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An analytic investigation of the average case learning and generalization
properties of radial basis function (RBFs) networks is presented, utiliz-
ing online gradient descent as the learning rule. The analytic method em-
ployed allows both the calculation of generalization error and the exami-
nation of the internal dynamics of the network. The generalization error
and internal dynamics are then used to examine the role of the learning
rate and the specialization of the hidden units, which gives insight into
decreasing the time required for training. The realizable and some over-
realizable cases are studied in detail: the phase of learning in which the
hidden units are unspecialized (symmetric phase) and the phase in which
asymptotic convergence occurs are analyzed, and their typical properties
found. Finally, simulations are performed that strongly confirm the ana-
lytic results.

1 Introduction

Several tools facilitate the analytic investigation of learning and generaliza-
tion in supervised neural networks, such as the statistical physics methods
(see Watkin, Rau, & Biehl, 1993, for a review), the Bayesian framework
(MacKay, 1992), and the “probably approximately correct” (PAC) method
(Haussler, 1994). These tools have principally been applied to simple net-
works, such as linear and boolean perceptrons, and various simplifications
of the committee machine (see, for instance, Schwarze, 1993, and references
therein). It has proved very difficult to obtain general results for the com-
monly used multilayer networks, such as the sigmoid multilayer perceptron
(MLP) and the radial basis function (RBF) network.

Another approach, based on studying the dynamics of online gradient
descent training scenarios, has been used by several authors (Heskes &
Kappen, 1991; Leen & Orr, 1994; Amari, 1993) to examine the evolution of
system parameters, primarily in the asymptotic regime. A similar approach,
based on examining the dynamics of overlaps between characteristic sys-
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tem vectors in online training scenarios, has been suggested recently (Saad
& Solla, 1995a, 1995b) for investigating the learning dynamics in the soft
committee machine (SCM) (Biehl & Schwarze, 1995). This approach pro-
vides a complete description of the learning process, formulated in terms
of the overlaps between vectors in the system, and it can be easily extended
to include general two-layer networks (Riegler & Biehl, 1995).

For RBFs, some analytic studies focus primarily on generalization error.
In Freeman and Saad (1995a, 1995b), average case analyses are performed
employing a Bayesian framework to study RBFs under a stochastic training
paradigm. In Niyogi and Girosi (1994), a bound on generalization error is
derived under the assumption that the training algorithm finds a globally
optimal solution. Details of studies of RBFs from the perspective of the PAC
framework can be found in Holden and Rayner (1995) and its references.
These methods focus on a training scenario in which a model is trained on
a fixed set of examples using a stochastic training method.

This article presents a method for analyzing the behavior of RBFs in an
online learning scenario whereby network parameters are modified after
each presentation of an example, which allows the calculation of general-
ization error as a function of a set of variables characterizing the properties
of the adaptive parameters of the network. The dynamical evolution of these
variables in the average case can be found, allowing not only the investiga-
tion of generalization ability but also the internal dynamics of the network,
such as specialization of hidden units, to be analyzed. This tool has pre-
viously been applied to MLPs (Saad & Solla, 1995a, 1995b; Rieler & Biehl,
1995).

2 Training Paradigms for RBF Networks

RBF networks have been successfully employed over the years in many
real-world tasks, providing a useful alternative to MLPs. Furthermore, the
RBF is a universal approximator for continuous functions given a sufficient
number of hidden units (Hartman, Keeler, & Kowalski, 1990). The RBF ar-
chitecture consists of a two-layer fully connected network. The mapping
performed by each hidden node represents a radially symmetric basis func-
tion; within this analysis, the basis functions are considered gaussian, and
each is therefore parameterized by two quantities: a vector representing the
position of the basis function center in input space and a scalar representing
the width of the basis function. For simplicity, the output layer is taken to
consist of a single node; this performs a linear combination of the hidden
unit outputs.

There are two commonly utilized methods for training RBFs. One ap-
proach is to fix the parameters of the hidden layer (both the basis function
centers and widths) using an unsupervised technique such as clustering,
setting a center on each data point of the training set, or even picking ran-
dom values (for a review, see Bishop, 1995). Only the hidden-to-output
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weights are adaptable, which makes the problem linear in those weights.
Although fast to train, this approach results in suboptimal networks since
the basis function centers are set to fixed, suboptimal values. The alternative
is to adapt the hidden layer parameters—either just the center positions or
both center positions and widths. This renders the problem nonlinear in the
adaptable parameters, and hence requires an optimization technique, such
as gradient descent, to estimate these parameters. The second approach is
computationally more expensive but usually leads to greater accuracy of
approximation. This article investigates the nonlinear approach in which
basis function centers are continuously modified to allow convergence to
more optimal models.

There are two methods in use for gradient descent. In batch learning,
one attempts to minimize the additive training error over the entire data
set; adjustments to parameters are performed once the full training set has
been presented. The alternative approach, examined here, is online learning,
in which the adaptive parameters of the network are adjusted after each
presentation of a new data point.1 There has been a resurgence of interest
analytically in the online method; technical difficulties caused by the variety
of ways in which a training set of given size can be selected are avoided, so
complicated techniques such as the replica method (Hertz, Krogh, & Palmer,
1989) are unnecessary.

3 Online Learning in RBF Networks

We examine a gradient descent online training scenario on a continuous
error measure. The trained model (student) is an RBF network consisting
of K basis functions. The center of student basis function (SBF) b is denoted
by mb, and the hidden-to-output weights of the student are represented by
w. Training examples will consist of input-output pairs (ξ, ζ ). The compo-
nents of ξ are uncorrelated gaussian random variables of mean 0, variance
σ 2
ξ , while ζ is generated by applying ξ to a deterministic teacher RBF, but

one in which the number M and the position of the hidden units need not
correspond to that of the student, which allows investigation of overrealiz-
able and unrealizable cases.2 The mapping implemented by the teacher is
denoted by fT and that of the student by fS. The hidden-to-output weights
of the teacher are w0, while the center of teacher basis function u is given by
nu. The vector of SBF responses to input vector ξ is represented by s(ξ), and
those of the teacher are denoted by t(ξ). The overall functions computed by

1 Obviously one may employ a method that is a compromise between the two extremes.
2 This represents a general training scenario since, being universal approximators, RBF

networks can approximate any continuous mapping to a desired degree.
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the networks are therefore:3

fS(ξ) =
K∑

b=1

wb exp

(
−‖ξ −mb‖2

2σ 2
B

)
= w · s(ξ) (3.1)

fT(ξ) =
M∑

u=1

w0
u exp

(
−‖ξ − nu‖2

2σ 2
B

)
= w0 · t(ξ) (3.2)

N will denote the dimensionality of input space and P the number of exam-
ples presented.

The centers of the basis functions (input-to-hidden weights) and the
hidden-to-output weights are considered adjustable; for simplicity, the
widths of the basis functions are fixed to a common value σB. The evolution
of the centers of the basis functions is described in terms of the overlaps
Qbc ≡ mb ·mc, Rbu ≡ mb · nu, and Tuv ≡ nu · nv, where Tuv is constant and
describes characteristics of the task to be learned.

Previous work in this area (Biehl & Schwarze, 1995; Saad & Solla, 1995a,
1995b; Riegler & Biehl, 1995) has relied on the thermodynamic limit.4 This
limit allows one to ignore fluctuations in the updates of the means of the
overlaps due to the randomness of the training examples, and permits the
difference equations of gradient descent to be considered as differential
equations. The thermodynamic limit is hugely artificial for local RBFs; as
the activation is localized, the N → ∞ limit implies that a basis function
responds only in the vanishingly unlikely event that an input point falls
exactly on its center; there is no obvious reasonable rescaling of the basis
functions.5 The price paid for not taking this limit is that one has no a
priori justification for ignoring the fluctuations in the update of the adaptive
parameters due to the randomness of the training example. In this work, we
calculate both the means and variances of the adaptive parameters, showing
that the fluctuations are practically negligible (see section 5).

3.1 Calculating the Generalization Error. Generalization error measures
the average dissimilarity over input space between the desired mapping fT

3 Indices b, c, d, and e will always represent SBFs; u and v will represent those of the
teacher.

4 P→∞,N→∞, and P/N = α, where α is finite.
5 For instance, utilizing

exp

(
−‖ξ −mb‖2

2Nσ 2
B

)
eliminates all directional information as the cross-term ξ ·mb vanishes in the thermody-
namic limit.
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and that implemented by the learning model fS. This dissimilarity is taken
as quadratic deviation:

EG =
〈

1
2

[
fS − fT

]2 〉
, (3.3)

where 〈· · ·〉denotes an average over input space with respect to the measure
p(ξ). Substituting the definitions of equations 3.1 and 3.2 into this leads to:

EG = 1
2

{∑
bc

wbwc 〈sbsc〉 +
∑
uv

w0
uw0

v 〈tutv〉 − 2
∑
bu

wbw0
u 〈sbtu〉

}
. (3.4)

Since the input distribution is gaussian, the averages are gaussian integrals
and can be performed analytically; the resulting expression for generaliza-
tion error is given in the appendix. Each average has dependence on combi-
nations of Q, R, and T depending on whether the averaged basis functions
belong to student or teacher.

3.2 System Dynamics. Expressions for the time evolution of the over-
laps Q and R can be derived by employing the gradient descent rule,

mp+1
b = mp

b +
η

Nσ 2
B

δb(ξ −mb),

where δb = ( fT− fS)wbsb and η is the learning rate, which is explicitly scaled
with 1/N:

〈1Qbc 〉 = η

NσB2

〈 [
δb(ξ −mp

b) ·m
p
c + δc(ξ −mp

c ) ·mp
b

] 〉
(3.5)

+
(

η

Nσ 2
B

)2 〈
δbδc(ξ −mp

b) · (ξ −mp
c )
〉

〈1Rbu 〉 = η

Nσ 2
B

〈 δb(ξ −mp
b) · nu 〉. (3.6)

The hidden-to-output weights can be treated similarly, but here the learning
rate is scaled with 1/K, yielding:6

〈1wb 〉 = η

K
〈 ( fT − fS)sb 〉. (3.7)

These averages are again gaussian integrals, so they can be carried out
analytically. The averaged expressions for 1Q,1R, and 1w are given in
the appendix.

6 For simplicity we use the same learning rate for both the centers and the hidden-to-
output weights, although different learning rates may be employed.
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By iterating equations 3.5, 3.6, and 3.7, the evolution of the learning pro-
cess can be tracked. This allows one to examine facets of learning such as
specialization of the hidden units. Since generalization error depends on Q,
R, and w, one can also use these equations with equation 3.4 to track the
evolution of generalization error.

4 Analysis of Learning Scenarios

4.1 The Evolution of the Learning Process. Solving the difference equa-
tions 3.5, 3.6, and 3.7 iteratively, one obtains solutions to the mean behavior
of the overlaps and the weights. There are four distinct phases in the learn-
ing process, which are described with reference to an example of learning
an exactly realizable task. The task consists of three SBFs learning a graded
teacher of three teacher basis functions (TBFs) where graded implies that
the square norms of the TBFs (diagonals of T) differ from one another; for
this task, T00 = 0.5,T11 = 1.0, and T22 = 1.5.

In this demonstration the teacher is chosen to be uncorrelated, so the off-
diagonals of T are 0, and the teacher hidden-to-output weights w0 are set
to 1. The learning process is illustrated in Figure 1. Figure 1a (solid curve)
shows the evolution of generalization error, calculated from equation 3.4,
while Figures 1b–d show the evolution of the equations for the means of
R, Q, and w, respectively, calculated by iterating equations 3.5, 3.6, and
3.7 from random initial conditions sampled from the following uniform
distributions: Qbb and wb are sampled from U[0, 0.1], while Qbc,b6=c and Rbc
from a uniform distribution U[0, 10−6]. These initial conditions will be used
throughout the article and reflect random correlations expected by arbitrary
initialization of large systems. Input dimensionality N = 8, learning rate
η = 0.9, input variance σ 2

ξ = 1, and basis function width σ 2
B = 1 will be

employed unless stated otherwise.
Initially, there is a short transient phase in which the overlaps and hidden-

to-output weights evolve from their initial conditions until they reach an
approximately steady value (P = 0 to P = 1000). The symmetric phase
then begins, which is characterized by a plateau in the evolution of the
generalization error (see Figure 1a, solid curve; P = 1000 to P = 7000),
corresponding to a lack of differentiation among the hidden units; they are
unspecialized and learn an average of the hidden units of the teacher, so
that the student center vectors and hidden-to-output weights are similar
(see Figures 1b–d). The difference in value between the overlaps R between
student center vectors and teacher center vectors (see Figure 1b) is only
due to the difference in the lengths of various teacher center vectors; if the
overlaps were normalized, they would be identical. The symmetric phase is
followed by a symmetry-breaking phase in which the SBFs learn to special-
ize, and become differentiated from one another (P = 7000 to P = 20,000).
Finally there is a long convergence phase, as the overlaps and hidden-to-
output weights reach their asymptotic values. Since the task is realizable,
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Figure 1: The exactly realizable scenario with positive TBFs. Three SBFs learn
a graded, uncorrelated teacher of three TBFs with T00 = 0.5, T11 = 1.0, and
T22 = 1.5. All teacher hidden-to-output weights are set to 1. (a) The evolution
of the generalization error as a function of the number of examples for several
different learning rates (η = 0.1, 0.9, 5.0). (b, c) The evolution of overlaps be-
tween student and teacher center vectors and among student center vectors,
respectively. (d) The evolution of the mean hidden-to-output weights.

this phase is characterized by Eg → 0 (see Figure 1a, solid curve) and by the
student center vectors and hidden-to-output weights approaching those of
the teacher (i.e., Q00 = R00 = 0.5,Q11 = R11 = 1.0,Q22 = R22 = 1.5, with
the off-diagonal elements of both Q and R being zero; ∀b,wb = 1).7

These phases are generic in that they are observed, sometimes with some
variation such as a series of symmetric and symmetry-breaking phases, in
every online learning scenario for RBFs so far examined. They also corre-
spond to the phases found for MLPs (Saad & Solla, 1995b; Riegler & Biehl,
1995).

7 The arbitrary labels of the SBFs were permuted to match those of the teacher.
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The formalism describes the evolution of the means (and the variances)
from certain initial conditions. Convergence of the dynamics to suboptimal
attractive fixed points (local minima) may occur if the starting point is within
the corresponding basin of attraction. No local minima have been observed
in our solutions, which may be an artifact of the system dimensionality.

4.2 The Role of the Learning Rate. With all the TBFs positive, analysis
of the time evolution of the generalization error, overlaps, and hidden-to-
output weights for various settings of the learning rate reveal the existence
of three distinct behaviors. If η is chosen to be too small (here, η = 0.1),
there is a long period in which there is no specialization of the SBFs and
no improvement in generalization ability. The process becomes trapped
in a symmetric subspace of solutions; this is the symmetric phase. Given
asymmetry in the student initial conditions (in R, Q, or w) or of the task itself,
this subspace will always be escaped, but the time period required may be
prohibitively large (see Figure 1a, dotted curve). The length of the symmetric
phase increases with the symmetry of the initial conditions. At the other
extreme, if η is set too large, an initial transient takes place quickly, but there
comes a point from which the student vector norms grow extremely rapidly,
until the point where, due to the finite variance of the input distribution
and local nature of the basis functions, the SBFs are no longer activated
during training (see Figure 1a, dashed curve, with η = 5.0). In this case,
the generalization error approaches a finite value as P → ∞, and the task
is not solved. Between these extremes lies a region in which the symmetric
subspace is escaped quickly, and EG → 0 as P→∞ for the realizable case
(see Figure 1a, solid curve, with η = 0.9). The SBFs become specialized and,
asymptotically, the teacher is emulated exactly.

These results for the learning rate are qualitatively similar to those found
for SCMs and MLPs (Biehl & Schwarze, 1995; Saad & Solla, 1995a, 1995b;
Riegler & Biehl, 1995).

4.3 Task Dependence. The symmetric phase depends on the symmetry
of the task as well as that of the initial conditions. One would expect a
shorter symmetric phase in inherently asymmetric tasks. To examine this, a
task similar to that of section 4.1 was employed, with the single change being
that the sign of one of the teacher hidden-to-output weights was flipped,
thus providing two categories of targets: positive and negative. The initial
conditions of the student remained the same as in the previous task, with
η = 0.9.

The evolution of generalization error and the overlaps for this task are
shown in Figure 2. The dividing of the targets into two categories effectively
eliminates the symmetric phase; this can be seen by comparing the evolu-
tion of the generalization error for this task (see Figure 2a, dashed curve)
with that for the previous task (see Figure 2a, solid curve). There is no longer
a plateau in the generalization error. Correspondingly, the symmetries be-
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Figure 2: The exactly realizable scenario defined by a teacher network with a
mixture of positive and negative TBFs. Three SBFs learn a graded, uncorrelated
teacher of three TBFs with T00 = 0.5,T11 = 1.0, and T22 = 1.5. w0

0 = 1,w0
1 =

−1,w0
2 = 1. (a) The evolution of the generalization error for this case and, for

comparison, the evolution in the case of all positive TBFs. (b) The evolution of
the overlaps between student and teacher centers R.

tween SBFs break immediately, as can be seen by examining the overlaps
between student and teacher center vectors (see Figure 2b); this should be
compared with figure 1b, which denotes the evolution of the overlaps in the
previous task. Note that the plateaus in the overlaps (see Figure 1b, P = 1000
to P = 7000) are not found for the antisymmetric task.

The elimination of the symmetric phase is an extreme result caused by
the extremely asymmetric teacher. For networks with many hidden units,
one can find a cascade of subsymmetric phases, each shorter than the single
symmetric phase in the corresponding task with only positive targets, in
which there is one symmetry between the hidden units seeking positive
targets and another between those seeking negative targets.

This suggests a simple and easily implemented strategy for increasing
the speed of learning when targets are predominantly positive (negative):
eliminate the bias of the training set by subtracting (adding) the mean target
from each target point. This corresponds to an old heuristic among RBF prac-
titioners. It follows that the hidden-to-output weights should be initialized
from a zero-mean distribution.

4.4 The Overrealizable Case. In real-world problems, the exact form of
the data-generating mechanism is rarely known. This leads to the possibility
that the student may be overly powerful, in that it is capable of fitting
surfaces more complicated than that of the true teacher. It is important
to gain insight into how architectures will respond given such a scenario
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Figure 3: The overrealizable scenario. (a) The evolution of the generalization
error in two tasks; each task is learned by a well-matched student (exactly real-
izable) and an overly powerful student (overrealizable). (b, c) The evolution of
the overlaps R and the hidden-to-output weights w for the overrealizable case
in the second task, in which the teacher RBF includes a mixture of positive and
negative hidden-to-output weights. In this scenario, five SBFs learn a graded,
uncorrelated teacher of three TBFs with T00 = 0.5,T11 = 1.0, and T22 = 1.5.
w0

0 = 1,w0
1 = −1,w0

2 = 1.

in order to be confident that they can be used successfully when the true
teacher is unknown.

Intuitively, one might expect that a student that is well matched to the
teacher will learn faster than one that is overly powerful. Figure 3a shows
two tasks, each of which compares the overrealizable scenario with the
well-matched case. The first task, consisting of three TBFs, is identical to
that detailed in section 4.1, and hence has only positive targets. The per-
formance of a well-matched student of three SBFs is compared with an
overrealizable scenario in which five SBFs learn the three TBFs. Compari-
son of the evolution of generalization error between these learning scenarios
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is shown in Figure 3a; the solid curve represents the well-matched scenario,
and the dot-dash curve illustrates the overrealizable scenario. The length
of the symmetric phase is significantly increased with the overly powerful
student. The length of the convergence phase is also increased. An analyti-
cal treatment of these effects as well as the overrealizable scenario generally
is given elsewhere (Freeman & Saad, in press).

The second task deals with the alternative scenario in which one TBF
has a negative hidden-to-output weight; the task is identical to that de-
fined in section 4.3, and the student initial conditions are again as specified
in section 4.1. In Figure 3a the evolution of generalization error for both
the overrealizable scenario (dashed curve) in which five SBFs learn three
TBFs, and the corresponding well-matched case in which three SBFs learn
three TBFs (dotted curve), is shown. There is no well-defined symmetric
case due to the inherent asymmetry of the task. The convergence phase is
again greatly increased in length; this appears to be a general feature of the
overrealizable scenario.

Given that the student is overly powerful, there appear to be, a priori,
several remedies available to the student: eliminate the excess nodes, form
cancellation pairs (in which two students exactly cancel one another), or
devise more complicated fitting schemes.

To examine the actual responses of the student, the evolution of the over-
laps between student and teacher and of the hidden-to-output weights for
the particular scenario described by the second trial detailed is presented in
Figures 3b and 3c, respectively. Looking first at Figure 3c, it is apparent that
w3 approaches zero (short-dashed curve), indicating that SBF 3 is entirely
eliminated during training. Thus four SBFs remain to emulate three TBFs.
The negative TBF 1 is exactly emulated by SBF 0, as T11 = 1,w0

1 = −1, and
R01 = 1,w0 = −1 (solid curve on both Figures 3b and 3c), while, similarly,
SBF 2 exactly emulates TBF 2 (long-dashed curve, both figures). This leaves
SBF 1 and SBF 4 to emulate TBF 0. Looking at Figure 3c, dotted and dot-dash
curves, both student hidden-to-output weights approach 0.5, exactly half
that of the hidden-to-output weight of TBF 0; looking at Figure 3b, both SBFs
have 0.5 overlap with TBF 0. This indicates that the sum of both students
emulates TBF 0. Thus, elimination and fitting involving the noncancelling
combination of nodes were found; in these trials and many others, no pair-
wise cancellation was found. One presumes that this could be induced by
very careful selection of the initial conditions but that it is not found under
normal circumstances.

4.5 Analysis of the Symmetric Phase. The symmetric phase, in which
there is no specialization of the hidden units, can be analyzed in the re-
alizable case by employing a few simplifying assumptions. It is a phe-
nomenon that is predominantly associated with small η, so terms of η2 are
neglected. The hidden-to-output weights are clamped to +1. The teacher
is taken to be isotropic: TBF centers have identical norms of 1, each hav-
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ing no overlap with the others; therefore Tuv = δuv. This has the result that
the student norms Qbb are very similar in this phase, as are the student-
student correlations, so Qbb ≡ Q and Qbc,b6=c ≡ C, where Q becomes the
square norm of the SBFs, and C is the overlap between any two different
SBFs.

Following the geometric argument of Saad & Solla (1995b), in the sym-
metric phase, the SBF centers are confined to the subspace spanned by the
TBF centers. Since Tuv = δuv, the SBF centers can be written in the orthonor-
mal basis defined by the TBF centers, with the components being the over-
laps R: mb =

∑M
u=1 Rbunu. Because the teacher is isotropic, the overlaps are

independent of both b and u and thus can be written in terms of a single
parameter R. Further, this reduction to a single overlap parameter leads to
Q = C = MR2, so the evolution of the overlaps can be described as a single
difference equation for R. The analytic solution of equations 3.5, 3.6, and
3.7 under these restrictions is still rather complicated. However, since we
are primarily interested in large systems, that is, large K, we examine the
dominant terms in the solution. Expanding in 1/K and discarding second-
order terms renders the system simple enough to solve analytically for the
symmetric fixed point:

R = 1

K
(

1+ σ 2
B − σ 2

B exp
[(

1
2σ 2

B

)
σ 2

B+1
σ 2

B+2

]) . (4.1)

The stability of the fixed point, and thus the breaking of the symmetric
phase, can be examined by an eigenvalue analysis of the dynamics of the
system near the fixed point. The method employed is similar to that detailed
in Saad and Solla (1995b) and is presented elsewhere (Freeman & Saad, in
press). The dominant eigenvalue (λ1 > 0) scales with K and represents
a perturbation that breaks the symmetries between the hidden units; the
remaining modes λi6=1 < 0, which also scale with K, are irrelevant because
they preserve the symmetry. This result is in contrast to that for the SCM
(Saad & Solla, 1995b), in which the dominant eigenvalue scales with 1/K.
This implies that for RBFs, the more hidden units in the network, the faster
the symmetric phase is escaped, resulting in negligible symmetric phases
for large systems, while in SCMs the opposite is true. This difference is
caused by the contrast between the localized nature of the basis function
in the RBF network and the global nature of sigmoidal hidden nodes in
SCM. In the SCM case, small perturbations around the symmetric fixed
point result in relatively small changes in error since the sigmoidal response
changes very slowly as one modifies the weight vectors. On the other hand,
the gaussian response decays exponentially as one moves away from the
center, so small perturbations around the symmetric fixed point result in
massive changes that drive the symmetry breaking. When K increases, the
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error surface looks very rugged, emphasizing the peaks and increasing this
effect, in contrast to the SCM case, where more sigmoids means a smoother
error surface.

This does not mean that the symmetric phase can be ignored for realisti-
cally sized networks, however. Even with a teacher that is not particularly
symmetric, this phase can play a significant role in the learning dynamics.
To demonstrate this, a teacher RBF of 10 hidden units with N = 5 was con-
structed with the teacher centers generated from a gaussian distribution
N [0, 0.5]. Note that this teacher must be correlated because the number of
centers is larger than the input dimension. A student network, also of 10
hidden units, was constructed with all weights initialized from N [0, 0.05].
The networks were then mapped into the corresponding overlaps, and the
learning process was run with η = 0.1. The evolution of generalization error
is shown in Figure 4d: the symmetric phase, extending here from P = 2000
to P = 15,000, is a prominent phenomenon of the learning dynamics. It is not
merely an artifact of a highly symmetric teacher configuration (the teacher
was random and correlated) or of a specially chosen set of initial conditions,
as the student was initialized with realistic initial conditions before being
mapped into overlaps.

4.6 Analysis of the Convergence Phase. To gain insight into the con-
vergence of the online gradient descent process in a realizable scenario, a
similar simplified learning scenario to that used in the symmetric phase
analysis was employed. The hidden-to-output weights are again fixed to
+1, and the teacher is defined by Tuv = δuv. The scenario can be extended to
adaptable hidden-to-output weights (this is presented in Freeman & Saad,
in press, along with more mathematical detail). As in the symmetric phase,
the fact that Tuv = δuv allows the system to be reduced to four adaptive
quantities: Q ≡ Qbb,C ≡ Qbc,b6=c,R ≡ Rbb, and S ≡ Rbc,b6=c.

Linearizing this system about the known fixed point of the dynamics,
Q = 1,C = 0,R = 1, S = 0, yields an equation of the form 1x = Ax,
where x = {1 − R, 1 − Q, S,C} is the vector of deviations from the fixed
point. The eigenvalues of the matrix A control the converging system; these
are presented in Figure 4a for K = 10. In every case examined, there is
a single critical eigenvalue λc that controls the stability and convergence
rate of the system (shown in bold), a nonlinear subcritical eigenvalue, and
two subcritical linear eigenvalues. The value of η at λc = 0 determines the
maximum learning rate for convergence to occur; for λc > 0 the fixed point
is unstable. The convergence of the overlaps is controlled by the critical
eigenvalue; therefore, the value of η at the single minimum of λc determines
the optimal learning rate (ηopt) in terms of the fastest convergence of the
system to the fixed point.

Examining ηc and ηopt as a function of K (see Figure 4b), one finds that
both quantities scale as 1/K; the maximum and optimal learning rates are



1614 Jason A. S. Freeman and David Saad

0.0 1.0 2.0 3.0 4.0
-0.020

-0.015

-0.010

-0.005

0.000

η

λ

Eigenvalues for the
Asymptotic Phase

(a)

0.10 0.08 0.06 0.04 0.02 0.00
0.0

1.0

2.0

3.0

4.0

1/K

η η

ηopt

c

Maximum and Optimal
Learning Rates

(b)

0.0 1.0 2.0 3.0 4.0 5.0
0.0

4.0

8.0

12.0

16.0

20.0

ηc

σB

Maximum Learning Rate

2

versus
Basis Function Width

σξ
2

(c)

0 20000 40000 60000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

P

Eg

Generalization Error for a
Realistic Learning Scenario

(d)

Figure 4: Convergence and symmetric phases. (a) The eigenvalues controlling
the dynamics of the system for the convergence phase (detailed in section 4.6),
linearized about the asymptotic fixed point in the realizable case, as a func-
tion of η. The critical eigenvalue is shown in bold. (b) The maximum and opti-
mal convergence phase learning rates, found from the critical eigenvalue; these
quantities scale as 1/K. (c) The maximum convergence phase learning rate as a
function of basis function width. (d) The evolution of generalization error for
a realistically sized learning scenario (described in section 4.5), demonstrating
that the symmetric phase can play a significant role, even with a correlated,
asymmetric teacher.

inversely proportional to the number of hidden units of the student. Nu-
merically, the ratio of ηopt to ηc is approximately two-thirds.

Finally, the relationship between basis function width and ηc is plotted
in Figure 4c. When the widths are small, ηc is very large as it becomes
unlikely that a training point will activate any of the basis functions. For
σ 2

B > σ 2
ξ , ηc ∼ 1/σ 2

B .
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5 Quantifying the Variances

Because the thermodynamic limit is not employed, it is necessary to quantify
the variances in the adaptive parameters to justify considering only the
mean updates.8

By making assumptions as to the form of these variances, it is possible to
derive equations describing their evolution. Specifically, it is assumed that
each update function and parameter being updated can be written in terms
of a mean and fluctuation; for instance, applying this to Qbc:

1Qbc = 1Qbc + 1̂Qbc Qbc = Qbc +
√

η
N Q̂bc , (5.1)

where 〈Qbc〉 denotes an average value and Q̂bc represents a fluctuation due
to the randomness of the example. Combining these equations and aver-
aging with respect to the input distribution results in a set of difference
equations describing the evolution of the variances of the overlaps and
hidden-to-output weights (similar to Riegler & Biehl, 1995) as training pro-
ceeds. Details of the method can be found in Heskes and Kappen (1991) and
in Barber, Saad, and Sollich (1996) for the SCM. It has been shown that the
variances vanish in the thermodynamic limit for realizable cases (Barber
et al., 1996; Heskes & Kappen, 1991). (A detailed description of the calcu-
lation of the variances as applied to RBFs appears in Freeman & Saad, in
press.)

Figure 5 shows the evolution of the variances, as error bars on the mean,
for the dominant overlaps and the hidden-to-output weights using η =
0.9,N = 10 on a task identical to that described in section 4.1. Examining
the dominant overlaps R first (see Figure 5a), the variances follow the same
pattern for each overlap but at different values of P. The variances begin at
0, then increase, peaking at the symmetry-breaking point at which the SBF
begins to specialize on a particular TBF; then they decrease to 0 again as con-
vergence occurs. Looking at each SBF in turn, for SBF 2 (dashed curve), the
overlap begins to specialize at approximately P = 2000, where the variance
peak occurs; for SBF 0 (solid curve), the symmetry lasts until P = 10,000,
again where the variance peak occurs, and for SBF 1 (dotted curve), the
symmetry breaks later at approximately P = 20,000, again where the peak
of the variance occurs. The variances then dwindle to 0 for each SBF in the
convergence phase.

Essentially the same pattern occurs for the hidden-to-output weights
(see Figure 5b). The variances increase rapidly until the hidden units begin

8 The hidden-to-output weights are not intrinsically self-averaging even in the thermo-
dynamic limit, although they have been shown to be such for the MLP if the learning rate is
scaled with N (Riegler & Biehl, 1995). If scaled differently, adiabatic elimination techniques
may be employed to describe the evolution adequately (Riegler, personal communication,
1996).
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Figure 5: Evolution of the variances of the overlaps R and hidden-to-output
weights w are shown in (a) and (b), respectively. The curves denote the evolution
of the means; the error bars show the evolution of the fluctuations about the
mean. Input dimensionality N = 10, learning rate η = 0.9, input varianceσ 2

ξ = 1,
and basis function width σ 2

B = 1.0.

to specialize, at which point the variances peak. This is followed by the
variances’ decreasing to 0 as convergence occurs. For both overlaps and
hidden-to-output weights, the mean is an order of magnitude larger than
the standard deviation at the variance peak and is much more dominant
elsewhere; the ratio becomes greater as N is increased.

The magnitude of the variances is influenced by the degree of symmetry
of the initial conditions of the student and the task in that the greater this
symmetry is, the larger the variances. Discussion of this phenomenon can
be found in Barber et al. (1996); it will be explored at greater length for RBFs
in a future publication.

6 Simulations

In order to confirm the validity of the analytic results, simulations were
performed in which RBFs were trained using online gradient descent. The
trajectories of the overlaps were calculated from the trajectories of the weight
vectors of the network, and generalization error was estimated by finding
the average error on a 1000-point test set. The procedure was performed 50
times and the results averaged, subject to permutation of the labels of the
SBFs to ensure the average was meaningful.

Typical results are shown in Figure 6. The example shown is for an ex-
actly realizable system of three SBFs and three TBFs at N = 5, η = 0.9.
Figure 6a shows the correspondence between empirical test error and the-
oretical generalization error. At all times, the theoretical result is within



Online Learning 1617

0 2000 4000 6000 8000 10000
0.0000

0.0005

0.0010

0.0015

0.0020

P

Eg

Theoretical
Empirical

(a)

0 2000 4000 6000 8000 10000
-0.5

0.0

0.5

1.0

1.5

P

R

Theoretical Empirical

(b)

0 2000 4000 6000 8000 10000
-0.5

0.0

0.5

1.0

1.5

P

Q

Theoretical Empirical

(c)

0 2000 4000 6000 8000 10000
0.4

0.6

0.8

1.0

1.2

EmpiricalTheoretical

P

W

(d)

Figure 6: Comparison of theoretical results with simulations. The simulation
results are averaged over 50 trials; the labels of the student hidden units were
permuted where necessary to make the averages meaningful. Empirical gener-
alization error was approximated with the test error on a 1000-point test set (a).
Error bars on the simulations are at most the size of the larger asterisks for the
overlaps (b, c), and at most twice this size for the hidden-to-output weights (d).
Input dimensionality N = 5, learning rate η = 0.9, input variance σ 2

ξ = 1, and
basis function width σ 2

B = 1.

one standard deviation of the empirical result. Figures 6b–d show the ex-
cellent correspondence between the trajectories of the theoretical overlaps
and hidden-to-output weights and their empirical counterparts; the er-
ror bars on the simulation distributions are not shown because they are
approximately the size of the symbols. The simulations demonstrate the
validity of the theoretical results. In addition, we have found excellent
correlation between the analytically calculated variances and those ob-
tained from the simulations (this is explored further in Freeman & Saad,
in press).
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7 Conclusion

Online learning, in which the adaptive parameters of the network are up-
dated at each presentation of a data point, was examined for the RBF using
gradient descent learning. The analytic method presented allows the calcu-
lation of the evolution of generalization error and the specialization of the
hidden units.

This method was used to elucidate the stages of training and the role of
the learning rate. There are four stages of training: a short transitory phase
in which the adaptive parameters move from the initial conditions to the
symmetric phase; the symmetric phase itself, characterized by lack of dif-
ferentiation among hidden units; a symmetry-breaking phase in which the
hidden units become specialized; and a convergence phase in which the
adaptive parameters reach their final values asymptotically. Three regimes
were found for the learning rate: small, giving unnecessarily slow learning;
intermediate, leading to fast escape from the symmetric phase and conver-
gence to the correct target; and too large, which results in a divergence of
SBF norms and failure to converge to the correct target.

Examining the exactly realizable scenario, it was shown that employing
both positive and negative targets leads to much faster symmetry breaking;
this appears to be the underlying reason behind the neural network folk-
lore that targets should be given zero mean. The overrealizable case was
also studied, showing that overrealizability extends both the length of the
symmetric phase and that of the convergence phase.

The symmetric phase for realizable scenarios was analyzed and the value
of the overlaps at the symmetric fixed point found. It was discovered that
there is a significant difference between the behaviors of the RBF and SCM,
in that increasing K speeds up the symmetry-breaking in RBFs, while it
slows the process for SCMs.

The convergence phase was also studied; both maximum and optimal
learning rates were calculated and shown to scale as 1/K. The dependence of
the maximum learning rate on the width of the basis functions was also ex-
amined, and, for σ 2

B > σ 2
ξ , the maximum learning rate scales approximately

as 1/σ 2
B .

Finally, simulations were performed that strongly confirm the theoretical
results.

Future work includes the study of unrealizable cases, in which the learn-
ing rate must decay over time in order to find a stable solution, the study
of the effects of noise and regularizers, the extension of the analysis of the
convergence phase to fully adaptable hidden-to-output weights, and the
use of the theory to aid real-world learning tasks, by, for instance, deliber-
ately breaking the symmetries between SBFs in order to reduce drastically
or even eliminate the symmetric phase.
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Appendix

Generalization Error

EG = 1
2

{∑
bc

wbwcI2(b, c)+
∑
uv

w0
uw0

vI2(u, v)− 2
∑
bu

wbw0
uI2(b, u)

}
(A.1)

1Q,1R, and 1w

〈1Qbc〉 = η

Nσ 2
B

{
wb

[
J2(b; c)−QbcI2(b)

]
+ wc

[
J2(c; b)−QbcI2(c)

]}
+
(

η

Nσ 2
B

)2

wbwc

{
K4(b, c)+QbcI4(b, c)

− J4(b, c; b)− J4(b, c; c)
}

(A.2)

〈1Rbu〉 = η

Nσ 2
B

wb

{
J2(b; u)− RbuI2(b)

}
(A.3)

〈1wb〉 = η

K
I2(b) (A.4)

I, J, and K

I2(b) =
∑

u
w0

uI2(b, u)−
∑

d

wdI2(b, d) (A.5)

J2(b; c) =
∑

u
w0

uJ2(b, u; c)−
∑

d

wdJ2(b, d; c) (A.6)

I4(b, c) =
∑

de

wdweI4(b, c, d, e)+
∑
uv

w0
uw0

vI4(b, c, u, v)

− 2
∑
du

wdw0
uI4(b, c, d, u) (A.7)

J4(b, c; f ) =
∑

de

wdweJ4(b, c, d, e; f )+
∑
uv

w0
uw0

vJ4(b, c, u, v; f )

− 2
∑
du

wdw0
uJ4(b, c, d, u; f ) (A.8)

K4(b, c) =
∑

de

wdweK4(b, c, d, e)+
∑
uv

w0
uw0

vK4(b, c, u, v)

− 2
∑
du

wdw0
uK4(b, c, d, u) (A.9)
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I, J, and K. In each case, only the quantity corresponding to averaging
over SBFs is presented. Each quantity has similar counterparts in which
TBFs are substituted for SBFs. For instance, I2(b, c) = 〈sbsc〉 is presented,
and I2(u, v) = 〈tutv〉 and I2(b, u) = 〈sbtu〉 are omitted.

I2(b, c) = (2l2σ 2
ξ )
−N/2

× exp

[
−Qbb −Qcc + (Qbb +Qcc + 2Qbc)/2σ 2

Bl2
2σ 2

B

]
(A.10)

J2(b, c; d) =
(

Qbd +Qcd

2l2σ 2
B

)
I2(b, c) (A.11)

I4(b, c, d, e) = (2l4σ 2
ξ )
−N/2 exp

[
−Qbb −Qcc −Qdd −Qee

2σ 2
B

]

× exp

[
Qbb+Qcc+Qdd+Qee+2(Qbc+Qbd+Qbe+Qcd+Qce+Qde)

4l4σ 4
B

]
(A.12)

J4(b, c, d, e; f ) =
(

Qbf +Qcf +Qdf +Qef

2l4σ 2
B

)
I4(b, c, d, e) (A.13)

K4(b, c, d, e) =
(

2Nl4σ 4
B +Qbb +Qcc +Qdd +Qee

4l4σ 4
B

+ 2(Qbc +Qbd +Qbe +Qcd +Qce +Qde)

4l24σ
4
B

)
I4(b, c, d, e)

(A.14)

Other Quantities

l2 =
2σ 2
ξ + σ 2

B

2σ 2
Bσ

2
ξ

(A.15)

l4 =
4σ 2
ξ + σ 2

B

2σ 2
Bσ

2
ξ

(A.16)
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