
Making the Most of Repetitive Mistakes: An

Investigation into Heuristics for Selecting and

Applying Feedback to Programming Coursework
Roger Howell

Aston STEM Education Centre

Aston University

Birmingham, UK

howelrtc@aston.ac.uk

Shun Ha Sylvia Wong

Aston STEM Education Centre

Aston University

Birmingham, UK

s.h.s.wong@aston.ac.uk

Abstract—In the acquisition of software-development skills,

feedback that pinpoints errors and explains means of

improvement is important in achieving a good student learning

experience. However, it is not feasible to manually provide timely,

consistent, and helpful feedback for large or complex coursework

tasks, and/or to large cohorts of students. While tools exist to

provide feedback to student submissions, their automation is

typically limited to reporting either test pass or failure or

generating feedback to very simple programming tasks.

Anecdotal experience indicates that clusters of students tend to

make similar mistakes and/or successes within their coursework.

Do feedback comments applied to students’ work support this

claim and, if so, to what extent is this the case? How might this be

exploited to improve the assessment process and the quality of

feedback given to students? To help answer these questions, we

have examined feedback given to coursework submissions to a

UK level 5, university-level, data structures and algorithms

course to determine heuristics used to trigger particular feedback

comments that are common between submissions and cohorts.

This paper reports our results and discusses how the identified

heuristics may be used to promote timeliness and consistency of

feedback without jeopardising the quality.

Keywords—computer aided feedback, coursework assessment,

static analysis, technology-enhanced learning

I. INTRODUCTION

Computer Science is a technical subject whose teaching
ethos relies heavily on learning by doing [1]. The constructivist
nature of learning programming [2] means that learning to
program is an experiential and cyclical process. Such a learning
process involves, broadly, experimentation to gain a concrete
experience followed by several steps including an
evaluation/reflection of that experience, and then the forming of
plans or changing of views which then influence later
actions/experiences [3][4]. To avoid continuous
misconceptions and facilitate learning, it is important that
students receive helpful and timely feedback on their work.

In the case of students completing programming
coursework, feedback being returned from a tutor/assessor
feeds into the reflection/evaluation stage of the learning cycle.
As was noted by Hattie and Timperley [5, p.86], while the
primary goal of feedback is "to reduce discrepancies between

current understandings/performance and a desired goal",
different strategies used may result in different levels of
effectiveness. Wong and Beaumont [6] provided evidence that,
for programming coursework, feedback must be timely,
consistent, relevant, showing the locations of issues, and
showing how to make improvements in order for it to be most
helpful. However, due to the constraint of time, some tutors
simply provide a mark and/or a brief overall comment as
feedback. Therefore, it comes as no surprise that while student
satisfaction levels on assessment and feedback in the UK has
improved over the years, assessment and feedback remained a
challenging area amongst UK Higher Education Institutions
(HEIs) [7][8]. As shown by the latest National Student Survey
(NSS) [7] with over 286,000 responses, 26% of respondents
did not agree that marking had been fair; 27% of them did not
agree that feedback on their work had been timely; and 25% of
them did not agree that they had received helpful comments on
their work. These figures are even higher when considering
Computer Science student responses only.

To provide helpful and effective feedback is a particularly
labour-intensive task for submissions of any non-trivial size.
Timeliness and consistency in assessment and feedback
generally deteriorate as the class size increases. Massively
Open Online Courses (MOOCs) are an extreme example of
large class sizes where there can be even tens of thousands of
submissions to assess/provide feedback to. To address this
problem across the range of tasks and class sizes, numerous
computer-aided and computer-based tools have been produced
to reduce this workload, e.g. Scheme Robo [9], BOSS2 [10],
MarkTool [11], RubricAce [12] and EDM [13] to name a few.

As summarised by Keuning et al. [14], there are also a
range of research into ways to provide feedback about a
programming task to students. While computer-aided and
computer-based marking tools and improved guidelines on
providing feedback help, giving feedback to a large cohort of
programming coursework that is helpful, timely, and consistent
remains a challenging task.

The anecdotal experience from our colleagues indicates that
clusters of students tend to make similar mistakes and/or
exhibit similar good practices within their programming
coursework. A computer-based marking tool, therefore, should

not simply focus on supporting an assessor to evaluate each
submission against a predefined set of marking criteria. It
should provide more help for tutors to locate common issues
amongst a cohort of submissions so that tutors can focus their
effort on identifying misconceptions and constructing helpful
feedback to each common issue so as to enable feedback given
to students consistently and in a timely fashion.

We have examined feedback given to coursework
submissions to a UK level 5, university-level, data structures
and algorithms course to determine heuristics used to trigger
particular feedback comments that are common between
submissions and cohorts. This paper reports our results and
discusses how identified heuristics may be used to promote
timeliness and consistency of feedback without jeopardising the
quality.

II. RELATED WORK

This section explores techniques in which feedback grades
and/or comments are applied to student coursework
submissions. These techniques are split into four categories:
comment reuse, automated tests, metrics, and source code
similarity. A summary is included at the end of this section.

A. Comment Reuse

Feedback comment reuse is not a new idea. In its simplest
form, comment reuse can involve the simple act of copying and
pasting comments and phrases between files or perhaps the use
of macros to insert pre-written comments. More sophisticated
implementations of feedback comment banks include
MarkTool [11] and eCAF [15], whose banks of comments can
be dynamically added to and searched. In these cases, the
feedback-giving is still predominantly manually-driven, relying
upon human assessor(s) of a given set of submissions being
aware of the comments within the comment bank and being
able to locate them using matching terminology within search
terms.

B. Automated Tests

The use of automated tests to provide immediate feedback
is also not new, with Hollingsworth [16] making use of
automated tests to validate student’s punch card submissions as
early as 1960. These simple tests involve verifying that, given a
pre-determined set of inputs to a function/program, the
expected results are returned. More recent implementations of
software testing use a similar black-box input/output test
approach and allow a significant boost in productivity of
assessors with respect to the number of submissions that can be
handled within a reasonable time-frame. In some cases, it is
reported that thousands and even millions of unique
submissions can be assessed fully independently [10][9][17]
with the feedback being given to students including details
about which test cases have passed or failed for a given set of
inputs.

This dramatic improvement in the time required per-
submission does not come for free, however, as it introduces
the new requirement to adequately design tests for the relevant
input/output combinations. In a relatively simple and repeated
task such as a tutorial task, where the student submission may

be only perhaps a dozen lines of code or perhaps the
completion of a single function/class, the benefits of being able
to scale up class sizes can far outweigh the costs of this up-
front effort. The rise in MOOCs are an example of this for
smaller specific tasks.

White-box analysis of the submitted code have also been
utilised, evaluating how a given submission has completed a
given task as opposed to just whether the correct output is
produced. Yu et al. [18] gives the example of a task requiring
the use of loops, where a student might hard-code the expected
output using a series of print statements. In this case, automated
black-box testing, such as unit testing, cannot adequately
provide feedback on the techniques used by a student for that
task.

Unfortunately, white-box testing techniques suffer similar
concerns as black-box testing in that they require the assessor
to adequately pre-empt the full range of possible (in)correct
solutions beforehand in order to develop adequate test cases,
and the feedback they return relates to the pass/fail of that
particular test case. For example, Spacco et al. [17] notes that
the pass/fail tests can be readily used to give feedback about
low-level concepts such as syntactic correctness and the
correctness of program output, though teaching assistants are
still utilised to provide face-to-face feedback about higher level
topics such as programming concepts and code style.
Ultimately, full-automation of grading/feedback production
using pre-defined test cases is only feasible for small and/or
simple tasks whose solutions can be tightly and robustly
defined.

C. Metrics

The Marker’s Apprentice (TMA) [19], building upon
CourseMarker [20], explores the use of rule-based code-
correctness metrics to automatically determine the grade to be
awarded to a submission. While some of these metrics are
absolute (such as the presence of empty code blocks or
incorrectly testing for equality), others require interpretation
(such as determining the acceptable range of cyclomatic
complexity or the total number of classes submitted). Pre-
written feedback and guidance is then given about the rule
being tested/violated, perhaps in the form of a link to the
relevant documentation.

To enable automation, predefined ranges of acceptable
values can be defined with the expectation that most correct
solutions will utilise similar approaches therefore will have
similar metrics, and incorrect solutions will be doing something
unusual therefore will have atypical values. Determining the
acceptable ranges for metrics can be somewhat problematic,
particularly for large and/or complex tasks which may allow a
broad range of acceptable submissions. While this use of
metrics has been shown to be useful, it is not error-proof
therefore using it in isolation is not advised. Instead, the use of
metrics should be used as part of a suite of tools with a human
assessor to provide some oversight and custom feedback
comments, where possible [19].

D. Source Code Similarity

More recently, techniques relating to using source code
similarity to enable the propagation of grades and feedback
comments have emerged. AssignSim [21], for example, allows
the human grader to mark a sample of submitted solutions and
then have the system interpolate the grades of the un-marked
submissions based on how similar they are to the manually-
graded submissions. Similarity between submissions is
determined within AssignSim by analysing the abstract syntax
tree (AST) of submitted works and then comparing the AST
against the ASTs of submitted works that have a known grade.
While this is broadly effective and correlates well with grades
awarded by human assessors, experimentation shows that the
sample of manually-marked can skew the results for the full
cohort and a priori selection (or pre-emptive creation) of a
suitably representative sample is problematic. This technique
does not appear to have been used to provide feedback
comments.

OverCode [22] takes a slightly different approach in that it
dynamically analyses program state during the execution of a
set of pre-defined test cases. OverCode then aggregates and
normalises submissions which have near-identical state,
allowing the assessor to gain a broad overview of the
techniques used and allows feedback comments to be written
once and applied to all submissions within that aggregated
cluster. While effective with small programming tasks (i.e.
single functions perhaps a dozen lines in length) by a large
cohort (>1000 submissions), it is unclear whether such an
approach will be usable for larger programming tasks as the
required program state analyses will be more complex and the
range of potential solutions will be more diverse, making
aggregation and normalisation of submissions with near-
identical states a very challenging task.

Piech et al. [23] also considers the subject of feedback
propagation, utilising neural networks to predict suitable
feedback comments based on the AST sub-trees that are shared
between submissions. This technique is then evaluated against
a large set of over 200,000 submissions to a series of tasks
which require only the completion of a simple function, with
the use of an if/else function within a loop being described as
the most difficult concept being evaluated. Again, while this is
a technique that is promising for small and simple
programming tasks, it is not yet suitable for medium-sized or
coursework level tasks. Furthermore, as acknowledged by the
authors, additional work is required to establish whether this
approach will work effectively when there are limited
submissions to guide the training of the neural networks. It is
also unclear whether this approach will perform well on
coursework submissions for more complex programming tasks
with diverse solutions.

E. Summary

As shown within evaluations of the above tools, automated
techniques such as software testing, static/dynamic source code
analysis, and evaluating the similarity between submissions can
be effectively used to scale the grading process. Where the
range of acceptable/expected solutions can be effectively
determined and this can be pre-emptively codified into a range

TABLE I. THE COHORTS OF COURSEWORK SUBMISSIONS

CONSIDERED IN THIS STUDY. COHORTS THREE AND FOUR WERE

MARKED USING A NEW SYSTEM CURRENTLY UNDER DEVELOPMENT.

Cohort Cohort 1 Cohort 2 Cohort 3 Cohort 4

Academic Year 2016/17 2015/16 2017/18 2016/17

Mode of Study

Full time,

campus-

based

Part time,

distance

learning

Full time,

campus-

based

Part time,

distance

learning

Class Size 118 30 127 37

Group Size 2-3 1 2-3 1

Number of

Submissions

Received

38 21 44 32

Marking

System Used
eCAF eCAF New System New System

of tests and/or metrics with an acceptable level of effort,
these tools/techniques are particularly effective at grading.

Unfortunately, few tools can provide automated feedback to
programming coursework tasks. For example, while eCAF [15]
and other comment-banks can enable providing feedback to a
task of any size, it is primarily human driven to write the
comment and attach it to a submission. Tools such as TMA
[19], the unnamed tool by Piech [23], and OverCode [22] can
enable the application of comments to multiple submissions,
their limitations include a significant up-front cost to pre-empt
the range of possible solutions and to create tests/define metrics
ranges specific to that task. Other tools focus upon the
automated grading of programming task submissions.

III. METHODOLOGY

A. Data Source

To assess the potential for feedback comment reuse, we
conducted a retrospective analysis of naturally-occurred
feedback data. This feedback data was provided to four cohorts
of students who submitted coursework to a Java-based data
structures and algorithms module within a UK university. All
students within this module have completed a substantial
foundational object-oriented Java programming module as a
prerequisite for studying this module. Table I gives an
overview of the profile of each of the four cohorts whose
coursework submissions were analysed within this study.

The coursework tasks set for each cohort were of a similar
nature in that they require the student to create a standalone
piece of object-oriented Java software that is able to parse and
then model one or more, non-trivial, public-domain textual
data. Their submitted solution was expected to model this data
in a manner that enables efficient querying of this data. Note
that each cohort were supplied with a different set of data files
and functional requirements to minimise the risk of students
sharing solutions.

The marking scheme for each cohort was also broadly
similar in structure in that the marking criteria were grouped
under five headings: (1) Overall Class Design, (2) Ability to
Meet the Functional Requirements, (3) Ability to Meet the
Non-Functional Requirements, (4) Program Design and

Algorithms Used, and (5) Program Presentation. Additional,
more specific criteria were specified under these headings,
forming a tree-structure to the marking scheme where the
overall grade for each branch are, generally, the sum of the
grades awarded to its children. While the marking criteria in
sections 1, 4 & 5 were identical for each cohort, the marking
criteria in section 2–3 differ amongst the cohorts as they were
designed to suit the specific coursework task concerned.

Submissions comprised of typically 5-12 un-compiled Java
source code files varying by the detail of the model and the use
of any custom exception classes, each with typically 50-250
lines of code. In addition to this, submissions also included a
UML class diagram describing their detailed class design in
PDF or image form. These files were then submitted as a ZIP
archive to the institution’s Virtual Learning Environment
(VLE), Blackboard [24], which forms the record of (i) the
contents of the submission and (ii) the date/time it was
submitted.

To grade and provide feedback to the students’ work,
submissions from cohorts 1&2 were marked using eCAF [15]
while submissions from cohorts 3&4 were marked using a new
electronic coursework assessment and feedback system
developed internally. Both marking systems have similar
functionality in that they both support the use of a hierarchical
detailed marking scheme and feedback bank for assisting the
marking process, and that both systems provide exportable
feedback to students in the form of a downloadable HTML file.
The feedback file details the grades awarded against each point
of the marking rubric. It also contains a table containing: (i) the
full text of the feedback comments, (ii) the precise
location/range of the file(s) to which that comment was
applied, and (iii) which element of the marking rubric the
feedback comment relates to.

While the databases for each cohort were not retained
between cohorts (except between cohorts 3&4), the exported
HTML feedback files were stored/archived. The data used
within this study was extracted from these HTML feedback
files and imported into a Neo4j graph database [25], supported
by an in-house tool developed for data analysis. This allowed
queries to be used to extract/summarise the data, and then be
imported into spreadsheet software for basic statistical and
frequency analysis as described below.

B. Analysis of Comment Reuse

We first considered the reuse of feedback comments within
a single cohort. This was calculated as the number of
submissions which have received a uniquely phrased (distinct),
comment at least once. Given that comments can be applied
more than once to any given submission, only the first use of
each comment was considered so as not to skew the data where
an individual submission has repeatedly made the same
mistake.

We then consider feedback comment reuse across cohorts.
To enable this comparison, we first ranked the distinct
comments by the number of submissions to have received that
comment at least once and then normalised the number of
comments by referring to "the top 10%" of comments and
similar. The prevalence of a comment was similarly rated as a

percentage of all comment uses, again only counting the first
time it was used for a given submission. In this paper, we
present the results as the proportion of distinct comments
against the proportion of all comment uses.

To help identify feedback comments with essentially the
same meaning, but differ by, say the variable name used in the
submission, we then clustered/normalised the feedback
comments given. As feedback comments can include several
distinct sentences, the comments were first crudely split into
comment fragments, roughly approximating sentences.
Similarly-phrased fragments were then normalised into a
consistent phrasing, and duplicate/ redundant fragments were
deleted. Full comments were then clustered, being considered
equal if they contained the same fragments in the same order.
Where comments differed by only one fragment and the
additional fragment was inconsequential to the meaning of the
comment, full feedback comments were normalised to the
shorter sequence of fragments.

C. Analysis of Feedback Triggers

For each feedback comment that appeared within multiple
(five or more) different coursework submissions, we also
examined the sections of Java code to which the comment had
been applied to establish whether the underlying Java code
fragments for each comment were also similar in nature. Where
the linked fragments of code were similar, this provides
evidence that the feedback comments were being given as a
reaction to seeing something specific within the students’
submitted work that the assessor wished to communicate to the
learner. This enables us to identify the "trigger" for each
feedback comment.

To examine the hypothesis that feedback comments are
being reused due to elements of the submitted work being
similar (e.g. either having the same praise-worthy element or
showing the same error – described in this paper as a “trigger”
for feedback), we cross-referenced the locations and ranges to
which each comment was applied and analysed these code
fragments for similarity. Specifically, we worked backwards
from the most frequently reused comments to the least
frequently reused. The code fragments to which these
comments applied were then analysed and a set of key
themes/topics that the comments relate to are then identified.
The result of this thematic analysis is shown within Table III.

D. Algorithmic/Programmatic Detection of Feedback

Triggers

Having identified a set of code samples which were
identified as triggers for feedback comments, we then explored
the ability to describe an algorithm to detect some of the
identified trigger. The first stage involved describing the
algorithm in terms that a human may be able to interpret and
detect triggers, with a second stage beginning to explore
automated detection.

IV. RESULTS AND ANALYSES

A. Comment Reuse

The data showed a relatively small proportion of distinct
feedback comments accounting for a high proportion of the
comments received by students. For instance, Table II shows
that across the four cohorts of students, 475 uniquely-phrased
(distinct) comments were used a total of 1189 times. This is a
mean of 2.5 uses of each distinct comment. Limiting this to
only comments which have been frequently re-used, in this
case being used five or more times, Table II shows that 68
comments were used a total of 614 times. This is a mean of 9
uses per distinct comment.

Fig. 1 shows that the distributions of the proportion of
distinct feedback comments were similar across all cohorts,
with the top 20% of the most-frequently-reused distinct
feedback comments accounting for between 40-60% of all
comments used. During our analysis, it was noted that there
appeared to be numerous comments which are phrased very
similarly but are semantically identical.

One example of this included "No initial capacity defined
for this collection. This leads to repeated resizing." versus

TABLE II. A BREAKDOWN OF THE UNIQUELY-PHRASED (DISTINCT)

COMMENTS GIVEN TO STUDENTS WITHIN EACH COHORT, WITH

COMMENTS COUNTED ONLY ONCE PER SUBMISSION THAT IT HAS

BEEN APPLIED TO. TOTAL DISTINCT COUNT OF COMMENTS IS 452,
AS SOME COMMENTS ARE REUSED ACROSS COHORTS.

Appeared Within

>= 1 Submission

Appeared Within

>= 5 Submissions

Cohort Distinct All Distinct All

Cohort 1 99 271 15 (15.2%) 135 (49.8%)

Cohort 2 51 92 10 (19.6%)A 44 (47.8%)

Cohort 3 172 412 17 (9.9%) 201 (48.8%)

Cohort 4 153 414 26 (17.0%) 234 (56.5%)

Total 475 1189 68 (14.3%) 614 (51.6%)

a. A – The top-10 frequently-used comments, as very few comments were used >= 5 times in Cohort 2.

TABLE III. COMMENT REUSE ACROSS COHORTS, BEFORE AND

AFTER CLUSTERING OF COMMENTS. PERCENTAGES ARE OUT OF 454

DISTINCT COMMENTS BEFORE CLUSTERING, AND 331 DISTINCT

COMMENTS AFTER CLUSTERING.

Comments

reused across:

Before

Clustering
After Clustering

4 cohorts 0% (0) 1.81% (6)

3 cohorts 0.22% (1) 1.51% (5)

2 cohorts 4.63% (21) 6.34% (21)

1 cohort 95.13% (430) 90.33% (299)

Total 100% (454) 100% (331)

Comments reused

across at least two

cohorts

4.85% (22) 9.66% (32)

"Collections expected to contain many thousands of items have
not been initialised with a specified initial capacity. This leads
to unnecessary inefficiencies arising from collection resizing.".
Many more examples differed only by their punctuation,
spelling, and the inclusion of detail specific to that particular
task/submission such as referring to a particular variable or
class name. In addition to variations based on the phrasing and
punctuation of the comment, some comments also include non-
specific phrases which are informational in nature rather than
directly corrective or praising. One example of this was "Please
see the sample solution for an implemented example." (and
variations thereof).

Fig. 1. Proportion of the total number of unique comments versus the

proportion of the total uses of all comments (before clustering)

Fig. 2. Proportion of the total number of unique comments versus the

proportion of the total uses of all comments (after clustering)

 In several cases, feedback comments differed only by the
inclusion of this additional general fragment. Fig. 2 shows the
result of normalising the set of comments applied to these
cohorts. This figure shows that the first half of the curves are
shifting up and to the left for most cohorts, with fewer
comments being used only once or twice. The most frequently
used distinct comments, therefore, now accounted for an
increased proportion of all comment (re)use. Note that where
the lines within Fig. 1 and Fig. 2 become linear, this represents
the point where the comments used only once are being
counted.

As shown within Table III, the reuse of feedback comments
across cohorts was somewhat limited, with only 22 (of 454)
distinct comments being used in multiple cohorts. This rose to
32 (of 331) distinct comments being used in multiple cohorts

after normalisation/clustering of the comments. This is shown
within Table III.

B. Analysis of Feedback Triggers

Our thematic analysis on the feedback comment data shows
that, out of the 63 comments reused five times or more across
any cohort’s submissions, eleven themes emerged. Each theme
is also composed of their own set of sub-themes/comment
topics as shown within the aggregated result of this analysis in
Table III. These comment topics relate to techniques and/or
outputs that submissions either should or did utilise/contain.

Where a trigger is identified by a tutor within a submission
and the exact location of trigger within the submission is
highlighted, we now begin to examine if it is possible for a
computer program to use these heuristics to search for other

TABLE III. SUMMARY OF THE THEMES FOUND WITHIN EACH COHORT, GROUPED BY MARK SCHEME SECTIONS

Mark

Scheme
Theme Topic of comment

Cohort

1

Cohort

2

Cohort

3

Cohort

4

S
y

st
em

D
es

ig
n

,

in
cl

u
d
in

g

U
M

L
 c

la
ss

d
ia

g
ra

m
 Diagram

nomenclature

UML diagram mistakes Y Y Y

Incorrect realisation / implements arrow Y Y Y

Diagram

content

UML diagram specificity (e.g. the inclusion of classes within the java.util /

java.lang packages)
 Y

A
b

il
it

y
 t

o
 m

ee
t

fu
n

ct
io

n
al

re
q
u

ir
em

en
ts

Specific
functional

requirement

Functioning with only a single file, rather than the required multiple input

files
Y

Implementation (or not) of case-insensitive searches Y Y

Not sorting output by popularity correctly Y

Not implementing paths between stations Y

Extensibility
Hard-coding of file references (outside of a main method) Y

Inappropriate modification of the supplied skeleton code Y

Robustness
(In)Correctly handling edge cases (e.g. null checks, file existence, invalid
input data)

 Y Y

P
ro

g
ra

m
 d

es
ig

n
 a

n
d

 a
lg

o
ri

th
m

(s
)

u
se

d
,

In
cl

u
d

in
g
 e

ff
ec

ti
v
e

/
ef

fi
ci

en
t

u
se

 o
f

Ja
v

a
an

d
 O

O
P

 d
es

ig
n

(e
.g

.
ro

b
u

st
/e

x
te

n
si

b
le

)

(In)Efficient
use of Java

classes /

constructs

Good/Poor Initialisation of collections with an (in)appropriate initial

capacity
Y Y Y Y

Use (or not) of a StringBuilder within a loop (as opposed to string

concatenation)
Y Y

Good/Poor Algorithm design (e.g. inappropriately reading files from disk on

every interaction/query)
Y Y

OOP / Program

design

Good/Poor use of OOP design principles Y

(In)Correctly overriding methods (e.g. compareTo/toString) Y Y Y

(In)Correct use of classes to model the input data (e.g. model does/doesn’t

correctly allow for multiple hypernyms)
 Y Y Y

(In)Efficient OOP design / indexing Y Y Y Y

Program
Output /

Usability

(Un)Helpful error messages (e.g. just printing a stack trace to the console) Y

(In)Complete program output Y

Good/Poor use of error messages where no result found Y Y

Good/Poor output formatting and clarity Y Y

File handling

Good/Poor file processing technique (e.g. use of a BufferedReader for large

input files)
Y Y

Good/Poor text tokenisation (e.g. use of anchors within regular expressions) Y

Non-optimal and/or error-prone tokenisation (e.g. using multiple splits) Y

P
ro

g
ra

m

p
re

se
n

ta
ti

o
n

(o
f

Ja
v

a
co

d
e)

Documentation
comments

Good/Poor documentation comments Y Y Y

(In)Appropriate volume of comments (e.g. comments on virtually every

line)
 Y

Meaningful

identifiers

Programming convention – (in)appropriate variable/class names (e.g. too

short, misleading)
 Y

code fragments bearing the same characteristics within other
submission files.

C. Algorithmic/Programmatic Detection of Feedback

Triggers

Theoretically, all features of a submission referred to as
comment topics can be described algorithmically. For example,
comments under the topic "Not meeting a specific functional
requirement", the triggers of those comments typically
correspond to lacking certain expected programming routines,
such as lacking an iteration routine to handle input from
multiple files. The presence/absence of such programming
routines may be programmatically detected via techniques
including static code analysis such as searching for string
patterns and dynamic runtime analyses such unit tests.

Practically, detecting the presence and/or absence of
specific features in a submission can be very challenging. For
example, with respect to UML class diagram themes/topics,
such an algorithm may include the absence/presence of a
specific style of arrow and/or a class. Programmatic detection
of such features in the submissions is not straight-forward, due
to the range of submission formats (image/pdf) and the
complexity involved in programmatically analysing such files.

To investigate the effectiveness of programmatically
detecting specific coding features in text files and the
challenges behind this task, we have carried out a preliminary
study into using regular expressions to help identify code
features around the theme of "(In)Efficient use of Java classes /
constructs" on Cohorts 3 and 4. One typical issue noted in the
feedback comments analysed in this study was that the
submissions did not include appropriate initialisation of array-
based collections. To identify submissions with this issue
programmatically, we used a regular-expression-based pattern
matching approach to identify the locations in each submission
where such issue occurred. Note that the absence of an initial
capacity specification may be appropriate in some situations.
The results were then manually verified to establish their
correctness in the given context. Manual analysis of the
matches to this regular expression are included below, where
we show a breakdown.

Our regular expression experiment identified a total of 599
locations in the two cohorts of submissions where an initial
capacity specification may appear in the submitted Java code,
as described in Table IV. Only two instances (0.3%) are where
the defined regular expression matches were. Of the remaining
597, 155 matches had a human-applied comment attached to
that fragment relating to the initialisation of collections with an
appropriate initial capacity (a mixture of praise and guidance).
Of the 444 matches which did not have a human-applied
comment applied, approximately a quarter (103) relate to a case
where a positive or critical comment may have been warranted
due to it clearly being an appropriate or inappropriate initial
capacity, with the remaining 339 being debateable with no
feedback comment being applicable (e.g. benefit of the doubt
may be given that the default capacity of 16 items is the desired
initial capacity). Our results show that 17.3% of the identified
locations in the submissions could have been given a feedback
comment, but were missed from the manual marking process.

TABLE IV. A BREAKDOWN OF THE AUTOMATED PATTERN MATCHES

IN COHORT 3 AND COHORT 4, COMPARING WHETHER A RELEVANT

COMMENT HAS BEEN APPLIED TO THE FRAGMENT OF CODE

IDENTIFIED BY THE AUTOMATED REGULAR EXPRESSION MATCH.
NOTE: ONE “NOT APPLICABLE” MATCH RELATES TO A SPURIOUS

NAMING MATCH, AND THE SECOND “NOT APPLICABLE” MATCH

RELATES TO A FRAGMENT OF CODE THAT HAD BEEN COMMENTED

OUT BY THE SUBMITTER PRIOR TO SUBMISSION.

(Cohorts 3 and 4)

Collection

Initialisation Code

Fragment with:

Initial Capacity Comment Manually

Applied by the Assessor?

No Human

Comment

Human

Comment
Total

Inappropriate

Initial Capacity
74 (56%) 57 (44%) 131 (100%)

Debateable

Initial Capacity
339 (86%) 55 (14%) 394 (100%)

Appropriate

Initial Capacity
29 (40%) 43 (60%) 72 (100%)

Not Applicable 2 (100%) 0 (0%) 2 (100%)

Total 444 (74%) 155 (26%) 599 (100%)

V. DISCUSSION

While feedback banks can help promote consistency and
reduce the time required in drafting feedback comments, the
onus remains with assessors to identify where within a
coursework submission a feedback comment should be given.
With a non-trivial coursework task and a large cohort of
submissions, this is a difficult task for tutors to achieve in a
thorough and complete manner.

Our feedback data analysis shows extensive feedback
comment reuse, therefore repeated work. As a specific
example, over 50% of all feedback comments given to each
cohort of submissions come from only approximately 20% of
the unique comments given to the submissions (cf. Fig. 1 &
Fig. 2). If a means to (semi-)automatically identify different
instances of the same trigger within the remaining submissions
of a cohort were to exist, once a tutor had identified the cause
of needing to give that particular comment then the consistency
and timeliness of feedback can be further promoted. If we were
to measure the work required to assess a programming
coursework as the number of feedback comments assigned to
each coursework submission, then we believe that such
automation would result in significantly less work for similar
output.

Using feedback data given across four cohorts of students
using the Java programming language to complete a Data
Structures and Algorithms coursework task, we have identified
11 themes of feedback triggers. Many of these feedback
triggers would allow a tutor to give more consistent feedback to
students without the need to spend a long time in manually
identifying all praise-worthy features and/or concerning issues
within each coursework submission. In this respect, the focus
here would be in empowering the assessor rather than replacing
the assessor via fully automatic assessment techniques. By
freeing the time that a tutor would normally spend
authoring/searching for feedback comments, the tutor can then
spend more time on crafting helpful feedback to their students.

VI. CONCLUSION

As this is a retrospective analysis of naturally-occurring
data and that no specific feedback bank had been set up to aid
assessment of submissions across all 4 cohorts, overlaps in
comment reuse between cohorts naturally relatively low. It is
noted that if the same feedback bank were to have been shared,
the frequency of feedback reuse would have been even higher.

Our preliminary results using simple regular expressions
show that this approach has potential, though additional work is
needed to refine the algorithmic definitions of feedback triggers
and to establish the effectiveness of this approach across a
wider range of comment triggers.

In this paper, we have presented our work in analysing the
extents of feedback reuse in a typical data structure and
algorithms programming coursework. Our results show that
similar issues and praise-worthy elements can be found
amongst a cohort of coursework submissions which leads to a
fair amount of reuse in feedback comments.

Our thematic analysis on the assessment feedback given to
four cohorts of coursework submissions indicates that it is
possible to look for a known trigger of feedback comment
amongst all submissions once the first instance of that trigger
has been identified in a submission.

Preliminary experimental results show that defining triggers
of feedback comments using regular expressions are promising
as a means of programmatically detecting some triggers for
feedback. However, further work is required to evaluate its
effectiveness on a wider range of code features and to make it
an accessible approach to those who are not au-fait with regular
expressions. Additionally, as a non-Turing-complete language,
regular expressions are limited in what they can detect –
particularly with nested bracket patterns – where alternative
approaches such as using syntax tree queries and patterns may
be more appropriate.

REFERENCES

[1] O-H. Ylijoki, “Disciplinary cultures and the moral order of studying – a
case-study of four Finnish university departments,” Higher Educ.,
vol. 39, no. 3, pp. 339–362, 2000.

[2] M. Ben-Ari. “Constructivism in Computer Science Education,” J. of
Comput. in Math. and Sci. Teaching, Norfolk, VA, vol. 20, no. 1,
pp. 45–73, 2001.

[3] D. A. Kolb, Experiential Learning: experience as the source of learning
and development, London:Prentice-Hall, 1984.

[4] D. A Kolb, Experiential learning: Experience as the source of learning
and development, FT press, 2014.

[5] J. Hattie and H. Timperley, “The Power of Feedback,” Review of
Educational Research, vol. 77, no. 1, pp. 81-112, 2007.
doi: 10.3102/003465430298487

[6] S. H. S. Wong, and A. J. Beaumont, “A Quest for Helpful Feedback to
Programming Coursework,” Engineering Educ., vol. 7, no. 2, pp. 51-62.
doi: 10.11120/ened.2012.07020051

[7] Higher Education Funding Council for England (HEFCE) (2017), 2017
National Student Survey (NSS) results by teaching institution for all
institutions, [Online]. Available:
http://www.hefce.ac.uk/lt/nss/results/2017/

[8] P. Surridge, “The National Student Survey 2005-2007: Findings and
Trends – A Report to the Higher Education Funding Council for
England,” University of Bristol, 2008

[9] R. Saikkonen, L. Malmi, A. Korhonen, “Fully automatic assessment of
programming exercises,” in Proc. 6th annual SIGCSE Conf. Innovation
and Technology in Comput. Sci. Educ. (ITiCSE), Canterbury, United
Kingdom, vol. 33, 2001, pp. 133-136. doi: 10.1145/377435.377666

[10] M. Joy, N. Grifths, and R. Boyatt, “The BOSS online submission and
assessment system,” J. on Educational Resources in Computing
(JERIC), vol. 5, no. 3, 2005. doi: 10.1145/1163405.1163407

[11] E. Heinrich, J. Zhang, “A system designed to support formative
assessment of open-ended written assignments,” in 5th IEEE Int. Conf.
Advanced Learning Technologies (ICALT), Kaohsiung, Taiwan, 2005,
pp. 88-92. doi: 10.1109/ICALT.2005.29

[12] N. Wiratunga, I. Adeyanju, P. Coghill, and C. Pera, “RubricAce (TM): A
case-based feedback recommender for coursework assessment,” in Proc.
of the 16th UK Workshop on Case-Based Reasoning, vol. 829, 2011.

[13] E. Albrecht and J. Grabowski, “Towards a Framework for Mining
Students’ Programming Assignments,” in IEEE Global Engineering
Educ. Conf., Norfolk, VA, 2016, pp. 1096–1100.
doi: 10.1109/EDUCON.2016.7474690

[14] H. Keuning, J. Jeuring, and B. Heeren, “Towards a Systematic Review
of Automated Feedback Generation for Programming Exercises –
Extended Version. Technical Report,” Department of Information and
Computing Sciences, Utrecht University, UU-CS-2016-001, 2016.

[15] S. H. S. Wong, J. Taylor, and A. J. Beaumont, “Enhancing Student
Learning Experience through a novel Electronic Coursework
Assessment and Feedback Management System,” in Proc. for EE2012 -
Innovation, Practice and Research in Eng. Educ., Coventry, UK, 2012,
pp. 18–20.

[16] J. Hollingsworth. “Automatic graders for programming classes,”
Commun. ACM (CACM), vol. 3, no. 10, 1960, pp. 528–529.
doi: 10.1145/367415.367422

[17] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth, and
N. Padua-Perez, “Experiences with marmoset,” in Proc. 11th annual
SICGSE Conf. on Innovation and Technology in Comput. Sci. Educ.
(ITiCSE), Bologna, Italy, 2006, pp. 13-17.
doi: 10.1145/1140124.1140131

[18] Y. T. Yu, C. M. Tang, C. K. Poon, and J. W. Keung, “Adoption of
Computer Programming Exercises for Automatic Assessment – Issues
and Caution,” in 25th Int. Conf. on Comput. in Educ., 2017, pp. 555-564.

[19] S. Nutbrown and C. Higgins, “Static analysis of programming exercises:
Fairness, usefulness and a method for application,” Comput. Sci. Educ.,
vol. 26, no. 2-3, pp. 104-128, 2016.
doi: 10.1080/08993408.2016.1179865

[20] C. Higgins, T. Hegazy, P. Symeonidis, and A. Tsintsifas, “The
CourseMarker CBA System: Improvements over Ceilidh,” Educ. and
Information Technologies, vol. 8, no. 3, pp. 287–304, 2013.
doi: 10.1023/A:1026364126982

[21] K. A. Naudé, J. H. Greyling, and D. Vogts, “Marking student programs
using graph similarity,” Comput. & Educ., vol. 54, no. 2, pp. 545–561,
2010. doi: 10.1016/j.compedu.2009.09.005

[22] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and
Robert C. Miller. “OverCode: Visualizing Variation in Student Solutions
to Programming Problems at Scale,” ACM Trans. Comput.-Human.
Interaction – Special Issue on Online Learning at Scale (TOCHI),
vol. 22, no. 2, pp. 7:1-7:35, 2015. doi: 10.1145/2699751

[23] C Piech et. al, “Learning program embeddings to propagate feedback on
student code,” in Proc. 32nd Int. Conf. Mach. Learning, Lille, France,
vol. 37, 2015, pp. 1093-1102.

[24] Blackboard Inc. (2018), Blackboard VLE, [Online]. Available:
http://www.blackboard.com/index.html

[25] Neo4j, Inc. 2018. The Neo4j Graph Platform. [Online].
Available: https://neo4j.com/

