliary muscle also receives a supplementary inhibitory 

sympathetic innervation which is mediated by inhibitory beta-2 adrenoceptors 
138, 182, 183

 

and possibly inhibitory alpha-1 adrenoceptors. 
184

 The principal features of sympathetic 

control are that it is inhibitory, relatively small (probably no more than -2 D) and is 

relatively slow (time courses range between 20 and 40 s compared with the 1 or 2 s for 

the parasympathetic system). A significant attribute of sympathetic inhibition is that it is 

augmented by concurrent parasympathetic (i.e. accommodative) activity.
185

 The basis of 

this augmentation is first, sympathetic inhibition will only become apparent when there 

is something to inhibit and hence there is a base-line requirement for concurrent 

parasympathetic activity; second, parasympathetic activity above this level appears to 

augment sympathetic input directly, but not to an extent greater than 2 D, even for very 

high parasympathetic levels. 
138
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Sympathetic deficit: a precursor for myopia development?  

The properties of sympathetic innervation are consistent with the requirements of an 

adaptive facility which complements the fast reflexive nature of parasympathetic 

innervation. These properties have been linked to a number of general accommodative 

response characteristics 
186-188

 but are especially pertinent to our ability to adapt 

successfully to sustained near vision tasks. 
115,183

 Given the clear association between 

sustained near vision and the onset and development of myopia 
115

, sympathetic 

inhibition may thus have a putative aetiological role in development of certain classes of 

myopia in predisposed individuals. 
129,130,189,190

 In this context the role of sympathetic 

innervation of the ciliary muscle may be, for example, to attenuate the retention of 

accommodative tone induced by periods of intense close work and thus reduce the risk 

of latent post-task transitory pseudo-myopic changes. Without this attenuation, a series 

of micro-adaptation processes could accumulate to a critical level, perhaps via an 

iterative ratchet-type response with regard to accommodative gain, which when 

exceeded causes structural recalibration, that is, an increase in vitreous chamber length. 

A variety of techniques have been employed 
184,187,188,190

 using topical beta-adrenoceptor 

antagonists to demonstrate that sympathetic inhibition is present in around 30 to 40% of 

individuals.
190,191

 Current longitudinal studies on refractive changes in young adults are 

examining whether an absence or deficit in sympathetic inhibition is a putative 

precursor for myopia onset and development. 
191 

 

Bifocal and progressive addition spectacle lens trials  

Despite the somewhat tenuous causal link between accommodation responses and the 

development of myopia, the rationale for the use of positive lens additions in myopia 

control is to optimise accommodative accuracy for near tasks such that retinal blur is 

minimised. Grosvenor 
192

 has reviewed previous studies to demonstrate equivocal 
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results and a lack of consistency in experimental designs.  Of note however are the well-

controlled bifocal spectacle lens longitudinal studies of Grosvenor et al.
 193

, Parsinnen et 

al.
 194

 and  Jensen 
195 

although none could demonstrate significant effects against 

distance corrected single vision controls. The finding by Jensen that bifocals appeared 

to be more successful in reducing myopia progression in subjects having IOPs greater 

than 17 mmHg 
195

 warrants further investigation as her later report 
196

 on a sub-set of 49 

of the 145 Danish children used in the original study, showed the rate of myopia 

progression in children with an IOP above 16 mmHg to be significantly greater than 

those with an IOP of 16 mmHg or less: 0.66 D/year versus 0.43 D/year respectively. 

The more recent randomised trial undertaken by Fulk and his colleagues 
197

 investigated 

the effect of single vision versus bifocal lenses on myopia progression in 84 children 

with near point esophoria. A modest but significant slowing in myopia progression of 

0.25D was demonstrated over the 30 month test period. 

 

Of three recent reports assessing the efficacy of progressive addition spectacle lenses 

(PALs) for myopia control in children 
170,198,199

, only the study of Gwiazda et al. 
199 

(COMET: Correction of Myopia Evaluation Trial), was able to show a statistically 

significant, albeit small (0.20 +/- 0.08D; p=0.004) slowing of progression. The 

retardation, which was not deemed sufficient to warrant a change in clinical practice, 

occurred during the first year of a three year trial and stabilised thereafter. The data 

illustrated in Figure 6 were generated by a randomised double-masked single vision 

controlled trial on 462 children (mixed ethnicity) aged 6 to 11 years with myopia 

between -1.25 and 4.50 spherical equivalent (cycloplegic autorefraction). Mean changes 

in axial length correlated with those in refractive error and interaction analyses have 

subsequently indicated that a sub-set of children with poor accommodative accuracy 
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and near esophoria may benefit significantly from PALs in clinical terms, a feature 

noted following an earlier PAL study on Hong Kong children. 
200,201

   

 

Contact lens control of myopia progression 

Whereas soft contact lenses do not appear to affect myopia progression compared to 

spectacle correction, 
202

 an ongoing 3-year study [The Contact Lens and Myopia 

Progression (CLAMP) Study]
  203

 is due to report in 2004 on the efficacy of rigid gas-

permeable contact lenses in myopia control. The study is supported by the USA 

National Eye Institute and extends previous studies where treatment outcomes were 

equivocal.
 204-206

 Presently 116 children (mean age 10.5 years at the baseline visit, range 

8 to 11 years) are enrolled. The primary outcome measure will be the change over 3-

years in cycloplegic autorefraction; the secondary outcome measures will include 

annual measures of corresponding changes in axial length, peripheral autorefraction, 

crystalline lens curvatures, corneal curvature and thickness, accommodation, and 

intraocular pressure.
 203

  

 

Ocular aberrations and myopia 

The literature cited above has established the importance of retinal image quality in 

modulating eye growth in myopia and retinal defocus associated with astigmatic error 

has been examined by Gwiazda et al. 
201 

in 245 individuals after having carried out an 

initial refraction in the first year of life and follow-up refractions extending over the 

subsequent 6 to 23 years.  Infantile astigmatism, in particular against-the-rule, was 

found to be associated with an increase in astigmatism and myopia during the school 

years although the mechanisms underlying the association remain obscure. Recent work 

on infant rhesus monkey has investigated whether developing primate eyes are capable 

of growing in a manner that eliminates astigmatism. The results indicate that visual 



  34 

experience can alter corneal shape, but there was no evidence that primates have an 

active, visually regulated ‘sphericalization’ mechanism.
208 

 

The review ends with a brief note on the potential role of monochromatic aberrations 

in myopia onset and development.  Whereas the effects of chromatic aberration have 

been assessed in chick eye 
209

 few have reported directly on monocromatic aberrations 

in humans. 
210

  The measurement of wave-front aberration has now become more 

accessible and work has examined the effect of variations in accommodative demand 

211
, differences between emmetropes and myopes,

87,212 
and the potential interaction 

between accommodative demand and refractive error.
 213

 Given the association between 

sustained accommodation and myopia this interaction is of special interest  as one might 

speculate whether wave-front modulated refractive surgery may at some point in the 

future be used to optimise retinal image quality during sustained near vision. 

 

CONCLUDING COMMENT 

 

The prospects for research in the 21
st
 Century are intriguing and will challenge both 

imagination and comprehension as the nature of myopia is exposed to inexorable 

advances in the biological sciences. 
18,155

  Continued collaboration between inter-related 

disciplines and eye-care professions both within and between continents is an essential 

pre-requisite for success. 
214

 Whereas the likely outcome is further confirmation that 

heredity predominates in the genesis of myopia, genomic and proteomic scanning 

techniques will be used to map pathways to effective pharmaceutical intervention 
155

 

possibly delivered via novel contact or implanted corneal lens biomaterials that 

concurrently correct lower and higher order ocular aberrations.   
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Of special significance is the continuing need for systematic appraisal of causal 

criteria adopted by investigators in the evaluation of epidemiological associations for 

myopia. McCarty
 215

 lists nine such criteria including for example consistency of 

findings, specificity and biological gradient (i.e. dose response). Particular attention is 

drawn to the criterion of temporality, that is change over time, and the importance of 

reporting negative results in order to refine research directions.  Finally, a recent UK 

study has shown high myopia to have an adverse effect on quality-of-life equivalent to 

that of keratoconus 
216 

a feature not always fully appreciated but one that is increasingly 

recognised by health authorities in terms of health management and social services. 

217,218
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FIGURE LEGENDS 

 

Figure 1. Example of the significant (P < 0.001) correlation between axial length and 

refractive error for cross-sectional data from a population of young adult University 

students. The correlation demonstrates that axial length is the principle structural 

correlate of myopia. 

 

http://eoi.cordis.lu/dsp_details.cfm?ID=29235
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Figure 2. Summary of the main findings of the CLEERE study (Collaborative 

Longitudinal Evaluation of Ethnicity & Refractive Error), a USA multi-centre 6-year 

study on normal ocular growth in 2583 children aged 6 to 14 years. Ocular components 

illustrated are spherical equivalent refractive error (Rx), corneal power (CP), anterior 

chamber depth (AC), vitreous chamber depth (VC) and crystalline lens power (LP). 

Computed and redrawn from Zadnik et al. 2003.
 40  

Reproduced with permission from: 

Zadnik K, Manny RE, Yu JA, et al. Ocular component data in schoolchildren as a 

function of age and gender. Optom Vis Sci 2003; 80(3): 226-36. © The American 

Academy of Optometry, 2003. 

 

Figure 3.  Spherical equivalent refractive error found at 13/14 years of age compared 

with that found at 5/6 years of age. Children with a spherical error of less than +0.5D at 

5/6 years of age are likely to present with at least 0.5D of myopia at 13/14 years of age. 

Redrawn from Hirsch  1964.
104   

Reproduced with permission from: Hirsch MJ. 

Predictability of refraction at age 14 on the basis of testing at age 6 - interim report from 

the Ojai Longitudinal Study of Refraction. Am J Optom Arch Am Acad Optom 1964;  

41: 567-73. © The American Academy of Optometry, 1964.
 

 

Figure 4.  The influence of parental myopia on the development of myopia in 

offspring.  Children with two myopic parents have a greatly increased chance of being 

myopic. Redrawn from Pacella et al. 1999 
105

  Reproduced with permission from: 

Pacella R, McLellan J, Grice K, et al. Role of genetic factors in the etiology of juvenile-

onset myopia based on a longitudinal study of refractive error. Optom Vis Sci 1999; 

76(6): 381-386. © The American Academy of Optometry, 1999. 
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Figure 5. A longitudinal study (over 1.5 years) on myopia progression in 188 

Taiwanese children aged 6 to 13 years. The treatments were single vision spectacle 

lenses alone (SV), progressive addition spectacle lenses alone (PALs), and PALs 

combined with topical instillation of 0.5% atropine. Significant slowing of myopic 

progression was evident with atropine. Redrawn from Shih et al. 2001
 170

 Reproduced 

with permission. 

 

Figure 6.  Results of the COMET trial (Correction of Myopia Evaluation Trial): a 

longitudinal study (over 3 years) on myopia progression in 462 children (mixed 

ethnicity) aged 6 to 11 years. The treatments were single vision spectacle lenses alone 

(SV) and progressive addition spectacle lenses alone (PALs). A statistically significant, 

but clinically small slowing of progression of 0.20 +/- 0.08D (p=0.004) occurred during 

the first year of the trial but stabilised thereafter. Redrawn from Gwiazda et al. 181
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Table 1. Studies on the prevalence of myopia in children (< - 0.50D spherical 

equivalent cycloplegic autorefraction in either eye; 5 to 15 years-of-age; M: male; F: 

female) using the Refractive Error Study in Children sampling and measurement 

protocols (Negrel et al. 2000  22). 

  5yrs 15yrs 

CHINA 23 

Shunyi District 

(rural) 

5884 M + F: 0.0 M:  36.7  [29.9 – 43.4] 

F:   55.0   [49.4 – 60.6] 

NEPAL  24 

Mechi Zone 

(rural) 

5067 M + F: ~ 0.5 

 

 

M:  ~ 2.9 

 

F:   ~ 1.0 

 

extrapolated data  

 

CHILE 25 

La Florida 

(suburban) 

5303 M + F: 3.4 

 

[1.72 –5.05] 

M: 19.4 [13.6 – 25.2] 

F:   14.7 [10.1 – 19.2] 

INDIA 26 

Andra Pradesh 

(rural) 

4074 M + F: 2.80 

 

[1.28 – 4.33] 

M + F: 6.72 

 

[4.31 – 9.12] 

INDIA 27 

New Delhi  

(Urban) 

6447 M + F: 4.86 

 

[2.54 – 6.83] 

M + F: 10.80 

 

[6.71 – 14.80] 

SOUTH AFRICA 28 

Durban 

(Metropolitan) 

4890 

 

African 

M + F: 3.2 

 

[0.6 – 5.7] 

M + F: 9.60 

 

[6.4 – 12.7] 

Table 2.  Selection of recent studies on the prevalence of myopia and hyperopia in 

children and young adolescents. 
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COUNTRY 

 

 

N 

 

Age 

(years) 

 

Prevalence of 

Myopia 

(%) (criteria) 

 

Prevalence of 

Hyperopia 

(%) (criteria) 

 

UK 
 33

 

 

7600 

7         

1.1 (<-1.00D) 

 

5.9 (>+2.00D) 

 

SWEDEN 
 34

  

 

1045 

 

12-13 

 

45 (≤-0.50D) 

 

8.4 (≥+1.00) 

 

USA 
 40  

 

 

2583 

6 - 14  

10.1 (≤-0.75D) 

 

8.6 (≥+1.25) 

 

USA 
 41 

African American 

Asian 

Hispanic 

White 

 

2523 

534 

491 

463 

1035 

5-17  

9.2 (≤-0.75D)  

6.6 

18.5 

13.2 

4.4 

 

12.8 (≥+1.25D)  

6.4 

6.3 

12.7 

19.3 

 

AUSTRALIA 
36

 

2571  

5                    

12 

 

2.8 (<-0.50D) 

8.7 (<-0.50D) 

 

46.1 (>+0.50D) 

24.1 (>+0.50D) 

 

SINGAPORE 
35

 

 

1453  

7 

8 

9 

 

 

29.0 (≤ 0.50D) 

34.7(≤ 0.50D) 

53.1(≤ 0.50D) 

 

Data not reported 
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HONG KONG 
 37

 

Local school  

International school 

 

 

 

335 

13-15  

 

85 to 88 

Data not reported 

789  43 in non Chinese 

65 in mixed Chinese 

80 in Chinese 
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Table 3. Risk factors associated with myopia in 946 Singaporean children (after 

Quek  et al. 2004 
126

 ). Reproduced with permission. 

Risk Factor 

Hours per 

week spent 

Age and gender 

adjusted odds 

ratios (95% CI) 

P-value 

 

Education stream 

Normal technical 

Normal academic 

Express 

 

 

 

1.00 

1.68 [1.15-2.46] 

3.03 [2.05-4.47] 

 

 

 

 

0.007 

<0.001 

 

Reading and writing 

 

At present 

 

 

 

At age 12 

 

 

 

At age 7 

 

 

 

 

 

≤ 20.5 

 

> 20.5 

 

≤ 6.5 

 

> 6.5 

 

≤ 4 

 

> 4 

 

 

 

 

1.00 

 

1.12 [1.04-1.20] 

 

1.00 

 

1.21 [0.90-1.64] 

 

1.00 

 

1.34 [1.00-1.79] 

 

 

 

 

 

0.003 

 

 

 

0.21 

 

 

 

0.05 

 

Reading at close distances  

 

Never 

 

Sometimes 

 

Often 

 

 

 

 

 

1.00 

 

1.16 [1.13-2.28] 

 

1.80 [1.12-2.90] 

 

 

 

 

 

 

0.008 

 

0.015 

 

 

Computer usage 

 

 

 

≤ 6 

 

> 6 

 

1.00 

 

1.23 [0.91-1.65] 

 

 

 

0.17 
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Use of handheld  

electronic devices 

 

≤ 3.5 

 

> 3.5 

 

 

1.0 

 

0.78 [0.59-1.05] 

 

 

 

0.10 

 

Parental history 

No parents with myopia 

At least one parent  

with myopia 

 

 

 

 

 

 

 

 

 

 

1.00 

 

1.21 [0.84-1.74] 

 

 

 

 

 

 

0.31 
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Table 4. Univariate and multivariate odds ratios and confidence intervals for the 

association between children’s myopia and various risk factors (after Mutti et al. 2002. 

127
)  

Risk Factor  

 

Univariate Analysis 

mean odds ratio 

[95% CI] 

 

 

Multivariate Analysis 

mean odds ratio 

[95% CI] 

 

Number of myopic 

parents  

(unadjusted for amount 

of near work) 

One 

3.31 

 

[1.32-8.30] 

3.32 

 

[1.18-9.37] 

Two 

7.29 

 

[2.84-18.7] 

6.40 

 

[2.17-18.87] 

 

Near work ≥ 50 D-

hrs/week 

(adjusted for number of 

myopic parents) 

 

 

None 
 

 

2.09 

 

[0.36-12.00] 

One 

 
2.22 

 

[0.94-5.25] 

Two 

 
1.57 

 

[0.60-4.09] 

Near work 

Dioptre-hours/week 
 

1.02 

[CI: 1.01-1.03] 

1.02 

[1.01-1.03] 
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Sports  

/hr/week 
 

0.94 

 

[0.89-0.98] 

0.92 

 

[0.86-0.97] 

 

ITBS reading local 

percentile score  

/% score 

 

1.01 

 

[1.00-1.02] 

1.01 

 

[1.00-1.03] 
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PIR  b.i.d. versus  PL b.i.d.   **  P < 0.001; * P = 0.008 

Table 5. Clinical trials on myopia progression in young children comparing 

instillation of 2% pirenzepine (PIR) ophthalmic gel with placebo (PL). 

 

Age 

(years) 

Trial 

 

Sample Size 

 

Mean myopic 

progression over 1 year 

 

USA 

 

Siatkowski et al. 

2004 
180

 

 

8-12 

PL b.i.d. 53 0.99(+/-0.68) 

PIR b.i.d. 31 0.58 (+/-0.53)* 

 

ASIA 

 

Tan et al. 

2003 
181

 

 

6-12 

PL b.i.d. 71 0.84 

PIR q.d. 141 0.70 

PIR b.i.d. 141 0.47** 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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