
Tracing the Distribution Concern: Bridging the Gap

Nelly Bencomo, Gordon Blair, and Pete Sawyer
Computing Department, Lancaster University, Lancaster, LA1 4YR, UK

{nelly, gordon, sawyer}@comp.lancs.ac.uk

Abstract

Distribution is often presented as an example of a
crosscutting concern that is difficult to modularize.
This paper presents an approach for modeling
distribution using a combination of AOSD and use
cases. One of the aims of the paper is to bridge the gap
between the handling of crosscutting concerns during
the early and later phases of the lifecycle when
developing distributed applications. With our
approach the distribution concern is modularized in
control objects in Analysis, in design control classes in
Design and in distributed components in
Implementation and Deployment. Use cases are used
to establish a clear traceability among the analysis,
design, deployment and implementation stages. In this
sense, control objects of the analysis have a direct
correspondence with distributed components in the
implementation and deployment models.

Keywords: distribution concern, aspect-oriented

software development, use cases, traceability,
separation of concerns

1. Introduction

Aspect-oriented software development (AOSD)
techniques support the modularization and
composition of crosscutting concerns or aspects so that
localization and reutilizations can be promoted. This
results in reducing development, maintenance and
evolution costs. AOSD approaches have been
proposed to address the problem of crosscutting
concerns at several stages during the software life
cycle. However, there is a gap between the handling of
crosscutting concerns during the early and later phases
of the lifecycle. One of the aims of the paper is to
bridge this gap when developing distributed
applications.

Distribution is interesting because it is often presented
as an example of a crosscutting concern that is difficult
to modularize. The code associated with the

distribution concern is in general scattered or spread
across several units of the system [16]. Moreover,
developers simultaneously think about business logic,
security, performance, authorization, synchronization,
and distribution concerns. The simultaneous presence
of elements from each concern's implementation
results in code tangling.

In this paper we propose an approach for modeling
distribution using a combination of AOSD and use
cases. We do not adopt an existing AOP language.
Instead, our approach emphasizes what we call
thematic use cases. A use case is thematic if it is
related to a particular concern. In the example
discussed in this paper, the distribution concern is the
focus of thematic use cases. After identifying the
thematic use cases, remote communication control
classes are specified. These are specializations of
control classes defined in UML and represent the
abstraction of components that deal with remote
communication and distribution. These control classes
are designed and implemented using the corresponding
design classes and their IDL interfaces.

With our approach the distribution concern is
modularized in control objects in Analysis, in design
control classes in Design and in distributed
components in Implementation and Deployment. Use
cases are used to establish a clear traceability among
the analysis, design, deployment and implementation
stages. In this sense, control objects of the analysis
have a direct correspondence with distributed
components in the implementation and deployment
models.

The central idea is to treat distribution as an aspect of
the application from the very early stages of the
development, isolating the core business logic from the
confines of system architecture. This brings many
benefits such as making applications more resistant to
change. In our specific case, it would ease the
evolution of distributed applications as the middleware
landscape changes over time.

The research is focused on the development of
Distributed Object-based applications using CORBA.
Our current research is towards an approach that
addresses other technologies such as Services.

This paper is organized as follows. Section 2 presents
an overview of our approach. Section 3 discusses the
models of Analysis, Design, Implementation and
Deployment in detail. Section 4 presents a case study.
Section 5 discusses our research and compares it
against some related work. Finally, Section 6 draws
some conclusions and highlights some future work.

2. The Approach

The essence of our approach can be synthesized in
three key phrases – architecture, use case driven and
traceability.

2.1. Architecture

The architecture embodies the major static and
dynamic aspects of a system. It is a view of the whole
system highlighting the important characteristics and
ignoring unnecessary details. In the context of our
approach, architecture is primarily specified in terms
of views of five models; the Use-Case model, Analysis
Model, Design Model, Deployment model and
Implementation model. These views show the
“architecturally significant” elements of those models.
The models have the following specific characteristics
in our approach:
− The Use-Case model shows the thematic use cases

related to functionality associated with distribution.
− The Analysis model illustrates how boundary,

control and entity classes are associated with the
thematic use cases identified in the Analysis.
Remote Communication Control classes shown in
this model are specializations of Control classes and
represent the abstraction of components that deal
with remote communication and distribution using
CORBA.

− The Design model shows the design classes that
trace the specialized Remote Communication
Control classes in analysis. Special attention is
given to the interfaces provided by these design
classes. We show how some of these are
represented by IDL interfaces.

− The Implementation model describes how elements
in the design model are implemented in term of
components.

− Finally, the Deployment model explains how
CORBA-based components are assigned to nodes.

2.2. Use Case Driven

In the early steps of the life cycle, use-cases are mainly
used to specify the functional requirements of the
system. Later on, and based on the use-case model,
developers create the models that realize the use cases.
The developers review each successive model for
conformance to the use-case model [5]. Our approach
emphasizes thematic use cases. In general, the theme
varies depending on the nature of the project. In our
case, a use case is thematic if it is related to
distribution. Once thematic use cases are specified
identifying the Remote Communication Control, they
are designed and implemented using the corresponding
design classes and their IDL interfaces.

2.3. Traceability

An important part of traceability is that the final
implementation is consistent with the design and
analysis. As the design is refined to a concrete
implementation, it is important that concepts have a
clear correspondence to implementation artifacts –
even if the mapping is not one-to-one [10]. In our
approach, specialized control objects in analysis –that
are associated with thematic use cases and are called
Remote Communication Control Objects– are the
abstractions of components in charge of remote
communication in implementation. In between we
define the design classes, specified by their IDL and
UML interfaces.

3. Models

This section presents a short description of the
Analysis, Design, Implementation and Deployment
models.

3.1. Analysis Model

Control classes responsible for remote communication
and that can potentially be mapped onto different
nodes in the distributed system are identified. To do
this, we define a Class Diagram (Architectural
Description – Analysis View) that comprises
boundary, control and entity classes of the thematic use
cases. Initially, we have a control class for each use
case. The generic class diagram proposed is shown in
Figure 1. Control classes address the messages
exchanged among boundary and entity classes to fulfill

a specific functionality. Changes to identity or
boundary classes are locally solved without changing
their counterpart.

 E n tity c la sses C o n tro l C la sses B o u n d a ry

R C C C U i: R em o te
C om m u n ica tio n C on tro l
C lass fo r U se C ase i

C C U i: C o n tro l C la ss fo r
U se C a se i

R C C C U i

R C C C U 1

C C U n

Figure 1: Class diagram objects related to
thematic use cases

Because we are focusing on thematic use cases –
related to distribution concerns- entity and boundary
classes might be related to functionality associated
with distribution. Entity and boundary classes are then
abstractions of components deployed on different
nodes. In these cases, the intermediary control class
has to deal with remote communication and
distribution. These intermediary control classes are
specializations or adaptations of UML control classes
in the Use Case Model. We adapted and stereotyped
them to get the Remote-Communication Control Class
(RCCC). As shown in Figure 1, RCCCs are
graphically represented as a common control in UML
with a filled circle inside. These RCCCs are the first
link in a chain of artifacts that evolve from Analysis
through all the process until reaching the CORBA
distributed objects in Implementation.

In some cases, the nature of the application could
dictate specific conditions of component distribution in
the implementation. For example, two different sets of
analysis objects might be required to represent
implementation components deployed on different
nodes. We propose to use a variation of the Analysis
Class Diagram explained above. In these cases, the
control classes identified are intermediaries that allow
the communication among components deployed on
different nodes. Figure 2 shows an example of a class
diagram associated with the communication between
different nodes. As in Figure 1, RCCCs have to deal
with remote communication and distribution but this
time entity classes are the only abstractions of
components, boundary classes related with actors of
the system are not included.

R C C C U n

R C C C U 2

R C C C U 1

R C C C U i: R em ote C o m m u n ica tion
C o n tro l C lass fo r U se C a se i

Figure 2: Class diagram associated with the
communication between different nodes

In both Figure 1 and Figure 2, the dashed areas depict
how abstractions related to the distribution concern are
modularized in what we have called thematic use
cases.

3.2. Design Model

In Design, there are two important activities to be
performed: architecture definition and the specification
of design classes. We study the use case realizations in
analysis and define the corresponding design classes
and their sequence diagrams.

Some design classes can be initially sketched from
analysis classes; this is the case of design classes that
deal with remote communication. A RCCC associated
with the use case i in analysis will correspond to a pair
of design classes. In Figure 3, the trace relationship
between a RCCC and its two corresponding design
classes is shown.

Figure 3: Correspondence between remote-

communication control class in analysis and control
classes in design

Basically, design classes expose two kinds of
interfaces. One interface has the common UML
semantics and the other is an IDL interface. IDL
interfaces let CORBA objects communicate and
send/receive the messages that components are
receiving/sending. Methods of these interfaces are
specified from the interaction diagrams. A concrete
example of these interaction diagrams is shown in the
case study of Section 4.

Figure 4: Control classes and their interfaces

The graphic notation used in Figure 4 has an
alternative where IDL interfaces are represented by T-
connectors, see Figure 5. The T-connector notation is
based on [15].

Figure 5: Another notation for IDL interfaces

3.3. Implementation and Deployment Models

In implementation, we have to program the code
associated with CORBA objects and components
based on the IDL interfaces in design. The
Deployment model shows the mapping of CORBA
components onto nodes.

Each design class traces to a CORBA Component in
the implementation. Each CORBA component is a
fundamental part of the system architecture. The
graphic notation adopted to identify a CORBA
component is based on [15]. The small ellipses and
arrows in the top left corner represent remote
interfaces and local (non remote) interfaces
respectively.

To describe the functionality and interactions among
components we define a diagram that includes and
modularizes only CORBA components and their
interfaces. This Diagram is used to define the
Deployment Model.

 CtrlServant C/S

Design Model

Implementation
 Model CtrlServant C/S

<<traces>>

Remote
Interface

Local
Interface

Figure 6: Correspondence between a control
design class and a CORBA component in

implementation

3.4. Traceability

Figure 7 shows the traceability among the different
artifacts in Analysis, Design, Implementation, and
Deployment models. Note that the Remote Class
Control RCCUCi is related to the use case i.

A n alysis M od el

D esign M od el

Im plem en ta tion
M od el

D ep loym ent
M od el

 c2
 :C trlS C L ocal

Interface A

c1
 :C trlS C L ocal

In terface B

< < traces> >

< < traces> >

 c1
 :C trlS C

 c2
 :C trlS C

< < traces> >

R C C U C i
R e m o te C la ss C on tro l ob ject
re la ted to a u se case i

< < traces> > < < traces> >

 : W eb
S erver N od e

 :D B S erver

c2
 : C trlS C

 w s:
S erver

c1
 : C trlS C

< < traces> >

Figure 7: Traceability among the Analysis, Design,
Implementation, and Deployment models related to the

use case UCi

We have aspectized distribution from the very early
stages of the development, isolating the business logic
from the confines of system architecture. We start from
a use case i and its RCCUCi. This object control is
represented by two design classes in design that
communicate using their IDL interfaces. These design
classes are implemented by two CORBA components
(Implementation Model) that are finally deployed onto
different nodes.

4. Case Study: Banking System using
ATMs and the Internet

We have a Banking software system that includes
client services through ATMs and the Internet. A
client uses the system to withdraw, deposit, transfer
and view the balance of her/his accounts. Clients can
use these services using ATMs or the Internet, see
Figure 8.

Client

ATM

ATM

ATM

Central

Computer

Computer

Computer

Computer

Client

Figure 8: Banking system

4.1. Use Cases

Figure 9 shows the use cases of this system. The
functionality is offered through ATMs (withdraw,
deposit, view balances, and transfer) or through the
Internet (view balances and transfer). For both cases,
ATM and the Internet, we consider the use cases to
login into the system.

W i t h d r a w M o n e y

D e p o s i t M o n e y

V i e w

B a l a n c e s

T r a n s f e r M o n e y

C l i e n t

L o g i n v i a A T M

L o g i n v i a
I n t e r n e t

Figure 9: Use Cases of the system

4.2. Analysis: Class Diagrams and Packages

The class diagram related to use cases Login via
Internet, View Balances, and Transfer Money when the
user is using the Internet is shown in Figure 10. All
these use cases are thematic as we can see that

boundary and entity objects are abstractions of
components deployed on different nodes. The
intermediary control classes involved have to deal with
the communication among boundary and entity objects
and are specialized as Remote-Communication Control
Classes.

Transfer M oney

See Balances

Login via Internet

 Boundary classes Control Classes Interface Classes

Client

Account

Login Page

Balances Page

Transfer Page

Main
Page

Figure 10: Class Diagram of the Case Study Banking
System

It was convenient in terms of modularization of the
system to group the analysis classes in three kinds of
analysis package; an analysis package that contains
classes related to boundary classes of the Graphical
User Interface (GUI), an analysis package that contains
the entity classes, and an analysis package that
contains the control classes in charge of the logic of
the remote communication between the boundary
package and the application domain. In Figure 11 we
have two analysis packages associated with the GUI,
one related to the ATM and the other related to the
GUI via Internet.

Figure 11 shows how abstractions related to the
distribution concern are modularized in the
Distribution Management Analysis Package.

 A c c o u n t s

G U I
A T M

G U I
I n t e r n e t

D i s t r i b u t i o n
M a n a g e m e n t

< < a c c e s s > >

< < a c c e s s > >

< < a c c e s s > >

Figure 11: Analysis Packages

4.3. Design

We illustrate our approach in Design using the use
case Login via Internet. This use case presents the
following sequence diagram:

C lic to e n te r
th e s y s te m ()

V a lid a te E n t ra n c e
 (c lie n t c a rd
n u m b e r , p in
n u m b e r)

d isp la y ()

: M a in
P a g e : L o g i n P a g e : C tr l

V a lE n t W e b P a g e
 : C l ie n tD a ta

c lie n t c a rd n u m b e r a n d p in
n u m b e r

c l ic k O K ()

V a lid a te E n tra n c e
 (c l ie n t c a rd
n u m b e r , p in
n u m b e r)

V a l id a t io n O K

V a l id a t io n O K

 C lie n t c l ic k s th e
b u t to n E n te r in m a in
p a g e

S y s te m s h o w s th e
P a g e

C l ie n t e n te rs c a rd
n u m b e r a n d p in
n u m b e r , a n d c lic k s
O K

D a ta is g iv e n to
in te r m e d ia r y c o n tr o ls

D a ta is v a l id a te d

P a g e o f T ra n s a c t io n s
is s h o w n

: T r a n s a c t i o n
P a g e

d isp la y ()

: C tr lV a lE n tD B

V a l id a te E n tra n c e
 (c lie n t c a rd
n u m b e r , p in
n u m b e r)

V a lid a t io n O K

Figure 12: : Sequence diagram for the use case Login via Internet

Messages ValidateEntrance and ValidationOK in the
sequence diagram are candidates to be operations in
the IDL interfaces of the control design classes
CtrltValEntDB and CtrlValEntWebPage. The given
name is related to the services provided on each side,
Web Page side and Client Data side.

4.4. Remote Interfaces (IDL) and Local Interfaces
(UML)

We have two control classes in the design;
CtrltValEntWebPag and CtrlValEntBD. Figure 13
shows the IDL interfaces designed from the sequence
diagram. Note that interface CtrltValEntWebPag
contains the operation validationOK() and the interface
CtrlValEntBD contains the operation
validateEntrance(), operations that were identified
from the sequence diagram.

Figure 13: Control classes in design,

CtrlValEntWebPag and CtrlValEntBD

CORBA offers the notion of IDL modules. Modules
are used to encapsulate IDL interfaces. Example
specifications of IDL interfaces are given in the IDL
Module as follows:

//IDL

// Module: Control of data verification
when entering the system via Internet

Module CtrlValEntWebPage {

// Operations on the Web page side

interface CtrlValEntWebPage {

 void validationOK();

 void validationError();

};

// Operations DB side

interface CtrlValEntBD {

void validateEntrance(

 in long client_card,

 in long pin_number);

};

}

4.5. Implementation

Figure 14 shows the component diagram related to the
use case Login via Internet. A complete diagram of all
CORBA components in a system is given by the union
of all CORBA component diagrams associated with all
the use cases.

C trlV a lE n tP agW eb

 C trlV alE ntB D

C trlV alE ntW ebP ag
C om ponent

 C trlV alE ntB D C om ponent

Figure 14: Component diagram: CORBA

control components associated to the use case Login
via Internet

4.6. Distribution

Figure 15 shows the deployment of CORBA
components on nodes of the system. Specifically they
describe the components related to the Use Case Login
via Internet. Intermediary control CORBA components
CtrlValEntWebPage and CtrlValEntBD are c1 and c2
respectively. c1 is on the Bank Web Server side node
and c2 is on the DB Server side (data of Bank clients).

 :Web Server
Node

 : DB Server

 : Web
Browser Node

 <<network>> Bank Private Network

c2
 : CtrlValEntBD

 sw: Server

 wb: Web
Browser

c1
 : CtrlValEntPagWeb

Figure 15: Distribution model: mapping of CORBA

components onto nodes of the system

5. Discussion and Related Work

Simmonds et al. [14] describe their experience using a
framework for software development incorporating the
use of aspects to model middleware technologies based
on the MDA vision. Their main goal is to decouple the
design of an application from its target middleware
promoting middleware-transparent development. The
high level design architecture is independent from the
middleware. Abstractions of the application that are
specific to the middleware technology are modeled
separately using aspects that are integrated (woven)
into the application later in the developments process.

We also use aspects to model distribution, but our
approach focuses on traditional methodologies of
software development that are very different from the
MDA vision. In Simmonds’ framework, details of
middleware technology implementations are treated as
crosscutting concerns and modeled as aspects. Our
approach does not give any details of which AOP
techniques to use in implementation but introduces
aspects, and hence separation of crosscutting concerns,
at the analysis and design levels. We argue that our
research helps in the process of definition of what an
aspect is at early stages of the development process
and how it maps to artifacts at later stages when
developing distributed applications.

Ivar Jacobson [6] writes about the relationship between
use cases and AOP claiming that both can be viewed
as equivalent. Jacobson proposes slicing the system,
use case by use case, over several of the most
interesting lifecycle models to keep the use cases
separate all the way down to the code. At some later
time these slices are recomposed into a consistent
whole—an executing system. This is different from
our approach, where thematic use cases (use cases that
are related to distribution concerns) and their
subsequent realizations through all the lifecycle
models permit the distribution concern to be
encapsulated in separate modules. As a consequence,
thematic use cases act as aspects to provide both
localization and traceability among the different
artifacts in Analysis, Design, and Implementation and
Deployment models.

6. Conclusions and Future Work

We have presented our experience in implementing
distribution using a combination of AOSD and use
cases. We use the concept of thematic use cases to treat
distribution explicitly as an aspect of the application
from the very early stages of the development and help
insulate the programmer from its cross-cutting
characteristics.

Treating distribution in this way provides a clear
traceability from the Use Case model through
Analysis, Design, Implementation, and Deployment
models. Specialized control objects in analysis, called
Remote Communication Control Objects, are the
abstractions of components in charge of remote
communication aspects in implementation. This
approach is based on practical experience [1,2,3,4].

We have used use cases and their subsequent
realization through all the lifecycle models to
encapsulate distribution concern in separate modules
promoting localization and reutilization. These
modules and localizations are reflected in the
architecture of the system. As a consequence, the
approach lets us guarantee the traceability through the
different artifacts in Analysis, Design, and
Implementation and Deployment models.

The next step in our work is to identify the set of (sub)
concerns than can derive from distribution (for
example authorization and security) [9] to investigate
how our approach can take these into account. We
eventually plan to apply our model to case on Service-
Oriented applications.

7. References

[1]Bencomo N., and Matteo A., A Unified Process Adaptation
for Distributed Objects Applications, Submitted to
Software Engineering and Middleware, SEM 2004

[2]Bencomo N.,: CORBAdapted-UP: Una adaptación del
Proceso Unificado para la Construcción de Aplicaciones
CORBA, Promotion Project to get the Cathegory of
Assistant Lecturer, Escuela de Computación, UCV,
Venezuela, 2002

[3]Bencomo N. Matteo A.: Correspondencia entre Modelos
en el Desarrollo de Aplicaciones CORBA, Chapter in book
on Avances en teconologías de la Información,
Universidad de los Andes, Venezuela 2003

[4]Bencomo N., et all.: An experience using CORBA and
OOSE in the construction of a Graphical multi-user
Interface based on Distributed Objects, Proceeding of
Practical Experience Segment of Objetos Distribuidos
2000, Sao Paolo, Brazil, 2000

[5]Hunt J.: The Unified Process for Practitioners Object
Oriented Design, UML and Java, Springer, 2000

[6]Jacobson I.: Use Cases and Aspects – Working Seamlessly
Together, in Journal of Object Technology, vol. 2, no. 4,
July-August 2003, pp. 7-28.

[7]Jacobson, I., Booch G., Rumbaugh J.: The Unified
Software Development Process, Addison-Wesley , 1999

[8]Jacobson, I., Magnus C., Patrik J., Gunnar O.: Object-
Oriented Software Engineering: A Use case driven
Approach, Addison-Wesley, 1993

[9]Farooqui K., Logrippo L., Meer J.: The ISO Reference
Model for Open Distributed Processing- An Introduction,
1996

[10]Ovlinger J.: From Aspect-Oriented Model to
Implementation, Position Paper for AOM, 2003

[11]Rashid A., Sawyer P., Moreira A. and Araujo J.: Early
Aspects: A Model for Aspect-Oriented Requirements
Engineering, IEEE Joint International Conference on
Requirements Engineering. IEEE Computer Society Press.
Pages 199-202.

[12]Rashid A., Moreira A. and Araujo J., Modularisation and
Composition of Aspectual Requirements, Proceedings of
2nd International Conference on Aspect-Oriented Software
Development: ACM Press, pp. 11-20.

[13]Rashid A. and Chitchyan R.: Persistence as an Aspect,
Proceeding of 2nd International Conference on Aspect-
Oriented Software Development. ACM. Pages 120-129.

[14]Simmonds D., Ghosh S., and France R..: An Aspect-
Oriented Model Driven Architectural Framework for
Middlware Transparency, AOSD Workshop on Early
Aspects 2003: Aspect-Oriented Requirements Engineering
and Architecture Design, March, 2003.

[15]Slama D., Garbis J., Russelm P.: Enterprise CORBA,
Prentice Hall, 1999

[16]Soares S., and Borba P.: PaDA: A pattern for distribution
aspects. Proceedings of: Second Latin American
Conference on Pattern Languages Programming -
SugarLoafPLoP. 2002 Brasil. ICMC - Revista da
Universidade de São Paulo, páginas 87-99.

[17]Soares S., Laureano E., and Borba P.: Implementing
Distribution and Persistence Aspects with AspectJ. In
Proceedings 17th ACM Conference on Object-Oriented
programming systems, languages, and applications,
OOPSLA'02, ACM Press p.p. 174-190.

View publication statsView publication stats

https://www.researchgate.net/publication/228920102

	1. Introduction
	2. The Approach
	2.1. Architecture
	2.2. Use Case Driven
	2.3. Traceability

	3. Models
	3.1. Analysis Model
	3.2. Design Model
	3.3. Implementation and Deployment Models
	3.4. Traceability

	4. Case Study: Banking System using ATMs and the Internet
	5. Discussion and Related Work
	6. Conclusions and Future Work
	7. References

