1	Title: Dissecting social interaction: Dual-fMRI reveals patterns of interpersonal brain-
2	behaviour relationships that dissociate among dimensions of social exchange.
3	
4	Running title: Interpersonal brain-behaviour dependencies.
5	
6	Authors: Špiláková, B. ¹ , Shaw, D. J. ^{1,2*} , Czekóová, K. ¹ & Brázdil, M. ¹
7	
8	Affiliations:
9	¹ Behavioural and Social Neuroscience Research Group, CEITEC – Central European Institute
10	of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.
11	
12	² Department of Psychology, School of Life and Health Sciences, Aston University,
13	Birmingham, B4 7ET, United Kingdom.
14	
15	*Corresponding Author: Daniel J. Shaw, Department of Psychology, Aston University, B4
16	7ET. E-mail: d.shaw1@aston.ac.uk; Tel: +44 (0)121 204 4304
17	
18	Word count: 5369
19	
20	Keywords: Social interaction; hyperscanning; co-operation; competition; interpersonal brain-

21 behaviour dependencies

1 Abstract

During social interactions, each individual's actions are simultaneously a consequence of and 2 3 an antecedent to their interaction partner's behaviour. Capturing online the brain processes underlying such mutual dependency requires simultaneous measurements of all interactants' 4 5 brains during real-world exchange ("hyperscanning"). This demands a precise characterisation 6 of the type of interaction under investigation, however, and analytical techniques capable of 7 capturing interpersonal dependencies. We adapted an interactive task capable of dissociating 8 between two dimensions of inter-dependent social exchange: goal structure (co-operation vs. competition) and interaction structure (concurrent vs. turn-based). Performing dual-fMRI 9 hyperscanning on pairs of individuals interacting on this task, and modelling brain responses in 10 both interactants as systematic reactions to their partner's behaviour, we investigated 11 interpersonal brain-behaviour dependencies (iBBD) during each dimension. This revealed 12 13 patterns of iBBD that differentiated among exchanges: In players supporting the actions of another, greater brain responses to the co-player's actions were expressed in regions implicated 14 in social cognition, such as the medial prefrontal cortex, precuneus, and temporal cortices. 15 Stronger IBBD during concurrent competitive exchanges was observed in brain systems 16 involved in movement planning and updating, however, such the supplementary motor area. 17 This demonstrates the potential for hyperscanning to elucidate neural processes underlying 18 19 different forms of social exchange.

20

Keywords: Social interaction; hyperscanning; co-operation; competition; interpersonal brainbehaviour dependencies.

1. Introduction

1

Humans engage in a variety of social exchanges on a daily basis; we interact not only with 2 friends and loved ones, but also with rivals and strangers. Despite our proficiency in negotiating 3 4 such interactions, each one emerges through a highly complex and dynamic process; even in a simple dyadic exchange, for instance, the actions of each individual are mutually and directly 5 influenced by the prior and present behaviour of their interaction partner, and, simultaneously, 6 7 serve to mutually and directly influence the other's behaviour. In this sense, social interactions 8 between two individuals comprise a "two-in-one" dynamic, whereby the actions of each person 9 are simultaneously a consequence of and antecedent to their partner's behaviour (Koike et al., 10 2015). Furthermore, each interactant can alternate between different roles during the course of a dyadic exchange. Understanding the brain processes that give rise to such mutual dependency 11 within the non-linear context of social interaction is central to social neuroscience, but this 12 remains somewhat of a "dark matter" (Schilbach et al., 2013). 13

To investigate the neural processes underlying social behaviour, neuroscientists have 14 turned typically to the classic sensory neuroscience approach – individuals' brain responses are 15 measured while they evaluate experimental social stimuli in isolation. While this has unveiled 16 numerous brain systems underlying social information processing (Van Overwalle, 2009), such 17 a "spectator science" offers little insight into how these systems are modulated during social 18 interaction; by considering individuals as detached observers, we cannot investigate how they 19 respond online to the behaviour of our interaction partners (Hari et al., 2015; Konvalinka & 20 Roepstorff, 2012; Schilbach, 2014). Indeed, increasing awareness that social cognition differs 21 fundamentally during real interaction compared to mere observation has led to calls for "real-22 world", "in situ" or "two-person" social neuroscience (Hari et al., 2013; Kasai et al., 2015; 23 Schilbach et al., 2013), whereby the brains of two or more interactants are measured 24 simultaneously while they engage with one another in real-time social exchanges. This 25 "hyperscanning" technique requires a number of methodological and technical developments 26

before it can be used to advance the field of social neuroscience, however, and this was the
 focus of the present study.

3 Liu and Pelowski (2014) propose that three distinct dimensions of interaction must be 4 delineated: the goal structure (competitive vs. co-operative), interaction structure (concurrent vs. turn-based), and task structure (independent vs. interdependent). For example, although 5 6 sporting activities share the common characteristics of a competitive goal, they differ in both 7 interaction and task structure: while opposing tennis players take turns to return a ball, and each 8 individual's shot is directly dependent upon the prior move of their opponent, individuals in a 9 race compete with one another concurrently and independently. Similarly, although members 10 of a band must co-operate with one another to achieve harmony, they can do so by aligning instrumental outputs simultaneously (concurrent) or in a sequential (turn-based) manner, and 11 independently (solo) or interdependently (duet). Since the main benefit of hyperscanning is the 12 ability to explore interaction in vivo, it is essential to dissociate among these discrete forms of 13 social exchange (Konvalinka & Roepstorff, 2012). To our knowledge, however, all existing 14 15 hyperscanning studies have focused on either the goal or task structure – none have explored the interaction structure. In order to understand the neural systems through which the mutual 16 dependency of behaviour emerges during social interaction, we must first elucidate the brain 17 18 processes that are modulated online during these dissociable dimensions of social exchange.

Hyperscanning has undergone a number of technical developments: it has been 19 performed successfully with functional magnetic resonance imaging (fMRI), 20 electroencephalography (EEG), functional near-infrared spectroscopy 21 (fNIRS) and magnetoencephalography (MEG; for reviews see Scholkmann et al., 2013; Babiloni & Astolfi, 22 23 2014). With these techniques, neuroscientists have been able to identify neural processes engaged during various forms of social exchange, from interpersonal motor synchronisation 24 (Naeem et al., 2012; Osaka et al., 2014) and joint-action tasks (Funane et al., 2011; Cui et al., 25 26 2012) to verbal communication (Jiang et al., 2012; Spiegelhalder et al., 2014) and economic

exchanges (King-Casas et al., 2005; Chung et al., 2008; Shaw et al., 2018). Further, a range of 1 analytical techniques have been developed to detect mutual dependencies in the brain responses 2 3 of interacting individuals, from inter-subject correlation (Liu et al., 2015; Koike et al., 2016; 4 Shaw et al., 2018) to sophisticated measures of inter-brain coherence (Babiloni & Astolfi, 2014; Liu et al., 2016; Nozawa et al., 2016; Stolk et al., 2014; Tang et al., 2016; Toppi et al., 2016; 5 for reviews see Babiloni & Astolfi, 2014; Hasson & Frith, 2016). Although these analytical 6 7 techniques are capable of measuring symmetrical brain responses between two interacting 8 individuals ("neural alignment"), this might fail to capture other forms of neural inter-9 dependencies during social exchange; while such symmetry might be expected between brains 10 exposed to the exact same stimulus, indicating shared processing or meaning extraction (Hasson 11 & Frith, 2016), interpersonal brain responses are unlikely to take this form during the sequential and non-linear dynamic of naturalistic dyadic exchange. In such contexts, the brain responses 12 of each interactant are likely to reflect a reaction to their partners' behaviour, which might give 13 rise to temporally lawful but asymmetric inter-dependencies. It is therefore necessary to develop 14 15 and optimise new analytical techniques that are capable of capturing the brain responses of one individual that are modulated by, or dependent upon, the behaviour of their interaction partner 16 (Burgess, 2013; Hari *et al.*, 2015); that is, interpersonal brain-behaviour dependencies (iBBD). 17

18 In this study, we measured the brain responses of two individuals simultaneously with dual-fMRI while they interacted with one another in a task capable of distinguishing between 19 20 different dimensions of social interaction – namely, an adaptation of the interactive Pattern Game (Decety et al., 2004). By measuring both players' brains simultaneously during this 21 game, we were able to capture neural responses in both interactant's brains that were modulated 22 23 online by their co-player's behaviour during an ecologically valid social context; one in which an exchange emerged through the participation of *both* individuals (Schilbach et al., 2013). To 24 investigate brain responses that underlie the mutual dependency characterising naturalistic 25 26 dyadic exchange, we considered only the interdependent level of task structure; that is, when

the task outcome is dependent upon the performance of both interactants, and the performance 1 of each interactant is mutually dependent upon their interaction partner. We then measured 2 iBBD by modelling the brain responses of one individual as systematic reactions to the other's 3 4 behaviour (Hasson & Frith, 2016). By separating both interaction and goal structure, we were able to investigate whether iBBD differed across combinations of concurrent and turn-based, 5 co-operative and competitive interactions. Based on previous research (Krill & Platek, 2012), 6 7 we predicted strong brain responses to the behaviour of an interaction partner in the reward 8 system (e.g., ventral striatum, anterior cingulate cortex) during co-operative compared with 9 competitive exchanges. In contrast, we expected stronger iBBD in brain areas implicated 10 consistently in socio-cognitive capacities (e.g., mentalising) during competition given the increased need to predict an opponent's upcoming moves (e.g., medial prefrontal cortex; 11 Carlson et al., 2013). Finally, since there is a higher demand on attention and movement 12 planning during concurrent relative to turn-based interpersonal behaviour, we hypothesised that 13 there would be greater iBBD in brain regions associated with attention and movement planning; 14 15 specifically, the frontoparietal attention network and the supplementary motor area (Cona & Semenza, 2017). Conversely, in turn-based exchanges we expected stronger brain responses to 16 an opponent's behaviour in brain areas implicated in behavioural inhibition (e.g., pre-17 supplementary motor cortex; Nachev et al., 2008) and self-other distinction (e.g., temporo-18 parietal junction, precuneus; Brass et al., 2009; Reniers et al., 2014). 19

20

21 **2. Methods**

22 **2.1.**Participants

We recruited 44 individuals (22 males) from Brno, Czech Republic. The mean age of this sample was 22.37 (SD=1.91) years. These participants were paired into same-sex dyads (11 male-male) matched on self-evaluated handedness (40 right-handers), age (mean difference = 6.27 [SD=4.32] months) and education (highest qualification achieved). Importantly, the participants comprising each dyad were unacquainted with each other prior to the day of the
experiment; they were introduced to one another for the first time upon their arrival to the
scanning facility, and instructed together about the task and the scanning procedure. The study
was approved by the Research Ethics Committee of Masaryk University, and all participants
gave their informed consent prior to the scanning procedure. Participation was rewarded with
200 CZK (approx. €8).

7

8

2.2. The Pattern Game

9 In the Pattern Game (PG), two players either co-operated or competed with one another over 10 recursive rounds to reconstruct patterns comprised of blue and yellow tokens (see Figure 1). At the beginning of the game, each player was assigned to one colour – either blue or yellow – 11 which remains fixed throughout. On any given round, one player was assigned the role of the 12 Builder, whose goal was to recreate the target pattern as closely as possible. Due to the 13 characteristics of the patterns, however, the Builder could never recreate the pattern perfectly 14 15 on their own. The second ("Other") player was instructed to either help the Builder ("Helper") or prevent them from reconstructing the pattern ("Hinderer"), and this instruction defined two 16 experimental conditions - Co-operation and Competition, respectively. In a Control condition, 17 18 the Other was instructed to simply observe the Builder without contributing any tokens. Participant roles alternated on each round. 19

Before each round, an instruction was presented for three seconds that allocated each participant to a player role (e.g., *"Yellow builds, Blue helps"*). This was followed immediately by a white fixation cross visible for one second, before the round began. Every round began with the players' tokens presented on either side of the monitor above the playing board (e.g., a blue token on the left side of the monitor, and yellow token on the right; see Figure 1). Players then moved their respective token either left or right to the desired columnar location, and then dropped the token into the lowest empty row. In our adaptation, rounds were played iteratively

in two separate blocks: In the first block, players took turns sequentially to place their tokens 1 (Turn-based); in the second, participants were free to place their tokens simultaneously 2 (Concurrent). In the Turn-based block, the Builder always placed the first token, immediately 3 4 after which another token appeared for the Other. In the Concurrent condition, the Builder's token was always in the lower row, closer to the playing board; as such, if both players 5 attempted to place their token at the same columnar position at the same time, the Builder's 6 7 token always dropped to the lowest row and the Other's token was positioned above it (see 8 Figure 1F). In every round of the game, each participant had five tokens to place and every 9 round lasted for a maximum of 25 seconds. After this time limit, a new round began regardless 10 of how many tokens had been placed. Both the Turn-based and Concurrent block consisted of 16 Co-operative, 16 Competitive, and 16 Control rounds. These 48 rounds were presented in 11 pseudorandom order, such that no single round type occurred more than three times in a row. 12 It is important to stress that, since all players played an equal number of rounds as Builders and 13 Others, we were able to assess iBBD during this interactive game in all 44 individuals. 14

15 Players moved their tokens via four-button response boxes, on which the buttons were organised horizontally in a single row; the left- and right-most buttons moving tokens one 16 column to the left or right, respectively, and either of the two centre buttons caused the token 17 18 to be dropped into the lowest available row. Before the scanning session, both participants performed four practice Control rounds of the Pattern Game to familiarise themselves with the 19 task. The entire protocol was coded using MATLAB (v2016b, The MathWorks, Inc.; 20 RRID:SCR_001622), and the Cogent 2000 toolbox (developed by the Cogent 2000 team at the 21 FIL and the ICN and Cogent Graphics developed by John Romaya at the LON at the Wellcome 22 Department of Imaging Neuroscience; RRID:SCR 015672). 23

24

25 2.3.MRI Data Acquisition

Brain images were acquired using two identical 3T Siemens Prisma scanners located in adjacent 1 rooms within the same facility; and a 64 channel HeadNeck coil. High resolution T1-2 weightened structural images were first recorded (MPRAGE, TR/TE=2300/2.33 msec; flip 3 4 angle 8° ; matrix = 240x224x224, 1 mm3 voxels). Functional imaging data were then recorded in two sequential runs, each containing 570 volumes (approx. 20 minutes) - the Turn-based 5 block was always followed by the Concurrent block. Blood-oxygen-level dependent (BOLD) 6 7 images were obtained with T2*-weighted echo planar imaging (EPI), with parallel acquisition 8 (i-PAT; GRAPPA acceleration factor = 2; 34 axial slices; TR/TE=2000/35 msec; flip angle = 60°; matrix=68x68x34; 3x3x4 mm voxels). Axial slices were acquired in interleaved order. To 9 10 ensure the synchronisation of the scanners we used an external programmable signal generator to begin the acquisition sequence (Siglent SDG1025, www.siglent.com). Scanners were 11 connected to a stimulation computer via parallel ports, through which radio frequency pulse 12 timings were recorded (mean asynchrony in volume acquisition = 1.69 [SD=0.65] msec). 13

14

15 **2.4.Behavioural data**

For each round of the PG we recorded all button presses by both players and the final layout of 16 tokens on the playing board. We could then recreate offline the moves of each player in every 17 18 round. Since Turn-based and Concurrent rounds may have differed in length and, therefore, the number of total moves afforded, we expressed the number of successful placements as a 19 proportion of all moves. For each participant, we calculated the proportion of successful moves 20 they made in both roles under each condition: For Builders, a successful move was defined as 21 any placement that served to partially recreate the target pattern; for Helpers it was any token 22 23 placed in a position that provided support to the Builder, while for Hinderers it was any placement within the desired pattern (thus preventing the Builder from making that same 24 successful placement; see Figure 1). For example, in the Turn-based block each participant 25 played eight Co-operation rounds in the role of Builder; with five tokens in each round they had 26

the opportunity make 40 successful placements over the course of the game. Since each
participant played the role of Builder and Other on alternating rounds, proportions of successful
placements for each player role in each condition were assessed with a 2 (Role: Builder vs.
Other) x 2 (Goal structure: Co-operate vs. Compete) x 2 (Interaction structure: Turn-based vs.
Concurrent) within-subject ANOVA.

6

7

2.5.Neuroimaging data

Functional and structural brain images were analysed using the variety of utilities packaged
within FMRIB's software library (FSL; Jenkinson et al., 2012; SCR_002823).

10

11

2.5.1. Pre-processing

Each of the four functional time-series for a given pair (two players x two blocks of PG rounds) 12 were pre-processed separately: First, motion correction was performed with MCFLIRT 13 (Jenkinson et al., 2002). To remove any residual motion artefacts, or signal caused by 14 physiological noise (e.g., heart rate, respiration), we performed independent component 15 analysis with MELODIC (Beckmann & Smith, 2004) to identify 50 spatial and temporal 16 components of the BOLD signal. Artefactual components were identified automatically using 17 18 the Spatially Organized Component Klassifikator (SOCK; Bhaganagarapu et al., 2013), and any signal corresponding to these problematic components was regressed out of the time-series 19 using *fsl_regfilt*. Slice-timing correction for interleaved slice acquisition was then applied to 20 these cleaned functional images, and each time-series was then high-pass filtered across time 21 (Gaussian-weighted least-squares straight-line fitting; sigma=50.0 secs) and spatially smoothed 22 with a 5mm full-width half-maximum Gaussian kernel. Using FLIRT, the time-series were 23 registered to a corresponding high resolution structural image using Boundary-based 24 Registration, and this, in turn, was registered linearly to the MNI-152 template (12 DOF). 25

2.5.2. General Linear Modelling

With FEAT, General Linear Modelling (GLM) was used to identify brain signals in each of the 2 44 participants that were elicited as a direct response to their interaction partner's prior 3 4 behaviour; specifically, in an event-related fashion we modelled the brain activity of each individual in the 1-second period immediately following each of their partner's token 5 placement. In a two-step process, fixed-effect analyses were performed for the following 6 7 parameter estimations at the individual level: Builders' responses to the moves of the Other 8 under the Co-operation (COO_{Builder}) or Competition condition (COM_{Builder}); Others' responses to the moves of Builders under the Co-operation (COO_{Other}) or Competition condition 9 10 (COM_{Other}); and, in the Control condition, the individual's brain responses while playing the role of Builder and attempting to recreate the pattern without any help or hindrance (CTL_{Builder}). 11 Importantly, by modelling brain responses recorded during a player's own token placement in 12 the Control condition we were able to distinguish between those reflecting a reaction to their 13 partner's token placement and those elicited during their own subsequent action (see below). 14 15 Event-related responses were modelled as stick functions with 1-sec duration, convolved with a double-gamma hemodynamic response function. Through combinations and comparisons of 16 these first-level parameters estimates, we then performed group-level whole-brain random-17 18 effects analyses with FLAME to examine the main effects of Role, Goal, and Interaction; the two-way interactions of Role-by-Goal, Role-by-Interaction, and Goal-by-Interaction; and the 19 three-way interaction of Role-by-Goal-by-Interaction (see Supplementary Materials for full 20 contrast specifications). Since non-parametric permutation inference offers more precise 21 control over false positives than other methods of multiple-comparison correction (Eklund et 22 23 al., 2016), group-level statistical maps were corrected across space using randomise (Winkler et al., 2014) with 5000 permutations and threshold-free cluster enhancement (Smith & Nichols, 24 2009). 25

1 **3. Results**

2 **3.1.Behaviour**

First, for each participant we computed the proportion of all moves that served as successful 3 4 token placements in the Builder or Other role. There was no main effect of Role (F[1,43]=.73, p=.40; η_p^2 =.13), but a main effect of Goal confirmed that players made more successful 5 placements in both roles under the Co-operation relative to the Competition condition (.95 6 $[\pm .01]$ vs .41 $[\pm .01]$; F[1,43]=3655.31, p<.001, η_p^2 =1.00). A main effect of Interaction structure 7 8 demonstrated a higher proportion of successful placements on Concurrent compared with Turnbased rounds (.69 [±.01] vs .66 [±.01]; F[1,43]=7.36, p=.010, η_p^2 =.76). A Role-by-Goal 9 10 interaction (F[1,43]=14.23, p<.01, η_p^2 =.96) revealed an increased success rate for Helpers compared with Builders in the Co-operation condition (.96 $[\pm .01]$ vs .94 $[\pm .01]$) but greater 11 success for Builders relative to Hinderers in the Competition condition $(.39 \pm .01)$ vs .42 12 $[\pm.01]$). There was no interactive effect of a Role-by-Interaction (F[1,43]=1.66, p=.205, 13 η_p^2 =.04). Further, a significant Goal-by-Interaction effect (F[1,43]=12.09, p=.001, η_p^2 =.93) 14 revealed that, while the increased proportion of successful placements made during Concurrent 15 relative to Turn-based rounds was significant under the Competition condition (.43 [±.01] vs 16 .38 [±.01]; p<.01), this was not the case under the Co-operation condition (.95 [±.01] vs .95 17 $[\pm.01]$; p=.63). We also found no interactive Role-by-Goal-by-Interaction effect (F[1,43]=.10, 18 p=.756; η_p^2 =0.06). These results are illustrated in Figure 2. 19

20

21 *3.2.GLM results*

Interpersonal brain-behaviour dependencies (iBBD) were measured by modelling the brain responses of one individual in the 1 sec period following the preceding token placement of their co-player. The mean (\pm SD) duration between a co-player's preceding token placement and the player's own subsequent move was 2.96 (\pm 2.14) sec in the Turn-based conditions, and 2.12 (\pm 1.69) sec in the Turn-based conditions. Importantly, by subtracting brain responses measured during the Control condition from those recorded in the experimental conditions, we were able
to identify the brain responses reflecting reactions to a co-partner's token placements
independently of those elicited during a player's own moves. Localised brain signals reflecting
these neural responses to a co-players's moves (iBBD) expressing the contrasts between
different dimensions of interaction are detailed in Tables 1-3, and illustrated in Figure 3.
Clusters expressing each contrast were identified according to FSL's *cluster* utility.

7

8

3.2.1. Role

9 Consistent with the behavioural data, we observed no differences when contrasting iBBD brain
10 responses between roles of Builders and Others.

11

12	3.2.2.	Goal

structure

Brain responses that represented iBBD differentiated between co-operative and competitive 13 exchanges. Greater brain responses to the behaviour of a co-player were observed in the Co-14 15 operation compared with the Competition condition throughout the bilateral orbito-frontal cortices, medial prefrontal (mPFC) and anterior cingulate cortices (ACC), putamina and pallida, 16 precunei (extending into the posterior cingulate cortex [PCC]), frontoparietal rolandic opercula, 17 18 temporal corticies, and hippocampi (extending into the amygdalae). In the reverse contrast, we observed differential iBBD throughout bilateral pre-supplementary motor area (pre-SMA), 19 triangularis of the inferior frontal cortex, and anterior insulae. 20

21

22

3.2.3. Interaction structure

Brain responses reflecting iBBD were greater in the Concurrent relative to the Turn-based
condition in the bilateral precentral gyri, temporo-parietal cortices and thalami; the right
anterior insula, and bilateral superior temporal sulci (STS). No differential expressions of iBBD
were revealed in the reverse contrast.

2

3.2.4. Role-by-Goal

Builders exhibited greater differential iBBD compared with Others in the Co-operation relative 3 4 to the Competition condition throughout the frontal and parietal cortices, and the cuneus. In 5 Others, however, greater reactive brain responses during the Co-operation condition were 6 observed in the mPFC and left ACC, cunei, calcarine cortices and the lingual gyri.

7

8

3.2.5. Role-by-Interaction

In line with the pattern of behavioural data, no differences were observed in interpersonal brain-9

10 behaviour dependencies when contrasting player roles in each level of Interaction structure.

11

12

3.2.6. Goal-by-Interaction

We observed stronger iBBD during competitive exchanges under the Concurrent but not the 13 Turn-Based condition; specifically, this was exhibited within the SMA, bilateral precentral and 14 15 postcentral gyri, supramarginal gyri and occipital cortices. No brain responses expressed this contrast, or the reverse, more in the Turn-Based compared with the Concurrent condition. 16

17

18

3.2.7. Role-by-Goal-by-Interaction

As with the behavioural data, the three-way interaction between Role, Interaction and Goal 19 20 structure revealed no differential iBBD after thresholding with nonparametric permutations.

21

22 4. Discussion

23 Using a dual-fMRI protocol, this study investigated whether discrete dimensions of dyadic 24 social exchange elicit dissociable patterns of inter-dependency between the behaviour of one interactant and the resultant brain responses of another – that is, interpersonal brain-behaviour 25 dependencies (iBBD). To this end, we adapted the Pattern Game (PG; Decety et al., 2004) to 26

be an experimental paradigm for two-person hyperscanning capable of delineating between 1 different interaction dimensions. Building on Liu and Pelowski's framework of social 2 3 interaction (2014), this is the first research to dissociate between more than one dimension of 4 dyadic exchange, and to examine interpersonal brain and behavioural processes between both 5 interactants during concurrent and turn-based exchanges. By modelling the brain responses in each interactant as neural reactions to their partner's behaviour, we able to measure iBBD 6 7 online – that is, interpersonal brain processes that emerge between two individuals whose active 8 participation combines to give rise to a dynamic, non-linear, real-world social exchange. Our 9 results reveal that specific patterns of player behaviour under each dimension were mirrored by 10 discrete patterns of iBBD.

It might be argued that the interpersonal brain-behaviour relationships we have observed 11 in the present study could have been investigated in a simpler, more classic neuroimaging 12 protocol, whereby the brain of one individual was scanned while they played with another 13 person who was not scanned. While this would capture brain signals that are modulated online 14 15 by the behaviour of an interaction partner, it would present an incomplete picture that considers iBBD to be a unidirectional process; we would not know how the brain of the other player is 16 modulated by the resultant reciprocal actions. Naturalistic dyadic exchanges are defined by the 17 18 active participation of both interactants; both competitive and cooperative interactions emerge through a bidirectional to-and-fro of mutually contingent behavioural exchanges that 19 communicate intentional states, giving rise to unique non-linear dynamics that are created by 20 the two players *together*. As such, iBBD reflects brain processes that are simultaneously both 21 a cause and an effect of an interaction partner's prior and present behaviour, and will emerge 22 23 in a unique fashion during each exchange. By scanning both interactants brains simultaneously, we have measured iBBD as a bidirectional process of *mutual* dependency as it unfolds online 24 over the course of unique social interactions, thereby capturing the shared intentionality 25 26 between players (Tomasello, Carpenter, Call, Behne, & Moll, 2005; Schilbach et al., 2013). Furthermore, the conditions under which participants interacted with one another were highly
 similar; both interactants knew that their co-player was in a similar context, allowing for a more
 ecologically valid context (Schilbach, Wilms, Eickhoff & Romanzetti, 2010).

4 Beginning with goal structure, players achieved greater success in the Co-operative relative to the Competition condition. This was reflected in the brain, and in a manner consistent 5 6 with our hypothesis: reactive brain responses were greater during co-operative than competitive 7 rounds in neural systems implicated in reward processing; namely, the putamen and ventral 8 pallidum (Haber & Knutson, 2010). This converges with previous studies in which co-operative 9 tasks are reported to engage the left caudate and putamen (Krill & Platek, 2012). Co-operation 10 is discussed widely in various evolutionary settings, and is generally considered beneficial to individuals (Kurzban et al., 2015; Rilling et al., 2002; Tomasello & Vaish, 2013). Interpersonal 11 brain-behaviour dependencies exhibited within the basal ganglia might therefore represent the 12 reward experienced during such co-operative dyadic exchange (Haber & Knutson, 2010). This 13 interpretation is in line with the results of Schilbach et al. (2010), who used interactive task to 14 15 compare pleasantness ratings and brain responses during joint-attention task. These authors report that higher ratings of pleasantness were accompanied by stronger engagement of the 16 ventral striatum, associating subjective experiences with neural systems implicated in reward 17 18 processing. The second set of reactive brain responses constituted brain areas linked repeatedly to socio-cognitive and -emotional processes; specifically, the anterior cingulate (ACC) and 19 medial prefrontal cortex (mPFC), and the amygdalae (Bickart et al., 2014; Twining et al., 2017). 20 A previous study has also reported the involvement of the ACC during co-operative tasks 21 (Chaminade et al., 2012). Interestingly, the ACC is engaged consistently in tasks that require 22 23 performance monitoring and adaptive behaviour during changing environmental demands, and evaluating the decisions of others during social interactions (e.g., Apps et al., 2013). This has 24 led to the proposal that the ACC processes reward in an "other-oriented" reference frame, which 25 26 can be used to estimate the motivation and, in turn, predict the behaviour of others (Apps et al., 1 2016). This pattern of iBBD also included the posterior cingulate cortex (PCC), which
2 converges with the pattern of activations observed by Decety et al. (2004) during co-operative
3 rounds of the PG. Strong brain responses to an interaction partner's behaviour in this region
4 during our interactive task suggests that it is involved in the adaptation of our own behaviour
5 in response to the inferred intentions of our interaction partner(s). Contrary to our prediction,
6 then, this finding might indicate that individuals attempt to infer the intentional state of their
7 interaction partner more during co-operative than competitive exchanges.

8 Interpersonal brain-behaviour dependencies elicited during the Competitive condition was observed throughout brain areas involved predominantly in movement planning and 9 10 attention processes: pre-supplementary motor area (pre-SMA), inferior frontal cortex and 11 anterior insula. Previous research has shown that the pre-SMA is activated reliably during tasks that require response inhibition or switching between stimulus-response rules (Nachev et al., 12 2008). This may reflect the need for players to respond more adaptively during competitive 13 exchanges, changing their plans in response to their co-player's behaviour. The reactivity of the 14 15 inferior frontal gyrus may represent the functioning of neural mirroring systems implicated in action understanding (Rizzolatti & Craighero, 2004), which would support motor planning 16 performed by the pre-SMA. The response of the anterior insula during competitive exchanges 17 18 is also consistent with previous research (Takahashi et al., 2015). Given the well-documented role of this brain area in subjective feelings states (Walter, 2012; Morelli et al., 2014; Hari et 19 al., 2015), this focus of neural reactivity might reflect affective reactions when monitoring and 20 adapting to another's behaviour. 21

An important novel aspect of this study is the focus not only on goal but also interaction structure. To our knowledge, all existing hyperscanning experiments have employed interactive tasks that afford *either* turn-based (e.g., Tomlin. et al., 2006; Babiloni et al., 2007) or concurrent exchanges (e.g., Tognoli et al., 2007; Lindenberger et al., 2009; Cui et al., 2012), but our modified PG enabled us to compare these two types of interaction structure directly. Our data

demonstrate important differences between these types of exchange: First, we recorded a higher 1 rate of successful placements during concurrent compared with turn-based rounds. 2 3 Furthermore, we observed a parallel pattern of stronger iBBD during concurrent relative to turn-4 based exchanges, particularly in the right superior temporal sulcus (STS) and temporo-parietal cortices. Since these brain regions are associated frequently with mentalizing processes 5 (Carlson et al., 2013; Frith & Frith, 2006; Van Overwalle, 2009; Walter, 2012), we suggest this 6 7 reflects the greater need for individuals to infer their opponent's intentions in real time during 8 concurrent compared with sequential interactions.

9 Second, while the success rate was comparable on concurrent and turn-based exchanges 10 in the Co-operative condition, players were significantly more successful in concurrent rounds of the Competition condition. Congruently, increased iBBD expressed during competitive 11 compared with co-operative rounds was greater under the Concurrent relative to the Turn-Based 12 condition. This was exhibited within the SMA, bilateral precentral and postcentral gyri – brain 13 areas linked strongly to movement planning. One possible explanation is that competitive 14 15 exchanges afforded multiple strategies; players may have spent more time evaluating the playing space and second-guessing their opponent's upcoming move in the Turn-based 16 condition, rather than reacting dynamically to their opponent. On concurrent rounds of the 17 18 Competition condition, however, in which the quicker player often made more successful token placements, there was less time for such strategic planning. Conversely, under the Co-operation 19 condition there is no such plurality of strategies to consider; both players work towards the 20 same shared goal in both concurrent and turn-taking exchanges. 21

Although we observed no differences when comparing Builders and Others directly, a role-by-goal interaction revealed different patterns of brain reactivity evoked in each role: While, Builders achieved less successful placements than Others in the Co-operation condition, the opposite effect was present under the Competition condition. This likely reflects fundamental differences in the nature of the task for Helpers and Hinderers: A single strategy

for success was illustrated explicitly to Helpers, since only three token placements enabled the 1 Builder to form the target pattern. In contrast, a number of implicit strategies were available to 2 3 Hinderers in their impedance of the Builder – they could hinder actively through obstructive 4 placements, for instance, or passively through no placements at all. This is an important aspect of our interactive paradigm, and of social exchanges more generally: while both interactants 5 6 might pursue the same goal, different social contexts may afford different strategies for each 7 individual. We observed a stronger iBBD during co-operative exchanges in the Builder 8 compared with the Other throughout frontal and parietal brain regions, and the precuneus. The 9 precuneus is thought to be involved in self-referential processes and self-other distinction 10 (Cabanis et al., 2013; Reniers et al., 2014), which suggests the recruitment of these processes when one individual (the Builder) must infer the co-operative intentions behind the actions of 11 another (the Other). On the other hand, iBBD in the Other during co-operative exchanges were 12 expressed in other brain areas associated with socio-cognitive processes, such as the mPFC and 13 ACC (Völlm et al., 2006; Reniers et al., 2014). 14

15 Our findings illustrate the need for social neuroscience research to operationalise carefully the specific dimension(s) of social interaction under investigation. In doing so, 16 hyperscanning permits a characterisation of the specific dimensions along which clinical 17 18 disorders exhibit dysfunctional social behaviour, and the identification of underlying inter-brain neuromarkers. To develop our results further, future studies should investigate how these 19 dissociable, role-specific patterns of iBBD emerge spontaneously during naturalistic 20 exchanges. One way to achieve this is to modify our paradigm by removing the fixed task 21 structure. In many interactive paradigms used for hyperscanning studies, such as those 22 23 employing economic games (e.g., Ultimatum Game; Shaw et al. *in press*), the asymmetry of player roles is enforced by the very nature of the task. In others, however, such asymmetry is 24 allowed to emerge spontaneously; in the synchronized finger-tapping task used by Konvalinka 25 26 et al. (2014), for example, pairs of participants either mutually adjusted to each other or

followed a computer metronome. These authors report a spontaneous emergence of leaderfollower relationship, which was accompanied by differential brain responses between players.
We instructed interactants about the type of exchange they should perform at any one time, but
real interactions are often characterised by a degree of uncertainty about how the other person
is going to behave – for example, whether they will decide to co-operate or not. Our interactive
task could be adjusted such that players are free to choose their role on a given round, affording
an interactive context that resembles real-world dyadic exchange even more closely.

8

9 Acknowledgements

The work was supported from European Regional Development Fund-Project "National infrastructure for biological and medical imaging" (No. CZ.02.1.01/0.0/0.0/16_013/0001775), by the Ministry of Education, Youth and Sports of the Czech Republic under the Project CEITEC 2020 (LQ1601), and from Czech Science Foundation (GA16-18261S). We also acknowledge the core facility, MAFIL, of CEITEC, supported by the Czech-BioImaging large RI project (LM2015062 funded by MEYS CR) for their support with obtaining scientific data presented in this paper. We thank Tao Liu for his help with the development of the experiment.

References

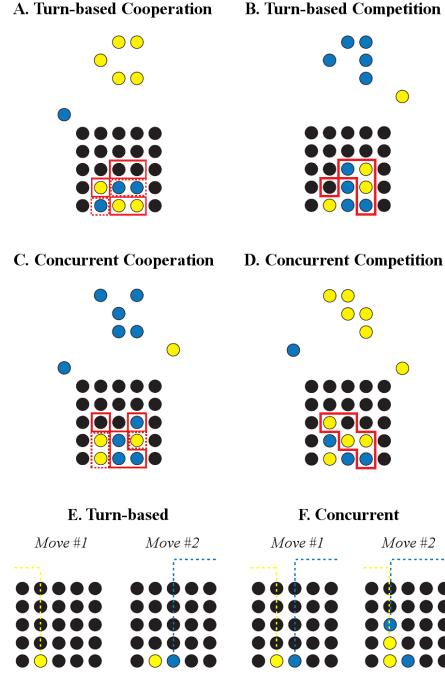
2	Apps, M.A.J., Lockwood, P.L., Balsters, J.H. (2013). The role of the midcingulate cortex in
3	monitoring others' decisions. Frontiers in Neuroscience, 7, 1–7
4	Apps, M.A.J., Rushworth, M.F.S., Chang, S.W.C. (2016). The Anterior Cingulate Gyrus and
5	Social Cognition: Tracking the Motivation of Others. Neuron, 90, 692–707
6	Babiloni, F., Astolfi, L. (2014). Social neuroscience and hyperscanning techniques: Past,
7	present and future. Neuroscience & Biobehavioral Reviews, 44, 76–93
8	Babiloni, F., Cincotti, F., Mattia, D., et al. (2007). High resolution EEG hyperscanning during
9	a card game. Conference proceedings : Annual International Conference of the IEEE
10	Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and
11	Biology Society. Annual Conference, 2007, 4957–60
12	Beckmann, C.F., Smith, S.M. (2004). Probabilistic Independent Component Analysis for
13	Functional Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 23,
14	137–52
15	Bhaganagarapu, K., Jackson, G.D., Abbott, D.F. (2013). An Automated Method for
16	Identifying Artifact in Independent Component Analysis of Resting-State fMRI.
17	Frontiers in Human Neuroscience, 7
18	Bickart, K.C., Dickerson, B.C., Feldman Barrett, L. (2014). The amygdala as a hub in brain
19	networks that support social life. Neuropsychologia, 63, 235–48
20	Brass, M., Ruby, P., Spengler, S. (2009). Inhibition of imitative behaviour and social
21	cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 364,
22	2359–67
23	Burgess, A.P. (2013). On the interpretation of synchronization in EEG hyperscanning studies:
24	a cautionary note. Frontiers in human neuroscience, 7, 881
25	Cabanis, M., Pyka, M., Mehl, S., et al. (2013). The precuneus and the insula in self-
26	attributional processes. Cognitive, Affective, & Behavioral Neuroscience, 13, 330-45

1	Carlson, S.M., Koenig, M.A., Harms, M.B. (2013). Theory of mind. Wiley interdisciplinary
2	reviews. Cognitive science, 4, 391–402
3	Chaminade, T., Marchant, J.L., Kilner, J., et al. (2012). An fMRI study of joint action-
4	varying levels of cooperation correlates with activity in control networks. Frontiers in
5	Human Neuroscience, 6 , 179
6	Chung, D., Yun, K., Jeong, J. (2008). Neural Mechanisms of Free-riding and Cooperation in a
7	Public Goods Game: An EEG Hyperscanning Study. In: International Conference of
8	<i>Cognitive</i> p. 2–5.
9	Cona, G., Semenza, C. (2017). Supplementary motor area as key structure for domain-general
10	sequence processing: A unified account. Neuroscience and Biobehavioral Reviews, 72,
11	28–42
12	Cui, X., Bryant, D.D.M., Reiss, A.L. (2012). NIRS-based hyperscanning reveals increased
13	interpersonal coherence in superior frontal cortex during cooperation. NeuroImage, 59,
14	2430–37
15	Decety, J., Jackson, P.L., Sommerville, J. a., et al. (2004). The neural bases of cooperation
16	and competition: an fMRI investigation. NeuroImage, 23, 744–51
17	Eklund, A., Nichols, T.E., Knutsson, H. (2016). Cluster failure: Why fMRI inferences for
18	spatial extent have inflated false-positive rates. Proceedings of the National Academy of
19	Sciences, 113 , 7900–7905
20	Frith, C.D., Frith, U. (2006). The Neural Basis of Mentalizing. Neuron, 50, 531–34
21	Funane, T., Kiguchi, M., Atsumori, H., et al. (2011). Synchronous activity of two people's
22	prefrontal cortices during a cooperative task measured by simultaneous near-infrared
23	spectroscopy. Journal of biomedical optics, 16, 077011
24	Haber, S.N., Knutson, B. (2010). The Reward Circuit: Linking Primate Anatomy and Human
25	Imaging. Neuropsychopharmacology, 35 , 4–26
26	Hari, R., Henriksson, L., Malinen, S., et al. (2015). Centrality of Social Interaction in Human

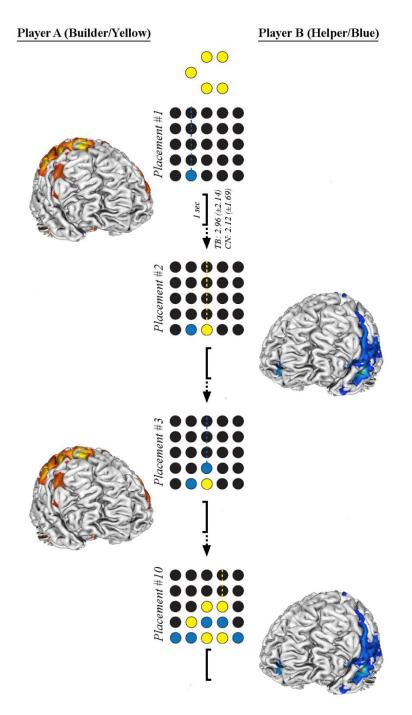
1		
	4	

Brain Function. Neuron, 88, 181–93

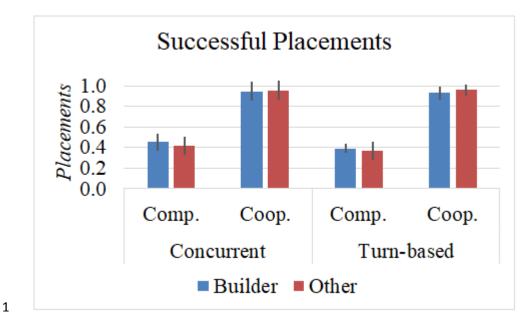
2	Hari, R., Himberg, T., Nummenmaa, L., et al. (2013). Synchrony of brains and bodies during
3	implicit interpersonal interaction. Trends in Cognitive Sciences, 17, 105-6
4	Hasson, U., Frith, C.D. (2016). Mirroring and beyond: coupled dynamics as a generalized
5	framework for modelling social interactions. Philosophical Transactions of the Royal
6	Society B: Biological Sciences, 371 , 20150366
7	Jenkinson, M., Bannister, P., Brady, M., et al. (2002). Improved optimization for the robust
8	and accurate linear registration and motion correction of brain images. <i>NeuroImage</i> , 17,
9	825–41
10	Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., et al. (2012). FSL. NeuroImage, 62, 782–90
11	Jiang, J., Dai, B., Peng, D., et al. (2012). Neural synchronization during face-to-face
12	communication. The Journal of neuroscience : the official journal of the Society for
13	<i>Neuroscience</i> , 32 , 16064–69
14	Kasai, K., Fukuda, M., Yahata, N., et al. (2015). The future of real-world neuroscience:
15	Imaging techniques to assess active brains in social environments. Neuroscience
16	<i>Research</i> , 90 , 65–71
17	King-Casas, B., Tomlin, D., Anen, C., et al. (2005). Getting to know you: reputation and trust
18	in a two-person economic exchange. Science (New York, N.Y.), 308, 78-83
19	Koike, T., Tanabe, H.C., Okazaki, S., et al. (2016). Neural substrates of shared attention as
20	social memory: A hyperscanning functional magnetic resonance imaging study.
21	<i>NeuroImage</i> , 125 , 401–12
22	Koike, T., Tanabe, H.C., Sadato, N. (2015). Hyperscanning neuroimaging technique to reveal
23	the 'two-in-one' system in social interactions. Neuroscience research, 90, 25-32
24	Konvalinka, I., Bauer, M., Stahlhut, C., et al. (2014). Frontal alpha oscillations distinguish
25	leaders from followers: Multivariate decoding of mutually interacting brains.
26	NeuroImage, 94 , 79–88


1	Konvalinka, I., Roepstorff, A. (2012). The two-brain approach: how can mutually interacting
2	brains teach us something about social interaction? Frontiers in Human Neuroscience, 6,
3	215
4	Krill, A.L., Platek, S.M. (2012). Working together may be better: Activation of reward
5	centers during a cooperative maze task. PLoS ONE, 7, 1–7
6	Kurzban, R., Burton-Chellew, M.N., West, S.A. (2015). The Evolution of Altruism in
7	Humans. Annual Review of Psychology, 66, 575–99
8	Lindenberger, U., Li, SC., Gruber, W., et al. (2009). Brains swinging in concert: cortical
9	phase synchronization while playing guitar. BMC neuroscience, 10, 22
10	Liu, N., Mok, C., Witt, E., et al. (2016). NIRS-based hyperscanning reveals inter-brain neural
11	synchronization during cooperative Jenga game with face-to-face communication.
12	Frontiers in Human Neuroscience, 10 , 1–11
13	Liu, T., Pelowski, M. (2014). Clarifying the interaction types in two-person neuroscience
14	research. Frontiers in Human Neuroscience, 8, 276
15	Liu, T., Saito, H., Oi, M. (2015). Role of the right inferior frontal gyrus in turn-based
16	cooperation and competition: A near-infrared spectroscopy study. Brain and Cognition,
17	99 , 17–23
18	Morelli, S.A., Rameson, L.T., Lieberman, M.D. (2014). The neural components of empathy:
19	Predicting daily prosocial behavior. Social Cognitive and Affective Neuroscience, 9, 39–
20	47
21	Nachev, P., Kennard, C., Husain, M. (2008). Functional role of the supplementary and pre-
22	supplementary motor areas. Nature reviews. Neuroscience, 9, 856-69
23	Naeem, M., Prasad, G., Watson, D.R., et al. (2012). Functional dissociation of brain rhythms
24	in social coordination. Clinical Neurophysiology, 123, 1789–97
25	Nozawa, T., Sasaki, Y., Sakaki, K., et al. (2016). Interpersonal frontopolar neural
26	synchronization in group communication: An exploration toward fNIRS hyperscanning

1	of natural interactions. NeuroImage, 133, 484–97
2	Osaka, N., Minamoto, T., Yaoi, K., et al. (2014). Neural Synchronization During Cooperated
3	Humming: A Hyperscanning Study Using fNIRS. Procedia - Social and Behavioral
4	<i>Sciences</i> , 126 , 241–43
5	Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain
6	<i>Mapping</i> , 30 , 829–58
7	Reniers, R.L.E.P., Völlm, B. a, Elliott, R., et al. (2014). Empathy, ToM, and self-other
8	differentiation: an fMRI study of internal states. Social neuroscience, 9, 50-62
9	Rice, K., & Redcay, E. (2016). Interaction matters: A perceived social partner alters the
10	neural processing of human speech. NeuroImage, 129, 480-488.
11	Rilling, J.K., Gutman, D. a., Zeh, T.R., et al. (2002). A Neural Basis for Social Cooperation.
12	Neuron, 35 , 395–405
13	Rizzolatti, G., Craighero, L. (2004). The mirror-neuron system. Annual review of
14	neuroscience, 27 , 169–92
15	Schilbach, L. (2014). On the relationship of online and offline social cognition. Frontiers in
16	human neuroscience, 8, 278.
17	Schilbach, L., Timmermans, B., Reddy, V., et al. (2013). Toward a second-person
18	neuroscience. Behavioral and Brain Sciences, 36, 393-414
19	Schilbach, L., Wilms, M., Eickhoff, S.B., et al. (2010). Minds made for sharing: Initiating
20	joint attention recruits reward-related neurocircuitry. Journal of Cognitive Neuroscience,
21	22 , 2702–15
22	Scholkmann, F., Holper, L., Wolf, U., et al. (2013). A new methodical approach in
23	neuroscience: assessing inter-personal brain coupling using functional near-infrared
24	imaging (fNIRI) hyperscanning. Frontiers in human neuroscience, 7, 813
25	Shaw, D.J., Czekóová, K., Staněk, R., et al. (2018). A dual-fMRI investigation of the iterated
26	Ultimatum Game reveals that reciprocal behaviour is associated with neural alignment.


1	Scientific Reports, 8, 10896
2	Shaw, Czekóová, Gajdoš, Staněk, Špalek & Brázdil (in press). Social decision making in the
3	brain: Input-state-output modelling reveals patterns of effective connectivity underlying
4	reciprocal choices. Human Brain Mapping.
5	Smith, S.M., Nichols, T.E. (2009). Threshold-free cluster enhancement: Addressing problems
6	of smoothing, threshold dependence and localisation in cluster inference. NeuroImage,
7	44 , 83–98
8	Spiegelhalder, K., Ohlendorf, S., Regen, W., et al. (2014). Interindividual synchronization of
9	brain activity during live verbal communication. Behavioural brain research, 258, 75–79
10	Stolk, A., Noordzij, M.L., Verhagen, L., et al. (2014). Cerebral coherence between
11	communicators marks the emergence of meaning. Proceedings of the National Academy
12	of Sciences, 201414886
13	Takahashi, H., Izuma, K., Matsumoto, M., et al. (2015). The anterior insula tracks behavioral
14	entropy during an interpersonal competitive game. PLoS ONE, 10, 1–17
15	Tang, H., Mai, X., Wang, S., et al. (2016). Interpersonal brain synchronization in the right
16	temporo-parietal junction during face-to-face economic exchange. Social Cognitive and
17	Affective Neuroscience, 11, 23–32
18	Tognoli, E., Lagarde, J., DeGuzman, G.C., et al. (2007). The phi complex as a neuromarker of
19	human social coordination. Proceedings of the National Academy of Sciences of the
20	United States of America, 104, 8190–95
21	Tomasello, M., Vaish, A. (2013). Origins of Human Cooperation and Morality. Annual
22	Review of Psychology, 64, 231–55
23	Tomlin, D., Kayali, M.A., King-Casas, B., et al. (2006). Agent-specific responses in the
24	cingulate cortex during economic exchanges. Science (New York, N.Y.), 312, 1047-50
25	Toppi, J., Borghini, G., Petti, M., et al. (2016). Investigating Cooperative Behavior in
26	Ecological Settings: An EEG Hyperscanning Study D. Yao (ed). PLOS ONE, 11,

e0154236


Twining, R.C., Vantrease, J.E., Love, S., et al. (2017). An intra-amygdala circuit specifically
regulates social fear learning. Nature Neuroscience, 20, 459-69
Völlm, B. a, Taylor, A.N.W., Richardson, P., et al. (2006). Neuronal correlates of theory of
mind and empathy: a functional magnetic resonance imaging study in a nonverbal task.
NeuroImage, 29 , 90–98
Walter, H. (2012). Social Cognitive Neuroscience of Empathy: Concepts, Circuits, and
Genes. Emotion Review, 4, 9–17
Winkler, A.M., Ridgway, G.R., Webster, M.A., et al. (2014). Permutation inference for the
general linear model. <i>NeuroImage</i> , 92 , 381–97
MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts,
United States.

3 Figure 1. Snapshots of Turn-based Co-operation (A) and Competition rounds (B), and Concurrent Co-operation (C) and 4 Competition rounds (D); and schematics of sequential player moves in Turn-taking (E) and Concurrent rounds (F). In panels 5 A-D, the Builder is assigned the same colour as the depicted target pattern, and scores by placing tokens in locations that 6 recreate the pattern (indicated by solid red lines). The Other scores by placing their tokens in locations that serve to help (dashed 7 red lines) or hinder the Builder; since the latter is achieved by placing tokens within the pattern space, thereby obstructing the 8 Builder, the scoring location of Others and Builders are the same in Competitive rounds (solid red lines). In E, players take 9 turns to move their tokens. In F, both players can move simultaneously; if both players chose move their token to the same 10 location then the Builder's token (lower) is positioned in the first available space, and the Other's token is positioned above it.

2 Figure 2. Schematic of the General Linear Modelling procedure. This illustrates the timings of four token 3 placements during an example Turn-based Co-operation round, in which Helper (blue) takes turns with a Builder 4 (vellow) to assist them in re-creating the target pattern. The brain responses of each player are modelled in the 1 5 second period immediately following their co-player's token placement. The mean (±SD) interval between the co-6 player's token placement and the individual's own subsequent placement are shown for both Turn-based (TB) and 7 Concurrent (CN) rounds. On CN rounds particularly, the individual's own placement sometimes occurred within 8 this 1 second period, but brain responses specific to an opponent's token placement and independent of the player's 9 own moves were identified by subtracting those modelled during a Control condition (see text for further details).

2 Figure 3. Behavioural data. Mean (±SE) proportions of successful token placements achieved by

3 Builders (*blue*) and Others (*red*) in both levels of goal and interaction structure.

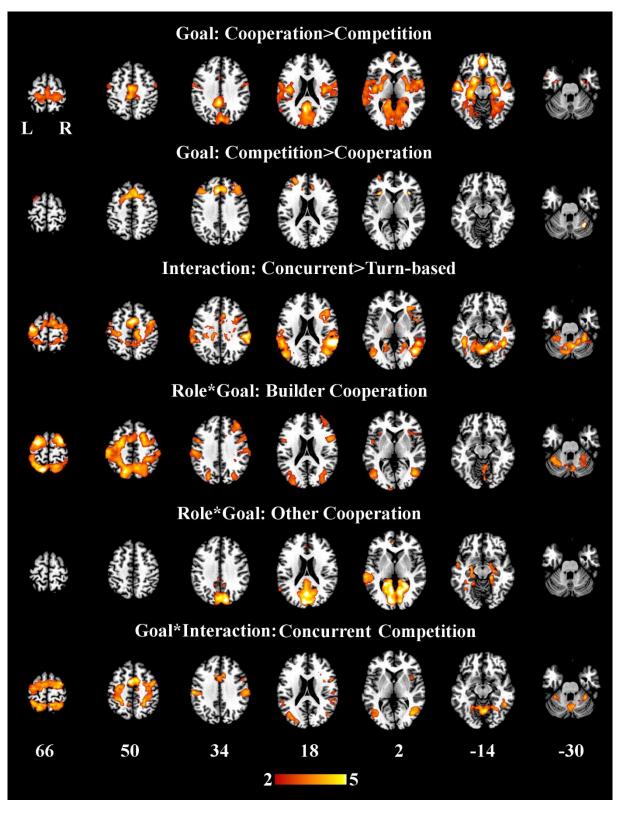


Figure 4. Neuroimaging data from group analyses. Rows present selected axial slices illustrating z-maps in which
clusters of BOLD response expressed differential Interpersonal brain-behaviour dependencies (iBBD) among
conditions after thresholding (p<0.05) with non-parametric permutation bootstrapping. *Note:* z-maps are overlaid
onto the Colin27 template (Holmes *et al.*, 1998). Values at the bottom of the image present z-coordinates of
corresponding axial slices, in MNI space.

		Co-operatio	n > 0	Competitio	on					Competitio	n > Co-c	peration			
Cluster	Voxels	Label		Max	Х	У	Z	Cluster	Voxels	Label		Max	х	У	Z
3	36910	Putamen	L	8.07	-18	8	-8	5	3770	dmPFC	L	7.49	-4	24	42
			R	7.1	20	14	-6				R	6.48	4	26	44
		MTG	L	7.4	-56	-6	-14					6.89	10	24	44
		Hippocampus	R	7.38	30	-18	-12					6.55	10	32	40
		Precuneus	L	6.87	-4	-58	20			SMA	L	6.48	-8	16	46
		Rolandic Operculum	L	6.59	-40	-14	16			МСС	L	7.03	-4	28	36
2	1492	vmPFC	L	6.67	0	42	-10	4	1165	MFG	L	5.54	-30	54	10
				6.58	-2	50	-12					5.21	-46	34	28
				6.4	0	56	-8					5.09	-44	24	40
		dmPFC	L	5.13	0	62	0					4.64	-36	26	36
				4.33	-2	54	6			IFG	L	4.54	-36	28	28
		ACC		4.18	0	36	8			SFG	L	4.43	-22	48	22
1	7	Orbito- frontal cortex	R	6.04	28	34	-10	3	218	Insula	L	7.95	-34	18	-4
				5.99	32	34	-12	2	106		R	6.8	34	22	2
												6.7	30	24	-4
								1	74	Cerebellum	R	7.39	32	-58	-30

1 Table 1. Clusters iBBD expressing the main effect of Goal.

Note: Coordinates are given at 3mm³ resolution in MNI space, and max values present peak *t*value from non-parametric permutation inference. *Abbreviations*: MTG=middle temporal
gyrus, v/dmPFC=ventro-/dorso-medial prefrontal cortex, ACC=anterior cingulate cortex,
SMA=supplementary motor area, MCC=mid cingulate cortex,
I/M/SFG=inferior/middle/superior frontal gyrus.

		Builder (COO>	COM) > C	Other (COC	>COM)				Othe	er (COO>COM)	> Buil	der (COC	D>COM)		
Cluster	Voxels	Label		Max	x	У	Z	Cluster	Voxels	Label		Max	х	У	Z
2	27005	Precuneus	L	9.04	-12	-62	62	3	11776	Calcarine	L	7.96	-10	-86	2
		SFG	L	8.36	-28	-2	66					7.54	-22	-48	4
				8.25	-24	-6	66				R	7.83	24	-50	6
			R	8.18	26	0	62			Cuneus	L	7.56	-2	-86	28
		SPL	L	8.33	-16	-68	56					7.52	-6	-88	24
										Lingual	R	7.52	12	-70	0
		MFG	L	8.21	-26	-2	56	2	1337	MTG	L	5.58	-64	-32	4
1	4733	Cerebellum	L	7.12	-38	-44	-46					5.47	-52	-26	0
				6.03	-24	-34	-42					5.28	-66	-30	0
				5.85	-36	-50	-30					5.14	-60	-38	8
				5.84	-12	-52	-48					5.12	-58	-12	-6
			R	6.56	14	-54	-50			STG	L	4.91	-54	-10	-8
				6.34	30	-40	-46	1	217	Frontal Med Orbital	L	6.18	-4	50	-4
										ACC	L	6.17	-2	44	8
												5.77	0	40	14

1 Table 2. Clusters of iBBD expressing the Goal-by-Role interaction.

Note: Coordinates are given at 3mm³ resolution in MNI space, and max values present peak *t*value from non-parametric permutation inference. *Abbreviations*: SFG=superior frontal gyrus,
SPL=superior parietal lobule, MFG=middle frontal gyrus, MTG=middle temporal gyrus,
STG=superior temporal gyrus, ACC=anterior cingulate cortex.

1 Table 3. Clusters of iBBD expressing the main effect of Interaction (*left*) and the interactive

Concurrent > Turn-based									Turn-based (COO>COM) > Concurrent (COO>COM)							
Cluster	Voxels	Label		Max	x	У	Z	Cluste	er Voxels	Label		Max	х	У	Z	
4	36386	STG	R	7.35	58	-44	18	3	14191	SMA	L	6.37	-8	2	48	
		MTG	R	6.96	54	-52	12				R	5.59	10	2	48	
				6.55	46	-64	6			Supramarginal gyrus	L	6.09	-58	-24	30	
		Precentral	L	6.77	-30	-18	70			Precentral gyrus	L	5.5	-28	-12	54	
				6.5	-38	-18	68			SPL	L	5.42	-20	-54	62	
		Cerebellum	L	6.76	-14	-76	-36			Postcentral gyrus	R	5.36	56	-22	32	
								2	8060	MOG	L	5.8	-40	-70	12	
3	335	Thalamus	L	5	-16	-12	12			Vermis		5.67	-2	-62	-8	
				4.38	-8	-16	-2					5.18	4	-64	-12	
			R	4.46	8	-22	0					5.05	2	-66	-18	
		STG	R	5.05	46	-16	-8			MTG	R	4.87	42	-68	4	
				4.02	52	-2	-14			Cerebellum	L	4.85	-8	-72	-42	
		Insula	R	4.15	40	-10	-6	1	3	Postcentral	R	2.94	36	-32	72	
2	275	Temporal Pole	R	3.9	54	4	-16									
		Thalamus	R	4.38	16	-8	14				1					
	1			3.96	8	-8	4									
	1			3.88	18	-22	14				1					
1	120			3.87	12	-12	10						1		<u> </u>	
3	1	1	I		I	I	I	<u> </u>	<u> </u>	I	<u> </u>	<u>I</u>	I	I	<u> </u>	

2 Goal-by-Interaction effect (*right*).

3

4 *Note*: Coordinates are given at 3mm³ resolution in MNI space, and max values present peak *t*-

5 value from non-parametric permutation inference. *Abbreviations*: STG=superior temporal

6 gyrus, MTG=middle temporal gyrus, SMA=supplementary motor area, SPL=superior parietal

- 7 lobule, MOG=middle occipital gyrus.
- 8
- 9